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SUMMARY

The thesis studies two problems in harmonic analysis — sharp estimates for the norms
of the powers of multipliers associated with unimodular homogeneous symbols and the
multi-parameter maximal Fourier restriction.

In the first part, it proves asymptotically sharp estimates for the norms of multipliers
associated with unimodular homogeneous symbols of degree 0 and shows that the powers
of a generic multiplier in that class exhibit asymptotically maximal order of growth. As
a consequence, it disproves Maz’ya’s conjecture regarding the asymptotically sharp esti-
mates of such multipliers in all dimensions and solves the problem posed by Dragicevi¢,
Petermichl, and Volberg concerning the sharp lower estimate of a certain multiplier falling
within the mentioned class.

In the second part, the thesis generalizes the Christ—Kiselev lemma for maximal op-
erators to its multi-parameter version. As a consequence, it solves the multi-parameter
maximal Fourier restriction problem in all dimensions, a result that was known only
in two dimensions from the work of Miiller, Ricci and Wright and proves the multi-
parameter version of the Menshov—Paley—Zygmund theorem for the multi-dimensional
Fourier transform.

Keywords: Fourier multipliers, singular integrals, Fourier restriction, maximal esti-

mates
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SAZETAK

Disertacija se bavi proucavanjem dvaju problema u harmonijskoj analizi — problemom
strogih ocjena normi potencija multiplikatora pridruZzenih unimodularnim homogenim
simbolima 1 problemom viSeparametarske Fourierove restrikcije.

U prvom se dijelu dokazuju asimptotski stroge ocjene za norme potencija multip-
likatora pridruzenih unimodularnim homogenim simbolima reda 0 1 dokazuje se da po-
tencije generickog multiplikatora u navedenoj klasi imaju asimptotski maksimalan rast.
Posljedi¢no, to opovrgava Maz’yinu slutnju o asimptotski strogim ocjenama normi takvih
multiplikatora 1 odgovara na pitanje Dragicevica, Petermichl 1 Volberga vezano uz stroge
donje ocjene za konkretni multiplikator u navedenoj klasi.

U drugom se dijelu generalizira lema Christa i Kiseleva za maksimalne operatore na
viSeparametarsku varijantu, posljedi¢no rjeSava problem viSeparametarske maksimalne
Fourierove restrikcije u svim dimenzijama, koji je prije ove disertacije bio poznat samo
u dvije dimenzije iz rada Miillera, Riccija i Wrighta, te dokazuje viSeparametarsku verz-
iju Menshov—Paley—Zygmundovog teorema za viSedimenzionalnu Fourierovu transfor-

maciju.

Disertacija je organizirana na sljedeci nacin.

U uvodnom poglavlju (“Introduction”) Citatelja se uvodi u kontekst problema kojima
se disertacija bavi i navode se poznati rezultati.

U poglavlju 1 (“Preliminaries”) uvodi se notacija i prezentira kratak uvod u poznate
rezultate koji ¢e biti koriSteni u dokazima u nastavku.

U poglavlju 2 (“Powers of homogeneous unimodular multipliers”), koje je bazirano
na radu [8], dokazuju se gornje ocjene za norme Fourierovih multiplikatora pridruzenih

unimodularnim homogenim simbolima reda 0 1 pokazuje se da su ocjene stroge u parnim
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Sazetak

dimenzijama, ¢ime se posljedi¢no opovrgava Maz’yina slutnja u parnim dimenzijama. U
nastavku se dokazuju stroge donje ocjene za multiplikator iz rada DragiCevica, Petermichl
1 Volberga 1 odgovara na njihovo pitanje.

U poglavlju 3 (“Norm growth of powers of unimodular multipliers is a generic prop-
erty”), koje je bazirano na radu [6], dokazuje se da je gornja ocjena dokazana u prethod-
nom poglavlju optimalna za genericki multiplikator u svim dimenzijama veéim ili jed-
nakim dva i posljedi¢no opovrgava Maz’yina slutnja u svim dimenzijama.

U poglavlju 4 (“Multi-parameter maximal Fourier restriction”), koje je bazirano na
radu [7], generalizira se lema Christa i Kiseleva za maksimalne operatore na viSeparametarsku
varijantu, posljedi¢no se rjeSava problem viSeparametarske Fourierove restrikcije u svim
dimenzijama i dokazuje se viSeparametarska verzija Menshov—Paley—Zygmundovog teo-
rema za Fourierovu transformaciju u viSe dimenzija.

Kljucne rijeci: Fourierovi multiplikatori, singularni integrali, Fourierova restrikcija,

maksimalne ocjene

v
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INTRODUCTION

The thesis is thematically divided into two parts. The first part is based on papers [8]
and [6] and studies the Fourier multiplier operators with homogeneous symbols. The
second part is based on paper [7] and is concerned with the study of the maximal Fourier
restriction. Since both Fourier multipliers and Fourier restriction are considered central
topics of harmonic analysis, we include a very brief history of problems closely related to
each.

The study of Fourier multipliers, at least in the context of the Fourier series, can be
traced back to at least as early as the work of J. Marcinkiewicz [47]. That study and
the study of more general singular integral operators gained momentum in the 1960s,
from which period we mention the works of Calderén and Zygmund [10], Mikhlin [51],
Hormander [38] and Stein [62]. The so-called Calderon—Zygmund theory of singular
integrals began to take shape and one can find the basic results from that time in Stein’s
book [64].

In the 1970s, Stein’s observation (recorded by Fefferman in [21]) that for some p > 1
one can meaningfully restrict Fourier transform of any L”(R¢) function to the sphere
S?=1, even though it is the set of measure 0, initiated the study of Fourier restriction
problem. The aforementioned paper by Fefferman already made connections between
the problem of Fourier restriction and the so-called Bochner—Riesz multipliers, while
Strichartz [69] used the progress on the restriction problem to prove estimates for the
solution of the Schrodinger partial differential equation and from that point on the studies
of these three problems have been closely related. Notably, Tao [71] showed that the
Bochner—Riesz multiplier problem implies the Fourier restriction problem for the sphere.

Soon after the initial observation by Stein, Fefferman [22] also discovered that the

Besicovitch set from geometric measure theory can be combined with wave packets to



Introduction

disprove the ball multiplier conjecture (which is the extreme case of the Bochner-Riesz
multiplier). This connection was used by Bourgain [5] to improve the range of exponents
in which the restriction problems are known to hold, but the full range of estimates in the
Fourier restriction problem and Bochner—Riesz multiplier is still the topic of an active area
of research. The progress on the Fourier restriction problem until 2004 was summarized
by Tao in [73]. The current best range of exponents for the restriction problem was proved
by Guth [33, 34], who introduced the polynomial partitioning method in the problem of
Fourier restriction, and by Hickman and Rogers [35] who improved the techniques in

higher dimensions.

We can now turn back to the problems studied in the dissertation. The most studied
Fourier multiplier operator is the Hilbert transform, the operator defined on L?>(R) with
Hf := (—isgn(-)f)". Natural generalizations of the Hilbert transform to higher dimen-
sions are the multipliers associated with homogeneous functions of degree 0 and such
operators were extensively studied by Calderon and Zygmund in [10], L. Hormander
in [38], S. Mikhlin in [51] and by Maz’ya and Haikin in [49].

One concrete example of the multiplier that falls in the aforementioned class is the
class of Riesz transforms, the sequence of operators defined on L?*(R?) with R;f :=
(&/|EIF(E))Y, i=1,2,...,d. The L” — L” boundedness for p € (1,0) of the Riesz
multipliers falls under the scope of the aforementioned Calderon—Zygmund theory, but
sharp L? — LP norm estimates for the Riesz transform were determined much later by
Iwaniec and Martin [40]. Iwaniec and Martin also reduced the estimates for a wider class
of operators to estimates for powers of the complex Riesz transform, the operator de-
fined on L2(IR?) using Riesz transforms as Rc f := (R, + iR ) f. However, the question of
sharp estimates of k — ||RK||»_,1» asymptotically in k — oo and p — 1 remained an open
question. This question was addressed by Dragicevié, Petermichel, and Volberg [20], and
Dragicevi¢ [18], who proved the asymptotically sharp estimates for even powers of the
complex Riesz transform. A complete asymptotically sharp solution for all powers was
given by Carbonaro, Dragicevi¢, and Kovac [11].

In the first part of the thesis, we study the vast generalization of the problem of asymp-
totically sharp estimates of complex Riesz transform. We will study sharp L” — L? esti-

mates of powers of Fourier multipliers associated with arbitrary unimodular homogeneous
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symbols of degree 0. This question was initially studied by Maz’ya and Haikin in [49]
and the question of the asymptotically sharp estimates of such symbols is posed as Prob-
lem 15 on Maz’ya’s list of 75 open problems in analysis [48]. We will also study the
problem of Dragicevi¢, Petermichl and Volberg from [20] regarding the asymptotically
sharp estimate in both the exponent and p € (1,00) of one concrete multiplier falling in
the aforementioned class.

The second part of the thesis deals with the so-called maximal Fourier restriction. The
aforementioned historical work on the Fourier restriction means that for certain surfaces
S and exponents p, g the estimate || f]| 24(5) < Cl|f|| Lo (ray holds for all Schwartz functions
f. Since the Schwartz space is dense in every L” (Rd ), by a standard result in operator
theory, there exists the unique extension of the operator Zf := ﬂ s to the whole LP(R?).
Furthermore, if we take any mollifier y (a function in C(R¢) such that [y = 1) and

denote y. := & ?/(-/€), then the observation

f*x£:7(€\')7

together with the restriction estimate applied to the function fx/(€-), implies that f* Xe =
Zf. A natural question is whether the almost everywhere convergence holds. From the
classical proof of Lebesgue’s differentiation theorem (see [64, §1, Theorem 1]) using
Hardy-Littlewood maximal function we know that for the proof of the almost conver-
gence it is useful (and by Stein’s maximal principle [61] sometimes necessary), to prove
the boundedness of the related maximal function, so the question of the almost every-
where convergence of the aforementioned convolutions is called maximal Fourier restric-
tion.

The study of the maximal Fourier restriction problem was initiated by Miiller, Ricci,
and Wright [52], who proved the almost everywhere convergence in two dimensions by
proving the boundedness of a certain two-parameter maximal operator using techniques
from the proofs of two-dimensional restriction theorems of Carleson and Sj6lin [13] and
Sjolin [58]. Later on, Ramos [54,55], Jesurum [41], and Fraccaroli [26] built upon the
suggested method, but the proofs were restricted to either two-dimensional problems or
very special curves. A different approach was suggested by Vitturi [76], who proved the

maximal Fourier restriction in the special case of the sphere S?~! in dimension d > 3 and
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Kovac and Oliveira e Silva [44] followed the approach to obtain the variational restriction
theorem. Finally, Kovac [43] showed that, under very mild restrictions, in all dimensions,
the Fourier restriction theorem implies the maximal Fourier restriction, basically giving a
definite answer to the maximal Fourier restriction. However, after the work of Kovac [43],
an interesting question regarding the analogue of the multi-parameter maximal function
defined by Miiller, Ricci, and Wright in [52] remained open. The second part of the thesis
studies the multi-parameter maximal estimates and their application to maximal Fourier

restriction.

In Chapter 1 we introduce notation and give quick revision of the main tools used in
the thesis that are usually not covered in a standard graduate analysis course or a book
like [25].

In Chapter 2, which is based on paper [8], we prove the upper bound for the L” norms
of the powers of 0-homogeneous unimodular multipliers and prove that the bound is sharp
in even dimensions, disproving the conjecture of Maz’ya from [48] in even dimensions
as a corollary. We also answer the question from the work of Dragicevi¢, Petermichl and
Volberg [20] regarding one concrete multiplier falling in the aforementioned class.

In Chapter 3, which is based on paper [6], we prove that the powers of a generic
0-homogeneous unimodular symbol in all dimensions greater than one attain the asymp-
totically maximal L” norm growth given by the upper bound from the previous chapter,
implying that the upper bound from the previous chapter is sharp in all dimensions, thus
disproving the conjecture of Maz’ya in all dimensions by a generic symbol in the class.

In Chapter 4, which is based on paper [7], we prove the multiparameter version of
the Christ—Kiselev lemma from [15] and as a consequence, we prove that the Fourier
restriction estimate implies the multi-parameter Fourier restriction, thus extending the

results from [43] and [52].



1. PRELIMINARIES

1.1. NOTATION AND TERMINOLOGY

The content of this section is usually taught in a classical graduate analysis course so
we omit full definitions and just fix the notation. The reader can find all definitions in a

classical book like [25].

1.1.1. General notation

The imaginary unit will be denoted by 1. We say that a function f : X — C is unimodular
if |f(x)| =1 for all x € X. Any logarithm is having e as its base. We use the notation 14
for the indicator function (i.e., the characteristic function) of a set A.

The Euclidean norm (i.e., the 2 norm) on R" will be written simply as x — |x|, while

the dot product (i.e., the standard inner product) of x,y € R" is denoted x -y or (x,y).
When working with matrices, we identify vectors in R" with matrices of size n x 1. For a
matrix A € M, (R), we write A > 0 to denote that it is positive definite. The standard unit
sphere in R" is

S"li={xeR": x| =1}.

The surface measure on S*1 je., the (n — 1)-dimensional spherical measure, is the
restriction of the (n — 1)-dimensional Hausdorff measure to Borel subsets of $"!; it is
written as o0,_1.

For x € R we respectively write | x| and [x]| for the largest integer & such that k < x and

the smallest integer / such that [ > x. If T: X — Y is a linear operator between normed



Preliminaries Notation and terminology

spaces (X, | - [|x) and (Y, || - ||y ), then we write ||T||x_y for its operator norm, defined as

IT|lx~y:= sup [[Tx|ly.
xeX, [lx||lx=1

1.1.2. Asymptotic notation

We use the following variants of the Hardy—Vinogradov and the Bachmann—Landau no-

tations. Let A and B be two complex functions on a set X. We write
A(x) <pB(x) and B(x)ZpA(x)

if the inequality |A(x)| < Cp|B(x)| holds for every x € X, with some finite constant Cp

depending on a set of parameters P. Moreover,
A(x) ~p B(x)

if both A(x) <p B(x) and B(x) <p A(x) hold. Next, assume that A and B are, more specifi-
cally, complex functions of a single real (or complex) variable x and that a € RU{—oco, 0}

(or a € CU{eo}) is a fixed point. We write

if limsup,_,,JA(x)/B(x)| < e and
A(x) = 0p " (B(x))

if lim,_,,A(x)/B(x) = 0. Here P in the subscript emphasizes that A and B are also al-
lowed to depend on the parameters from P, but the limits need not be uniform in those

parameters.

1.1.3. Functions and function spaces

The set of k-times differentiable functions on R” with codomain ¥ will be denoted as
C*(R",Y). When the functions are complex-valued, we will omit writing the codomain.
The set of C*(R") functions with compact support is denoted as C;°(R") and the Schwartz
class (see [25,31]) is denoted as .7 (R").
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The Lebesgue norms || - ||L» and the Lebesgue spaces L are defined in a standard way;
see [25,31]. We often denote the measure space in the parentheses, such as L? (S”‘_1 ), the
underlying measure being understood. The notation for the measure is suppressed in the
integral whenever the integrals are evaluated with respect to the Lebesgue measure on
R”. Sometimes, we write the variable in which the L” norm is taken in the subscript,
such as || f(x,y)||,». We say that p, p’ € [1,0] are conjugated exponentsif 1/p+1/p’' =1
holds. We use notation p* for the larger number between p € [1,o0| and its conjugate
exponent. The weak Lebesgue quasinorm ||-||pr= and weak Lebesgue space LP*> are
defined in standard way; see [25,31]. If an operator T satisfies ||T f||s= < || f]|1» for all
f € LP, we say that it is of weak type (p,q); see [25,31].

A function f: R"\ {0} — C is homogeneous of degree j if f(tx) =t/ f(x) holds for
every t > 0 and every x € R". It is simply said to be homogeneous if it is homogeneous
of degree 0. Thus, a polynomial P of n real variables x1,...,x, is homogeneous of degree
J precisely when it is a linear combination of the monomials xlfl ---xk» for nonnegative
integers ki, ...,k, adding up to j.

For a function f: R” — R we use notation V f to denote the 1 X n matrix of a differen-
tial Df of a function f in standard coordinates V, f := [59_){,} ; and H f to denote the n x n

2
Hessian matrix H, f := [ aj 97; J . We will suppress x in subscript if the variables upon
J j7

which we differentiate are clear from the context.

1.1.4. Fourier transform

Through the thesis, except for the chapter 3 we use the following widespread normaliza-
tion for the Fourier transform (see [25,31]).

For f € L'(R"), we define f: R" — C by the formula

~

€)= flx)e™édy; EecR™

Rl’l
It extends to a unitary operator on L?(R") and also to bounded linear maps from L”(IR")
to LY(R") for any pair of conjugated exponents p € [1,2] and p’ € [2,0]. Moreover, it
extends to the space of tempered distributions F via the duality formula: F(¢) := F(Q)

for every Schwartz function ¢. We will also use the notation .% ( f) to denote the Fourier
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transform, while the inverse Fourier transform of a function f will be denoted as .7 ~! (f)
or fV.

