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Abstract

Proton decay is one of the most significant predictions of models of grand unification and, at the

same time, the source of one of the most important constraints on the otherwise viable parameter space

of these theories. In the model considered in this thesis, and within which the correlation study of the

proton decay signatures was performed, there are only two sources of proton instability. The first source

are vector bosons X and Y , while the second source is a scalar leptoquark. The aim of the thesis is

to study predictions for two-body proton decay partial lifetimes due to the exchanges of both X and

Y vector bosons and one scalar leptoquark. The model of interest yields all unitary transformations,

Yukawa couplings, and gauge coupling strength that are necessary to generate accurate partial lifetime

predictions as a function of mediator’s mass. The research hypothesis is that the predicted patterns for

two-body proton decays might be different for these two types of mediators. This would then allow for

unambiguous experimental answer to the question of what the dominant source of proton decay in this

model of unification is. It should thus be considered to be the most important outcome of this doctoral

research. Therefore, we present results of correlation study between two sources of proton instability in

reference to experimental limits and future expectations in this field.

KEY WORDS: SU(5) model, proton decay, scalar leptoquark, gauge boson, partial proton lifetime,

proton decay width, correlation study



Sažetak

Raspad protona jedno je od najznačajnijih predviđanja modela velikog ujedinjenja, a istovremeno,

i izvor jednog od najvažnijih ograničenja na inače održiv prostor parametara ovih teorija. U modelu

koji se razmatra u ovoj doktorskoj tezi, a unutar kojeg je provedena korelacijska studija za tragove

protonskog raspada, postoje samo dva izvora nestabilnosti protona. Prvi izvor su vektorski bozoni X i

Y , dok je drugi izvor skalarni leptokvark. Cilj doktorskog rada je proučavati predviđanja za parcijalne

živote raspada protona na dvije čestice izmjenom X i Y vektorskih bozona, i skalarnog leptokvarka.

Model od interesa daje sve unitarne transformacije, Yukawina vezanja i jakost baždarnih vezanja koja su

potrebna za generiranje predikcija točnog parcijalnog životnog vijeka protona. Hipoteza istraživanja je

da bi predviđeni obrasci raspada protona na dvije čestice mogli biti različiti za ove dvije vrste medijatora.

To bi onda omogućilo nedvosmislen eksperimentalni odgovor na pitanje koji je dominantni izvor raspada

protona u ovom modelu ujedinjenja. Ovo bi stoga bio najvažniji rezultat ovog doktorskog istraživanja.

Zato predstavljamo rezultate studije korelacije između dvaju izvora protonske nestabilnosti u odnosu na

eksperimentalne granice i buduća očekivanja u ovom području.

KLJUČNE RIJEČI: SU(5) model, raspad protona, skalarni leptokvark, baždarni bozoni, parcijalno

vrijeme života protona, širina raspada protona, studija korelacije



Prošireni sažetak

Ključne riječi: SU(5) model, raspad protona, skalarni leptokvark, baždarni bozoni, parcijalno vrijeme

života protona, širina raspada protona, studija korelacije

Uvod

Velike ujedinjene teorije [1, 2, 3, 4, 5, 6] (GUT) su teorijski okviri koji nastoje ujediniti tri temeljne

sile Standardnog Modela fizike elementarnih čestica — elektromagnetske, slabe i jake interakcije — u

jednu. Unutar tih okvira, temeljni sastojci materije, kvarkovi i leptoni, također su djelomično ili potpuno

unificirani. Jedno od značajnih predviđanja ovakvih teorija je da protoni nisu apsolutno stabilni. Ras-

pad protona je stoga ključni potpis baš ovih teorija koji čak nudi potencijalni put za testiranje iako su

relevantne energetske ljestvice daleko izvan izravnog dosega trenutnim ili bilo kojim drugim eksperimen-

talnim mogućnostima. Otkriće protonskog raspada bio bi revolucionarni pomak u polju fizike čestica i

važan razvoj u našem razumijevanju svemira.

Georgi-Glashow model [3] odigrao je ključnu ulogu u ranom razvoju velikih teorija ujedinjenja. Među-

tim, ovaj model, koji se sastoji samo od adjungiranog skalarnog polja za slamanje GUT simetrija i fun-

damentalnog Higgsa za slamanje elektroslabe simetrije, nije kompatibilan s eksperimentalnim podacima

zbog svoje jednostavnosti. Stoga je potrebno proširiti postojeći Georgi-Glashow model vodeći računa o

jednostavnosti samog modela.

Jedan od takvih modela na temelju SU(5) baždarne simetrije koji predstavlja jednu od teorija velikog

ujedinjenja, je opisan u [7]. Ova minimalna realizacija koristi samo prvih pet najmanjih reprezentacija

dimenzija 5, 10, 15, 24 i 35. Ima ograničen broj parametara modela, a što ga čini vrlo prediktivnim

modelom. Zanimljivo je da osim dva superteška bozona, samo jedan skalarni leptokvark sudjeluje u

protonskom raspadu. Ova specifična značajka, daje predviđanja u vezi s ujedinjenjem skala i vremenu

poluživota protona u ovisnosti od kanala raspada.

Studija predstavljena u ovom radu se bavi protonskim raspadom putem osam kanala, ispitujući stopu

raspada i vrijeme poluživota. Usporedbom sa stvarnim podatcima dobivenim u eksperimentima kao što je

Super-Kamiokande, bili smo u mogućnosti dati predikcije za ono što bi se moglo vidjeti u eksperimentima
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u narednom vremenskom periodu. Naime, na osnovu tipa opaženog kanala u eksperimentu, moguće je

reći da li je protonski raspad ostvaren izmjenom baždarnog bozona ili skalarnog leptokvarka.

Model

Model koji je predstavljen u referenci [7], a unutar kojeg radimo u ovoj doktorskoj tezi, sadrži skalarna

(5H , 24H i 35H), fermionska (5Fi, 10Fi i 15F +15F ) i baždarna polja (24G), gdje je i = 1, 2, 3. Kompletan

sadržaj polja u ovom modelu je dan u Tablici 1.

Tablica 1: Sastav i građa modela, dekompozicija prema baždarnoj grupi Standardnog Modela i
pridruženi koeficijenti β-funkcije. i(= 1, 2, 3) predstavlja indeks generacije.

Skalarna polja Fermionska polja
SU(5) Standardni Model (b3, b2, b1) SU(5) Standardni Model (b3, b2, b1)

Λ1

(
1, 2,+ 1

2

) (
0, 1

6 ,
1
10

)
Li
(
1, 2,− 1

2

) (
0, 1, 3

5

)
Λ = 5H

Λ3

(
3, 1,− 1

3

) (
1
6 , 0,

1
15

) Fi = 5F i
dci
(
3, 1,+ 1

3

) (
1, 0, 2

5

)
φ0 (1, 1, 0) (0, 0, 0) Qi

(
3, 2,+ 1

6

) (
2, 3, 1

5

)
φ1 (1, 3, 0)

(
0, 1

3 , 0
)

Ti = 10F i uci
(
3, 1,− 2

3

) (
1, 0, 8

5

)
φ = 24H φ3

(
3, 2,− 5

6

) (
1
6 ,

1
4 ,

5
12

)
eci (1, 1,+1)

(
0, 0, 6

5

)
φ3

(
3, 2,+ 5

6

) (
1
6 ,

1
4 ,

5
12

)
Σ1(1, 3,+1)

(
0, 4

3 ,
6
5

)
φ8 (8, 1, 0)

(
1
2 , 0, 0

)
Σ = 15F Σ3

(
3, 2,+ 1

6

) (
2
3 , 1,

1
15

)
Φ1

(
1, 4,− 3

2

) (
0, 5

3 ,
9
5

)
Σ6

(
6, 1,− 2

3

) (
5
3 , 0,

16
15

)
Φ3

(
3, 3,− 2

3

) (
1
2 , 2,

4
5

)
Σ1 (1, 3,−1)

(
0, 4

3 ,
6
5

)
Φ = 35H

Φ6

(
6, 2,+ 1

6

) (
5
3 , 1,

1
15

)
Σ = 15F Σ3

(
3, 2,− 1

6

) (
2
3 , 1,

1
15

)
Φ10

(
10, 1,+1

) (
5
2 , 0, 2

)
Σ6

(
6, 1,+ 2

3

) (
5
3 , 0,

16
15

)

Lagranžijan skalarnog dijela je dan u sljedećoj jednadžbi:

LV =− µ2
Λ (Λ∗αΛα) + λΛ

0 (Λ∗αΛα)
2

+ µ1Λ∗αΛβφαβ + λΛ
1 (Λ∗αΛα)

(
φβγφ

γ
β

)
+ λΛ

2 Λ∗αΛβφγβφ
α
γ

− µ2
φ

(
φβγφ

γ
β

)
+ µ2φ

α
βφ

β
γφ

γ
α + λφ0

(
φβγφ

γ
β

)2

+ λφ1φ
α
βφ

β
γφ

γ
δφ

δ
α + µ2

Φ

(
Φ∗αβγΦαβγ

)
+ λΦ

0

(
Φ∗αβγΦαβγ

)2
+ λΦ

1 Φ∗αβγΦαβδΦ
∗δρσΦρσγ + λ0

(
Φ∗αβγΦαβγ

) (
φδρφ

ρ
δ

)
+ λ′0

(
Φ∗αβγΦαβγ

) (
Λ∗ρΛ

ρ
)

+ λ′′0Φ∗αβγΦβγδΛ
δΛ∗α + µ3Φ∗αβγΦβγδφ

δ
α

+ λ1Φ∗αβγΦαδρφ
δ
βφ

ρ
γ + λ2Φ∗αβρΦαβδφ

γ
ρφ

δ
γ +

{
λ′ΛαΛβΛγΦαβγ + h.c.

}
, (1)

gdje je Λ = 5H , φ = 24H , Φ = 35H , a α, β, γ, δ, σ, ρ = 1, 2, 3, 4, 5 označavaju SU(5) indekse.

Potpuni Yukawa dio Lagranžijana je:

LY =
{
Y uijT

αβ
i T γδj Λρεαβγδρ + Y dijT

αβ
i FαjΛ

∗
β + Y ai ΣαβFαiΛ

∗
β + Y bi ΣβγFαiΦ

∗αβγ

+Y ci T
αβ
i Σβγφ

γ
α + h.c.

}
+MΣΣαβΣαβ + yΣαβΣβγφαγ , (2)

gdje su specificirane kontrakcije i u SU(5) prostoru i u prostoru ukusa. Y u i Y d su općenito 3 × 3

kompleksne Yukawa matrice, Y a, Y b i Y c su kompleksni Yukawa vektori duljine 3, pri čemu je y realan
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broj. Relevantni matrični elementi su označeni s Y uij , Y dij , Y ai , Y bi , Y ci i y, gdje i, j = 1, 2, 3 predstavljaju

indekse generacije.

U ovom modelu SU(5) simetrija se direktno slama na baždarnu grupu Standardnog Modela SU(3)×

SU(2) × U(1) kada polje φ0 ∈ 24H dobije specifičnu vakuumski očekivanu vrijednost (VEV). Simetrija

Standardnog Modela se zatim narušava na elektroslaboj skali pomoću vakuumske očekivane vrijednosti

polja Λ1 ∈ 5H na SU(3)× U(1)em što možemo predstaviti na sljedeći način:

SU(5)
〈24H〉−−−−→ SU(3)× SU(2)× U(1)

〈5H〉−−−→ SU(3)× U(1)em . (3)

Relevantne VEV vrijednosti za ovaj rad su:

〈24H〉 = v24diag (−1,−1,−1, 3/2, 3/2) , (4)

〈5H〉 = (0 0 0 0 v5/
√

2)T , (5)

gdje v5 ≈ 246GeV daje mase poljima baždarnih bozona Standardnog ModelaW±µ i Zµ. Mase superteških

baždarnih bozona X±4/3
µ ∈ 24G i Y ±1/3

µ ∈ 24G su

MX = MY =

√
25

8
gGUTv24, (6)

gdje gGUT predstavlja baždarnu konstantu vezanja pri skali ujedinjenja.