In chapter 3 (and exclusively only there) we will use the following normalization
for the Fourier transform that is often used in the field of partial differential equations
(see [74)):

~ 1

P x)e 6
F(&) = g [, e

to suppress writing 277 when analyzing the phase. The properties of the Fourier transform
defined this way are analogous to the ones previously commented, up to dilations and

multiplications by a constant.
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1.2. PROPERTIES OF SPHERICAL HARMONICS

Since spherical harmonics are usually not a part of standard graduate analysis courses,
in this section we review several results on spherical harmonics that will be needed later.
Basic properties are taken from the book by Stein and Weiss [67, Sections IV.2-IV.4] and
the book by Stein [64, Section III.3]. For more sophisticated L” estimates concerning
spherical harmonics we will recall the work of Sogge [59, 60].

Throughout the chapter we are working in R” for a fixed dimension n > 2. Let us also
take a nonnegative integer j. Homogeneous polynomials in n variables of degree j that are
also harmonic functions on R" (i.e., satisfy the Laplace equation Au = 0) are called solid
spherical harmonics of degree j. Their restrictions to the sphere S"~! are called (surface)
spherical harmonics of degree j. Spherical harmonics of distinct degrees are mutually
orthogonal and the whole space L? (S"1) can be written as an orthogonal sum of (finite
dimensional) spaces of spherical harmonics of degrees j =0,1,2,...; see [67, Chapter 1V,
Corollaries 2.3 and 2.4].

Spherical harmonics play important roles in describing how the Fourier transform acts
on many particular types of functions and distributions. If P is a solid spherical harmonic

of degree j, then
fx) = P(x)e ™ — F(&) =i TP(&)e TP, (1.1)

by [67, Chapter IV, Theorem 3.4]. The relevance of constants (2.16) comes from a formula
by Bochner [4] (also see [67, Chapter IV, Theorem 4.1]): if Y is a spherical harmonic of
degree j and if 0 < o < n, then

kW =1 (Z) e = RO =i ()% a2)
However, the last function K is only locally integrable, so the Fourier transform needs
to be understood as acting on the space of tempered distributions. Bochner’s formula
(1.2) also holds in the limiting case @ = 0 if j > 1 and the function K is interpreted as a
principal value distribution

f — p-v. IRnK()c)f(x)dxzSl_iglJr {|X|ZS}K(x)f(x)dx.
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Then it reads

DV = RE)=in, jvoy(é_’); 13)

see [67, Chapter IV, Theorem 4.5]. Stein and Weiss also formulated the ultimate con-

K(x) :p.V.Y(M

sequence of (1.3) as [67, Chapter IV, Theorem 4.7]: if Q,Qg € LZ(S”_l) have related

expansions into spherical harmonics of the form

Q= Z Y;, Qp= Z,lﬁ_an,j,on,
iz

j=1
then

X\, n - g

K(x):p.V.Q<m>|x| — K(é):Q()(E). (1.4)
Observe that
1
—— 1.5
Tnojn=e Y,j.o (1>

holds whenever the constants ¥, j o are defined. By writing

; o/2
e A ) e

in terms of the digamma function y = I"/T" and using the asymptotic expansion of y,

see [17, Eq. 5.11.2] or [1, Eq. 6.3.18], we easily conclude

Yojio ~n J% 2 (1.6)

for o € [0,n] and a positive integer j. Also, writing

F(Ot) ~ I(a/2+1) F(n—OC) _ I'(n—a)/2+1)

2 o2 2 (n—o)/2

we easily get
n
Ta0. ~n o 1 (1.7)

for every a € (0,n).

Let us also recall the spherical Laplacean, which is a particular case of the Laplace—
Beltrami operator. In the case of the sphere S"~! we can define Agn-1 f for a C? function
f: "1 — C by applying the ordinary n-dimensional Laplace operator A = A to the

homogeneous function R*\ {0} — C, x+— f(x/|x|) and then restricting back to the sphere

10
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S™~1. Spherical harmonics are eigenfunctions of Ag,-1. More precisely, if ¥ ;18 a spherical

harmonic of degree j, then
Agi1Yj=—j(j+n—=2)Y}; (1.8)

see [64, §II1.3.1.4].
For an integer j > 0 let H; denote the orthogonal projection onto the linear subspace
of L2(S"~1) consisting of spherical harmonics of degree j (including the zero-function).

Sogge [60] established the sharp estimate

1 f [ 2(sn-1) Snp FPN fllir ey
for j > 1 and 1 < p <2, where the exponent 7(n, p) is defined as

(n—1)(2-3)—% forlgpgn%,

n-(b-1)  for 2y <psa

Since H is self-adjoint, the last estimate has its dual formulation:

1 f a1y Snp 7PN Flli2nry,

where 2 < g < oo is the conjugate exponent of p. In particular,

1Y a1y Snp 7PN [l 201y (1.9)

for every spherical harmonic Y of degree j > 1.
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Preliminaries Fourier multipliers and singular integrals

1.3. FOURIER MULTIPLIERS AND SINGULAR

INTEGRALS

A thorough introduction to Fourier multipliers can be found in [31, 64], but we recall the
basic definitions from [31] here for reader’s convenience.

Given 1 < p < o and a complex function m € L*(R"), the operator defined on the
Schwartz space as

Tnf = (mf)", fe. LR (1.10)

is called (L?-) Fourier multiplier associated with symbol m if T,, can be extended to a
bounded operator on LP(R"), i.e. if there exists C > 0 such that for all f € ./ (R") it

satisfies

1 Tnfllr < ClIflr-

On the other hand, if a linear operator 7', defined on Schwartz space . (R") commutes

with translations and if for some p € (1,0) it satisfies the bound

ITfllr <Cl[fllr, e (R,

then by theorems [31, Theorems 2.5.7, 2.5.10] we know that it is of the form (1.10). This
equivalence justifies the assumptions in the definition.
If m € L*(R") is a homogeneous function of degree 0 such that m|g,-1 € C*(S*1),

by [64, §II1.3.5, Theorem 6] we know that the associated operator 7, has a representation

T.f=a- f+Sf, (1.11)
where a is a constant given by
S [ m(E)do, (&)
a.— ———— m _
Op-1(S1) Jg s
while S is a singular integral operator defined for f € . (R") as
Q

(Sf)(x) :== lim f(x—y)Mdy; xeR", (1.12)

=0+ J|y|>e y|"
where Q € C*(S""!) is a function with mean zero, i.e., [sui-1 Q(y)do,—1(y) = 0. Func-

tions m|g.-1 and Q are related through expansions into spherical harmonics given in (1.4).

12



Preliminaries Fourier multipliers and singular integrals

By classical results of the Calder6n—Zygmund theory (see [64, §11.4.2, Theorem 3]
or [10, Theorem 1]) we know that S extends to a bounded linear operator on L”(R")
for every p € (1,00), and the kernel representation (1.11)—(1.12) remains valid for every
feLP(R").

The weak (1, 1) estimates for singular integrals of the form (1.12) that do not depend
on the smoothness of Q were first proved in n = 2 dimensions independently by Christ
and Rubio de Francia [14] and Hofmann [37]. A higher-dimensional analogue was later
shown by Seeger [57] and subsequently generalized further by Tao [72]. We will use
the following theorem in the chapter 2 to establish sharp upper bounds of the powers of

homogeneous unimodular multipliers.

Theorem 1.3.1 (from [57]). Let Q € LY(S"™1) be such that [gu1Q(x)do,_1(x) = 0. If
we denote K (x) = Q(x/|x|)|x| ™", then the operator Sq defined for f € CT(R") as

(Saf)()i=p-v. [ fle=yK()dy
satisfies the bound

1SQllLt eyt (@ny Sn 1+ HI/{\HL""(R") +

2w (1108 (12 2P) ) o, ()

s ||Q‘|L1(gn—1)
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Preliminaries Differential geometry and Morse theory

1.4. DIFFERENTIAL GEOMETRY AND MORSE

THEORY

An introduction to differential topology and the Morse theory can be found in [36]. We
repeat the basic definitions from that book here.

The only manifold, apart from the R” itself, that will be needed in the thesis is the
standard sphere S*1 so when talking about manifolds, one can think of S"!. However,
since one cannot essentially reduce the complexity of the definitions in this special case,
we state the definitions for the general manifold that is already embedded into R".

We say that M C R" is a k-dimensional manifold if there exists an open cover % =
{Ui}ier of M (in the induced topology from R") such that for each i € I there is a map
¥ : U; — R* which maps U; homeomorphically onto an open subset of R¥. We call
(y;,U;) a chart; the set of charts {y;,U;} is an atlas. For 1 < r < e, we say that two

charts (y;,U;), (y;,U;) have C" overlap if the function
—1 .
vy wiUinUg) = y;(UinU;))

is of differentiability class C" and l//ﬂ//j*l is also C". The definition makes sense because
both w;(U;NU;) and y;(U;NU;) are open sets in R¥. If every two charts have C" overlap,
we say that the atlas W is of class C”. In that case, there exists a maximal C" atlas @ on M
(which is the set of all charts that have C" overlap with every chart in ¥ ) and we say that
the pair (M, &) is a manifold of class C".

In the remainder of the section, the manifold M is always a C* manifold to avoid
problems with the regularity of charts when talking about functions.

For 1 <r < e and a function f: M — R we say that it is of class C"(M,R) if for every
x € M there exists a chart y at x such that the function foy~!: y(U) — Ris of class C".

We say that a function f € C!'(M,R) has a critical point at x € M if there exists a local

chart y at x such that
D(foy ") (w(x))=0.

For a function f € C?(M,R), we say that the critical point x is nondegenerate if also

det(H(fo y™))(y(x)) #0.

14



Preliminaries Differential geometry and Morse theory

Direct calculation shows that the definition is independent of a chosen chart around a
critical point. In the case of M = R”, the definition of nondegenerate critical point x € R”
reduces to Vf(x) = 0 and detH f(x) # 0.

When M is a general manifold, one can endow the set C"(M,R) with either weak
or strong (also called Whitney) topology, but the two topologies coincide when M is
compact. As we will need the genericity of Morse functions just for M =S"~!, we give the
definitions of the Whitney topology by weak topology to avoid technical details needed
for strong Whitney topology on noncompact manifolds.

Let M be a compact C* manifold and r € N. For f € C"(M,R), a chart (y,U),

compact set K C U and € > 0, we define neighborhood base at f:
N (f:(w,U) K, €) :=

{g eC"(M,R):Yk=0,....r sup |[D*(foy ™ H—DF(goy™ )| < 8}
x€9(K)

For r € N, the Whitney topology on C"(M,R) is topology generated by the given neigh-

borhood bases. Whitney topology on C**(M,R) is union of the topologies induced by the
inclusion maps C*(M,R) — C"(M,R) for r € N.

A function f € CZ(M ,R) is called a Morse function if all critical points of f are

nondegenerate. The main theorem about Morse functions that we will use in the thesis is

the following.

Theorem 1.4.1 (§6, Theorem 1.2 form [36]). The set of Morse functions in C(S"~1,R)

is a dense open set in the Whitney topology on C*(S"~ ! R).

15



Preliminaries Oscillatory integrals

1.5. OSCILLATORY INTEGRALS

One can find a thorough introduction to oscillatory integrals in [65, §8], but we state here
the theorems that we will use in the thesis.

The theory of oscillatory integrals studies the question of asymptotics of

| e @yEag, 1w, (1.13)

where y € C°(R") is a bump function and ® : R” — R is a smooth real-valued function.
The method of nonstationary phase [65, §8, Proposition 4] says that if a function ® does
not have a critical point on the support of v, then the expression 1.13 is Oéjff"N(l’N ) for
any N € N. On the other hand, if ¥ has a nondegenerate critical point &y, the method of
stationary phase [65, §8, Proposition 6] gives the precise asymptotics of the integral when
v has support in a sufficiently small neighbourhood around &j. Decomposing the integral
1.13 into the part in the sufficiently small neighbourhood of &y and the complement using
a smooth mollifier, one can apply the method of stationary phase in the neighbourhood and

the method of nonstationary phase on the complement to obtain the following theorem.

Theorem 1.5.1 (§8 Propositions 4, 6 from [65] ). Let w € C(R",R) and let ® € C*(R",R)
be a function that has a unique critical point on the support of the function y, call it &.

If & is a nondegenerate critical point of ®, the following holds

e OE)aE =M 1 0 ()
where C = w(éo)(Zn)%e%Sgn(Hq’(éO)) |detHCI>(§o)|_% and sgn(H®(&y)) denotes the num-

ber of positive eigenvalues minus the number of negative eigenvalues of the matrix H®(&).
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Part 1

Homogeneous Fourier multipliers
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2. POWERS OF HOMOGENEOUS

UNIMODULAR MULTIPLIERS

The content of this chapter is based on the paper [8].

We study Fourier multiplier operators associated with symbols & — exp(1AD(E /| &),
where A is a real number and ® € C*(§"!). For 1 < p < o we investigate asymptotic
behavior of norms of these operators on L”(R") as |A| — . In the section 2.2 we show
that these norms are always O((p* — 1)|A[1'/P=1/2). In the section 2.3 we prove the
preparation theorem for lower bounds and in the section 2.4 we show that this bound
is sharp in for even integers n. In particular, this gives a negative answer to a question
posed by Maz’ya. In the section 2.5 we study the two-dimensional Riesz group, given by
the symbols rexp(i¢) — exp(iA cos @) and show that their L” norms are comparable to
(p* — 1)|A]211/P=1/2] for large |A|, solving affirmatively a problem suggested in the work

of Dragicevié, Petermichl, and Volberg.

2.1. INTRODUCTION AND MAIN RESULTS

Consider Fourier multiplier operators Tq’} associated with symbols of the form
mg (&) == PN g e rM {0},
ie., T(I}; acts on Schwartz functions f on the Fourier side as

(T2 1)(E) = mb(E)F(E).

18



Powers of homogeneous unimodular multipliers Introduction and main results

Here, ® € C*(S"!) is a real-valued phase function on the unit sphere, while A is a real

parameter. Form section 1.3 we know that Tq}; has a representation

Tgf=alf+Shf, 2.1)

where aé is a constant given by

1
af = m/snlmé(f)dﬁn—l(ﬁ)y

while Sé, is a singular integral operator defined as

oy Q4 (v/Iyl)
(S6/)) = Jim [ fle—y) =2

dy; xeR”" 2.2)
for some Qé € C*(S"!) with mean zero, i.e., [gi1 Qé(y) do,—1(y) = 0. Here 0,

denotes the (n — 1)-dimensional spherical measure. In our case we clearly have
| < 1. 2.3)

Again from section 1.3 we know that T(% extends to a bounded linear operator on L” (R")
for every p € (1,).

For each p € (1,) we thus arrived at a one-parameter group of bounded linear oper-
ators (Tc%) 2er on the Banach space L”(R"). Plancherel’s theorem and unimodularity of
mé give

1T 2y 12y = 1 (2.4)
while for p # 2 it makes sense to investigate asymptotic behavior of the L” norms of Tq’} as
|A| — oo. The present chapter is motivated in part by the following question by Vladimir

Maz’ya, formulated as Problem 15 on his list of 75 open problems [48].

Problem 2.1.1 (from [48, Subsection 4.2]). Prove or disprove the estimate
T | (rey L (rey < Cppa|A| T~ VI/P=12] (2.5)

where |A| > 1 and 1 < p < oo, while the constant C, , » depends on n, p, and ®.

In Theorem 2.1.2 below we find the largest possible growth in |A| of the L” norms
of multiplier operators Tq’} in every even number of dimensions n. It will turn out that

the answer to Problem 2.1.1 is negative in all even-dimensional Euclidean spaces R”.
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Powers of homogeneous unimodular multipliers Introduction and main results

Moreover, we will also be concerned with sharp dependence of the constant C,, , » on the
exponent p.
The origins of Problem 2.1.1 trace back to the papers by Maz’ya and Haikin [49, 50]

on rather general multiplier theorems. Specific operators T% with the particular phase

DE) =& E=(&,....6)eS"! (2.6)

appear in the analysis of the Navier—Stokes equations; see [27, §2], [28, §4], [29, Eq. (1.3)],
or [24, Eq. (23)]. This phase leads to a one-parameter uniformly continuous operator
group (Tq);) 2er on every LP(R"), 1 < p < oo, called the Riesz group. Its infinitesimal

generator is simply the Riesz transform,

(@)(é)z—ﬁ%ﬂé); E— (&, &) € R {0).

If n = 2, then (2.6) becomes simply the phase ®(¢'?) = cos ¢, which yields the two-

dimensional symbol
ml (ré'®) ;= e*?. rc(0,0), @ €R. (2.7

One-dimensional case of estimate (2.5) is easily seen to hold, as ch)L is always a
bounded linear combination of the identity and the Hilbert transform, so it satisfies L”
estimates that are independent of A. In higher dimensions, the Hérmander-Mihlin theo-

rem (see [31, Theorem 6.2.7]) gives a weak L' bound

which can then be interpolated with the L? identity (2.4) and dualized to deduce

M(ztn/zjﬂ)ll/p*l/ﬂ_ (2.8)

I8 lLr(rr)—Lr(Re) < Croop

This makes one suspect that the sharp exponent of |4 | on the average grows by |1/p—1/2|
as we increase the number of dimensions n by 1. Thus, inequality (2.5) is actually a
reasonable guess.

Let us now formulate the main result of this chapter. For every p € (1,) we denote

p*i=max{p,p/(p—1)}.
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Powers of homogeneous unimodular multipliers Introduction and main results

Theorem 2.1.2.