Mase fermiona

U procesu generiranja masa, u ovom modelu se koristimo s tri različita mehanizma u ovisnosti od toga

da li govorimo o nabijenim ili neutralnim fermionima.

Sektor nabijenih fermiona

U Georgi-Glashow SU(5) modelu su fermioni Standardnog Modela dati kroz dvije reprezentacije:

5F =



dC1

dC2

dC3

e

−νe


, 10F =

1√
2



0 uC3 −uC2 u1 d1

−uC3 0 uC1 u2 d2

uC2 −uC1 0 u3 d3

−u1 −u2 −u3 0 eC

−d1 −d2 −d3 −eC 0


, (7)

gdje su sva polja lijeve kiralnosti u odnosu na Lorentzove transformacije.

Nakon slamanja elektroslabe simetrije putem VEV vrijednosti polja datog jednadžbom (5), prva dva
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člana u jednadžbi (2) generiraju sljedeće masene matrice za gornje kvarkove, nabijene leptone i donje

kvarkove:

MU =
√

2v5

(
Y u + Y uT

)
, (8)

ME =
v5

2
Y d T , (9)

MD =
v5

2
Y d. (10)

Jednadžbe (9) i (10) predviđaju me = md, mµ = ms i mτ = mb, gdje ove masene relacije vrijede na skali

ujedinjenja MGUT. Da bismo uspjeli dobiti eksperimentima utvrđeno neslaganje između masa donjih

kvarkova i nabijenih leptona, morat ćemo uvesti korekcije ili na ME ili na MD, ili za oboje. Ovakve

korekcije u modelu u ovom radu dolaze od interakcija između nabijenih fermiona Standardnog Modela u

5Fi i 10F j s fermionima iz 15F + 15F [7, 8].

Članovi miješanja potrebni za dalji račun dolaze od kontrakcija u trećem, četvrtom i petom članu

iz (2) i glase:

LY ⊃− Y ai
(

Σ0νi
h0

√
2

+ Σe
C

e−i
v5√

2
+ ΣddCi

v5√
2

)
− Y bi Σ

0
νi

Φ0
Re√
2
− 5v24

4
Y ci

(
diΣ

d
+ uiΣ

u
)
, (11)

pri čemu su vlastita stanja električnog naboja Σ0,Σe
C ∈ Σ1(1, 3, 1) i Σu,Σd ∈ Σ3(3, 2, 1/6).

U ovom modelu i analizi smo zainteresirani za slučaj u kojem je MΣi � v5. U ovom limitu 3 × 3

masene matrice nabijenih fermiona Standardnog Modela izgledaju ovako:

MU =
(
I + ε2 Y cY c†

)− 1
2 √

2v5(Y u + Y uT ), (12)

ME =
1

2
v5Y

d T , (13)

MD =
(
I + ε2 Y cY c†

)− 1
2

(
MT
E +

1√
2
v5 ε Y

cY a
)
, (14)

gdje je

ε =
5

4

v24

MΣ3

. (15)

Neutrinski sektor

Neutrinske mase se ostvaruju na razini vodećeg reda i na razini jedne petlje. Na razini vodećeg reda

masena matrica bi glasila:
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(MN )v.r.
ij = − λ′v4

5

4MΣ1
M2

Φ1

(
Y ai Y

b
j + Y bi Y

a
j

)
. (16)

dok bi na razini jedne petlje imala sljedeći izraz:

(MN )j.p.
ij =

λ′v2
5

64π2
(Y ai Y

b
j + Y bi Y

a
j )

MΣ1

M2
Φ1
−M2

h

{M2
Φ1

ln
M2

Σ1

M2
Φ1

M2
Σ1
−M2

Φ1

−
M2
h ln

M2
Σ1

M2
h

M2
Σ1
−M2

h

}
, (17)

pri čemu je Mh masa Higgsovog bozona iz Standardnog Modela. Kada je MΦ1
,MΣ1

�Mh, imamo

(MN )j.p.
ij = m0(Y ai Y

b
j + Y bi Y

a
j ), (18)

gdje uvodimo maseni parametar m0 koji regulira masenu skalu za neutrine:

m0 =
λ′v2

5

64π2

MΣ1

M2
Σ1
−M2

Φ1

ln
M2

Σ1

M2
Φ1

. (19)

15F 15F 5F j5F i

35H5H

5H5H

Yi
a Yj

b

λ′
**

**

Σ1 Σ1 L jL i

Φ1Λ1

Λ1Λ1

Yi
a Yj

b

λ′
**

**

Slika 1: Feynmanovi dijagrami dominantnog doprinosa neutrinskim masama unutar SU(5) (lijeva slika)
i na razini Standardnog Modela (desna slika).

Može se primijetiti da su oba doprinosa proporcionalna kombinaciji Y ai Y bj +Y bi Y
a
j . Upravo zbog ovoga

je najlakši od tri neutrina zapravo bezmasivan, pa možemo pisati:

(MN )ij = m0

(
Y ai Y

b
j + Y bi Y

a
j

)
= (N diag(0,m2,m3) NT )ij , (20)

gdje je N unitarna matrica, a m2 i m3 su vlastita stanja mase neutrina. Unitarna matrica N se može

napisati i kao:

N = diag(eiγ1 , eiγ2 , eiγ3)V ∗PMNS, (21)

gdje je VPMNS Pontecorvo-Maki-Nakagawa-Sakata (PMNS) unitarna matrica miješanja s tri kuta, dvije

Majorana faze i jednom CP Diracovom fazom.
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Fermionski fit

Masene matrice MU , ME , MD i MN dimenzije 3 × 3 za fermione Standardnog Modela, date u jed-

nadžbama (12), (13), (14), i (20), mogu se dijagonalizirati na sljedeći način:

MU = ULM
diag
U U†R , (22)

MD = DLM
diag
D D†R , (23)

ME = ELM
diag
E E†R , (24)

MN = NMdiag
N NT , (25)

gdje su UL, UR, DL, DR, EL, ER i N unitarne matrice pomoću kojih se odvija prijelaz iz baze ukusa u

masenu bazu.

Numerička studija u ovom radu osigurava ulazne parametre u DL, DR i N , dok osobitosti samog

modela daju:

UL = DLdiag(1, eiη1 , eiη2)V TCKM diag(eiκ1 , eiκ2 , eiκ3) ≡ DLD(η)V TCKMD(κ) (26)

UR = U∗L diag(eiξ1 , eiξ2 , eiξ3) ≡ U∗LD(ξ), (27)

EL = I , (28)

ER = I , (29)

pri čemu je VCKM Cabibbo-Kobayashi-Maskawa (CKM) matrica miješanja, koja sadrži jednu CP Diracovu

fazu δCKM. U jednadžbama (26) i (27) uvodimo odgovarajuću notaciju za matrice s fazama na dijagonali

D(η), D(κ), i D(ξ). Zanimljivo je primijetiti da je upravo simetrija matrice MU ta koja povezuje UL i

UR, kako je dato u jednadžbi (27).

Pri izvedbi numeričke analize, koristimo mase nabijenih leptona na skali MGUT kao ulazne podatke

za određivanje dijagonalne matrice Y d putem Y d = 2 diag(me,mµ,mτ )/v5. Budući da masena ma-

trica za donje kvarkove i masena matrica za neutrine imaju istu Yukawa matricu Y a, moramo koristiti

kombinirana prilagodba ova dva sektora pri čemu tražimo minimum funkcije χ2:

χ2 =
8∑
j=1

(
Tj −Oj
Ej

)2

, (30)

gdje Tj , Oj i Ej predstavljaju teoretsko predviđanje, izmjerenu centralnu vrijednost i eksperimentalnu

1σ grešku za fizikalnu veličinu j, redom. Indeks j se koristi za mase donjih kvarkova i parametre u

neutrinskom sektoru.

Ono što model općenito daje su vrijednosti masa nabijenih leptona, gornjih kvarkova, i vrijednosti za

CKM parametre. Uz to, provodi se i kombinirana numerička analiza za parametre neutrinskih masa, za
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mase donjih kvarkova i za PMNS parametre. Ključni rezultat ovakve numeričke analize za razmatranja

u dijelu protonskog raspada su zapravo unitarne transformacije UL, UR, DL i DR, pri čemu prve dvije

matrice sadrže pet i tri napoznatih faza, redom, kao i numeričko određivanje svih Yukawa vezivanja u

ovom modelu. Osam dodatnih faza koje numerička analiza ne može odrediti su η1, η2, κ1, κ2, κ3, ξ1, ξ2

i ξ3, gdje su, u biti, jedine relevantne faze za studiju protonskog raspada η1 i η2.

Protonski raspad

Glavna ideja u ovoj analizi protonskog raspada leži u identifikaciji dominirajućeg ili dominirajućih kanala

za oba tipa medijacije - izmjenom baždarnih bozona ili skalarnih leptokvarkova - koje analiziramo u

modelu, ali i uspoređujemo s aktualnim eksperimentalnim granicama i budućim očekivanjima, a što je

utemeljeno na podatcima prikupljenim u periodu od deset godina u Hyper-Kamiokande kolaboraciji.

Upravo takav sažetak podataka je dan u Tablici 2.

Protonski raspad izmjenom baždarnih bozona

Eksplicitni izrazi koje koristimo za računanje brzine raspada protona i vremena poluživota za svih osam

kanala raspada izmjenom baždarnih bozona X+4/3
µ , Y

+1/3
µ ∈ (3, 2,+5/6) su dati u jednadžbama ispod:

Γ(p→ π0e+
β ) =

(m2
p −m2

π)2

m3
p

π

2
A2
L

α2
GUT

M4
GUT

×
{ ∣∣ASR〈π0|(ud)RuL|p〉c(eβ , dC)

∣∣2 +
∣∣ASL〈π0|(ud)LuL|p〉c(eCβ , d)

∣∣2} . (31)

Γ(p→ π+ν̄) =
(m2

p −m2
π)2

m3
p

π

2
A2
L

α2
GUT

M4
GUT

A2
SR|〈π+|(ud)RdL|p〉|2

3∑
i=1

|c(νi, d, dC)|2 . (32)

Γ(p→ ηe+
β ) =

(m2
p −m2

η)2

m3
p

π

2
A2
L

α2
GUT

M4
GUT

×
{ ∣∣ASR〈η|(ud)RuL|p〉c(eβ , dC)

∣∣2 +
∣∣ASL〈η|(ud)LuL|p〉c(eCβ , d)

∣∣2} . (33)

Γ(p→ K0e+
β ) =

(m2
p −m2

K)2

m3
p

π

2
A2
L

α2
GUT

M4
GUT

×
{ ∣∣ASR〈K0|(us)RuL|p〉c(eβ , sC)

∣∣2 +
∣∣ASL〈K0|(us)LuL|p〉c(eCβ , s)

∣∣2} . (34)
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Tablica 2: Aktualna granica na parcijalna vremena poluživota protona pri protonskom raspadu za sve
dvo-čestične procese i buduća očekivanja za desetogodišnji period prikupljanja podataka sa 90%C.L..

kanal raspada aktualna vrijednost τp [godine] buduća osjetljivost τp [godine]

p→ π0e+ 2.4× 1034 [9] 7.8× 1034 [10]

p→ π0µ+ 1.6× 1034 [9] 7.7× 1034 [10]

p→ η0e+ 1.0× 1034 [11] 4.3× 1034 [10]

p→ η0µ+ 4.7× 1033 [11] 4.9× 1034 [10]

p→ K0e+ 1.1× 1033 [12] -

p→ K0µ+ 3.6× 1033 [13] -

p→ π+ν 3.9× 1032 [14] -

p→ K+ν 6.6× 1033 [15] 9.6× 1033 [16] & 3.2× 1034 [10]

Γ(p→ K+ν̄) =
(m2

p −m2
K)2

m3
p

π

2
A2
L

α2
GUT

M4
GUT

×
{
A2
SR

∣∣〈K+|(us)RdL|p〉
∣∣2 3∑
i=1

∣∣c(νi, d, sC)
∣∣2

+A2
SL

∣∣〈K+|(ud)RsL|p〉
∣∣2 3∑
i=1

∣∣c(νi, s, dC)
∣∣2} .