(a) Fix an integer n > 2 and a real-valued phase function ® € C™(S"~1). There is a finite
constant C, ¢ such that for every exponent p € (1,00) and every A € R satisfying

|A| > 1 we have
1T | ) Lo @) < G (p* — 1) [A[1V/P= 12 (2.9)

and

1T |1t )y < G [ A2, (2.10)

(b) Fix an even integer n > 2. There exist a real-valued phase function ® € C% (S”_l)
and a constant ¢, o > 0 such that for every exponent p € (1,00) and every nonzero

integer k we have
“qug||Lp(Rn)_>Lp(Rn) > Cn,® (p* — 1) ‘k|"|1/p*1/2| (2.11)

and

K 2
1Tt gy 1y > Cno K2 2.12)

In particular, notice that (2.9) improves the “cheap” bound (2.8), while (2.11) dis-
proves the conjectured estimate (2.5) in all even dimensions n > 2. Let us remark that
(2.11) easily extends to non-integer values of k using the group property of the operators
Tq%, but at the cost of possibly losing sharp dependence on p; cf. the comments in [11].
Techniques that we use also allow us to obtain weak L' estimates (2.10) and (2.12).

While (2.10) and (2.4) will immediately imply (2.9), there are also other ways to
establish upper L” bounds of that form. The number 2|n/2| + 2 in the exponent on
the right hand side of (2.8) can be easily lowered to anything strictly larger than n by
considering more sophisticated versions of the Hormander—Mihlin theorem, such as those
in [9, 32, 56], but the optimal exponent is trickier. Shortly after the first preprint of the
present chapter was made public, Stolyarov [68] showed us an interpolation argument
that gives the same sharp exponent in (2.9). However this argument does not seem to give
the sharp order of the constant in terms of p and it misses the weak endpoint (2.10).

Moreover, Stolyarov [68] independently showed lower estimates

HTCI)DL "LP(R")ﬁLP(Rn) > Cnd,p |}L(’"\1/P*1/2|
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Powers of homogeneous unimodular multipliers Introduction and main results

for a particular choice of the phase @ in both even and odd dimensions n > 2 using
different techniques from ours. Just as for the upper bound, we do not see how to modify
his approach to give sharp dependence on p of the constant ¢, ¢ , in the above lower

bound.

Two-dimensional multiplier operators TC’})S with very concrete symbols (2.7) were al-
ready studied by Dragicevi¢, Petermichl, and Volberg in [20]. Their paper, which might

have been overlooked in [48], claims bounds of the form
cs (p* = 1) KPP0 < Tl ey ipgrey < C (7= D KPP0 (213)

for every 8 > 0, every p € (1,00), and every nonzero integer k. The lower bound in (2.13)
is sketched in the proof of [20, Theorem 6] and it already disproves the estimate (2.5) in
n = 2 dimensions. Since the authors of [20] remark that they “do not know how to get
rid of §” in (2.13), an optimal growth of the L” norms of TX is an interesting separate

problem, which we fully address in the following theorem.

Theorem 2.1.3. Let T

ves be the Fourier multiplier operator associated with the symbol

(2.7). There exist constants 0 < ¢ < C < oo such that for every exponent p € (1,00) and

every A € R satisfying |A| > 1 we have
c(p* = DAPVP TRl ey ipge) < C (07 = D) AP (2.14)

and

¢|A] < Tl g2y =r2) < CIAL. (2.15)

The upper estimates in Theorem 2.1.2, and thus also those in Theorem 2.1.3, will be
established in Section 2.2. We use weak L! estimates for singular integrals in terms of the
size of the kernel alone and no smoothness assumptions imposed; see the series of papers
by Christ and Rubio de Francia [14], Hofmann [37], Seeger [57], and Tao [72]. That
way we only need to bound ||Q% 1.2 (sn-1y for the singular kernel appearing in the singular
integral part (2.2). That is achieved by generalizing the two-dimensional approach of
Dragicevié, Petermichl, and Volberg [20, Theorem 5] to higher dimensions: replacing
the Fourier series expansion by the expansion into spherical harmonics, and replacing

one-dimensional derivatives with powers of the spherical Laplacean.
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The lower estimates for the L” norms of operators Tq’} are more substantial results of
this chapter. To some extent we generalize an approach by Carbonaro, Dragicevié, and
Kovac [11]. That paper was only concerned with asymptotics for powers of a particular
two-dimensional Fourier multiplier with the complex symbol & +— &/|E|. Here we de-
velop a convenient way of bounding L” norms of more general Fourier multipliers from
below by merely choosing two particular spherical functions, u and v, with mutually re-
lated expansions into spherical harmonics. Let us already state the result, referring the
reader to Subsection 1.2 for a review of spherical harmonics. For an integer j > 0 and a

real parameter « € [0,n] denote the constants

oa T(U+@)/2)
N+ n—a)/2) (10

Wja =T

Theorem 2.1.4. Let p € [1,2] and q € [2,0] be mutually conjugate exponents and let m be
a bounded homogeneous Borel-measurable symbol on R" \ {0}. Take a sequence (Y;)7_

such that:

(a) eachYj is from the linear space of spherical harmonics on S"1 of degree j;

(b) the series Z;‘Q:o Y; converges in Lq(S”_l) to some function u;

(c) the orthogonal series Z;-":Oﬁ’j Ya,jn/pYj cOnverges in Lz(S”’l) to some function v.

If p > 1, g < oo, then the Fourier multiplier operator T,, associated with m satisfies the
bound

Yn,0.n/q ‘<m7v>L2(Sn—1)|

T ) > 2.17
H mHL”(R )—LP(RY) = G(Snfl)l/p HMHLQ(S”*I) ( )
|(m,v) | 2gn-11|

> en(g— 1)$, (2.18)

[JullLagsn1y

while in the endpoint case p = 1, g = o we have

c |(m,v>Lz(Sn71)|

1ol ey tomqeny = - = 19
L Lt @) 2 5 T oo

Here, ¢, > 0 is a constant depending on n, while ¢ > 0 is an absolute constant.

Theorem 2.1.4 combined with some guessing of appropriate spherical functions u# and
v is a useful tool for proving lower bounds for multipliers with homogeneous unimod-

ular symbols. In particular, it will be a crucial ingredient in the proof of the part (b)
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of Theorem 2.1.2 and in the proof of Theorem 2.1.3; see Sections 2.4 and 2.5, respec-
tively. The proof of Theorem 2.1.4 in Section 2.3 will, in turn, build on the approach
from [11, Section 6], but with additional complications arising from arbitrary symbols
and higher dimensions.

Estimate (2.17) is tailored to exact constants and we believe that it is, in fact, abso-
lutely sharp for many multipliers. For instance, if one considers the two-dimensional com-
plex symbol m(§) = E/ &, & € C, then the underlying operator T, is the Ahlfors—Beurling
operator. By choosing u = m on S!, the inequality (2.17) simplifies to || 7, lLr(c)=Lr(c) 2
q — 1, which reproves the result of Lehto [46] and matches the well-known conjecture by
Iwaniec [39] on the exact L” norm of 7,. Estimate (2.17) is also believed to be sharp in
the case of m(&) = (£ /|&|)¥, € € C, for an integer k; see the paper [11] as this estimate
generalizes [11, Theorem 6.1]. This potential sharpness of Theorem 2.1.4 can be viewed
both as a virtue and as a lack of flexibility, by focusing on global and not local properties
of the multiplier. In particular we do not see how to use that theorem to prove lower L”

bounds for Tq?} that are simultaneously sharp in A and p in odd dimensions n > 3.
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2.2. PROOF OF THE UPPER BOUNDS IN

THEOREM 2.1.2

Before we start discussing any proofs, let us give a brief remark on symmetries of T2,

which needs to be kept in mind throughout the chapter.

Remark 2.2.1. In the proofs of any upper or lower L” bounds for Tq’} we can focus on the
case A > 1 and p < 2 only. This fact is an immediate consequence of the duality of L”

spaces and
(Ta f, gewn = () Td;kg>L2(R”) = <Tq§§af>ﬁ(w)7
where f(x) = f(—x), g(x) = g(—¥).

The upper bound (2.10) in Theorem 2.1.2 is reduced to the weak L' bound for the
singular integral given in (2.2), by using representation (2.1) and an obvious bound (2.3).
Estimate (2.9) then follows from the Marcinkiewicz interpolation theorem [31, Theo-
rem 1.3.2], which interpolates between the endpoint L! case and the trivial L? case (2.4),
followed by duality observations in Remark 2.2.1.

For the L' — L bound, we use the theorem 1.3.1. Since the last integral in the
theorem 1.3.1 is difficult to compute for a kernel that is defined implicitly via the corre-
sponding multiplier symbol, we find it convenient that the whole expression on the right
hand side is bounded by [|||; >(gu-1). Indeed, if we define

|2(x)]
€]

Q(x
AO_{xeSnl | (>’<1} and Ak::{xES"_1:2k_1<

YN
€|

then Chebyshev’s inequality implies 6,1 (A) < 27%. Thus, bounding the logarithm with
the upper bound of the function Q on the set A; and using the Cauchy—Schwarz inequality,

it follows that

L 10wl (1+10g, (%))d% W [ 100k 1do, 109

Z (k+ 1)@l 21y 001 (A0 S Q] 201 Z (k+ 12752 S Q| 20 1)-

Therefore, in order to apply Theorem 1.3.1 to the operator kernel Qé from (2.2), we

also observe that for K2 (x) = p.v. Q% (x/|x|)|x| " we have |KX(&)| = [mk (&) —ad| <2,
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where we recall (2.3). Thus, it remains to prove
193 20 1) Sn A" (2.20)

for A > 1.
From equation (1.4) and the symmetry property (1.5) we can see that expansions of
Qé and mé into spherical harmonics are related as:
=YY = Q=Y VY
Jj=0 Jj=1
where the two series converge in the L? sense. Now, the aforementioned asymptotics (1.6)

implies ¥, jn ~n 72, s0

5]

||‘Q‘ L2 Sn=1y Z n,j, n||Y ”LZ Sn=1y Nn Z] ||Y HLZ s (2.21)
j=1 j=0

Recalling that the spherical harmonics are eigenfunctions of the spherical Laplacean,

namely that (1.8) holds, we arrive at
o éZZ J+n=2)";,

for any positive integer . Uniform convergence of the above series is needed for justifi-
cation of the performed term-by-term differentiation, but it is, in turn, guaranteed by the
smoothness of mé,, Sogge’s estimate (1.9), and the standard results on rapid convergence
of spherical harmonic expansions of smooth functions in [64, § 3.1.5]. Using (2.21) and

Holder’s inequality, and by choosing r = [n/4] in the previous display, we can write

1—n/4r
HQ‘P”L2 S (ZJMHY ”L2 Sn-1 ) (Z ||Y ||L2 Sn—1 >
- .. 2 2 1—n/4r
< (Z1 (i +n=2) W) (2 13120,
Jj=
2 2 2 2
= A g1 [ e = N8
2
S 185 I (2.22)

Therefore, it remains to bound
AP
[Aga-1€™ " L=(gn-1y.-
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First observe that, if a function f € C*(S"*~!) is of the form
Lk
f — enl@ Z llq)l’
1=0

for some nonnegative integer k and some functions @, P, ..., P, € C“(S”_l ), then there
exist functions CTDO, . ,&Dk+2 € C*(S" 1) such that
k2
Agiif =Y Al
=0
The claim is easily seen by calculating the Laplacean Ar- of the homogenized expression

. k X
R\ {0} 3 x - 490D Y 21y (1)
1=0 [«

and evaluating it at x € S"~!. Applying the previous observation inductively, we conclude

that there exist functions @y, ..., P>, € C°(S"!) depending only on & such that
. . 2r
Aén_lenlcb _ enbib Z ;qu)l-
=0

Since " ! is compact and the functions ®; are continuous, they are also bounded and,

therefore,
2r

1A P l 2
A1 € (lL=gn1y) < Y A @rflLm(sn1) Snw A
=0

for A > 1. The desired estimate (2.20) now follows from (2.22).
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2.3. PROOF OF THEOREM 2.1.4

In this section we develop a somewhat general scheme of bounding norms of Fourier
multiplier operators from below by constructing functions on S"~! from infinite sums of
spherical harmonics. The following auxiliary lemma can be thought of as a quantitative

refinement of the classical formula (1.2). Recall the constants (2.16).

Lemma 2.3.1. For p € (1,), g=p/(p—1), € € (0,1/2], and a spherical harmonic Y

of degree j > 0 one can find a Schwartz function gy p ey such that

Snpey(x) =Y (—) P L e <1 61 ()

x Supy 1 (2.23)

X
| LY (R)

and

gn,p,S,Y(é) - I.l_j’yn,j,n/qY (é_|) |§ |_n/qﬂ{£§\§|§l/8}(§)

Consequently, also

<
L3y S0 1. (224

1\l/p
l&n,p.e.xllLr@ey = [[¥llLegn) (210g E) +0597(1) (2.25)
and
~ 1\1/4 £—0+
Hgn,p,aYHLq(Rn) = Yn,j,n/qHYHLq(S"*l) (210g E) + On,p,Y (1> (2.26)

We emphasize that the implicit constants in (2.23)—(2.26) do not depend on &.

Proof. Note that Y extends from S"~! to the unique solid spherical harmonic P of degree j
on R" via P(x) = |x|/Y (x/|x|). We will construct g = g, , ¢y as a superposition of dilated
Gaussian functions, very similarly as these were employed in [67, Sections [V.3-IV.4].
Define

/2 +n/2p
TG )

This is clearly a Schwartz function. Dilating formula (1.1) we get

1
g(x) x)/ /se_”fz‘x‘zt_”/p_j_ldt; xeR"
£

f@) =1 IP)e T = J(E) =i p(g)e ™l

which enables us to take the Fourier transform of g:
21— pi/2+n/2p

/€ 21612 ;
FO)= L iy PO [ ¢ s gew
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An easy computation changing the variables of integration leads to

X —n 1 ﬂ€_2|x|2 i n —1 _—u
59 =Y () g e
s —j en/2p—n/2q me2|EF
) _ 1 .71' Y<£>|§|n/q/ M]/2+n/2qflefudu
L(j/2+n/2p) \[§| ne2|E 2

. Y( - )|§|*”/q : /”8_2|§2 J2n/2q-1 p=u g
DGV E L I 7y R

Since Y is clearly bounded on the unit sphere S" 1, estimate (2.23) is now reduced to

<

H (/ﬂe—2|x|2 uﬁ_le_”du—l“(ﬁ)ll (x)>|x|—n/p 1
. {e<|x|<1/€e} L (R") ~n,p,3

€2|x[2

for some 3 € (0,00), while (2.24) then also follows by interchanging p and q. Moreover,
by passing to n-dimensional spherical coordinates and using the definition of the gamma

function, we see that it remains to establish the following four elementary estimates:

/08 ( /,:,:rz ”ﬁ‘le‘“du)p¥ Spp 1 (2.27a)
/1:; </,::2 ub e d“)pd—rr Spp 1 (2.27b)
/61/8 </On£2r2 uﬁ—le—udu>pd_rr < sl 270
/81/8 (/,:2,2 yB—1o—u du)pg < sl 2270

We now provide detailed proofs of (2.27a)—(2.27d), even though similar computations
appeared in [11, Section 6].
Proof of (2.27a). For a fixed r € (0, €] we estimate the inner integral as

ne 22 me2r?
/ uﬁ_]e_”du,ﬁ/ uP =1 du SB (e71r)?B,
0

ne2r?

then we raise it to the p-th power and integrate in r, getting

€ 1
—Zﬁp/ 2Bp—1 4,
€ r dr = < oo,
0 2Bp

Proof of (2.27b). Using integration by parts as many times as needed (depending on

B), we easily obtain the following estimate for the incomplete gamma function:
wuﬁileiudu< B—1_—x. 1 .
Spxt e xe [1,00); (2.28)
X
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also see [17, Eq. 8.11.1-8.11.3] or [1, Eq. 6.5.32]. By taking x = we?r? for any r €
[1/€,00), we get
-2.2
/ns ' wP~le ™ du Y (Sr)zﬁ_ze_mzrz.
T

£2,2

This is raised to the p-th power and integrated in r, substituting s = wpe?r?:

/ " (er)@B-p e O L g / T BDP 1,5 g < oo,
1/¢ ro 2 Tp

Proof of (2.27¢). From
ner? ne’r?
/ WP le " du < / uP = du SB (er)?P
0 0

we see that the left hand side of (2.27¢) is at most a multiple of

82/3”/1/8 2Brlgr— L
0 Br

Proof of (2.27d). Using (2.28) again we can write

o —2.2
/ ) 2uﬁfle*”du < (&‘*lr)zﬁfze’”‘S .
TE “r

Thus, the left hand side of (2.27d) is at most a constant times

/ (e 1) @B-Dp-mre 2 4T Lo g, / T B1P1 5 4 < oo,
€ r 2 np

This also completes the proofs of (2.23) and (2.24).