(35)

Protonski raspad izmjenom skalarnih leptokvarkova

Eskplicitni izrazi koje koristimo za računanje brzine raspada protona i vremena poluživota za svih osam

kanala raspada izmjenom skalarnih leptokvarkova su dati u jednadžbama ispod:

Γ(p→ π0e+
β ) =

(m2
p −m2

π)2

32πm3
pM

4
Λ3

A2
L

×

{∣∣∣ASRa(dC , eβ)〈π0|(du)RuL|p〉+ASLa(d, eβ)〈π0|(du)LuL|p〉
∣∣∣2

+
∣∣∣ASLa(d, eCβ )〈π0|(du)LuL|p〉+ASRa(dC , eCβ )〈π0|(du)RuL|p〉

∣∣∣2} . (36)

18



Γ(p→ π+ν̄) =
(m2

p −m2
π)2

32πm3
pM

4
Λ3

A2
L

×
3∑
i=1

∣∣∣ASRa(d, dC , νi)〈π+|(du)RdL|p〉+ASLa(d, d, νi)〈π+|(du)LdL|p〉
∣∣∣2 . (37)

Γ(p→ η0e+
β ) =

(m2
p −m2

η)2

32πm3
pM

4
Λ3

A2
L

×

{∣∣∣ASLa(d, eβ)〈η|(ud)LuL|p〉+ASRa(dC , eβ)〈η|(ud)RuL|p〉
∣∣∣2

+
∣∣∣ASLa(dC , eCβ )〈η|(ud)LuL|p〉+ASRa(d, eCβ )〈η|(ud)RuL|p〉

∣∣∣2} . (38)

Γ(p→ K0e+
β ) =

(m2
p −m2

K)2

64πm3
pM

4
Λ3

A2
L

×

{∣∣∣ASRa(sC , eβ)〈K0|(us)RuL|p〉+ASLa(s, eβ)〈K0|(us)LuL|p〉

−ASRa(s, eCβ )〈K0|(us)RuL|p〉 −ASLa(sC , eCβ )〈K0|(us)LuL|p〉
∣∣∣2

+
∣∣∣ASRa(sC , eβ)〈K0|(us)RuL|p〉+ASLa(s, eβ)〈K0|(us)LuL|p〉

+ASRa(s, eCβ )〈K0|(us)RuL|p〉+ASLa(s, eCβ )〈K0|(us)LuL|p〉
∣∣∣2} . (39)

Γ(p→ K+ν̄) =
(m2

p −m2
K)2

32πm3
pM

4
Λ3

A2
L

×
3∑
i=1

∣∣ASL (a(s, d, νi)〈K+|(us)LdL|p〉+ a(d, s, νi)〈K+|(ud)LsL|p〉
)

+ASR
(
a(d, sC , νi)〈K+|(us)RdL|p〉+ a(s, dC , νi)〈K+|(ud)RsL|p〉

)∣∣2 . (40)

Zaključci ove studije pokazuju da u slučaju protonskog raspada putem dominantnog kanala p→ π0e+

možemo zaključiti da se radi o izmjeni baždardnog bozona, s mogućnošću da se opazi i još jedan kanal

p → η0e+. Alternativa je da se protonski raspad desi putem p → K+ν kanala, što bi značilo da se ovaj

raspad desio izmjenom skalarnog leptokvarka, uz mogućnost p → π0µ+ procesa. Detekcija oba kanala

p → π0e+ i p → K+ν bi mogla naglasiti kanal p → π0µ+ kroz konstruktivnu interferenciju. Upravo ovi

glavni zaključci u ovom specifičnom modelu, kao i studije protonskog raspada su prikazani na slici 2:
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Slika 2: Korelacija potpisa protonskog raspada putem baždarnih bozona i skalarnog leptokvarka unutar
scenarijaM ≥ 1TeV,M ≥ 10TeV iM ≥ 100TeV. Tanke crne crte predstavljaju trenutna eksperimentalna
granica, plave okomite trake su predviđanja za kanale protonskog raspada izmjenom baždarnog bozona,
crvene okomite trake su odgovarajuća predviđanja za kanale protonskog raspada izmjenom skalarnog lep-
tokvarka, a sive isprekidane crte predstavljaju buduće eksperimentalne osjetljivosti nakon desetogodišnjeg
razdoblja.
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Chapter 1

Introduction

I have not yet lost a feeling of

wonder, and of delight, that this

delicate motion should reside in

all the things around us, revealing

itself only to him who looks for it.

I remember, in the winter of our

first experiments, just seven years

ago, looking on snow with new

eyes. There the snow lay around

my doorstep — great heaps of

protons quietly precessing in the

earth’s magnetic field. To see the

world for a moment as something

rich and strange is the private

reward of many a discovery.

Edward M. Purcell

Everything that we observe around us seems to have an expiration date. It can only be expected

that the same happens with the particles forming nucleus of every atom that builds up everything in

and around us. In particle physics we refer to expiration date of a particle as its lifetime. If particle

decays in different ways, we introduce a concept of partial lifetimes. Particles, through decay, give birth

or transform to some other particles, if kinematically allowed.

There are some particles that we have not seen to decay so far. For example, electron is an elementary

particle that builds up literally everything and yet we haven’t observed its decay. Proton is a composite

particle that also seems to be absolutely stable. Nevertheless, various physical theories that go beyond

what we know today, predict proton decay and give an estimate on its lifetime.
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In this thesis, we will explore and discuss proton decay within one specific SU(5) model, where in

the final states we have two particles. Now, process itself can have different final states and may proceed

via different mediators. We will be analyzing proton decay induced through the gauge boson and scalar

leptoquark mediations.

In order to do so, we will start with theoretical background, where we present the acclaimed physical

theory in this field referred to as the Standard Model. Since proton decay is something theorized in

physics beyond the Standard Model, in Chapter 3 we venture beyond the Standard Model, where among

other theories lies SU(5) Georgi-Glashow model. However, this model has its flaws and, hence, does not

phenomenologically work. We dive into this exploration in Chapter 4.

Proton decay is one of the most important predictions of Grand Unification Theories (GUTs), and it

has been studied extensively for decades. We talk about that in Chapter 5. There we discuss, analyze,

and derive in detail expressions for two main types of mediation of proton decay — via gauge bosons and

via scalar leptoquark.

However, the way the proton will decay and how to detect this decay is still an open question, both

for the theory and experiment. In Chapter 6 we present some of the previously conducted experiments

in the field, but also the future experiments that search for proton decay. Chapter 7 is dedicated to

our specific SU(5) model with the description of its particle content, symmetry breaking, unification,

and mass generation mechanisms. Chapter 8 is devoted to the correlation study between two main ways

for proton to decay, together with associated proton lifetimes and expectations in experiments. Our

conclusions are presented in fourth part of this thesis — Summary and conclusions.
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Chapter 2

Standard Model

It’s extraordinary to think that if

you walked into a room and said

you had never heard of Hamlet,

you would be regarded as a

Philistine. But you could walk

into the same room and say, ’I

don’t know what a proton is,’ and

people would just laugh and say,

’Why should you know?’

Robert Winston

Pillars of physics describing the world we live in and the world that lives within us and deeper, are

physical entities such as particles of matter, forces between them and fields they feel and interact with.

Standard Model is the theory that, so far, describes in the most viable manner algorithm of the

particle content of the Universe we know of and the forces and fields in the nature. This is the theory

that has been forged for decades by many great names in the world of physics such as Chen Ning Yang,

Robert Mills, Chien-Shiung Wu, Sheldon Glashow, Abdus Salam, Steven Weinberg, Abraham Pais, Sam

Treiman, Philip Warren Anderson, Robert Brout, François Englert, Peter Higgs, Yoichiro Nambu, Jeffrey

Goldstone and many more.

2.1 Particle content

Standard Model is a chiral gauge theory incorporating all known building blocks of matter and describing

three out of four fundamental forces in nature: electromagnetic, weak and strong interactions [17, 18, 19].

The mechanism of this theory is based on the gauge group SU(3) × SU(2) × U(1), where SU(3) is a
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gauge group for strong interactions and SU(2)× U(1) is a gauge group for electroweak interactions.

Table 2.1: Standard Model particles

FERMIONS BOSONS

families SPIN SPIN

1st 2nd 3rd 1 0

quarks
u c t gluons H

d s b g

leptons
e µ τ W±

νe νµ ντ Z

A simplistic categorisation of building blocks of the Standard Model would be to introduce two types

of particles: fermions that obey Fermi-Dirac statistics and build up the matter fields and experience

the force, and bosons that obey Bose-Einstein statistics with a distinction between gauge bosons of

spin 1 that are force carriers and Higgs boson of spin 0 that is responsible for symmetry breaking of the

Standard Model. All the particles of the Standard Model can be summarized in simplified manner in

Table 2.1. More specifically, the particle content of the Standard Model is presented in Table 2.2.

Table 2.2: Standard Model field content (i = 1, 2, 3 denotes the generations, α = 1, 2, 3 denotes the
color, a = 1, 2, 3 and A = 1, ..., 8)

Fields SPIN (j) SU(3) SU(2) U(1) B L

QiLα =

 uiLα

diLα

 1
2 3 2 + 1

6 + 1
3 0

uiRα
1
2 3 1 + 2

3 + 1
3 0

diRα
1
2 3 1 − 1

3 + 1
3 0

liL =

 νiL

eiL

 1
2 1 2 − 1

2 0 +1

eiR
1
2 1 1 −1 0 +1

H 0 1 2 + 1
2 0 0

GAµ 1 8 1 0 0 0

W a
µ 1 1 3 0 0 0

Bµ 1 1 1 0 0 0

One can see, from Table 2.2, that the Standard Model fermions comprise six SU(2) doublets QiLα and

liLα and nine SU(3) singlets uiRα, d
i
Rα, and e

i
Rα. Left-handed Q

i
Lα consists of quarks uiLα and diLα, whereas

liL consists of charged lepton eiL and neutrino νiL. Index i denotes generations of fermions referred to in Ta-
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ble 2.1 as families. Our notation is such that (u1
L,R, u

2
L,R, u

3
L,R) = (uL,R, cL,R, tL,R), (d1

L,R, d
2
LR, d

3
L,R) =

(dL,R, sL,R, bL,R), (e1
L,R, e

2
L,R, e

3
L,R) = (eL,R, µL,R, τL,R), and (ν1

L, ν
2
L, ν

3
L) = (νeL, νµL, ντL). Quarks

transform as triplets of SU(3), therefore, they belong to the fundamental representation of that group.

There are furthermore eight generators of SU(3) group and GAµ are eight carriers of interaction that are

associated with them. These are referred to as gluons. There are also three additional vector bosons W a
µ

of SU(2) group and one Bµ carrier of U(1) interaction. W a
µ and Bµ are mediators of the electroweak force.

Finally, there is a single scalar boson field H that is a doublet of SU(2) that accomplishes electroweak

symmetry breaking. It is referred to as the Higgs boson.

2.2 Lagrangian

Standard Model is a gauge theory. More specifically, it is a quantum field theory. Lagrangian of the

Standard Model can be written in the following form:

LSM = Lgauge + Lkinetic + LHiggs + LYukawa (2.1)

where separate contributions are [20, 21]:

Lgauge = −1

4
GAµνG

Aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (2.2)

Lkinetic = i
(
Q
i

L /DQ
i
L + uiR /Du

i
R + d

i

R /Dd
i
R + l

i

L /Dl
i
L + eiR /De

i
R

)
(2.3)

LHiggs = (DµH)
†

(DµH)− λ
(
H†H − v2

2

)2

(2.4)

LYukawa = −
(
giju QLiεH

∗uRj − gijd QiLHdRj − g
ij
e LLiHeRj

)
+ h.c. (2.5)

Fermions featured in Eq. (2.5) are in the so-called flavor basis. In order to go to the mass eigenstate

basis, we need to redefine them in the following way:

u′L,R = U†L,RuL,R ⇒ uL,R = UL,Ru
′
L,R ⇒ uL,R = u′L,RU

†
L,R (2.6)

d ′L,R = D†L,RdL,R ⇒ dL,R = DL,Rd
′
L,R ⇒ dL,R = d

′
L,RD

†
L,R (2.7)
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e′L,R = E†L,ReL,R ⇒ eL,R = EL,Re
′
L,R ⇒ eL,R = e ′L,RE

†
L,R (2.8)

ν′L = NνL ⇒ νL = Nν′L ⇒ νL = ν′LN
† (2.9)

where UL,R, DL,R, EL,R, and N are 3× 3 unitary matrices in flavor space.

Where do these unitary transformations manifest themselves in the Standard Model? It turns out that

there are only two terms in Lagrangian where we can observe these transformations and these correspond

to interactions of left-handed quarks and left-handed leptons with W± bosons, as we will show later on.

We note that right-handed transformations UR, DR, and ER are not physical in the Standard Model in

a sense that they are not present in any observable.

With redefinition of states given in Eq. (2.6), and taking into account that the vacuum expectation

value (VEV) of Higgs is 〈H〉 = (0 v)T , we get in the up-type quark sector that corresponds to the first

term in Lagrangian of Eq. (2.5) the following:

u′Li

(
U†L gu UR

)
ij
u′Rj v ≡ u′L gdiag

u v u′R (2.10)

where

gdiag
u v = mdiag

u =


mu 0 0

0 mc 0

0 0 mt


≈ mt


10−5 0 0

0 10−2 0

0 0 1

 (2.11)

represents mass matrix for the up-type quarks. We will analogously do the same procedure for the

down-type quarks:

d
′
Li

(
D†L gdDR

)
ij
d′Rj v ≡ d

′
L g

diag
d v d′Rj (2.12)

where

gdiag
d v = mdiag

d =


md 0 0

0 ms 0

0 0 mb


≈ mb


10−3 0 0

0 10−2 0

0 0 1

 (2.13)

The kinetic Lagrangian of Eq. (2.3) yields the following interactions:

uLi γµW
µdLi + uLi γµZ

µuLi + eLi γµW
µνLi + νLi γµZ

µνLi (2.14)

where first and third terms are charged currents and second and forth terms are neutral currents. With
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redefinition of states presented in Eqs. (2.6)–(2.9), this becomes:

u′LU
†
LγµW

µDLd
′
L + u′LU

†
LγµZ

µULu
′
L + e′LE

†
LγµW

µNLν
′
L + ν′LN

†
LγµZ

µNLν
′
L (2.15)

with

U†LDL = VCKM and E†LNL = UPMNS (2.16)

where VCKM is the Cabibbo–Kobayashi–Maskawa matrix. VCKM was introduced by Nicola Cabibbo,

and enriched for one more generation by Makoto Kobayashi and Toshihide Maskawa. For a historical

overview, see Ref. [22]. It is a unitary matrix that gives exact values on the strength of flavor changing

between quarks. UPMNS is the Pontecorvo–Maki–Nakagawa–Sakata matrix that contains information on

neutrino oscillations firstly predicted by Bruno Pontecorvo. It was introduced in the current form in 1962

by Ziro Maki, Masami Nakagawa, and Shoichi Sakata. VCKM and UPMNS, as defined in Eq. (2.16) are

both given as a mismatch of two unitary left-handed rotations.

The gauge covariant derivative of Eqs. (2.3) and (2.4) is given in this form:

Dµ = ∂µ + ig3G
A
µT

A + ig2W
a
µT

a + ig1BµY (2.17)

with g3, g2, and g1 being gauge coupling constants of SU(3), SU(2), and U(1), and TA, T a, and Y are

the SU(3), SU(2), and U(1) generators, respectively. In Eq. (2.5), giju,d,e are Yukawa couplings where

i, j = 1, 2, 3 represent generation indices.

The field strenth tensors are [23]:

GAµν = ∂µG
A
ν − ∂νGAµ − gfABCGBµGCν (2.18)

W a
µν = ∂µW

a
ν − ∂νW a

µ − g2f
a
bcW

b
µW

c
ν (2.19)

Bµν = ∂µBν − ∂νBµ (2.20)

with fABC and fabc being structure constants of the gauge groups SU(3) and SU(2), respectively.

2.3 Open questions and challenges

Standard Model proved to be the best theory to describe the symbiotic world of particles and interactions,

and its viability has been confirmed with every new elementary particle being discovered. This has

culminated with the discovery of Higgs boson [24, 25] which was the last missing part of the Standard

Model. Nonetheless, there are some open questions and challenges that portrait the Standard Model as

an incomplete theory. Here are some of the questions and inputs for research in the fields beyond the
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Standard Model physics:

• Neutrino masses

Within the Standard Model, neutrinos are massless particles, even though the experiments have

confirmed that at least two out of three must have a mass [26, 27, 28].

• Dark matter

Building blocks of the Standard Model do not explain the origin nor the nature of the Dark Mat-

ter [29, 30].

• Gravity

Standard Model unifies three out of four fundamental forces, omitting the force of gravity. Hence

the hypothesized carrier of the gravitational force, i.e., graviton, is not a member of particle content

of the Standard Model [31, 32].

• Hierarchy problem

Hierarchy problem is usually related to the discrepancy between Higgs mass and other scales such

as Planck scaleMPlanck [33]. Specifically, if the cutoff of the theory is assumed to be Planck scale —

the scale associated with weakness of gravity — the quantum corrections δm2
H to Higgs mass m2

H ,

that at loop level come from self interactions, gauge loops, and fermion loops, are much greater

than the observed mass, i.e., δm2
H � m2

H [34].

For example, the one-loop correction to the dimension-2 Higgs mass parameter, due to the top

quark loops, is [35]:

δm2
H = −NCy

2
t

8π2
Λ2 + ... (2.21)

where Λ is ultra-violet cutoff for the loop momentum, NC is number of colors and yt is top quark

Yukawa coupling. The disparity between δmH and mH is self-evident if one sets Λ = MPlanck ≈

1018 GeV while mH ≈ 102 GeV.

• CP violation

CP refers to charge conjugation parity symmetry, where C stands for charge symmetry and P

for parity symmetry. Charge-conjugation symmetry and parity symmetry state that interchange

between charge particle and its anti-particle as well as swapping left and right-handed particles

should make no change in physical laws. The issue of CP violation within the Standard Model

is related to the question of matter and anti-matter ratio, where experiments witness extreme

disparity. If everything started at balance, at Big Bang, how did the world end up with so much

matter and so little anti-matter? One possible explanation is violation of CP symmetry. And,

in the Standard Model, there are three sources of CP violation. First comes from CKM matrix

(quark sector), second comes from strong interaction and third comes from PMNS matrix (lepton
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sector). Sources of CP violation in the Standard Model contribute in not so significant measure to

matter-antimatter symmetry. Hence, in order to explain this phenomena, one must go beyond the

Standard Model and look for answers elsewhere.
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Chapter 3

Beyond Standard Model

Supposing a new era begins after

the big crunch, will the number of

protons (or baryons) be the same

in the next cycle? Will the

protons retain a memory of their

previous life in the earlier epoch

of the universe when deciding to

decay or not to decay? Will there

be subsequent cycles of big bangs

and big crunches? If so, will

proton decay affect the cycles of

the far future? There exist no

answers to such questions at

present.

Jamal Nazrul Islam

"The Ultimate Fate Of The

Universe"

Motivation to go beyond the Standard Model stems out of questions we have mentioned in previous

chapter. We will in next few sections briefly describe some of the issues of the Standard Model and

directions one takes to address them.

3.1 Fermionic mass hierarchy and flavor problem

There is a visible mass hiararchy problem in fermionic sector of the Standard Model. Namely, there is

an observed hierarchy between masses of quarks and charged leptons that is not understood within the
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framework of the Standard Model [35, 36]. The masses in question read:

mdiag
u =


mu 0 0

0 mc 0

0 0 mt


∼


2.16MeV 0 0

0 1.27GeV 0

0 0 172.4GeV

 (3.1)

mdiag
d =


md 0 0

0 ms 0

0 0 mb


∼


4.67MeV 0 0

0 0.093GeV 0

0 0 4.18GeV

 (3.2)

mdiag
e =


me 0 0

0 mµ 0

0 0 mτ


∼


0.511MeV 0 0

0 0.106GeV 0

0 0 1.777GeV

 (3.3)

Clearly, there is a large disparity between masses of quarks and masses of charged leptons from

different generations.

Neutrino sector currently exhibits two experimentally viable mass hierarchies. Normal hierarchy

corresponds to 4m2
23 = m2

2 −m2
3 < 0, where m2 and m3 are neutrino masses. Inverted hierarchy, on the

other hand, features 4m2
23 > 0. Experimental measurements currently yield:

∣∣4m2
12

∣∣ =
∣∣m2

1 −m2
2

∣∣ = 7.37× 10−5eV2 (3.4)

∣∣4m2
23

∣∣ =
∣∣m2

2 −m2
3

∣∣ = 2.54× 10−3eV2 (3.5)

Note that we do not know neutrino masses m1, m2, and m3, but we do know corresponding mass-square

differences. This leaves a space for a possibility that at least one of three neutrinos is a massless particle.

It is also clear that neutrino masses are much lower in comparison with masses of other fermions:

mνi

ml,q
< 10−6 (3.6)

There is also a hierarchy in CKM matrix entries for which we find no natural explanation. VCKM

looks almost diagonal. Namely, CKM matrix takes the following form, where we neglected CP violating

phase, when presenting numerical values [37]:
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VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


≈


0.974 0.225 0.0036

0.225 0.974 0.041

0.009 0.040 0.999

 (3.7)

The PMNS matrix elements also exhibits slight hierarchy that can be summarized as follows [38, 39]:

UPMNS ≈


0.803 – 0.845 0.514 – 0.578 0.142 – 0.155

0.233 – 0.505 0.460 – 0.693 0.630 – 0.779

0.262 – 0.525 0.473 – 0.702 0.610 – 0.762


(3.8)

where we indicate allowed ranges for the matrix elements.

Flavor problem refers to relation between fermion masses and mixing patterns for quarks and leptons

that we have shown above. Clearly, the flavor problem has its roots partly in dim-4 Yukawa couplings

for quarks and leptons, and partly in dim-5 operators for neutrino masses.

3.2 Gauge coupling unification

Standard Model is a gauge theory represented by a gauge group SU(3)×SU(2)×U(1), where each group

has its own gauge coupling: gs, g and g′ respectively for strong, weak and hypercharge interactions in

the Standard Model with g1 =
√

5
3g
′, g2 = g, and g3 = gs. We can express their renormalization group

equations (RGEs) at the one-loop level in the following way [40]:

dαi
d lnµ

= β(αi) =
α2
i

2π
ai, i = 1, 2, 3 (3.9)

where αi = g2
i /(4π) while ai are one-loop β-function coefficients ai = ( 41

10 ,−
19
6 ,−7) of the Standard

Model. Parameter µ represents a scale at which we measure relevant coupling. We will always use

αs(MZ) = 0.1193 ± 0.0016, α−1(MZ) = 127.906 ± 0.019 and sin2 θW = 0.23126 ± 0.00005 as input

parameters [41].

Eq. (3.9), at the two-loop order, reads:

µ
dαi
dµ

= ai
α3
i

2π
+
∑
j

bij α
3
i

8π2
, i = 1, 2, 3 (3.10)

where bij are two-loop β-coefficients that read [42, 43]:
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b =



199
50

27
10

44
5

9
10

35
6 12

11
10

9
2 −26


(3.11)

Figure 3.1: Standard Model gauge coupling constants

These three gauge couplings do not meet at any energy scale within the Standard Model framework [44,

45, 46] as it is presented in Fig. 3.1. We note that the successful unification of gauge couplings would

imply common origin of the Standard Model interactions. There are currently several different approaches

towards realisation of this desirable feature. In this work we will investigate non-supersymmetric approach

towards gauge coupling unification within the context of Grand Unification. The most commonly used

simple groups to discuss Grand Unification without supersymmetry [47] are SU(5), SO(10), and E6. In

this work, in the next few chapters, we will describe several prominent features of the SU(5) group.