In order to establish (2.25) we only need to combine (2.23) with

[ ()M Ltz 0]y gy = 1V o (2106 )

LY (Rn

In the same way we verify (2.26). [

Observe that the error terms in (2.23) and (2.24) are of smaller order in € than both of

the main terms

R N
r( ] Y et () (2.29)
and
g (é_|> 17 gy <16 (6): (2.30)

norms of which were calculated in (2.25) and (2.26), respectively. Thus, Lemma 2.3.1

enables us to think of (2.30) as an approximation of the Fourier transform of (2.29) up
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to a small relative error. By letting € — 0+ we would formally recover Bochner’s distri-
butional identity (1.2), but it is crucial for us to stay within the realm of function spaces
LP(R") and L(R").

We are finally in a position to prove Theorem 2.1.4.

Proof of Theorem 2.1.4. Let us first assume that p > 1, g < eo. Take a number € € (0, 1/2]
and a positive integer J. By several applications of Lemma 2.3.1 we can find a Schwartz

function g (depending on n, p, €,m,J) such that g differs from

J . B
e ( ZOY’(M)) P70 ez ()
]:

in the LY norm by O, /(1) as € — 0+, while g differs from

& (,-izoﬁ_jy”van/pr(éT» 17" L esiei<1/e) (6)

in the L” norm by O,, , »7(1) as € — 0+. (Note that the roles of p and g were interchanged
here.) From the same lemma we also obtain a Schwartz function f (depending on n, p, €)

such that f differs from
X [P L e pg<1 ey (%)

in the L” norm by O, ,(1) as € — 0+, while f differs from

E - Yaom/gl €7 D ieciei<1 /ey (€)
in the L norm by O,, ,(1) as € — 0+. Using Plancherel’s theorem we bound

(TS 8) 12wy _ |<mﬁ§>L2(Rn)|
) = N A @ lgliemn — 1T en lgllioey
0™ Eloi Va2 1y 210g(1/€) +0f )01 (log(1/€))
o (ST 1)P|| T ¥jllLan1) 2log(1/€) +0f 0F (log(1/¢))
_ 7n,0,n/q| <maZf:oﬁinn,j,n/ij>L2(gn—l)| + 02;79,:&(1)

o (S VP Xi_oYjllLa@n-1) + OZ;,%J(U

| Ton | Lp (R

We first take the limit as € — 04 to obtain

| Ton |l () 12 () = Yn0n/q |<m’Z‘JI'ZOﬁij’}/n7j,n/ij>L2(Sn,1)I
m ny_ ny >
(R") ( G(Sn—l)l/p ||Z§:0Y1|

(2.31)

Lo(sr)
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and then let J — oo using conditions (b) and (c). This proves (2.17) and, in combination
with (1.7), also (2.18).

In order to prove (2.19), assume hypotheses (a)—(c) of the theorem with p =1, g = .
For every pair of conjugated exponents p € (1,2], g € [2,0) we repeat the prevoius part
of the proof leading to (2.31). Then we borrow a trick from [19, Subsection 4.2] (also
see [20, pp. 496—497]) and use a sharp form of the Marcinkiewicz interpolation theorem

(see [31, Theorem 1.3.2]) together with a trivial estimate on L2 (R™) to get

1 2/p—1
| TnllLr Ry Lo (Re) S mHTmHL]fRnHLm(Rn)

for 1 < p < 3/2. Combining this with (2.31), we conclude

IT It eyt ey

> lim ((p —/r
(0}

Yn,0.n/q |(m, Zfz() ﬁ_jyn,j,n/ij>L2(§n71) ’ )P/(Z—P)

p—1+ (Sn=hHl/p H):fzoyjHM(Snfl)
1 mazj': ﬁij'}/n, ',nY' n—

:_|< j 0] J j>L2(S 1)|7 (2.32)
n I X0 YjllL=(sn1)

where we used

lim (p— 1)1/1))/”70’”/‘] = lim (p _ 1)1/P7-L-n/2fn/q F(I’L/Zq)

p—1+ p—1+ F(n/Zp)
21"/2 490 (n)2g 4 1) 21"/?
— . _1\1/p . q _
<p1i>r¥l+(p 1 q) (pli}l}l—O— nl'(n/2p) ) nl'(n/2)

and 6(S""1) = 27"/2 /T'(n/2). Finally, we take limits in (2.32) as J — oo using conditions
(b) and (c) as before. O

The condition from part (b) of Theorem 2.1.4 is not always easy to verify, since con-
vergence in L? for g > 2 is typically trickier than L? convergence. The following remark

can often be of some help in that matter.

Remark 2.3.2. 1f the sequence (Y j)}ozo from Theorem 2.1.4 satisfies assumption (a) and a

stronger condition

Y Y2 gy < oo (2.33)
=1

then convergence claims from (b) and (c) are automatically satisfied for every pair of

conjugated exponents p € [1,2] and g € [2,00]. Indeed, recalling (2.16) and (1.6) we
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observe
. 2
’y}f,jm/p”y HL2 sn=1) Nﬂ ]nHYj”L2(§n—l)'

Moreover, we apply the endpoint case of Sogge’s inequality (1.9) and the Cauchy—Schwarz
inequality to get

- 2—1
Y ¥l S Z Y 2y Sn ( 21 )
j=1

Then we use (2.33) and remember that convergence in L(S"~!) implies convergence in
every L4(S"™1).

Another interesting observation, which we do not need in the later text, is that, for
1 <p<2n+2)/(n+4), assumptions (a) and (c) imply assumption (b). This is easily
seen just as before, only applying a larger range of Sogge’s estimates (1.9).

Even though Remark 2.3.2 enables easy verification of the conditions of Theorem 2.1.4,
the above reasoning does not necessarily give sharp upper bounds on the quantity [|u||p¢(gn1)-

Controlling this number sometimes requires significant extra work; see Lemma 2.4.1 be-

low.
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2.4. PROOF OF THE LOWER BOUNDS IN

THEOREM 2.1.2

In this section we apply Theorem 2.1.4 to establish the part (b) of Theorem 2.1.2. Our

symbol m’c‘p will be a “smoothed” version of

E2i—1+18);
(&1, 6 H( E 1+n§zl|) (2.34)

On the one hand, this smoothing is required for two reasons. First, C* smoothness
was imposed in the formulation of Problem 2.1.1, which we we address. Second, forn > 4
the non-smooth symbol appearing in (2.34) is singular on the union of two-dimensional
coordinate planes, so the part (a) of Theorem 2.1.2 does not apply and we do not even
have clear upper bounds for the associated multiplier operators.

On the other hand, smoothing of the symbol significantly complicates analysis of
lower bounds by destroying the tensor product structure. These complications are detailed
in Remark 2.6.1, which rules out the possibility of testing Tq’§ on examples of functions
that are elementary tensor products with respect to R? x - - - x R,

In accordance with Remark 2.2.1, in the remaining text we always assume
A>1, pell,2], ge€[2,0|,

and that p and g are conjugate exponents.

2.4.1. Two dimensions

This short subsection is logically redundant, both because the next subsection covers all
even-dimensional spaces R", and because Theorem 2.1.3 provides yet another example
of a phase that leads to the “worst possible” asymptotics. We include it for reader’s
convenience: to illustrate the main idea of proof with absence of many subtle technical
complications arising in dimensions n > 4.

Take & € (0,7); we will choose it a bit later. Define ® in polar coordinates as

®(?):=¢; @c(—n+8,1-3).
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This still leaves ®: S! — R undefined on a circular arc of length 28, but we can define
it arbitrarily there, only taking care that ® is C* on the whole circle S'. For a positive
integer k we also define

V0 (£19) .= P, g eR.
This is clearly a spherical harmonic on S! of degree k, as it is obtained by restricting
the harmonic polynomial (£,&,) — (&1 +1&;)F to the unit circle. With the intention of

applying Theorem 2.1.4, we also set

k) (k)

(k) o ko1
u =1 yz,k72/pv y

k)

so that functions u = u®) and v = v(¥) trivially satisfy assumptions (a)—(c). Note that for

every ¢ € (—w+ 8,7 — 6) we have

mk (e19) = ) = k0 — (k) (pi0)

S0, in particular,
Iy =B [ 251y < 2V8.

For any p € [1,2] we now have

|<m’&,,v(k)>Lz(Sl)| v |’iZ(S1) — [lmg — v(b) HLZ(Sl) lv® “LZ(SI)
WOl 7t WO e

> (V2rn—2V8) (277)1/2_1/‘]7’2,&2/;7-

Finally, we take 6 = /8 and recall Vok2/p ™ K2/p=1, by (1.6). Theorem 2.1.4 applies, so
(2.18) and (2.19) respectively give

||T£||LP(R2HLP(R2) > (g— DK = (g—1)k20/P=1/2)
for p € (1,2] and
||T£||L1(R2)*>L]:°°(R2) 2 k.

These are precisely the desired two-dimensional cases of (2.11) and (2.12).

2.4.2. Higher dimensions

Suppose that n = 2r for a positive integer . We will consider a slightly non-standard

coordinatization of S* ! ¢ R?". Denote
ST = (01, 0) € (0.09) @] 4+ =1}, Dyi=(~m) xS,
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Transformation ¥: D, — S* ! is defined as

Y(o1,...,0,,0) = (0 cosQy, ®sin@y, ..., ©-COSQ,, O SiNP,),

where ¢1,...,¢, € (—7,7) and ® = (wy,...,0,) € Sf[l. This is a C* diffeomorphism
onto its image, and the complement of its image is a negligible subset of S*~! with
respect to the surface measure 0,,—1. Moreover, this parametrization ¥ enables us to

write the infinitesimal element of the surface measure on S¥ ! as
dey---do, 0 - ©,do,_ (o). (2.35)

In the case r = 1 one simply needs to disregard any occurrence of Sf[l.

For any 0 > 0 we also denote
Sg_l = Sf[l N(8,00)", Dg:=(—m+8,m1—05)" x Sg_l.
Now fix a parameter 0 < & < 1/r (to be chosen later) and define ®: D, — R by setting

o1+ + O OIlD5,
O(gr,...,0,,0) =
0 on D\ Ds)s,
and choosing its values on Dg » \ Dg quite arbitrarily, only taking care that ® remains C*.
We can finally define the desired phase function ®: S¥~! — R as

®o¥! on¥(D,),
P =

0 on S\ ¥(D,).
Since the composition ® o ¥~! vanishes outside the closure of ¥(Dj 12) C St we

clearly see that ® is C™ on the whole sphere. We can call

M; = {éj eR"\ {0} : é—| E‘P(Dg)}

the major cone, while its complement R" \ My is a certain exceptional set. For a positive

integer k and any & € Mg, denoting &/|E| = ¥(¢y,...,¢,, ®) we can write

k() = HOE/ED) = k091, 0-0) — TT ko),
J=1
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so for every & € Mg the symbol simplifies as
r . s . k
k gy _ < E2i1+1&0; >
m = _— . (2.36)
@(%) E 1&ai—1 +1&2i]
Once again we remark that it was necessary to smooth out the expression (2.36) on the

exceptional set. For a generic point & = (&1,&,...,&,1,&,) € R* we will also write
Ci::§2,~_1+]'1§2,-; j=12,...r

and identify pairs (&;_1, ;) with complex numbers ;.

(k)

We choose a particular L? function on the sphere, m*), acting on r complex variables

and defined as

OIS :H]<%>k

The reader can recognize it simply as the right hand side of (2.36), i.e., the non-smooth
version of the symbol. Every homogeneous polynomial on R?" can be written as a homo-
geneous polynomial in terms of {, é; Iy ovvs Gy C_r. By integrating over the sphere we see

that m®) is orthogonal in L2(S**~1) to any such monomial that is not of the form

k+ky 7 k k+k, 7 Kr
Pk],...,k,(Cl?"'?Cr) = C1+ ]§1 1"'Cr+ Cr

r C k
—(T1() har=gp e
i=1 14
for some nonnegative integers ki,...,k,. In other words, spherical harmonics from the

orthogonal expansion of m®) are necessarily linear combinations of (2.37). Also note that

Py,....k, has degree rk +2ky + -+ + 2k,

1

By the previous discussion, the expansion of m(X) into spherical harmonics is of the

form

[

~(k) _ v (k)
mk) = Z Y,
j=rk
(k)

where each Y f is a spherical harmonic of degree j. Let us set

k . Sk
Yj( ) = ﬂ]’}/n’LQYj( )

for every integer j > rk and define another spherical function by

Wb =y vy, (2.38)
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Lemma 2.4.1. Functions u® satisfy
s gty o P ey o 0Pl k™ 239
for every positive integer k.

Proof. By property (1.4), the Fourier transform of

K(E) = povei (12 ) 8]

is given by

K(&) = u® (%) . (2.40)

Thus, once we compute I?, we will be able to read off the function u®) from (2.40).
The following calculations are much in the spirit of the proofs of Theorems 3.3 and 3.10

from [67, Chapter IV].

o (F1(5) ) (Frar)

i=1

Recalling

and using

—_r 21" SR PP B 2y dt
(G4 + 6P :(r_m/o eGP e) S

we can write

K(cl,...,gr):(rz_”;)’/ <H<éﬁ|> mz|c,-|2)t2cr1;+1.

Let us first compute the Fourier transform of an auxiliary function

F1CoC F(O) = <|§|>kem—2|a2

by changing variables
C:pei(pa C/:p/ei(p/; p,PIE(O,‘X’), (p7(P/€[0a27r)
and writing
= [s@e e a
= [ —ike —mt%p? o 2mipp’ cos(p—9')
= /o /0 e e pdpdo
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[change variable @ — ¢ + @'+ /2]

k ik [ 2n —iko-+2mipp’sin @ —mt2p?
=1 "e e do e pdp
0 0

= ﬁkeﬁk"’/27r/ J(2mpp))e ™ P’ pdp
0

—k C_/ -k 2/00 "y ,—mp>
(\C'\> 27t A J(2mpt|C'|)e pdp.

Here J; denotes the Bessel function of the first kind of an integer order k and we used

Bessel’s integral formula,

1 T k ﬁ_k T k
_/ en(xsmr— T) dr = %/ en(xcosz'— T) dr; xe (0,00); (2.41)
T -

Jix) = 21 )

see [17, Eq. 10.9.2] or [1, Eq. 9.1.21]. Justifying the interchange of the integral in  and

the action the Fourier transform in {; as in the proof of [67, Chapter IV, Theorem 4.5], we

see that
I?(Cl,---,ér)zﬁ‘”k<llr1(%> )?:_;12/ H/ Ji(2mpt|Gi|)e "”pdp)
[change variable 1 — ¢ /|€|, where & = ({),.. }

:ﬁ—rk<ilj(%> )2:+_1 2r/ (lIrI]/ODOJk prIGilN —mp pdp) dr

so comparing with (2.40) we obtain

(k)(C1""’C’)ﬂrk(lj(é\) )ZH zr/ H/ Je(2mpt|Gil)e ™ pdp)d
[change variables p — p/ \/ﬁ,t—ﬂct\/%

- (1)) [ (L vt o)

(2.42)
for every ({i,...,&) € S¥~1,
Define Fj: [0,00) — R by
Fils) = /0 " (2Vkps)e P % pdp. (2.43)
A simple change of variable gives
Fi(s) = /0 " (p)4]f e P gp (2.44)
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for s € (0,00), while F;(0) = 0. Let us show the following uniform bound in «,

0 < F(s) Smin{s”,s*} fors € (0,00), k>3, (2.45)

and the equality
F = mF d—l\/E for k > 1 2.46
Filly ooy = | Frls)ds =3¢/ fork>1, (2.46)

We first address (2.45). Using [17, Eq. 10.22.54] we can evaluate the integral (2.44)

in terms of the confluent hypergeometric function M as

k k
Fuls) = 2F(§ v 1) (21252) k2 2e_2k252M<§,k+ 1,2k2s2>.
Then we use the integral representation of M from [17, Eq. 13.4.1] and simplify to get a
convenient formula
ok/2pk+1 gk r1 )5
Fi(s) = —/ e HT2(1 )21 g, 2.47
Using 1 — 7 <e " for0 <7 <1 webound (2.47) for k > 3 as
2k/2kk+1 k
Fi(s) < SR s
I'(k/2)
[change variable T — 27/ (4k*s* +k —2)]

522 _ _
/ ¢ RS TL/2 (o TR/2 g
0

_ 2k/2kk+1sk< 2 >k/2+1 <]_€+1>

[(k/2) \4k%s>+k—2 2
1 ( N k—2>—k/2—1
482 4k2s2 '
Bernoulli’s inequality gives
<1 k—2)k/4+1/2 o 14 k> —4 oy !
4k2s2 T 16k3s2 T 4082

which further controls F(s) as

< 1 1 \—2 . , 1
Fi(s) < E<1+W) §m1n{400s ’E}

Next, in order to verify (2.46), we use (2.47) to write F; as a superposition of the functions

(0,00) 5 5+ she 2T,
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Integrals of these functions easily compute to

['((k+1)/2)
2 (k+3)/2k+1 7 (k+1)/2"

It remains to evaluate the integral in 7 of this quantity multiplied with a weight appearing
in (2.47), thus obtaining the right hand side of (2.46). This completes the proofs of the
auxiliary claims (2.45) and (2.46). Moreover, by (2.45) we have

1
ds < —
/<o,oo>\[1/R,R1 kls)ds 10

for a sufficiently large number R > 1 that depends only on the implicit constant in (2.45).

Combining this with (2.46) we also get

R
/ / Fu(s)ds>1 fork>1. (2.48)
1/R

We have all elements to finalize the proof of the lemma. Note that (2.42) and the
definition (2.43) give

y o dr
”u(k)HLm(SzH) Srk sup / [TACG) —
&1y lr) €SP 0 9

=k sup / HFk ta), . (2.49)

(wh ,(Dr eSr !