3.3 Baryon (B) and lepton (L) number violation

Baryon and Lepton number conservation is a consequence of accidental symmetry of the Standard Model

and can be violated if one resorts to use of higher dimension operators. For example, neutrinos are

massless in the Standard Model, where dim-4 operators are used. That situation corresponds to the

conserved lepton number. But, since experiments argue differently, one can use dim-5 Weinberg operator

in order to generate neutrino masses:

Ldim−5 = −cij
M

(
l̄ci iτ

2H
) (
ljiτ

2H
)

+ h.c. (3.12)

where cij represent matrix elements of the 3×3 symmetric complex matrix. This dim-5 operator violates
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lepton number L by 2 units and it is the only dim-5 operator that we can write with the Standard Model

particle content. Now, it follows that neutrinos are purely Majorana particles:

Lν = −mν ν̄cν + h.c. (3.13)

where requirement thatmν,ij =
cijv

2

M < 0.1 eV gives an upper limit on new physics scale ofM . 1014 GeV.

As for dim-6 operators, these can violate baryon number B. For example, operators of the form:

Ldim−6 =
1

M2

(
y2

1qqql + y2
2u
cecucdc

)
+

g2

M2

(
d̄cūcql − ēcūcqq

)
, (3.14)

violate both baryon and lepton numbers, where parameter M represents a scale of new physics. It can

be derived, as it will be shown in next chapters, that the proton lifetime reads:

τ(p→ e+π0) ∼ M4

g4m5
p

> 2.4× 1034 years. (3.15)

If we assume that g is of order 1, we see that experimental limit quoted on the right-hand side of

Eq. (3.15) yieldsM > 1015 GeV. This implies that the energies associated with new physics that generates

baryon number violation lie at much higher scales than any of the scales associated with the Standard

Model.
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Chapter 4

SU(5)

"One proton of faith, three

electrons of humility, a neutron of

compassion and a bond of

honesty", Robert said, winking at

his daughter. "What’s that?"

Cora frowned, confused. Maggie

laughed. "That, according to

your father, is the molecular

structure of love."

Menna Van Praag

In the world of so many theories and specific explications and postulations, there has been a need

and strive for a theory that could and would tell the whole story. Ever since James Clerk Maxwell,

physicists have been trying to unite separate theories into a greater one to cover it all. Grand Unified

Theory (GUT) is a term used to depict exactly the greater theory in physics. It is no longer a singular,

due to the fact that there are more than one potentially viable GUT. Nonetheless, in this chapter, we

will discuss one in particular — the theory based on the gauge group SU(5).

There are certainly many interesting issues within the SU(5) model building that one could discuss,

but we will address the most pertinent ones, important for this thesis.

Recall, unification refers to the possibility that three different gauge coupling constants (αs ≡ α3, α1

and α2) would unify at some energy scale to the same value. Again, these scale-dependent coupling

constants are calculated using the RGEs:
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1

αi(µ)
=

1

αi(mGUT)
+
βi
2π

ln

(
µ

mGUT

)
+ ...

β1 = − 1
3

(
4Ng + 3

10

)
β2 = 1

3

(
22− 4Ng − 1

2

)
β3 = 1

3 (33− 4Ng)

(4.1)

where αi = g2
i /(4π) represents coupling constants of SU(i) with i = 2, 3 and α1 = 5

3
αQED

cos2 θW
represents

coupling constant of U(1) group; µ is the energy scale at which these constants are to be calculated,

coefficients βi are of the β-function coefficients βi = µ∂αi/∂µ, and Ng(= 3) denotes the number of

generations. These coefficients are derived under the assumption that the particle content of the theory

is identical to the content of the Standard Model and should be reevaluated within any new physics

model.

4.1 Georgi-Glashow model

Howard Georgi and Sheldon Glashow published in 1974 an article [3] with a bold introduction: "SU(5)

is the gauge group of the world". It was a fair assumption since the SU(5) perfectly incorporates the first

unification of SU(2) and U(1) with SU(3). Rank of SU(3)×SU(2)×U(1) is 2 + 1 + 1 = 4 and hence the

smallest possible rank of unification group must be 4. The following groups satisfy this requirement —

[SU(2)]4, [SO(3)]4, [SO(4)]2, [SO(5)]2, [Sp(4)]2, SO(8), SO(9), Sp(8), [G2]2, F4, [SU(3)]2, and SU(5) —

but only two of them (R([SU(3)]2) = [3−1]2 = 4 and R(SU(5)) = 5−1 = 4) have complex representations

which is a prerequisite to incorporate the Standard Model fields. Due to the fact that the generator of

the electric charge in [SU(3)]2 is traceless and requires the sum of all quark charges to vanish [3], SU(5)

was indeed a unique candidate for GUT.

4.1.1 Fermion sector

In order to find the right representation to arrange and unify all the fermions, we organize their quantum

numbers as shown in Table 4.1. Since one cannot have fermions of opposite chiralities within the same

irreducible representation due to Lorentz symmetry, one needs to use charge conjugation operator to

turn right-handed fields into left-handed fields. Hence the appearance of dcR, u
c
R, and ecR in Table 4.1.

Clearly, there are 15 states in each generation of the Standard Model fermions. To relate hypercharge

(Y ), electric charge (Q), and weak ispospin (T3), we use Q = T3 +Y , where Q is given in units of electric

charge of positron.

The basic building block of SU(5) is its 5-dimensional fundamental representation. There are thus
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4.1. GEORGI-GLASHOW MODEL

Table 4.1: Fermions’ quantum numbers

States SU(3) SU(2) U(1) Charge Weak Color

irrep irrep Hypercharge Y Q isospin T3

dcRi 3̄ 1 + 1
3 + 1

3 0 i = 1, 2, 3

ucRi 3̄ 1 − 2
3 − 2

3 0 i = 1, 2, 3

dLi 3 2 + 1
6 − 1

3 − 1
2 i = 1, 2, 3

uLi 3 2 + 1
6 + 2

3 + 1
2 i = 1, 2, 3

ecR 1 1 +1 +1 0 -

eL 1 2 − 1
2 −1 − 1

2 -

νeL 1 2 − 1
2 0 + 1

2 -

only two options for construction of a multiplet with five states, if one consults the Table 4.1, and it

needs simultaneously to include quarks and leptons:

5̄ = (dcRi, eL, νeL) = (3̄, 1, 1/3)⊕ (1, 2,−1/2) (4.2)

5̄ = (ucRi, eL, νeL) = (3̄, 1,−2/3)⊕ (1, 2,−1/2) (4.3)

We will consider electric charge operator Q to determine correct embedding:

Q = T3 + Y



Q (dcRi, e
−
L , νeL) =

∑5
a=1Qa = 3 ·Q(dcRi) +Q(e−L ) +Q(νeL)

= 3 · 1/3 + (−1) + 0 = 0

Q (ucRi, e
−
L , νeL) =

∑5
a=1Qa = 3 ·Q(ucRi) +Q(e−L ) +Q(νeL)

= 3 · (−2/3) + (−1) + 0 = −1

(4.4)

It is clear that the correct option corresponds to the scenario with Q = 0. This is due to the fact

that we will assign two of the SU(5) generators to Y and T3, and since both of them are traceless, the Q

evaluated over full multiplet must be traceless as well. Again, it follows that the correct multiplet with

both quarks and leptons looks like this:

ψα = 5̄ =



dcR1

dcR2

dcR3

eL

−νeL


= (3̄, 1, 1/3)⊕ (1, 2,−1/2) (4.5)
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Once we know 5̄, we can, by applying charge conjugation, find the fundamental representation to be

ψα = 5 = (3, 1,−1/3) ⊕ (1, 2, 1/2). We do that in order to find representation(s) comprising ten more

missing states since in the Standard Model there are 15 Weyl fermions per generation, all in all.

Firstly, we will decompose direct product of two fundamental representations to find other irreducible

representations of SU(5):

5⊗ 5 = 10⊕ 15 (4.6)

⊗ = ⊕ (4.7)

Under the exchange of two indices they carry (since fundamental ψα carries one), 10 is antisymmetric

and 15 is symmetric representation. If we write direct product of Eq. (4.6) in terms of the Standard

Model multiplets we obtain:

5⊗ 5 =

((
3, 1,−1

3

)
⊕
(

1, 2,
1

2

))
⊗
((

3, 1,−1

3

)
⊕
(

1, 2,
1

2

))
=

(
3, 2,

1

6

)
⊕
(

3̄, 1,−2

3

)
⊕ (1, 1, 1)⊕

⊕
(

6, 1,−2

3

)
⊕
(

3, 2,
1

6

)
⊕ (1, 3, 1)

(4.8)

from where we can recognize that antisymmetric 10 is exactly the representation that contains ten re-

maining fields:

QL =

 ui

di


L

≡
(

3, 2,
1

6

)
(4.9)

ucR =

(
3̄, 1,−2

3

)
(4.10)

ecR = (1, 1, 1) (4.11)

Therefore, antisymmetric 10 would have this form:

10 =
1√
2



0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0


, (4.12)

where multiplicative factor 2−
1
2 comes from the need for appropriate normalization of kinetic terms as

the number of states in 10 is doubled.
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Table 4.2: Decomposition of direct product of representations within SU(5) [48]

Direct product Decomposition

5 ⊗ 5̄ 1 ⊕ 24

5 ⊗ 5 10 ⊕ 15

5̄ ⊗ 10 5 ⊕ 45

5 ⊗ 10 40 ⊕ 10

10 ⊗ 10 5̄ ⊕ 45 ⊕ 50

10 ⊗ 10 1 ⊕ 24 ⊕ 75

4.1.2 Gauge sector

After fundamental representation with one index, symmetric and antisymmetric representations of SU(5)

with two indices, the next one is adjoint representation. Table 4.2 summarizes the decomposition of direct

products of lowest lying irreducible representations. The adjoint can be found using direct product 5⊗ 5̄

since

5⊗ 5̄ = 1⊕ 24

⊗ = ⊕
(4.13)

5⊗ 5̄ =

((
3, 1,−1

3

)
⊕
(

1, 2,−1

2

))
⊗
((

3̄, 1,
1

3

)
⊕
(

1, 2,
1

2

))
= (1, 1, 0)⊕

(
(8, 1, 0)⊕

(
3̄, 2,

5

6

)
⊕
(

3, 2,−5

6

)
⊕ (1, 3, 0)⊕ (1, 1, 0)

)
.

(4.14)

SU(5) has 24 generators. Eight of these will be from SU(3), three from SU(2), and one corresponds

to the hypercharge Y of U(1) in the Standard Model. These twelve generators are of this form:

L1 =



0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


L2 =



0 −i 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


L3 =



1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


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L4 =



0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0


L5 =



0 0 −i 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0


L6 =



0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0



L7 =



0 0 0 0 0

0 0 −i 0 0

0 i 0 0 0

0 0 0 0 0

0 0 0 0 0


L8 =

1√
3



1 0 0 0 0

0 1 0 0 0

0 0 −2 0 0

0 0 0 0 0

0 0 0 0 0


SU(3)

L9 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0


L10 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 i 0


L11 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 −1


SU(2)

L12 =
1√
15



−2 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 0 0 3 0

0 0 0 0 3


U(1)

Since rank of SU(5) is 4, the four diagonal generators will be T3 ≡ L11 from SU(2), Y ≡ L12 from U(1)

and L3 and L8.
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The remaining 12 generators are:

L13 =



0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0


L14 =



0 0 0 i 0

0 0 0 0 0

0 0 0 0 0

−i 0 0 0 0

0 0 0 0 0


L15 =



0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0


L16 =



0 0 0 0 i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−i 0 0 0 0



L17 =



0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0


L18 =



0 0 0 0 0

0 0 0 i 0

0 0 0 0 0

0 −i 0 0 0

0 0 0 0 0


L19 =



0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0


L20 =



0 0 0 0 0

0 0 0 0 i

0 0 0 0 0

0 0 0 0 0

0 −i 0 0 0



L21 =



0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0


L22 =



0 0 0 0 0

0 0 0 0 0

0 0 0 i 0

0 0 −i 0 0

0 0 0 0 0


L23 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0


L24 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 i

0 0 0 0 0

0 0 −i 0 0



It is clear that these twelve generators act simultaneously with the SU(3) and SU(2) spaces. The

gauge boson of 24 can be expressed in the following way [49]:

Vµ =



G1
1 − 2B√

30
G1

2 G1
3 X1 Y1

G2
1 G2

2 − 2B√
30

G2
3 X2 Y2

G3
1 G3

2 G3
3 − 2B√

30
X3 Y3

X̄1 X̄2 X̄3
W 0
√

2
+ 3B√

30
W+

Ȳ1 Ȳ2 Ȳ3 W− −W
0
√

2
+ 3B√

30


(4.15)
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where
G1

2 = (g1−ig2)√
2

G2
1 = (g1+ig2)√

2

G1
3 = (g4−ig5)√

2
G3

1 = (g4+ig5)√
2

G2
3 = (g6−ig7)√

2
G3

2 = (g6+ig7)√
2

G1
1 = g3√

2
+ g8√

6
G2

2 = − g3√
2

+ g8√
6

G3
3 = −

√
2
2g8

(4.16)

and gi(i = 1...8) represent eight gluons, while X and Y are vector gauge bosons — mediators of the

proton decay — whose mass is associated with the new energy scale of unification of three gauge coupling

constants. These new bosons convert quarks into leptons and vice versa. They can be expressed in terms

of pairs of fermions that they interact with:

X ∼ (eL)cdcL or uRuL

Y ∼ (νL)cdcL or uRdL
(4.17)

It follows that they form an isospin doublet that carries color:

X(SU(3), SU(2), U(1), Q, T3) = (3, 2,−5/6,−4/3,−1/2) (4.18)

Y (SU(3), SU(2), U(1), Q, T3) = (3, 2,−5/6,−1/3, 1/2) (4.19)

Since they turn leptons to quarks and vice versa, they are sometimes referred to as leptoquarks.