Fix an arbitrary point (@i, ...,®,) € Sﬁr_ L Let Wmax be the largest number among wy, ..., ®;.

Clearly Wmax ~» 1. By (2.45) we have

/HFkth —< /Fktwmax —N/t—<1

and
dt
/HFktwl_< / Fkta)max_m/ _2

so that (2.49) guarantees
[ ® | e g1y Sk (2.50)

Next, from (2.42) we also see

L, oo L dr
gy k[ ] [T71G) 7 dow-a (... &)

[use parametrization W and recall the surface element (2.35 )}
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oo F dl
N,k’/ / [1FGo) = o - o do,_i (o)
S !

[substitute x; = r@; and denote x = (xi,...,x)]

_ r X1 Xy
— k" )
/(O7w))_(il_1]Fk(x)> |x|2r dx

>k (HFk(x,-)> A gy

[1/RRI" \ i ] |2
R r
> k"( Fk(s)ds) ,
1/R

remembering that we chose R > 1 in the discussion preceding (2.48). Finally, estimate
(2.48) gives
1O 1 g1y 2K (2.51)

Combining (2.50) and (2.51) we clearly get (2.39). [

Now the proof of part (b) of Theorem 2.1.2 can be completed using Theorem 2.1.4

applied with u = u®) introduced before and v = v(¥) defined as

[

L k > Sk
QRS 'an ]Yn,j,n/ij( = ,Zky”d’,n/py",jvoyj( .
Jj=r =

Recall (2.36), i.e., we are taking the symbol m’c‘p to be a smoothened version of m*) in a

way that
8 — 2 1) < 0t (SN (D)) P =0f 70 (1) @52

Trivially,
||%(k)||L2(Sn—l) ~n 1. (253)

On the one hand,
WOl ry = ,Zk BsarpBriollV” 2y~ .Zk Frir [
Jj=r =

r/p—4r SEITGNE r/p—4r|| ~
S (rk>4 /=4 Z HY]'( )HLZ(Szrfl) = (rk>4 /=4 ”m(k)HiZ(Szr—l

b
j=rk )

so, in combination with (2.53),
g/ r—n, (2.54)

Il 21y S

~n
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On the other hand,

<m(k),v( )12 (S2r-1 Z <]1 ]72” Y ]YZr,j,Zr/PYj( )>L2(SZ”1)
j=rk

- Z Yar,j2rVor,j, 2r/pHY HL2 s2r-1y Z er/pHY HL2 s2r-1

j=rk Jj=rk
p v |1y k r
> (k)27 Y IR oy = R [ P
j=rk
From this and (2.39) we get
(S VO 2gary 2 KYP (2.55)

As a consequence of (2.52), (2.54), and (2.55) we can choose 0 > 0 sufficiently small

depending on n only, to achieve

<m§),v(k)>L2(Sn—l) Z <ﬁ(k),v(k)>L2 Sn— 1 || m]&)HLZ(Sn—l)||v(k)||L2(Sn—l)

kn/p—n

Vv

n

for every positive integer k. Combining this with (2.39), we can write

|<ml<§>7v(k)>L2(S”*1)| > |<ml<%»v(k)>L2(Snf1)| S K/ p—n

> >, — ;(1/p=1/2)
H”(k)HLq(S"*l) ||”(k)HL°°(S”*1) k—n/2

Moreover,
Z;Hyuuyl ZHY\mwl 171 2 g1y < o2,
] Fi

so that Remark 2.3.2 applies and it guarantees LY convergence of the series (2.38) on
S"=!. We can now apply Theorem 2.1.4; estimates (2.18) and (2.19) respectively give
(2.11) and (2.12) for every positive integer k.
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2.5. PROOF OF THEOREM 2.1.3

Take A > 1. Decomposition of the symbol m? . into spherical harmonics is simply its

Cos

Fourier series expansion,
mlo(e19) = e = Jo(2)+2 Y #/7;(A) cos jo, (2.56)
j=1
where J; are again Bessel functions of the first kind and we used formula (2.41). Taking

the real part of the identity (2.56) we get
cos(Acos @) =Jo(A) +2 Z 1)!J(A) cos 2l (2.57)
and then changing ¢ — ¢ — /2 we also obtain

cos(Asin@) = Jo(A) +2 ZJZZ cos 2l . (2.58)
=1

The following technical lemma deals with sums of Bessel functions with even-integer

orders, and it contains all information we need about the Fourier coefficients of m’.

Lemma 2.5.1. We have

i Iy (1) > A2, (2.59)
i T (A)? < A%, (2.60)

and for every p € [1,2] we have
i PIP=11,,(0)2 > A2/ (2.61)

Proof. Since m’ is C* on S!, its coefficients (J j(4))7-, decay faster than Ofﬁm( i™
for every A > 0. We can differentiate the series in (2.57) term-by-term once or twice with
respect to ¢, which gives us two more identities:
Asin(Acos@)sing =4Y (—1)""'1Jy(A)sin2lp,  (2.62)
I=1

—A%cos(A cos @) sin® @ + A sin(A cos @) cos @ = 8 Z (=D 120 (M) cos2lg.  (2.63)
=1
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On the one hand, an application of Parseval’s formula to the function on the left hand
side of (2.62) yields
Y 2ay(A) ~ /12/
=1 -
T
> 2&2/ sin®(A cos @) sin® @ de
0

T

sin(A cos @) sin® @ de
T

[substitute s = cos @]

1 2 cos2A  sin2A
_ny2 2 Wi _n32
=21 /_1(1 —s7)sin“Asds =24 <§+ Y PRRYE ),
which confirms (2.59). On the other hand, Parseval’s formula applied to (2.63) clearly
gives (2.60). Finally, for any fixed p € [1,2], by Holder’s inequality for sums we have
- 5/2—1/p - - 3/2—1/p

which, in combination with (2.59) and (2.60), gives (2.61). [l

Let us return to the proof of Theorem 2.1.3. We are about to apply Theorem 2.1.4

with the function

uM) (¢19) := cos(A sin@) — Jo(1),

recalling that its Fourier expansion can be seen from (2.58). The corresponding function

v(A) is then given by
v (el?) :=2 Z (—1)172,21,2/pJ21(7L) cos2le.
I=1

Clearly,

||M(M||L4(Sl) S H“(MHL""(SI) <2,

while (1.6) and (2.61) give

<m§os’v(l)>L2(S‘) =47 Y Yooroyplu(A) 2 AP
i=1

Since . .
| <m0037 V( ) >L2(Sl ) |

e[ s1)
estimates (2.18) and (2.19) give the lower bounds in (2.14) and (2.15), respectively, for

> \2/p=1 = 21/p=1/2)

every positive integer k.
The upper bounds in (2.14) and (2.15) are just special cases of (2.9) and (2.10) in the
part (a) of Theorem 2.1.2.
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2.6. CLOSING REMARKS

Remark 2.6.1. Note that the equality (2.36) only holds on the major cone in R" = R?"
and changing the symbol on a set of small measure can drastically change the Fourier
multiplier norm. The fact that m’&, does not exactly split into a tensor product of two-
dimensional symbols prevents us from plugging in elementary tensors for “almost ex-
tremizing” functions.

Indeed, let us try to test our operator Tq’§ on f'= f, e and g = g ) r¢ given as r-fold

elementary tensors

fx1,x2,. . x0021,%2,) = falxr,x2) -+ fa(x2r—1,%2,),

g(x1,x2, ... x00—1,%0) 1= g2(x1,%2) - - g2 (X2r—1,%2r).

Here f> and g, depend on k, p, € and they are chosen as in Lemma 2.3.1, i.e., such that

200 = bl L @) o) S 1
H};(é)—Yz,o,z/qu|_2/61]1{g§|§\§1/s}(5) LL(RY) N7

2= () 208 ety 0 g gy S 1

[0 -1t (Zom) 16 etz )y S

Then we have
1 e—0+ 1\r
I fllurgen gl = (4x10g ) +0f20% ((10g-))
and

= <m¢(§)f2(§1,§2) a1, E00), B2(E1,E) '§2(€2r717§2r)>]% (®")

§ B SRS ]
T Ol (g ey 1Gre)l™

1{e§|(§2juézj)lél/s}(ﬁzj—l,ézj)dfzj—ldﬁz;) (2.64)
1\7"
+oiiyt((loe))
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The integral (2.64) restricted to the major cone Mg equals

/ H| 21,8 e<ie 1 6=t e} (G2i-1,62)) dE2j—1d&aj,

but, for a fixed 8, this grows only like log(1/¢€) and not like (log(1/¢€))", as it should. The
major cone Mg is not so much “major” in this matter.

Thus, we are better off sticking to functions f and g with more radial symmetry, just
as we did before. This is also philosophically in line with the fact that the symbol m’c‘p is

homogeneous.

Remark 2.6.2. The auxiliary function 72(%) used in Subsection 2.4.2 has a quite compli-
cated expansion into spherical harmonics despite its relatively simple defining formula. In
n = 4 dimensions this expansion can still be computed explicitly. For simplicity suppose

that £ > 2 is even. Then
O Y 40 (2.65)
Jj=>2k
j divisible by 4

where

J j/2 .
v (k) (j/z) (j/4_k/2) (j+ 1Dk
o @i) (a0 G/20/2+1)

j2—k :
<dd Y (—1>l(j/zj_/i_z) (J/2>|c ]

=0

Even though this formula is explicit, it still does not reveal how to compute the associated
auxiliary function u®), which is the work we were doing in the very technical proof of

Lemma 2.4.1. However, one can argue that u®) is “very close” to a constant multiple of

o83 (61,6) (|§1|) (éz,) [slafele

and the latter function could have been used for the same purpose, leading to a slightly
shorter proof in four dimensions.

In higher dimensions computing the expansion of 7% into spherical harmonics seemed
impossible to us, or at least not possible in any explicit or practical way. Also note a pleas-
ant property of (2.65): only its every fourth term is nonzero. This property is not retained
in higher dimensions, where only every other term in the corresponding expansion is equal

to zero. Since the passage from u to v in Theorem 2.1.4 requires inserting the coefficients
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i/ Yu.j.n/p> WE see that we are, in fact, also inserting = signs into the series }.7 ¥, which

is a very subtle operation.
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3. NORM GROWTH OF POWERS OF
UNIMODULAR MULTIPLIERS IS A

GENERIC PROPERTY

The content of this chapter is based on the paper [6]. In this chapter we consider again
the family of Fourier multiplier operators Ty, associated with symbols & — exp(1r®(&))
and prove that for a generic phase function ®, one has the estimate ||74|/r—1r Zd.p.o
(t>d|%7%|. That is the maximal possible order of growth in t — =0, according to the
previous chapter and the result shows that the special example of function ® that induce
the maximal growth, given in the previous chapter to prove sharpness of the estimate is
just an example of the general phenomenon.

We emphasize again that in this chapter we use the following normalization for the

Fourier transform:
~ 1 .
- —ix-&
f(g) L (Zﬂ)d /Rdf(x)e d'x

3.1. INTRODUCTION AND MAIN RESULTS

Ford € N, d >2 and ® € C*(R?\ {0},R), a homogeneous function of degree 0, we
consider a family of Fourier multiplier operators indexed by ¢ € R, defined on the set of

Schwartz functions .7 (R¢) with

Tof ()= [ PO e, G

R4
Observe the difference in the exponent, avoiding the 27. By the Theorem 2.1.2 we know

that such operators are bounded and we know that for every exponent p € (1,00) and7 € R
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we have

HTQID‘ LP—LP Sd,d) (P* - 1) <t>d|2 %| .

Theorem 2.1.2 also proves that the estimate is asymptotically sharp in # — oo in even
dimensions by giving a concrete example of the function @ for which the following

lower bound holds for all k € Z.

dli_L
|7, (p" = DIk,

LP—LP Rod @y

thus disproving the conjecture of Maz’ya from [48, §4.2] in even dimensions, where he
asked whether the following estimate holds for all homogeneous functions ® € C(R¢ \

{0},R) of degree 0 and all r € R:

HT‘%”U%LP Sdp@ <t>(d*1)|%f%\ .

D. Stolyarov [68] independently, and using different techniques, proved the asymp-
totically sharp upper bound for ||74||»—r» and showed the existence of a function ®y
that proves the sharpness in all dimensions d > 2, but both without sharp dependence in
p € (1,00).

Both proofs for the upper bound - the one in the previous chapter and the one in [68]
are short. The author in [68] reduced the problem to the sharp version of the Hormander—
Mikhlin multiplier theorem.

However, regarding the sharpness of the estimate, both the proof from the previous
chapter and the one from [68] give very specific functions for which the upper bound is
sharp. Also, both proofs are relatively long and the cause of the exact worst asymptotics is
not apparent. In this chapter we give a short proof of existence of a general phenomenon
that drives the growth of powers of norms for a generic symbol, proving that all, when
d =2, and “almost all”, when d > 3, unimodular homogeneous symbols of degree 0
are counterexamples to the asymptotic order of growth conjectured by V. Maz’ya in [48,
§4.2] and, in fact, exhibit the worst possible asymptotics. More precisely, we prove the

following theorem.

Theorem 3.1.1. Letd € N, d >2, p € (1,) andt € R.

50



Norm growth of powers is a generic property Introduction

(a) Ford =2 and any nonconstant homogeneous function ® € C*(R?\ {0},R) of degree

O there exists a constant cq p o > 0 such that
1Tllupp 2 cana @7
D||pp_ppr Z Cd,p,® :

(b) For d > 3, there is a dense open set 9 in the Whitney topology on C*= (Sd_l,R) such
that for all ¢ € & there exists a constant cq p ¢ > 0 for which the 0-homogeneous
extension ® € C*(R?\ {0},R) of ¢, defined as () := ¢(%), satisfies

1Tl 11 = Capo <t>d|%7%|-

In topology, the property that holds on a dense open set (or, more generally, on the
complement of a countable union of nowhere dense sets) is called generic. Therefore,
since a 0-homogeneous function on R?\ {0} is uniquely defined by its restriction on
the sphere S?~!, the previous theorem says that multipliers associated with powers of a
generic 0-homogeneous unimodular symbol exhibit the asymptotically maximal possible
order of growth of L” — L? norms.

The part (b) of 3.1.1 will be a consequence of the following theorem, which can be of
its own interest, so we state it here. For the definition of nondegeneracy of a critical point

see 1.4.

Theorem 3.1.2. Letd € N, d > 2, p € (1,00) and t € R. For a homogeneous function
® € C(RY\ {0}, R) of degree 0 such that ®|gs-1 has a nondegenerate local minimum or

maximum, there exists a constant c¢q, , o > 0 such that

d
“TéDHLP(Rd)%LI’(Rd) > Cd.p t)

Choosing ®(§) = é—l| in Theorem 3.1.2, one gets the asymptotics for the so-called
Riesz group (a.k.a. the Poincaré—Riesz—Sobolev group) that appears, when d = 3, in the
analysis of the Navier—Stokes equations in a rotating frame; see [27, §2], [28, §4], [29,
Eq. (1.3)], or [24, Eq. (23)], while the asymptotics of the same symbol when d = 2 was
studied in [20]. In fact, the lower bound for d > 3 established by Stolyarov [68] is equiv-
alent to the particular case of Theorem 3.1.2 for this particular choice of ®.

Finally, for the sake of completeness, we repeat again the fact from the previous chap-

ter that the asymptotics of # — || T, || L»—z» is an uninteresting problem when d = 1 because
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for any ® as before and ¢ € R, one can write Tq’, as a bounded linear combination of the

identity and the Hilbert transform to get the bound || T} ||z»—z» < 1 forall £ € R.
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3.2. IDEA OF THE PROOF

Statements of the theorems are interesting only when |¢| is large, so the idea of the proof
is to follow the approach from [74, Exercise 2.34], used to study the asymptotics of L”
behavior of the Schrodinger propagator (defined by (3.1) with ®(&) = |£|?), that relies
on the following observation. When p € (1,2], and ¢ > 0, the correct asymptotics can
be written as =% x t%, what can be interpreted as base x height approximation of the
L? norm of a function that resembles a bump of height =% on the ball of radius ¢ with
a rapidly decreasing tail, both in x and ¢, outside of it. In the case of the Schrédinger
propagator, Young’s inequality for convolutions with an explicit calculation of the kernel,
gives || Tlt 2 fli= < =% and the method of nonstationary phase applied to (3.1) for x outside
of the ball of radius 2 ¢ proves that the function has a rapidly decreasing tail, both in x
and t. The two estimates imply ||T‘f|2f||Lp < £ % as t — oo for any p € (1,e0) and then
log-convexity of L” norms applied to p and p’ = p%l, together with the fact that 7}.> is a
unitary operator on L2, transfers the upper bounds to lower bounds.

On the contrary, in the case of the homogeneous multipliers of degree 0, the kernel
is singular, so one cannot use Young’s convolution inequality to control the L™ size of
T} f and needs a different approach. The obvious method to try is the method of (non-

)stationary phase, but since ® is homogeneous of degree 0, it follows that for all £ €

RY\ {0} p
0= (@E+h))| =& HPE)E,

implying, together with the fact that the Hessian of the function & — (&, x) is equal to 0
for all x,& € RY, that all stationary points of the phase are degenerate, so they don’t fall
under the scope of the classical method of stationary phase.