4.1.3 Scalar sector and symmetry breaking

The SU(5) symmetry can be broken to SU(3) × SU(2) × U(1) by either 24-dimensional [3] or 75-

dimensional scalar multiplet [50, 51]. The 12 new vector bosons (X,Y ) become massive after the first

stage of spontaneous symmetry breaking of SU(5) since the Standard Model has 12 gauge bosons and

SU(5) 24. This first stage needs to happen at mass scale µ ' MGUT ≥ 1015 GeV [49, 52] due to con-

straints from proton decay experiments. As we already mentioned, X and Y vector bosons reside at that

scale.

The second stage of breaking is needed to go from SU(3)×SU(2)×U(1) down to SU(3)×U(1)em and

it is accomplished by the field that transforms as the Standard Model Higgs field. The breaking takes

place at the electroweak scale µ ' 250GeV when W± and Z acquire their masses, and, in the process,

charged fermions of the Standard Model also become massive.
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4.1. GEORGI-GLASHOW MODEL

We will use, for the first stage of symmetry breaking, 24-dimensional scalar field Φ. Since 5⊗5̄ = 24⊕1,

it follows that scalar field Φ can be represented by a traceless 5× 5 matrix. The idea is to have a scalar

field to give masses to X and Y gauge bosons and not to other gauge bosons. This field is Hermitian and

it will transform as:

Φ→ UΦU† (4.20)

under the SU(5) transformations. It is well known that Hermitian matrix can be put in diagonal form

using the proper unitary matrix U :

UΦU† = Φdiag (4.21)

Knowing that matrix Φdiag is also traceless, there are several options:

diag (a, a, a, b,−3a− b) (4.22)

diag (a, a, b, b,−2a− 2b) (4.23)

diag (a, a, a,−3a/2,−3a/2) (4.24)

diag (a, a, a, a,−4a) (4.25)

diag (0, 0, 0, 0, 0) (4.26)

which read:

diag (1,−1, 0, 0, 0) (4.27)

diag (1, 1,−1,−1, 0) (4.28)

diag (2, 2, 2,−3,−3) (4.29)

diag (1, 1, 1, 1,−4) (4.30)

diag (0, 0, 0, 0, 0) (4.31)

The only realistic option here is a structure given in Eq. (4.29). Hence the form of VEV for scalar field

Φ is:

〈Φ〉 = 〈24H〉 =



2

2

2

-3

-3


V

(4.32)
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where V = vGUT/
√

30. It is clear that the upper 3 × 3 block is reserved for SU(3) group, lower 2 × 2

block is reserved for SU(2) group and the fact that it is diagonal is associated with U(1) group of the

Standard Model. However, this scalar field cannot induce the second phase of SU(5) symmetry breaking

that would simultaneously give masses to W± and Z. This is because Φ does not have a color singlet

and an isospin doublet necessary to generate masses of W± and Z. Beside this, Φ cannot couple and give

mass to fermions since fermions reside in either 5̄ or 10 and the only possible contractions correspond to

combinations 10 10, 10 5, and 5 5. Group theory, as already specified in Table 4.2, stipulates that:

5⊗ 5 = 10⊕ 15 (4.33)

5⊗ 10 = 5⊕ 45 (4.34)

10⊗ 10 = 5⊕ 45⊕ 50 (4.35)

Clearly, fermion masses can potentialy come from the representations on the right hand side of Eqs. (4.33)

through (4.35). It turns out that the only two representations that contain a field that transforms as

the Standard Model Higgs boson H are 5-dimensional and 45-dimensional representations. The simplest

version is to have Higgs to be in 5. We know that 5 would contain an additional color triplet scalar T :

5H ≡

 T

H

 (4.36)

in agreement with the transformation properties presented in Eq. (4.5). Since 5H now can give mass to

fermions, the mass giving Yukava interaction would be of this schematic form:

[10]× [10]× [5H ]→ mu (4.37)

¯[5]× [10]× [5∗H ]→ md (4.38)

¯[5]× [10]× [5∗H ]→ me. (4.39)

The explicit form of Yukawa Lagrangian reads:

LY = Y5ij 10αβi 5αj 5∗Hβ + εαβγδηY10 ij10αβ ci 10γδj 5ηH (4.40)

where Y5 and Y10 are 3 × 3 matrices in generation space and εαβγδη is 5-dimensional Levi-Civita tensor

used here to contract all upper indices. For properties of Levi-Civita tensor, see Appendix A.

To summarize, the minimal SU(5) of Georgi-Glashow has two scalar multiplets. One (24H) is used

for spontaneous symmetry breaking of SU(5) and the other one (5H) is responsible for breaking of

SU(3)×SU(2)×U(1) down to SU(3)×U(1)em. 24H provides masses for X and Y gauge bosons whereas
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5H generates masses of the Standard Model particles.

4.1.4 Mass hierarchy problem

The starting point of the Georgi-Glashow [3] SU(5) model is the mass generating part of the Lagrangian

of the following form:

LYukawa = guεijklmψ
c ij

10 ψ
kl
105mH + gdψ5aψ

ab
105∗Hb + h.c. (4.41)

Using the simplest Higgs in the second stage of symmetry breaking, transforming like fundamental

representation of SU(5), and substituting into Eq. (4.41), we have:

L = −gdv√
2

[dRdL + ecRe
c
L + h.c.] (4.42)

where sum over both flavor and color indices is understood. This leads to degeneracy in mass for down-

type quarks and charged leptons. Namely, due to the fact that gd is a common Yukawa coupling matrix

for down quarks and charged leptons, we conclude [3, 53]:

md = me ms = mµ mb = mτ . (4.43)

In Georgi-Glashow model, neutrinos are massless particles. This obviously contradicts experimental

observations. Since these predictions of the model do not agree with the experimental results, it was clear

that there was a problem in the mass sector, and only extensions or modifications of the original SU(5)

proposal could potentially resolve this issue.

Chapter 6 introduces a simple extension of Georgi-Glashow model that addresses both of these prob-

lems. Before we do that, we will discuss seminal prediction of GUTs which is proton decay.
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Chapter 5

Proton Decay

The flash would prove that

proton decay really happens. The

flash would mean that the matter

of the proton - the solid stuff -

had turned into the energy of the

flash. Totally. Nothing left

behind. No ash. No smoke. No

smell. Nada. One moment it’s

there, the next moment - pffft -

gone. What would it mean? Only

this: Nothing lasts. Nothing.

Because everything that exists is

made of protons.

Jerry Spinelli

"Smiles to Go"

5.1 Historical background and introduction

Proton decay is one of the most intriguing predictions of Grand Unified Theories [54, 55].

It was the Nobel Prize Laureate Andrei Sakharov who was the first to propose such a captivating

and provocative possibility [56]. His paper addressed the baryon asymmetry problem of our universe. It

was Paul Dirac who predicted [57] in his equation, where he combined quantum mechanics and special

relativity to describe motion of an electron, that for every particle exists a corresponding antiparticle.

However, we do not observe nor detect equal amounts of matter and antimatter in the universe. In

order to explain this asymmetry, Andrei Sakharov formulated three requirements for this to happen,
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know as Sakharov conditions: baryon number (B) violation, C-symmetry and CP-symmetry violation,

and interactions out of thermal equilibrium. For proton to decay, baryon number needs to be violated.

Nonetheless, Sakharov’s ideas remained in hidden corner in the next few years, until the Grand Unification

was brought to daylight in 1974 [4].

Proton has proven to be one of the most stable particles and so far, no proton decay has been

observed. The possibility that the proton decay is detected would provide window into scales that cannot

be reached with conventional collider technologies. For example, the Georgi-Glashow model [3] predicts

proton lifetime to be

τ ∝
M4
X,Y

m5
p

, (5.1)

where mp is proton mass and MX,Y is the mass of a heavy mediator. If one takes the latest experimental

limits, one naively obtains MX,Y & 2× 1015 GeV [4].

The Georgi-Glashow model is called minimal SU(5) due to the fact that it has fewest number of

"adjustable parameters", even though it isn’t realistic for aforementioned reasons. One of the nicer

features of the model is that the mass MX,Y corresponds to the energy scale at which three out of four

fundamental forces in nature come together and become indistinguishable. In other words, SU(5) should

be able to predict scale associated with proton decay.

5.2 Operators of dimension 6

GUTs have as a typical prediction appearance of nucleon (proton and neutron) decay operators. These

operators are of higher dimensions (d ≥ 6) since operators of lower dimensions in the Standard Model

do not violate baryon number. The apparent conservation of baryon and lepton numbers [58] is referred

to as an accidental symmetry of the Standard Model. The main reason that GUTs imply proton decay

lies in a fact that different Standard Model representations reside in the same multiplets, as it is shown

in Eq. (4.5), which makes quarks and leptons indistinguishable when it comes to interactions. Hence the

violation of baryon and lepton numbers.

Proton decay, in conventional GUTs, can be mediated via two types of particles — gauge bosons and

scalar leptoquarks. The representative diagrams for the gauge boson and scalar leptoquark mediations

of proton decay are presented in Figs. 5.1 and 5.2, respectively.

It turns out that these two types of mediation of the two-body proton decays conserve B−L. Baryon

number (B) and lepton number (L) are not conserved separately, but the difference of the two is. We

show this in Table 5.1 for each two-body proton decay under consideration in this thesis. One of the

upshots of B − L conservation is that proton always decays into antileptons. Clearly, we can distinguish

eight two-body proton decay channels, where it is understood that some possibilities are kinematically

forbiden such as p→ π0τ+.
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Figure 5.1: Proton decay via the gauge boson mediation

Figure 5.2: Proton decay via the scalar leptoquark mediation

We are interested in finding the dominant channels in both proton decay through gauge bosons and

through scalar leptoquark within a well-defined GUT model. The idea is to calculate the decay width for

each of eight channels for both types of mediation and to perform correlation study. In order to do so,

we will analyze separately proton decay through gauge bosons and through scalar leptoquark and apply

these analyses within a specific model.

5.2.1 Proton decay induced by gauge bosons

Baryon and lepton numbers are violated in proton decay mediated by gauge bosons, but their combi-

nation B − L is conserved. Therefore, the only decays allowed are the ones involving L = −1 particles

(e+, µ+, ν̄i).