We are able to circumvent this problem and reduce the problem to the classical method
of stationary phase by transforming the integral representation in the case of an appropri-
ately localized function fusing the change of variables in the integral (see (3.3) below).
The reason why the method works better when d = 2 is the fact that regularity of the Hes-
sian of the phase in the transformed expression does not depend on the second derivative,
contrary to the d > 3 case.

Applying the method of stationary phase to the modified representation (3.3) with a
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NI

localized function f, it turns out again that the best L bound for T, f is bigger than 1~ 2,
so the function T} f does not resemble a bump function of height =% as it did in the case
of the Schrddinger propagator.

However, using implicit and inverse function theorems we are able to show the exis-
tence of the set of x’s of measure ~ ¢ on which the modified phase in (3.3) is station-
ary and nondegenerate, so the method of stationary phase gives the required asymptotics
\Tof(x)] ~apo =% on the given set. Using the base x height bound, this implies the

d_d
required asymptotics, that is |75 f |, Za.pa 17 2.
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3.3. PROOFS

Theorem 3.1.1 will essentially follow from the Theorem 3.1.2, but before we proceed to
the proof of the Theorem 3.1.2, we prove the following technical lemma that is crucial
for the proof of both theorems. It proves the existence of large set of x’s for which the

modified phase in (3.3) below is stationary and nondegenerate.

Lemma 3.3.1. Letd € N, d > 2 and ¢ € C*(R?~ R). Suppose that either H$(0) > 0 or
d =2 and ¢'(0) # 0. For x,& € R? define

Dr(§) = 9(6-) +8a({E-,x-) +xa). 3.2)

There exist an open set U € R¢ and an open set V.C R4~ x (41174) for which there is a
unique function g : U — 'V such that for all x € U it holds V ¢ @ (g(x)) = 0 and the matrix
He D, (g(x)) is regular.

Proof. Suppose first that Hp(0) > 0. Define F : R* — R? with:

F(8,x) =Ve@y(8) = |VP(E)+ &gt §1X1+-~+§d—1xd—1+xd]-

We want to apply the implicit function theorem to prove the existence of function g such

that F(g(x),x) = 0. First observe that

HO(G-) x-

VgF(é,x): T 0

Applying determinant to both sides of the block-matrix identity

Iy O [HP(E-) x- Ho(S-) X

—x(Ho(E )™ 1 x! 0 0 —x " (HP(E ) 'x_
it follows that
detVeF (&,x) = —((HO(&-)) 'x_,x_)detHo(& ).

Since H¢(0) > 0, there exists € > 0 such that H¢(E_) > 0 for all & € B;_1(0,¢€). Fur-
thermore, since the inverse of a positive definite matrix is positive definite, we conclude

that V¢ F (&, x) is regular whenever & € By 1(0,€) and x_ # 0.
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In order to apply the implicit function theorem, we need to show that there exist £° €
B,(0,€) x (,4) and x° € R with x° # 0 such that F(£°,x%) = 0.

Since H¢(0) is regular, because of the inverse function theorem there exist an open
set A C By_1(0,€) and an open set B C R, such that V¢ : A — B is bijective. Taking
1% € (—B)\ {0} and £° such that V¢ (E°) = —x° and defining:

E0=(&%1), a"=(x0, (&%),

we can see that F(E9,x0) = 0.

Therefore, the implicit function theorem implies the existence of open sets U’ > x° and
V C B(0,¢) x (%,4) (the second inclusion follows from the fact that £? = 1 by shrinking
U’ if necessary) and a unique function g : U’ — V such that F(g(x),x) =0 forevery x € U’.
If we choose U to be a subset of U’ such that all x € U satisfy x_ # 0, the regularity of
Hg®, follows from the fact that Hz®(§) = V¢ F(&,x) and the previous conclusion of
regularity of Ve F (&, x).

When d = 2 and ¢’(0) # 0, solving

F(Ex) = |¢/(&) + & £ ta] =0,

one can see that the unique function g : R?\ ({0} x R) — R? for which F(g(x),x) = 0 is
given by

XI’ X1

X <P’(—j§—f)>
Also, observe that the matrix

0" (&) x

VgF(é,x) = 0
X1

is regular whenever x; # 0, regardless of ¢”(&1). However, to satisfy the assumption that

V cRI (%, 4), one has to restrict x to a smaller set. Without loss of generality, we may

assume that ¢ := ¢’(0) > 0. By continuity, there exists § > 0 such that ¢'(&;) € (£,2c¢) for
. 6 ¢b

all §; € (—6,6). Therefore, if x; € (—2¢,—%) and x; € (=5, ), then one has —32 €

_o(—2

(—8,0) and ¢i1 o)

(—9,%)and V=R x (},4). O

C

€ (3.4), giving the proof of the theorem with U = (—2¢, —5§) x
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Proof of Theorem 3.1.2. Using duality of L? spaces and the fact that
(T, v) = (u, Ty v} = (T, 1),

where #i(x) := u(—x), we can, without loss of generality, assume that 7 > 0 and p € (1,2].
By composing the function ¢ with the rotation, if necessary, we can assume that the
function ®|g1 has a local minimum at e; := (0,...,0,1) € R?. From the fact that it is

nondegenerate, we know that the function ¢ : R¢~! — R defined as restriction of @ to the

hyperplane (§,¢e,4) = 1:
¢(&1,-- 8a—1) =P(S1, .., 61, 1)

satisfies H9(0) > 0. Indeed, observing that

£ |
P = E D = o <¢1+|5_|2’ ¢1+\¢_|2) |

the statement follows by the definition of nondegeneracy of ®|gs 1 and the fact that the
function &_ ﬁ (E_,1) is the inverse of the chart of SY~! at e, given as & — g—dé_.
To reduce the integral to the correct form for application of the method of stationary

phase, observe that
Tpf(er) = [ e PEHEfiE)ae.
R
1

Furthermore, observe that for any & € RY~! x (0,0) one has ®(§) = ¢(§_d§—)' Since
the function A(&) := &;(E_, 1) is a C* diffeomorphism from RY~! x R, onto itself, for

any f such that supp f C R9~! x R, the change of variables & = A(€’) gives

T4 f(ix) = /R HOEEE S D FE e g )EaE. (3.3)

Let U,V and g be as in Lemma 3.3.1. Since A a C* diffeomorphism on V and V is
open, there exist & € A(g(U)) and a ball B;(&y, &) C A(V). We choose a function f €
Z(R?) such that supp f C By(&p,€) and fE)=1for& e B;(&o,5). Denoting F(&) :=
FA(§)ES " and

Uy ={xe U A(g(x)) € Ba(&.5)}.

the continuity of A o g and the fact that £; ~ 1 on V imply that U; is an open set such that

|[Fogl|y,| 2 1. Denoting ®,(&) as in (3.2), the existence and uniqueness of the function g

57



Norm growth of powers is a generic property Proofs

in Lemma 3.3.1 imply that for any x € U, the function ®, has a unique stationary point in
V D supp F. Therefore, from (3.3), Theorem 1.5.1 and the lower bound for F o g on Uy,

we have

L Tsrwolas > [ |Tafolras
R4

= [ e r @] o .
_/ ‘t 2(2m) 2F (x))|detHD(g (x))\—%+0x(t—g_1)‘pdx .
Zapt ¥ [ [letre(e) + 0|,

Taking the p-th root and applying Fatou’s lemma, we have:

T Tt £(.
timing 2oL g 1T/ () e
I=ee 4572 t—vo0 T
1
P
Zap timint ([ [ldetto(s(0) 4+ 0.6 ax)
t—ro0 U]
1 ’
Zar ([ ()|}
U,
Zdapvq) 1'

Since f was fixed, one has || f||z» ~ 1, so the calculation implies that

T lLr—Lr A7
Y

liminf >l i
2

e St

giving the proof of the theorem for r > M, where M € R is an absolute constant.
The case t € [0,M], can be proved using soft methods. Fix any nonzero function
f € .Z(RY). The fact that the operator T} is a unitary operator on L? for any t € R
implies that T} f is not a zero function for any ¢ € R. Therefore, for all # € R one has

|74 f|lL» > 0. Furthermore, for any fixed x € R? and 9 € R, from (3.1) and Lebesgue’s

dominated convergence theorem we have

lim T f(x) = T f (x).

Fatou’s lemma then implies that

. . I
liminf|| 7 fr > |75 f v,
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meaning that the function ¢ — || T}, f||» is lower semicontinuous. Lower semicontinuous

function attains a minimum on the compact interval [0, M] and it must be positive by the
d_d

previous observation. Finally, using the fact that (t)» 2 ~y, 1 for ¢t € [0, M], one gets the

required lower bound in the range [0, M], giving the proof of the theorem. U
Finally, we prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Let us prove the part (a). Since ®|gq1 is not constant, there exist
a point & € S?~! and a chart y at & for which V(®|gs—1 oy 1) (w(&)) # 0. By compos-
ing the function @ with rotation, if necessary, we can assume that &y = e, implying that
01P(ey) # 0. Defining ¢ as in the proof of Theorem 3.1.2, Lemma 3.3.1 gives the same
conclusion needed to repeat the the proof of the Theorem 3.1.2 verbatim, thus proving the
part (a).

We continue to the proof of part (b). Let ¢ : SY~! — R be any Morse function on the
sphere. Since sphere is a compact set, it has a minimum and the fact that function is Morse
implies that the minimum is nondegenerate. Applying the Theorem 3.1.2 to the function
P(&) = ¢(é—|) we can see that all Morse functions satisfy the required asymptotics.
From [36, § VI, Theorem 1.2] we know that the set of Morse functions is an open dense

set in the standard topology on C*(S?~! ), so the statement follows. ]
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Part 11

Maximal Fourier restriction
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4. MULTI-PARAMETER MAXIMAL

FOURIER RESTRICTION

The content of this chapter is based on the paper [7].

The main result of this chapter is the strengthening of a quite arbitrary a priori Fourier
restriction estimate to a multi-parameter maximal estimate of the same type. This allows
us to discuss a certain multi-parameter Lebesgue point property of Fourier transforms,
which replaces Euclidean balls by ellipsoids. Along the lines of the same proof, we also
establish a d-parameter Menshov—Paley—Zygmund-type theorem for the Fourier trans-
form on R?. Such a result is interesting for d > 2 because, in a sharp contrast with the
one-dimensional case, the corresponding endpoint L? estimate (i.e., a Carleson-type the-
orem) is known to fail since the work of C. Fefferman in 1970. Finally, we show that a
Strichartz estimate for a given homogeneous constant-coefficient linear dispersive PDE

can sometimes be strengthened to a certain pseudo-differential version.

4.1. INTRODUCTION AND MAIN RESULTS

A classical sub-branch of harmonic analysis, started in the late 1960s, asks to restrict
meaningfully the Fourier transform f of a certain non-integrable function f to certain
curved lower-dimensional subsets of the Euclidean space; see Stein’s book [66, §VIII.4].
A general setting is obtained by taking a o-finite measure ¢ on Borel subsets of RY. Also,
let S C R? be a Borel set such that 6(R¢\ §) = 0. Typically, S is a closed manifold in R¢
and o is an appropriately weighted surface measure on S. As soon as we have an a priori

estimate

HﬂSHLq(s,c) Sd.opa 1 fllLe e 4.1)
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for some p € (1,00) and g € [1,0|, we can define the Fourier restriction operator as the

unique bounded linear operator
Z: LP(RY) = LIS, 0)

such that Zf = f| s for every function f in the Schwartz space . (R?).
Here and in what follows, we write A <p B, when the estimate A < CpB holds for
some finite (but unimportant) constant Cp depending on a set of parameters P.

Let us agree to use the following normalization of the Fourier transform:

(FNE) =FE) = [ 1le S ax

for an integrable function f on RY and for every & € RY, so that the inverse Fourier
transform is given by

8= [ a(E)e™ag

for g € L'(RY) and x € RY. We always have the trivial estimate

HﬂsHLw(s,g) < HfHLl(Rd) 4.2)

for every f € L' (R?), so restriction of the Fourier transform f f| s also gives a bounded

linear operator

Z: LYRY) - L=(S,0).

Using the Riesz—Thorin theorem to interpolate between (4.1) and (4.2) then gives us a

family of bounded linear operators
Z: L*(RY) = L¥/7 (S, )

for every 1 < s < p, where p’ denotes the conjugated exponent of p,ie., 1/p+1/p' =1.
All these operators are mutually compatible on their intersections, so they are rightfully
denoted by the same letter Z.

A novel route was taken recently by Miiller, Ricci, and Wright [52], who initiated the

program of justifying pointwise Fourier restriction,

lim f* X =%f o-ae.onS
t—0+
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for f € LP(R?), via maximal estimates

gd,c,x,p,q ’fHLP(Rd)' (4.3)

T Re 1]

t€(0,00
Here, x € . (R?) is a Schwartz function with integral 1 and we write y;(x) 1=t~ (t~'x)
for a given parameter 7 € (0,00). Note that the operator on left hand side of (4.3) cannot
be understood as a composition of the Fourier transform with some maximal function of
the Hardy-Littlewood type, since the measure o can be (and typically is) singular with
respect to the Lebesgue measure.

The authors of [52] achieved the aforementioned goal in two dimensions by imitating
the proofs of (somewhat definite) two-dimensional restriction theorems of Carleson and
Sjolin [13] and Sjolin [58]. This methodology was later followed by Ramos [54,55], Jesu-
rum [41], and Fraccaroli [26] to obtain a few higher-dimensional or less smooth/regular
results. The second approach to the maximal Fourier restriction was suggested by Vit-
turi [76], soon after the appearance of [52]. He deduced a nontrivial result for higher-
dimensional compact hypersurfaces from ordinary restriction estimates (4.1) by inserting
the iterated Hardy-Littlewood maximal function in a clever non-obvious way. The idea
of using (4.1) as a black box was later also employed by Oliveira e Silva and one of the
present authors [44], while the subsequent paper [43] built on this idea to show that the a
priori estimate (4.1) implies the maximal estimate (4.3) in a general and abstract way, as
soon as p < g. Each of these two approaches has its advantages and its limitations. The
present paper builds further upon the second approach and it has been partially motivated
by a post on Vitturi’s blog [75]. In fact, Theorem 4.1.1 below answers one of the open

questions that appeared in [75, §4].

For a given function yx : R? — C and arbitrary parameters rq, ..., r; € (0,) we define

the multi-parameter dilate of ) as

1 X X
. ™d L 1 d
Xriora: RE=Co 2 (X100, xg) 1= . mrdx<r—l,...,a>.
Also let
2 2
X1 —Y1 Xd —Yd
Br17...,rd()’17---a)’d) = {(xh'"axd) S Rd : %‘F‘i‘% S 1}
" T'a

be the ellipsoid centered at (y1,...,y;) € R with semi-axes of lengths r{,...,r, in direc-

tions of the coordinate axes. Its volume will be written simply as |B,, ., |. The particular
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case B,(y) := B,..._r(y) for r € (0,0) is simply the Euclidean ball.

Theorem 4.1.1. Suppose that the measure space (S,0) and the exponents 1 < p < g < oo

are such that the a priori restriction estimate (4.1) holds for every Schwartz function f.

(a) Then for every y € . (Rd) and every f € LP (Rd ) one also has the multi-parameter

maximal estimate

Sd,c,x,p,q HfHLP(Rd)- (4.4)

Sup ) ‘]/C\*%rl,.,.,rd}

Flyeeest g €(0,00 Li(S,0)

(b) For every x € (RY) such that [gax = 1 and every f € L*(R?), 1 < s < p, one
also has the multi-parameter convergence result
lim F* Xy =Rf C-ae ons. (4.5)
(0,203 (r1,...574)—(0,...,0)
(c) Moreover, if f €L° (]Rd), 1 <s<2p/(p+1), then we also have the “multi-parameter

Lebesgue point property”

(0,00)45(r1,....7a) (0.,

. 1 R B
o o>ﬁ/3 oV m=@NE)an=0 @6

,,,,,

lim _— fmydn=(Zf)E) @7

(07°°)d9(r17"'7rd)%(07"'50) ‘Brl 7~--7rd| BI’],»..J’d(é)

for c-a.e. & € 8.

Since (4.4) is a stronger maximal inequality than (4.3), Theorem 4.1.1 can be viewed
as a multi-parameter generalization of [43, Theorem 1] suggested by Vitturi [75, §4]. For
instance, by (4.5) now we are able to justify the existence of limits in various anisotropic

scalings, such as

lim ]/c\*)( 2 4d-
0 12,8

However, the required assumptions on ) are more restrictive here. The proof of Theo-

rem 4.1.1 will only use that ¥ is a function satisfying

(01 0aX) (x)| Sas (1+|x]) 7472 4.8)
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for some 8 > 0 and every x € R?. The last condition is different from

[(VZ) ()] Sas (14162,

used in [43], and (4.8) is not satisfied when ¥ is the normalized indicator function of the
standard unit ball in d > 2 dimensions.