There are 59 [59, 60] operators at the d = 6 level if one uses Standard Model particle content that preserve

baryon number and only 4 that violate it. Again, we are interested in the latter.
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Table 5.1: Conservation of B − L in two-body proton decays

decay channel baryon number B lepton number L B − L

p→ π0e+ 1 6= 0 + 0 0 6= −1 + 0 1 = 0− (−1)

p→ π0µ+ 1 6= 0 + 0 0 6= 0 + (−1) 1 = 0− (−1)

p→ η0e+ 1 6= 0 + 0 0 6= 0 + (−1) 1 = 0− (−1)

p→ η0µ+ 1 6= 0 + 0 0 6= 0 + (−1) 1 = 0− (−1)

p→ K0e+ 1 6= 0 + 0 0 6= 0 + (−1) 1 = 0− (−1)

p→ K0µ+ 1 6= 0 + 0 0 6= 0 + (−1) 1 = 0− (−1)

p→ π+ν 1 6= 0 + 0 0 6= 0 + (−1) 1 = 0− (−1)

p→ K+ν 1 6= 0 + 0 0 6= 0 + (−1) 1 = 0− (−1)

Proton decay process involves four fermions (plus spectator quark) and if we start with left-handed

fermions ψ ∈ {l, ec, q, uc, dc}, rulling out combinations ψψψψ̄ and ψψ̄ψ̄ψ̄ due to Lorentz non-invariance [60],

it can be shown that these four B−violating combinations are:

(qqql), (dcucucec), (qqūcēc), (qlūcd̄c). (5.2)

Knowing that there can be four possible combinations with left-handed and right-handed states:

(ψRψR)(ψLψL) (5.3)

(ψLψL)(ψRψR) (5.4)

(ψLψL)(ψLψL) (5.5)

(ψRψR)(ψRψR) (5.6)

the relevant operators can be written [61], using SU(3)× SU(2)× U(1) symmetry, as:

O1
abcd = (dαaRuβbR) (qiγcLljdL) εαβγεij (5.7)

O2
abcd = (qiαaLqjβbL) (uγcRldR) εαβγεij (5.8)

O3
abcd = (qiαaLqjβbL) (qkγcLlldL) εαβγεilεjk (5.9)

O4
abcd = (dαaRuβbR) (uγcRldR) εαβγ (5.10)

where α, β, γ are color SU(3) indices, i, j, k, l are SU(2) indices and a, b, c, d are generation or family

indices.

The former operators for non-supersymmetric model can be expressed as SU(3) × SU(2) × U(1)
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invariants [62, 63, 64] like [65]:

OB−LI = k2 εijk εαβ uCi,aγ
µqjαa eCb γµ qkβb (5.11)

OB−LII = k2 εijk εαβ uCi,a γ
µ qjαa dCkb γµ lβb (5.12)

where k = gGUT/MX,Y , MX,Y ∼MGUT, q = (u, d), l = (ν, e) and i, j and k are the color indices, a and b

are family indices (only first two family should be taken into account) and α, β = 1, 2 are SU(2) indices.

Note the appearance of gGUT and mass of X and Y bosons in Eqs. (5.11) and (5.12). The scaling with

respect to these parameters is self-evident from Fig. 5.1.

However, operators in Eqs. (5.11) and (5.12) are still not in physical mass eigenstate basis for fermions.

In order to rewrite them in physical basis, we look at final states knowing that only first two families in

the charged lepton and down-type quark sectors should be considered. Also, all three neutrino flavors

are relevant even though proton decay experiments do not distinguish between neutrino flavors. Now

Eqs. (5.11) and (5.12) can be written as three effective operators, where last two come from Eq. (5.12):

O(eCα , dβ) = c(eCα , dβ) εijk uCi γ
µ uj eCα γµ dkβ (5.13)

O(eα, d
C
β ) = c(eα, d

C
β ) εijk uCi γ

µ uj dCkβ γµ eα (5.14)

O(νl, dα, d
C
β ) = c(νl, dα, d

C
β ) εijk uCi γ

µ djα dCkβ γµ νl (5.15)

We will demonstrate the procedure of going from flavor basis to mass eigenstate basis for both OB−LI

and OB−LII . This procedure explicitly determines coefficients in Eqs. (5.13) through (5.15). We will

be temporarily using the convention adopted from Ref. [66] for unitary transformations of quarks and

leptons. These are defined via:

Mdiag
U = UTCMUU

Mdiag
D = DT

CMDD

Mdiag
E = ETCMEE

Mdiag
N = NTMNN (5.16)

where relevant mixing matrices are defined as:

V1 = U†CU V2 = E†CD V3 = D†CE VUD = U†D VEN = E†N (5.17)

For quark mixing we have:

VUD = U†D = K1VCKMK2 (5.18)
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where K1 and K2 are diagonal matrices containing three and two phases, respectively. For leptonic

mixing we have:

VEN = K3V
M
l (5.19)

where VMl is the leptonic mixing matrix at low energy for the neutrino Majorana case and K3 is a

diagonal unitary matrix.

For OB−LI we have:

OB−LI = k2 εijk εαβ uCiaγ
µqjαa eCb γµ qkβb

= k2 εijk

[
uCiaγ

µuja eCb γµ dkb − uCiaγ
µdja eCb γµ ukb

]
= k2 εijk

[
uCic (U†C)caγ

µ(U)ad ujd eCe (E†C)eb γµ (D)bf dkf−

−uCic (U†C)ca γ
µ (D)ad djd eCe (E†C)eb γµ (U)bfukf

]
= k2 εijk

[
uCic (U†CU)cd γ

µ ujd eCe (E†CD)ef γµ dkf−

−uCic (U†CD)cd γ
µ djd eCe (E†CU)ef γµ ukf

]
= k2 εijk

[
V cd1 uCic γ

µ ujd V
ef
2 eCe γµ dkf −

(
U†CUU

†D
)
cd
uCic γ

µ djd eCe

(
E†CDD

†U
)
ef
γµ ukf

]
= k2 εijk

[
V cd1 V ef2 uCicγ

µ ujd eCe γµ dkf − (V1VUD)
cd
(
V2V

†
UD

)ef
uCicγ

µ djd eCe γµ ukf

]
= k2 εijk

[
V cd1 V ef2 uCicγ

µ ujd eCe γµ dkf + (V1VUD)
cd
(
V2V

†
UD

)ef
uCicγ

µ ujd eCe γµ dkf

]
= k2 εijk

[
V cd1 V ef2 + (V1VUD)

cf
(
V2V

†
UD

)ed]
uCicγ

µ ujd eCe γµ dkf (5.20)

Note that in the third line we make a transition from flavor eigenstate notation to the mass eigenstate

notation. From sixth to seventh row with equality sign in front, we perform Fiertz transformation and

hence the change in sign and indices in the second part. To read off the coefficients c(eCα , dβ), one needs

to perform the following identification: c = d = 1, e = 1, 2 ≡ α, and f = 1, 2 ≡ β.

Now, for OB−LII we follow the same steps:

OB−LII = k2 εijk εαβ uCia γ
µ qjαa dCkb γµ lβb

= k2 εijk

[
uCia γ

µ uja dCkb γµ eb + uCia γ
µ dja dCkb γµ νb

]
= k2 εijk

[
uCic (U†C)caγ

µ(U)ad ujd dCke (D†C)eb γµ (E)bf ef + uCic (U†C)ca γ
µ (D)ad djd dCke (D†C)eb γµ (N)bf νf

]
= k2 εijk

[
uCic (U†CU)cdγ

µ ujd dCke (D†CE)ef γµ ef + uCic (U†CD)cd γ
µ djd dCke (D†CN)ef γµ νf

]
= k2 εijk

[
V cd1 uCic γ

µ ujd V
ef
3 dCke γµ ef + (U†CUU

†D)cd uCic γ
µ djd(D

†
CEE

†N)efdCke γµ νf

]
= k2 εijk

[
V cd1 uCic γ

µ ujd V
ef
3 dCke γµ ef + (V1VUD)

cd
(V3VEN )

ef
uCic γ

µ djd dCke γµ νf

]
= k2 εijk

[
V cd1 V ef3 uCic γ

µ ujd dCke γµ ef + (V1VUD)
cd

(V3VEN )
ef
uCic γ

µ djd dCke γµ νf

]
(5.21)
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from where we can distinguish two operators, one for charged leptons and the other for neutrinos. Con-

sequently, we have:

O(eα, d
C
β ) = k2 V 11

1 V βα3 εijkuCi γ
µ uj dCkβ γµ eα (5.22)

O(νl, dα, d
C
β ) = k2 (V1VUD)

1α
(V3VEN )

βl
εijk uCi γ

µ djα dCkβ γµ νl (5.23)

Relevant coefficients in these equations can thus be expressed in this way [65, 66]:

c(eCα , dβ) = k2 V 11
1 V αβ2 + k2 (V1VUD)1β(V2V

†
UD)α1 (5.24)

c(eα, d
C
β ) = k2V 11

1 V βα3 (5.25)

c(νl, dα, d
C
β ) = k2(V1VUD)1α(V3VEN )βl (5.26)

We will show in next few lines what happens when we perform summation over neutrino flavors. We

do this because neutrino flavor is not an observable when it comes to proton decay experiments. The

explicit summation reads:

c(νl, dα, d
C
β ) · c∗(νl, dγ , dCδ ) = k4

[
(V1VUD)

1α
(V3VEN )

βl
] [

(V1VUD)
1γ

(V3VEN )
δl
]∗

= k4
[
(V1VUD)

1α
(V3VEN )

βl
] [

(V3VEN )
† lδ

(V1VUD)
† γ1
]

= k4

[(
U†CU

)1α (
D†CN

)βl] [(
D†CN

)† lδ (
U†CU

)† γ1
]

= k4

[(
U†CU

)1α (
D†CN

)βl] [(
N†DC

)lδ (
U†UC

)γ1
]

= k4

[(
U†CU

)1α (
D†CN

)βl
·
(
N†DC

)lδ (
U†UC

)γ1
]

= k4

[(
U†CU

)1α (
D†CNN

†DC

)βδ (
U†UC

)γ1
]

= k4

[(
U†CU

)1α (
D†CDC

)βδ (
U†UC

)γ1
]

(5.27)

Eq. (5.27) shows that with summation over neutrino flavors, any information associated with neutrino

mixing vanishes from proton decay signatures even though it is present at the amplitude level. Note,

however, that both left- and right-handed rotations enter proton decay signature predictions.

In order to calculate decay widths for different proton decay channels, we need hadronic matrix el-

ements 〈PS|OB−L|P 〉, where P stands for proton in the initial state and PS stands for pseudoscalar

mesons π,K, and η in the final state. In this work, we are not interested in the explicit calculation of

hadronic matrix elements as this is the task of lattice QCD. We will simply use relevant results in order

to calculate proton decay widths. We refer readers interested in this subject to Refs. [67, 68, 69, 70, 71, 72].