For similar reasons we conclude the convergence of the Fourier averages over shrink-
ing ellipsoids, (4.6) and (4.7), only in the smaller range 1 < s <2p/(p+1), and not in the
full range 1 < s < p, as it was the case with averages over balls [43]. This leads us to in-
teresting open questions, like Problem 4.1.2 below. We will explain in Remark 4.3.1 after
the proof of Theorem 4.1.1 that (4.6) and (4.7) could have been equally well formulated

for axes-parallel rectangles as

. 1
lim d—/
r1—0-+,...,rg—0+ 2 ry---rq §+[—r1,r1]><-~~><[—rd,rd]

F() = (Zf)(E)|dn=0 (49

and

V1%0+1,i~-r-rvlrd%0+ﬁ /5+[r1,r1]xmx[rd,rd]f(n)dn = (%Zf)(8), (4.10)
respectively. This would have been a bit more standard. However, the same observation
combined with a counterexample by Ramos [55, Proposition 4] reveals a limitation in ob-
taining the full range of exponents for (4.6) and (4.9) (see the comments in Remark 4.3.1
again), and thus also for (4.7) and (4.10), which are shown here as their consequences.
On the other hand, it is still theoretically possible that (4.7) holds in the same range as

(4.1). A supporting argument is that the proof of its one-parameter case in [43] actually

depended on the geometry of Euclidean balls.

Problem 4.1.2. Prove or disprove that the assumptions of Theorem 4.1.1 imply (4.7) for
every f € LP(R?) and for c-a.e. £ € S.

Another question, related to property (4.6) and stated in Problem 4.1.3 below, re-
mained open after [43] and its particular cases have already been studied by Ramos
[54,55] and Fraccaroli [26]. In words, we do not know how to extend the range 1 <

s <2p/(p+1) even when we only consider balls instead of arbitrary ellipsoids.

Problem 4.1.3. Prove or disprove that, for every f € L”(R?), the assumptions of Theo-

rem 4.1.1 imply that o-almost every point £ € S is the Lebesgue point of f, in the sense
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that
|f(n) — (2£)(€)|dn =0.

lim —
t—0+ |By| JB,(£)
The general maximal principle from [43], concluding something about the Lebesgue
sets of Fourier transforms ffrom restriction estimates (4.1), has been used by Bilz [3]. It

would be interesting to find similar applications of the stronger property (4.6).

The main new ingredient in the proof of Theorem 4.1.1 will be a multi-parameter
variant of the Christ—Kiselev lemma [15]. Even if its generalization is somewhat straight-
forward, we will argue that it is substantial by using it to deduce the following result on

the Fourier transform alone, with no restriction phenomena involved.
Theorem 4.1.4.

(a) For p € [1,2) and f € LP(RY) we have the maximal estimate

Sup |g(f]l[_Rl7R1}><"'><[_Rd7Rd})| Sdp Hf”LP(]Rd)

L¥ (Rd)

and d-parameter convergence

F)e 28 dx = f(&) (4.11)

lim /
Ryi—oo,... .Rg—oo J[—R| R|]x - X [—Ry,Ry]

holds for a.e. & € RY.

(b) Ifd > 2, then there exist a function f € L?(R¢ ) and a set of positive measure Q C R?

such that

lim sup
R{—o0,....Rj—00

/ fx)e2Fixé dx' = foreveryxc Q. (4.12)
[—R1,R ] %+ X [~Ry,R4]

In particular, even the weak L? estimate

Sd HfHLZ(Rd)

H sup ‘Loj(fﬂ[—Rth]X"'X[—Rdﬂd])|

2,00
Rl,...,RdE(O,OO) L (Rd)

does not hold.

Part (a) can be thought of as a multi-parameter Menshov—Paley—Zygmund theorem,
while part (b) gives a counterexample to the corresponding multi-parameter analogue of

Carleson’s theorem [12]. The latter is not our original result, but a mere adaptation of the
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argument by Charles Fefferman [23] to the continuous setting. We include its detailed

proof too for completeness of the exposition.

Finally, connections between the Fourier restriction problem and PDEs have been
known since the work of Strichartz [69]. Let us comment on a certain reformulation
of (4.4) in that direction. The following standard setting is taken from the textbook by
Tao [74]; also see the lecture notes by Koch, Tataru, and Visan [42]. Let ¢: R" - R
be a C” function. A self-adjoint operator ¢ (D) = ¢(V/2x1i) is defined to be the Fourier

multiplier associated with the symbol ¢, i.e.,

If ¢ happens to be a polynomial
¢(&) = Z ca”
|| <k
in n variables & = (1,...,&,) of degree k with real coefficients cq, then ¢ (D) is just the
self-adjoint differential operator acting on Schwartz functions,
o(D)= Y (2mi) 1%cq0%.
|l <k

The solution of a general scalar constant-coefficient linear dispersive initial value problem

diu(x,t) =1¢(D)u(x,t) inR" xR,

(4.13)
u(x,0) = f(x) in R"
is given explicitly as
ulrt) = (P ) (0) = [ HOEE ) ag
forx € R", t € R, and a Schwartz function f € . (Rd); see [74, Section 2.1].
Corollary 4.1.5. Suppose that a Strichartz-type estimate for (4.13) of the form
[Py @rscmy Sno 12 (4.14)

holds for some exponent s € (2,00) and every Schwartz function f € (R"). Then for
every y € .Z(R" 1) and any choice of measurable functions ry,...,ryy1: R — R the

pseudo-differential operator

(Tq/,rl,,“’r”ﬂf)(x,t) = /R" ll/(rl(é)xlan -7rn(5>xn7rn+l(é)t) eﬁl(b(é)_._znﬁx.éf(é)dé
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satisfies the same bound

1Ty ry e fllLs ety Snigows [ 12 ) (4.15)
with a constant that is independent of ry,...,rp11.

Note that (4.14) is a particular case of (4.15), as the former inequality can be eas-
ily recovered by taking rq,...,r,+1 to be identically 0. Specifically for the Schrodinger
equation, i.e., when ¢ (D) = A, the Strichartz estimate (4.14) holds with s =2+4/n. A
larger range of Strichartz estimates is available when one introduces the mixed norms [2],
see [74, Theorem 2.3] or a review paper [16], but our proof of Corollary 4.1.5 is not well
suited for this generalization.

While (4.15) is questionably interesting in the theory of PDEs, we merely wanted to
present a restatement of (4.4) in that language. Note that in the definition of the above
pseudo-differential operator it is only physically meaningful to scale the spatial variable
x and the time variable ¢ independently. In other words, just writing y(r(&)(x,z)) would
make no sense. This also partly motivates the study of multiparameter maximal Fourier

restriction estimates.
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4.2. MULTI-PARAMETER CHRIST-KISELEV

LEMMA

This section is devoted to a bound on rather general multi-parameter maximal operators,
which generalizes a classical result of Christ and Kiselev [15].

Let (X, 27 ,u) and (Y,%,v) be measure spaces. Let d be a positive integer, which
we interpret as the number of “parameters.” For every 1 < j < d we are also given a
countable totally ordered set /; and an increasing system (E;(i) : i € I;) of sets from %/,

i.e., an increasing function E;: I; — %/ with respect to the order on /; and the set inclusion

on%.

Lemma 4.2.1 (Multi-parameter Christ—Kiselev lemma). Take exponents 1 < p < g < oo
and a bounded linear operator T: LP (Y, %, v) — L1(X, 2", ). The maximal operator

(Tf)(x) == Sup ‘T<f]1E1(il)m"'mEd(id))(x)|

(i],...,id)ell XXy

is also bounded from LP (Y, % v) to LY(X, 2", L) with the operator norm satisfying

1Tl lLr () —saex) < (1 _Zl/q_l/p)_dHTHL”(Y)%L‘?(X)- (4.16)

The particular case d = 1 is precisely [15, Theorem 1.1]. The proof given below is a
d-parameter modification of the approach from [15], incorporating a simplification due to
Tao [70, Note #2], who used an induction on the cardinality of /; to immediately handle
general measure spaces with atoms. We include all details, since we desire to have a

self-contained exposition.

Proof. By the monotone convergence theorem it is sufficient to prove the claim when the
ordered sets Iy,...,I; are finite. Note that it is crucial that the desired bound does not
depend anyhow on their sizes. Thus, the proof will only consider finite index sets ;. The
exponents p and g, the two measure spaces, and the operator T are fixed throughout the
proof. We are using a nested mathematical induction, first on d and then on the cardinality
of I, to prove (4.16) for all finite increasing systems of sets (E;(i):i€1;), 1 < j<d.

The induction basis d = 1 = |I1] is trivial, since then T, satisfies the same bound as 7.
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We turn to the induction step. By renaming the indices we can achieve that I; =

{1,2,...,n;} for each 1 < j < d and some positive integers ni, .. .,ny. Denote
F(i) = E (l’l1) ﬂ“‘ﬂEd,l(l’ld,l) ﬂEd(i) for 1 <i<ny.

Take a function f € LP(Y,#,v). By the assumption that the system (E;(i) : i € I,) is

increasing, we have

0 <[ fllrray) < Nf e < fllLe(r(ng))-

Let 1 <1 < ngy be the smallest integer such that

1

A 1Ep iy = 1A

If [ > 2, then
1 1
HinP(F(l_l)) < EHinP(F(nd)) < _Hinp(m

so applying the induction hypothesis with the last system of sets replaced with the sub-

system
(Eq(ig) rige{l,...,1—1}),
we get
H i?%(d }T(fﬂ'El(il)m"'mEd(id))‘ L9(X)
1<iy<I—1
= H lTaiid T (fLra—1)LE (i)n-nEaiy)) | LY(X)
1<ld<l 1
1/p\—d
< (1=2Y7Y2) YT Loy oo | F Leg-n e vy
_ 1/p\—d
<2 l/p(l —2l/4 l/p) T [lLe(vy—Lae) 1F e oy - (4.17)
Also,
p 1 1
1AL p # ng oy = I )~ AL §Hf|! QHfH

so, if / < nz; — 1, then applying the induction hypothesis with the last system of sets

replaced with the subsystem,

(Ed(id) 1ig € {l+1,...,nd}),
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we obtain
| max T (FLey )00 1 (a0 Eatia)\Eal) ]|
I+1<ig<ng
=| X T (FLp o)\ P Vs ()00 1 G- Eatia B | g
l+1<ld<nd
< (1=2Y97YPY T || Loy a0 L L ey )
- —d
<27YP(1=2Y VP T oy oo | F - (4.18)

Finally, if d > 2, then we can also apply the induction hypothesis with the same first d — 1

systems of sets, to conclude

ilfr.l.%ff ) ‘T(f]lEl (i1)NNEg—1 (ig— 1)ﬁEd(l))‘

max | (fLg, 1)L, ()0 -nE, (ia))|

117 7ld 1

1 /py—d+1
< (1 —2l/a 1/p) " 1T [Lr ) Lo 1 Le, 0 llLry)

< (1=2Y42) "N T oy oo Ul - (4.19)

LI(X)

L1(X)

The last bound also holds in the case d = 1, with the maximum disappearing from the
left hand side, and it is a consequence of the mere boundedness of T'.

Now denote

§ = {x € X:(LS)0) = [(T (FLey )0 in)) ()]

for some (iy,...,ig) €1 X -+ X Iy suchthatidgl—l},

s0, using linearity of 7,

Tof <Ls max (T (fLe )0 niy o nreaGo) |
1<i;<I—1

s max T (F Ly )ty G 0n(Eatia\Ea)|
I+1<ig<ng

+Ix\g max ‘T(fl]'El (i1)N-NEq_1 (ig— 1)ﬁEd(l))‘

ll7 7ld 1
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Here, maximum over an empty set is understood to be 0. When g < oo we conclude

q
HT*fHL"( <H lflaf fﬂEl (i1)N- ﬂEd(’d))} L4(s)
1<ig<I—1
g 1/q
+| max T (£ L, )0k G0 (Eai)\E0) | Lq(x\s)>
1+1<iy<nyg
+ ll}ll?l'fl(l‘T(flEl (i)NNEg—1 (ig— 1)ﬁEd(1))‘ Lax\s)’
while in the endpoint case g = oo we instead have
| Tef l|L=(x) < max {H jmax T (fLE,G)n-nEgGia) | Lo(s)
1<y
| max T (FLg )0k a0 (Eati)\Ea0) | Lm(m}
1+1<iz<ny
T(f1 .
+ 117111331(1‘ (f Ey(iy)NNEg—1 (ia- 1)ﬂEd(1)) L=(X\$)
Applying (4.17), (4.18), and (4.19) we complete the induction step. ]

Remark 4.2.2. An alternative proof of Lemma 4.2.1 can be obtained as follows. We can

generalize the claim further to general sublinear operators 7, i.e., operators satisfying

T(af)| =lellTfl, [T(F+)| <|Tfl+IT¢g|

forall ¢ € Candall f,g € LP(Y,%/,v). The advantage of doing this is that various maxi-
mal operators are always sublinear. Then we can write the operator T, as a composition of
d maximal truncations, each one with respect to a single increasing system (E;(i) : i € I;),

namely

T, f = sup sup --- sup
el ireh ig€ly

T( <(f]lE1(il))1E2(i2)) "'ﬂEd(id)> g

so the claim 1s reduced merely to the one-parameter case. Finally, one can notice that
the known proofs of the particular case d = 1, both the one by Christ and Kiselev [15,
Theorem 1.1] and the one by Tao [70, Note #2], clearly remain valid for merely sublinear

operators 7. We leave the details to the reader.

Now assume that the second measurable space splits as a product
(Y, 2)=(Yix xYy, % ® - 0%)
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of d > 1 measurable spaces (Y;,%;). Also suppose that for each 1 < j < d we have a

countable totally ordered set /; and an increasing system (A’J :iel;) of sets from %,

Corollary 4.2.3. Take exponents 1 < p < g < o and a bounded linear operator
T:LP(Y,%,v)— LIX, 2, ). The maximal operator

A= swpT(fL ) @) (4.20)

(i] ,...,id)EIl XXy
is also bounded from LP (Y, %/ ,v) to LY(X, 2", u) with the operator norm satisfying
1/p\—d
ITllLr ) —ae) < (1=2Y47YP) T oy o)
Proof. This result is an immediate consequence of Lemma 4.2.1, obtained by taking

Ej(i) =Y x--x Y1 XA x Yy x - x Yy O

The constants blow up as g approaches p. An easy modification of the proof of
Lemma 4.2.1 gives the following endpoint result with logarithmic losses when the sets

I; are finite.

Corollary 4.2.4. Take an exponent p € [l,| and a bounded linear operator

T:LP(Y,%,v)— LP(X, 2", 1u). The maximal operator given by (4.20) satisfies

| Tl )= ey < ([loga L[]+ 1) -+ ([ogy [a| ] + 1) [| T [|Lr vy - e (x) -

Formulation of Corollary 4.2.4 is motivated by Tao’s [70, Note #2, Q14]. The partic-
ular case when p =2 and T is the Fourier transform could be called the multi-parameter
Rademacher—Menshov theorem. We will not need Corollary 4.2.4 in the later text and we
formulated it only for comparison with a very different method by Krause, Mirek, and

Trojan [45, Section 3].
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4.3. PROOF OF THEOREM 4.1.1

Denote the maximal operator

Mf:=  sup }]?*%r17---7rd|'

r17"'?rd€(0’°°)

We begin with an observation that f* Xri....r, 18 the Fourier transform of

(xla"'axd) f—>f(X1,...,Xd)%(r1X1,...,I"d.Xd)-

Using (4.8) and the fundamental theorem of calculus we expand, for any (xi,...,x4) €

(R\{0})¥ and (ry,...,rg) € (0,00)9,

%(lel,. . .,rdxd)
= Y ()" g, xa) / (01 0aX)(t1,... 1) dry - dty

_ d .
ee{-11} {(11a) EQ(E): |t 2 ;| for 1< j<d}

= ) (_1)#£/Q(8)ILR(e;t1|/r1,..4,|td|/rd)(xla---vxd>(al"'ad%)(tla---atd>dtl"‘dtd-
ee{-1,1}4

Here Q(¢) is the open coordinate “quadrant” determined by € = (¢1,...,€&;) € {—1,1},
1.e.,

0(€) :={(x1,...,x4) € R? : sgnx; =¢; for 1 < j < d},

#e denotes the number of 1’s among the coordinates of €, and we also denote

R(&;s1,...,8q) := Q)N ([—s1,81] X -+ X [=S4,54]) (4.21)

for any s1,...,54 € (0,00). Multiplying by f and taking Fourier transforms we obtain the

pointwise identity

F*Xr1ra = Z (_1)#8/ ﬁ(fILR(S;\H|/r17--~7|fd\/rd)) (31 ’ "ad%) (t1,- -5 2q) dty -~ ditg,
ge{—1,1}d Q(e)

so that

ar<

Rd< sup }ﬁ(f]lR(s;\tl|/r1,,..,|td|/rd))‘)|(al"'ad%)(tla--wtd)‘dtl"'dtd-

r17""rde(07oo)
Note that each of the sets (4.21) is a d-dimensional rectangle in R¢, so invoking Corol-
lary 4.2.3 with T = .%, which is known to satisfy (4.1), gives

sup | T (F Lrgesp |y ftal ) |

Sd.opa |1 f 1L @a)-
r ,...,rdG(O,"")mQ

L9(S,0)
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The last implicit constant is independent of 1, ... ,#,4, so integrability of 0, - - - d; ¥, thanks

to (4.8) again, establishes

|2 fllLas,0) Sdioxpa 1 lLr ey (4.22)

which is precisely (4.4).
The proof of (4.5) is now standard. The claim is clear for f € L!(R?). By

LA (RY) C L} (RY) + L2 (RY)
it is sufficient to verify it when f € L?(R?). For any £ > 0 denote the exceptional set

Eem{ECR!: ol swp  |(Fezn,.n)(E)— (21 > ¢},

FG(O,OO) r ,...,rde(O,r]

observing that (4.5) holds for every point outside of Ugc (o) Ee. It is easy to see that for

every g € . (R?) by the mere continuity of g we have

llm g*xi"l,...,}’d :%g
(07oo)d9(r17...,1%)*)(0,...,0)

pointwise on S and, consequently,

Eec{ees:a(f-g) &)= jultes: 2(r-9@) 23}

Thus, Estimates (4.22), (4.1) and the Markov—Chebyshev inequality give

(EE) S € qu gHLP ]Rd

By the density of .#(R9) in L?(R?) we conclude o(E¢) = 0 and nestedness of these sets
also gives 6(Ugc(0,00)Ee) = 0. Thus, (4.5) really holds for o-almost every & € S.

Turning to (4.6), we define the ellipsoid maximal function of the Fourier transform as

(Af)(E):=  sup |£(n)]dn

rl,...,rde(O,oo) |Brl ~~~~~ rd| Brl,.”,r’d(g)

and repeat a trick from [52]. It is again sufficient to verify the claim in the endpoint case

f e L2/(P+1)(R4), Define

8 = [ SO =)y,
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so that g € L”(RY) and g(&) = ‘f(ﬁ)!z Choose any non-negative y € .#(R¢) with inte-
gral 1 that is strictly positive on the closed unit ball B;(0,...,0). Then, by the Cauchy—

Schwartz inequality,

5){ (§* th...,rd) (5)1/27

so the bound (4.22) applied to g gives

ow 1/2 1/2
H///fHqu(S,c) Sx H’%gHL{i(S’G) Sd,c,x,p,q ‘|g|’L{7(Rd) < ”f”LZp/(pH)(]Rd)-

Now we can repeat exactly the same density argument as before to conclude that (4.6)
holds for c-almost every & € S. Finally, (4.7) is an obvious consequence of (4.6) and the
triangle inequality.

Remark 4.3.1. Note that (4.9) and (4.10) now also follow, only by observing that the

maximal function .7 is pointwise comparable to the rectangular maximal function,

1 ~
Meaf)E)i=  swp o [ 7o) an
( et )( ) sy ra€(0,00) 20ry-orq §+[—V1J1]X'“X[—rd7rd}| ( )|
1 —~
= sup [ |7 an,
Z is an axes-parallel rectangle |<@ ’ %‘ ( )‘
A>E

so the latter one satisfies the same bound as before. In the other direction, Ramos [55,
Proposition 4] showed that, in the case of spheres § = S9-! in dimensions d > 4, the

operator .#et does not satisfy estimates in the full conjectural range of (4.1).
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4.4. PROOF OF THEOREM 4.1.4

The maximal operator appearing in the part (a) is simply 7, from (4.20), where X = R¢,
Y; =R, T=%,q=p,1;=(0,00)NQ, andAﬁ.e = [—R,R]. Note that we use p < 2 in the
condition p < p’ =g, so that Corollary 4.2.3 applies and deduces the desired estimate from
the well-known fact that the Fourier transform .Z is bounded from L”(R?) to L¥ (RY).
The convergence result is then proved via exactly the same density argument as the one
used in the previous section.

We turn to the part (b). It will be merely an adaptation of Fefferman’s argument [23]
to the continuous case. We present the complete proof here because the construction
was only outlined in the aforementioned paper and it is necessary for us to construct
the function in L?(R?) for which the limit (4.11) does not exist, instead of just disproving
L2(R?) — L>>(R9) boundedness. Namely, Stein’s maximal principle [63] does not apply
in the case of non-compact groups, such as R?.

We define Dg(t) := sin(27Rt) /t. The operator Sg, . g, is defined on L>(R?) as

SRykef = F(FLL R, Ry)xx|-RyRy)) = f % (DR, @~ @DR,).

Here u; ® --- ® uy denotes the elementary tensor made of one-dimensional functions,

defined as

(1@ @ug)(x1,- . Xg) = ur(x1) - ua(Xq).-
Observe that Young’s convolution inequality implies
1/2
1SR1 a2ty =y S (Ri---Ra)' /2.

Following Fefferman’s example, we use the following definition throughout the re-

mainder of this section. For A € R we define

fl (XI,XZ) — eZmﬁ?Lxlxz]l

[—2,2]2(X1 X2).-
The next lemma gives bounds that are crucial for the proof.

Lemma 4.4.1.
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(a) There exists C > 0 such that for all x;,x; € [2/3,1] the following holds:

|Slx2,lx1fl (xl 7x2)| > ClogA

whenever A is large enough.

(b) There exists C > 0 such that for all x1,x; € [2/3,1] and A" > 3\ > 0 the following
holds:

|Sl’x2,/l’x1f/l (Xl 7'x2)’ S C

Before proving the lemma, we prove that it implies the part (b) of Theorem 4.1.4. We
will prove that there exist a function f € L?(R?) and a number § > 0 such that
limsup  |Sg,,..r,f(X1,...,x4)] =0 forevery (xi,...,x4) € [2/3, 1 x [-8,8)%72,
Rj—o0,...,.Rg—>00
(4.23)
so the function f € L2(R?) will be the one for which (4.12) holds.

Let y € .7 (R) be a real-valued Schwartz function such that y(0) > 0 and supp() C
[—1,1]. For the function F(x1,...,xg) := f(x1,x2) H?:3 y(x;), because of the assumption
on the support of W, we have

d

limsup  [Sg,,..r,F(x1,...,Xq)| = limsup SR],sz(xl;XZ)HW(xj)‘-

R|—oo,... .Rj—o0 R|—00,Ry—300 =3
Furthermore, since y(0) > 0, there exists some & > 0 such that y(x) > 0 for all x €
[—&, 8], so it is enough to prove (4.23) for d = 2.

We define the sequence of positive real numbers (ay);>_, recursively as a; = 1, agy =

(o)

2~k/ac and the sequence of positive real numbers (1) oy With A = akjl. Observing that

Y i ax < oo, it follows that the function

fx,x:) =Y arfy, (x1,x2)
far

is well defined and in L?(R?)
We claim that there exist real numbers C; > 0, i = 1,2, 3 such that the following in-

equalities hold for all xj,x, € [2/3,1] and n € N:
(1) |Sl,,x2,/lnx1fln (x17x2)| >C loglnv

2) |Slnx2,7tnx1f7tk ()C],Xz)’ < Cy when k < n,
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(3) |Slnxz7/1nxlf7tk ()C],Xz)’ < C3A‘n when k > n.

Indeed, since Ay > 44 for all k € N, the first two inequalities follow from Lemma 4.4.1,
while the third one follows from Young’s convolution inequality. Therefore, observing
that sequences satisfy 4, Y -, ar < 1 for all n € N and a, log A, ~ n, for x;,x; € [2/3,1]

and n large enough it follows that

1S 2xs Ay S (1:X2) | > @nl S, Ay 1, (K1, 52) | = Y @S,y Ay S (X1,22))
k#n

> Craylogh, — G Z a, — C3A, Z ay 2 n.

k<n k>n

Finally, noting that A,x;,A,x; — o0 as n — oo finishes the proof of (4.23) in the case d =2
and therefore also the part (b) of the theorem.

The following technical lemma will be needed in the proof of Lemma 4.4.1.
Lemma 4.4.2.

(a) There exist C, Ay > 0 such that

27rn7Lx1x2
‘p V/ / dx1 dXQ
X1X2

(b) There exists C > 0 such that for all c,cs € R for which max{|ci|,|c2|} > 4/3, the
following holds:

27'511& (x1x24c1x1+C2x2)
p-v. / / dx; dxp
X1X2

> ClogA forevery A > A.

<C forevery A > 0.

Proof. (a) This was proved in [53], but we repeat the short proof for the completeness.
Since [ sinzdt/t = /2, there exists A; > 0 such that [;sinzdt/r € [1/4,37/4], for all

x > A1. Now, using symmetries of the integrand and change of variables, it follows

27rnlx1x2 2 A
pV/ / dxldx2—4n/ / Sm i XIXZ dxldX2

X1X2 X1X2

2 1 le t
— 44 / / S e

ll/l 1 ﬂ,xz t 2r Axa gi t dx
:41’1/ / ﬂdtdx2+4n/ / SN g &2
AM/AJO t X2

For the first integral observe that ¢ — (sint)/¢ is absolutely bounded by 1, so the

integral is absolutely bounded by A;. For the second integral we use fact that Ax; > A4

),XZ l» dx 21 dx
/ / sint g, 42 / =logA +1log(2m) —logA,.
A/AJO x2 M/A X2

SO:
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Finally, adding the two integrals and choosing A large enough compared to A4, the state-
ment holds.
(b) Assume, without loss of generality, that ¢; > 4/3. Using symmetries of the inte-

grand, it follows that

27r7Ln (x1x04c1x14+C212)
p. V/ / dxydxp

X1X2
_ipv. / / sin 27rl;c11x;c2+c1))e2ﬂmczx2 dv;dos.
If we define
2e(r) = 2/1 sin(ZnQLx;I(xz-l-m)) dxy,
£

from the assumption ¢; > 4/3, it follows that |gh(x2)] < (x2+¢1)~ ! <1 for all x; €

[—1, 1], where the implicit constant is independent of both A and €. Therefore,

sin(27Ax (xo + ¢ eZﬂ:ﬁ?chxz eZn’ﬁ?chxz

‘/ (rdn (o +c)) anae| = | [ ggw_dxz'

[—1,1]\[—¢,€]) X1 X2 —1,1\[—¢,¢€] X2

— . 27'[]'11(22)62
S '/ gS(XZ) g&'(o) eZnn?chxz dXQ‘ + gg(O)/ e de
[—L1\[-¢.¢€] X2 [-L1\[-€e] X2
N sint
S / sup g( dxz + sup / 1a,’t < 1.
te[-1,1] N>0[J0 I

Letting € — 0, the statement follows. ]

We proceed to the proof of Lemma 4.4.1.
Proof of Lemma 4.4.1. Observe that:

SRy RoSA = TRy RS2 — TRy RoSA — TRy ~RoSA T TRy ~Ro 2 (4.24)

where

eZ?‘Cﬁ(rlx/1+r2x/2)

Tr1,r2f<x17x2) = f(xl _'x/1>x2 —X/2) dxlld'xlz

—=Pp.V.
42 PV Jpo XX,
We prove the following two observations for the part (a) of the lemma.

(1) There exists C > 0 such that for A large enough and x;,x; € [0, 1]:

Ty 20, f2 (X1,%2)| > Clog A
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(2) For A >0 and x,x; € [2/3,1], all of the expressions
T gy de A (X22) s | Thy 2 2 (1,22) 1 T a2y J2 (21,X2) |
are bounded by a constant independent of A.
In order to prove the observation (1), we note that because
xox] 4+ x5 + (x1 — x7) (2 — x5) = x1200 + x5,

the following holds

T, A, f2 (X1,X2)| =

eZﬂ:n/lxlxz dx/ dx/
p- V/ / g YWY
42 wi—2x+2 Jp—2042] X)X

We decompose the area of integration into 4 regions:

[_171]27 [—1,1]X(R\[—1,1]), (R\[—l,l])X[—l,l], (R\[_Ll])z'

By the first part of Lemma 4.4.2, there exists C > 0 such that the integral over the first
region is at least Clog A whenever A is large enough. Integrals over the second and third

regions are all O(1) because of the following calculation:

Xy +2 1 27!1)62 Slnt
/ - / 'dxz N / —ddy S 1L
1 Xy |/ —2mAx, t

Finally, the integral over the last region is bounded using the triangle inequality by:

x1+2 ro+2 ] <
/ /2” Lty 1) deidny S 1.

22 b sin(2mAx) X))

) dy

xxz

Summing all the bounds we prove the observation (1).

We turn to the proof of the observation (2). First note that for €1,& € {—1,1},

’TSIAJQ,SQAlel (xl 7'x2)|

1 eZﬂ:M(x’lx'z—O—(a—1)x’1x2+(£2—1)x’2x1) L
:—4n2pV./ / T del .
[x1—2,x142] J [x2—2,x,+2] X1Xy
Assume, without loss of generality that €, = —1. From the assumption on x; it follows

that |(€; — 1)xp| > 4/3, so using the second part of Lemma 4.4.2, the integral over the

first region is bounded by a constant. Integral over the fourth region is bounded as in the
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observation (1). Integrals over the second and the third region can be bounded using the

following calculation

/

02 1 sin(2wAx) (x5 + (€1 — 1)x2)) , e2mik(e—ny
/1 /_1 xll d‘Xl A d‘xZ

3 4./
s[ s
1 X

Combining observations (1) and (2) with (4.24), we conclude the proof of the part (a)
of the lemma.

For the part (b), we observe that for €1, &, € {—1,1} the following holds:

| Te, Ay enniny J2 (X1,X2) |

1 eZy‘Eﬁ?L(x’]x’z—i-(sl/l’/?L—1)x’1x2+(82),’/)t—l)x'le) S
= ) P-V. T dXdel .
4r [x1—2,x1+2] [x2—2,x2+2] XIXZ

We then decompose the area of integration in the same four parts as before. For the first
part, since |(€1A'/A —1)xp| > 4/3, we use the second part of Lemma 4.4.2 to get the

upper bound and we treat the other parts as in the part (a) of the lemma. [

Remark 4.4.3. 1t is obvious that the function f in the proof of the part (b) is in L' (R?),
so the function f for which the convergence (4.11) fails, is also continuous and therefore

the counterexample exists in the class C(R?) NL?(RY).
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4.5. PROOF OF COROLLARY 4.1.5

Let

S::{(&j,%’?) :gemn} c R

be the hypersurface naturally associated with (4.13). Equip S with the projection measure

do(&,7) = dE. For every g € L?(S,0) there exist a unique f € L?(R") such that

o(&. 28D~ g (4.25)

2
for a.e. £ € R". By the assumption (4.14) and the Plancherel identity we then know that
& given by the formula
(€8)(x,1) := (P ) ()
extends to a bounded linear operator &: L?(S,0) — L*(R"!). In the case when f €

< (R"), we can write

() xi) = [ ety (e 2o g = [ 2meniED (6 1) doe, 0

R

and, taking another Schwartz function i € . (R**1),

L. o) (@) Cxnydvdr = [ H(E,7)5(E.7)do &, 7).
n+ S

By duality we now see that the a priori restriction estimate (4.1) holds with d =n+1,
p =+, g =2. In fact, the Fourier restriction operator Z: L* (R"*!) — L2(S, 5) is now
known to be bounded and its adjoint is precisely &', which is for this reason sometimes
called the Fourier extension operator.

Note that p = s’ < 2 = q. Now Theorem 4.1.1 applies, so that the maximal estimate
(4.4) gives

Sup ‘h*x}’h.‘.,r,H,]‘
IlyessTnt1 6(0700)

Sndis 1Al e (4.26)

L2(S,0)

for any given Schwartz function y € . (R"!). If we extend the definition of dilates as

1 X X4
%rl,...,rd(xla-.-yxd) = M—M%(Z’,a)
for ry,...,ry € R\ {0}, then (4.26) implies
Sup I Snpzs 1PN Lo gasrys 4.27)
r],...,rn+1€R\{O}| | L2(s5,6) ~0 8 LY (Rt
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by considering 2"*! quadrants of R"*!, flipping x as necessary, and increasing the im-

plicit constant by the factor 2"*!. Linearizing and dualizing (4.27) we obtain

§n7¢7%7s ’gHLz(S’G) HhHLS/(Rn+l)

05 2,018 (€ D 8(E 06, 7)

for any choice of measurable functions ry,...,r,+1: R" — R\ {0}. If we further substitute

(4.25) and choose ¥ such that § = W, then we can rewrite the last bilinear estimate as

Lo ) Wy DYV Sy I [l

which is just the dualized formulation of the desired bound (4.15). The case of general

measurable functions ry,...,r,11: R” — R now easily follows in the limit.

84



CONCLUSION

In the thesis, we studied the powers of multipliers associated with unimodular homoge-
neous symbols of degree 0 and multi-parameter maximal Fourier restriction.

In the first part of the thesis, we proved asymptotically sharp estimates for the norms
of these multipliers and showed that the powers of a generic multiplier have an asymptot-
ically maximal order of growth. Consequently, we disproved Maz’ya’s conjecture regard-
ing the asymptotically sharp estimates of such multipliers and solved the problem posed
by Dragicevi¢, Petermichl, and Volberg concerning the sharp lower estimate of a certain
multiplier falling within the mentioned class. Two interesting questions, however, remain
open. One is the question of whether the powers of all Fourier multipliers associated with
unimodular 0-homogeneous symbols have asymptotically the same order of growth and
the other one is the question of the possibility of extending the approach from chapter 2 to
general multipliers that would give lower estimates that are sharp both in the power and
in p € (1,00).

In the second part, we generalized the Christ—Kiselev lemma for maximal operators
to a multi-parameter version. As a consequence, we solved the multi-parameter version
of the maximal Fourier restriction problem, initiated by the work of Miiller, Ricci and
Wright, and we proved a multi-parameter version of the Menshov—Paley—Zygmund theo-
rem for the multi-dimensional Fourier transform. The techniques that we used are pushed
to the limit, so the questions regarding extension of the range in which certain estimates

hold remain open.
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