Matrix elements we need, are of the form:
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〈PS | εijk (ψi1
T CPR,L ψ

j
2)PL ψ

k
3 |P 〉 (5.28)

where ψ1,2,3 denotes three quarks in the process, C is the charge conjugation matrix (ψc = ψTC, C =

γ4γ2), and:

PL =
1− γ5

2
(5.29)

PR =
1 + γ5

2
(5.30)

Now, Eq. (5.28) can be written in a simple form:

〈PS | (ψ1 ψ2)R,L ψ3L |P 〉 (5.31)

Decay width can be evaluated, in general case of two body decay, using this formula:

Γ =
S|~p|

8πmi
|M|2 (5.32)

that comes from expression for decay width in general case of n-body decay

dΓ = |M|2 S

2mi

(
n∏
k=1

d3~pk
(2π)32Ek

)
× (2π)4δ4

(
pi −

n∑
k=1

pk

)
(5.33)

where pk is the 4-momentum of the kth particle, S is a product of statistical factors, |~p| is the magnitude

of the momentum of either outgoing particle in the parent’s rest frame,M is matrix element, and mi is

the mass of initial particle. Knowing that, we can write decay widths for each of the channels [66]:

Γ(p→ π0e+
β ) =

mp

8π
·

(
1−

(
mπ

mp

)2
)2

·A2
L ·
|α|2

2f2
π

(1 +D + F )2

{
|c(eβ , dC)|2 + |c(eCβ , d)|2

}

=
mp

16πf2
π

·

(
1−

(
mπ

mp

)2
)2

·A2
L · |α|2 (1 +D + F )2 · k4·

·

{∣∣∣V 11
1 V 1β

3

∣∣∣2 +
∣∣∣V 11

1 V β1
2 + (V1VUD)11(V2V

†
UD)β1

∣∣∣2}
(5.34)

Γ(p→ π+ν̄) =
mp

8π
·

(
1−

(
mπ

mp

)2
)2

·A2
L ·
|α|2

f2
π

(1 +D + F )2 ·
3∑
i=1

| c(νi, d, dC) |2

=
mp

8πf2
π

·

(
1−

(
mπ

mp

)2
)2

·A2
L · |α|2 (1 +D + F )2 · k4 ·

3∑
i=1

∣∣(V1VUD)11(V3VEN )1i
∣∣2 (5.35)
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Γ(p→ K0e+
β ) =

mp

8π
·

(
1−

(
mK

mp

)2
)2

·A2
L ·
|α|2

f2
π

(
1 + (D − F )

mp

mB

)2
{
|c(eβ , sC)|2 + |c(eCβ , s)|2

}

=
mp

8πf2
π

·

(
1−

(
mK

mp

)2
)2

·A2
L · |α|2

(
1 + (D − F )

mp

mB

)2

· k4·

·

{∣∣∣V 11
1 V 2β

3

∣∣∣2 +
∣∣∣V 11

1 V β2
2 + (V1VUD)12(V2V

†
UD)β1

∣∣∣2}
(5.36)

Γ(p→ K+ν̄) =
mp

8π
·

(
1−

(
mK

mp

)2
)2

·A2
L ·
|α|2

f2
π

3∑
i=1

∣∣∣∣2D3 mp

mB
c(νi, d, s

C) +

[
1 + (

D

3
+ F )

mp

mB

]
c(νi, s, d

C)

∣∣∣∣2

=
mp

8πf2
π

·

(
1−

(
mK

mp

)2
)2

·A2
L · |α|2 · k4·

·
3∑
i=1

∣∣∣∣2D3 mp

mB
(V1VUD)11(V3VEN )2i +

[
1 + (

D

3
+ F )

mp

mB

]
(V1VUD)12(V3VEN )1i

∣∣∣∣2
(5.37)

Γ(p→ ηe+
β ) =

mp

8π
·

(
1−

(
mη

mp

)2
)2

·A2
L ·
|α|2

6f2
π

(1 +D − 3F )2

{
|c(eβ , dC)|2 + |c(eCβ , d)|2

}

=
mp

48πf2
π

·

(
1−

(
mη

mp

)2
)2

·A2
L · |α|2 (1 +D − 3F )2 · k4·

·

{∣∣∣V 11
1 V 1β

3

∣∣∣2 +
∣∣∣V 11

1 V β1
2 + (V1VUD)11(V2V

†
UD)β1

∣∣∣2},
(5.38)

where we explicitly specify flavor dependence of these decay modes.

To introduce matrix elements, we use following identities provided by baryon chiral perturbation

theory (BChPT) [61, 71],

〈π0|(ud)RuL|p〉 =
α√
2f

(1 +D + F ) (5.39)

〈π0|(ud)LuL|p〉 =
β√
2f

(1 +D + F ) (5.40)

〈π+|(ud)RdL|p〉 =
α

f
(1 +D + F ) (5.41)
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〈π+|(ud)LdL|p〉 =
β

f
(1 +D + F ) (5.42)

〈K0|(us)LuL|p〉 =
β

f

(
1− (D − F )

mN

mB

)
(5.43)

〈K0|(us)RuL|p〉 = −α
f

(
1 + (D − F )

mN

mB

)
(5.44)

〈K+|(us)RdL|p〉 =
α

f

2D

3

mN

mB
(5.45)

〈K+|(us)LdL|p〉 =
β

f

2D

3

mN

mB
(5.46)

〈K+|(ud)RsL|p〉 =
α

f

(
1 + (

D

3
+ F )

mN

mB

)
(5.47)

〈K+|(ud)LsL|p〉 =
β

f

(
1 + (

D

3
+ F )

mN

mB

)
(5.48)

〈K+|(ds)RuL|p〉 =
α

f

(
1 + (

D

3
− F )

mN

mB

)
(5.49)

〈K+|(ds)LuL|p〉 = −β
f

(
1− (

D

3
− F )

mN

mB

)
(5.50)

〈η|(ud)RuL|p〉 = − α√
6f

(1 +D − 3F ) (5.51)

〈η|(ud)LuL|p〉 =
β√
6f

(3−D + 3F ) (5.52)

where D = 0.80 and F = 0.47 are low-energy parameters, mN = 0.96GeV, mB = 1.15GeV, and AL = 1.2

is long-distance coefficient that captures RGE running of relevant operators from electroweak scale to

1GeV [71, 73]. It is these equalities and parameters that we will use in our calculations.

Outline of numerical analysis for proton decay induced by gauge bosons

For numerical analysis, we are using a software system Wolfram Mathematica 13.1, where we implement

the following expressions for each channel:
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• p→ π0e+
β

Γ(p→ π0e+
β ) =

mp

8π
·

(
1−

(
mπ

mp

)2
)2

·A2
L ·

α2
GUT 4π2

M4
GUT

·

·

{∣∣ASR〈π0|(ud)RuL|p〉 c(eβ , dC)
∣∣2 +

∣∣ASL〈π0|(ud)LuL|p〉 c(eCβ , d)
∣∣2} (5.53)

where ASR and ASL are short distance coefficients that capture the running between GUT scale and

electroweak scale. These are evaluated using procedure specified in Ref. [74]. The coefficients have the

form:

c(eβ , d
C) = (U†RU

∗
L)11(D†RE

∗
L)1β (5.54)

c(eCβ , d) = (U†RU
∗
L)11(E†RD

∗
L)β1 + (U†RD

∗
L)11(E†RU

∗
L)β1 (5.55)

as explained in detail in Chapter 7. Here we switch to our convention that is defined via:

Mdiag
U = U†LMUUR = UTRM

T
UU
∗
L

Mdiag
D = D†LMDDR = DT

RM
T
DD

∗
L

Mdiag
E = E†LMEER = ETRM

T
EE
∗
L

Mdiag
N = N†MNN

∗

VUD = UTLD
∗
L

VEN = N∗ (5.56)

In our model, we furthermore have that:

UL = DLdiag(1, eiη1 , eiη2)V TCKM diag(eiκ1 , eiκ2 , eiκ3) = DLD(η)V TCKMD(κ) (5.57)

UR = U∗L diag(eiξ1 , eiξ2 , eiξ3) = U∗LD(ξ) (5.58)

EL = 1 (5.59)

ER = 1 (5.60)

N = diag(eiγ1 , eiγ2 , eiγ3)V ∗PMNS (5.61)

We will later on explain the origin of these expressions. Hence we can write:

U†RUL = (U∗LD(ξ))† UL = D(−ξ) (5.62)

D†LUL = D(η)V TCKMD(κ) (5.63)

U†RD
∗
L = D(−ξ + κ)VCKMD(η) (5.64)
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Now, coefficients c(eβ , dC) and c(eCβ , d) are:

c(eβ , d
C) = e−iξ1(D†R)1β (5.65)

c(eCβ , d) = e−iξ1(D∗L)β1 + e−iξ1+iκ1(VCKM)11(U∗L)β1 (5.66)

where:

(U∗L)β1 = (D∗LD(−η)V †CKMD(−κ))β1 (5.67)

= (D∗LD(−η)V †CKM)β1e−iκ1 (5.68)

These manipulations finally yield:

c(eβ , d
C) = e−iξ1(D†R)1β (5.69)

c(eCβ , d) = e−iξ1
[
(D∗L)β1 + (VCKM)11 · (D∗LD(−η)V †CKM)β1

]
(5.70)

• p→ π+ν̄

Γ(p→ π+ν̄) =
mp

8π
·

(
1−

(
mπ

mp

)2
)2

·A2
L ·

α2
GUT 4π2

M4
GUT

·

·A2
SR |〈π+|(ud)RdL|p〉|2 ·

3∑
i=1

| c(νi, d, dC) |2
(5.71)

where coefficient is of form:

3∑
i=1

| c(νi, d, dC) |2 =
∣∣∣(D(−ξ + κ)VCKMD(η))

11
∣∣∣2 =

∣∣(VCKM)11
∣∣2 (5.72)

• p→ K0e+
β

Γ(p→ K0e+
β ) =

mp

8π
·

(
1−

(
mK

mp

)2
)2

·A2
L ·

α2
GUT 4π2

M4
GUT

·

·

{∣∣ASR〈K0|(us)RuL|p〉 c(eβ , sC)
∣∣2 +

∣∣ASL〈K0|(us)LuL|p〉 c(eCβ , s)
∣∣2} (5.73)

with coefficients:

c(eβ , s
C) = e−iξ1(D†R)2β (5.74)

c(eCβ , s) = e−iξ1(D∗L)β2 + (U†RD
∗
L)12 · (E†RU

∗
L)β1 · (D∗LD(−η)V †CKM)β1e−iκ1

= e−iξ1
[
(D∗L)β2 + eiη1(VCKM)12 · (D∗LD(−η)V †CKM)β1

]
(5.75)

• p→ K+ν̄
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Γ(p→ K+ν̄) =
mp

8π
·

(
1−

(
mK

mp

)2
)2

·A2
L ·

α2
GUT 4π2

M4
GUT

·

·

{
A2
SR

∣∣〈K+|(us)RdL|p〉
∣∣2 3∑
i=1

∣∣c(νi, d, sC)
∣∣2 +A2

SL

∣∣〈K+|(ud)RsL|p〉
∣∣2 3∑
i=1

∣∣c(νi, s, dC)
∣∣2}

(5.76)

with coefficients:

3∑
i=1

∣∣c(νi, d, sC)
∣∣2 =

∣∣∣(D(−ξ + κ)VCKMD(η))
11
∣∣∣2 =

∣∣(VCKM)11
∣∣2 (5.77)

3∑
i=1

∣∣c(νi, s, dC)
∣∣2 =

∣∣(VCKM)12
∣∣2 (5.78)

• p→ ηe+
β

Γ(p→ ηe+
β ) =

mp

8π
·

(
1−

(
mη

mp

)2
)2

·A2
L ·

α2
GUT 4π2

M4
GUT

·

·

{∣∣ASR〈η|(ud)RuL|p〉 c(eβ , dC)
∣∣2 +

∣∣ASL〈η|(ud)LuL|p〉 c(eCβ , d)
∣∣2} (5.79)

with coefficients:

c(eβ , d
C) = eiξ1(D†R)1β (5.80)

c(eCβ , d) = eiξ1
[
(D∗L)1β + (VCKM)11 · (D∗LD(−η)V †CKM)β1

]
(5.81)

In the above written expressions, the following common parameters are used: AL = 1.2 [75], mp =

0.938272GeV [76], mK = 0.493677GeV [77], mη0 = 0.547862GeV [41], mπ0 = 0.13497GeV [41], mπ± =

0.13957GeV [41]. For simplicity we use central values for all the parameters.

All other parameters such as ASL, ASR, αGUT,MGUT and matrix elements of UL, UR, EL, ER, N ,

DL, and DR unitary transformations will be taken from the model that we will use to accomplish this

correlation study. In addition to this, we will also need Yukawa couplings that will also be taken from

our model. Results of this numerical analysis will be presented in Chapter 8.

5.2.2 Proton decay induced by scalar leptoquark

Another possibility for proton to decay is through scalar leptoquarks. The two-body decay processes

mediated by scalar leptoquarks are schematically depicted in Fig. 5.2. Scalar leptoquarks can be cat-

egorized into singlets, doublets and triplets of SU(2) as they need to simultaneously couple to quarks

and leptons. They are clearly always triplets of color for that same reason. Table 5.2 gives all possible

quantum numbers for scalar leptoquarks [78].
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Table 5.2: Scalar leptoquarks’ quantum numbers

LQ Spin SU(3) SU(2) U(1) Allowed Coupling

S1 0 3 1 −1/3 q̄CL lL & ūCReR & q̄CL qL & ūCRdR

S̃1 0 3 1 −4/3 d̄CReR & ūCRuR

S3 0 3̄ 3 1/3 q̄CL lL & q̄CL qL

R2 0 3 2 7/6 q̄LeR & ūRlL

R̃2 0 3 2 1/6 d̄RlL

As it is previously mentioned, there is only one scalar leptoquark that mediates proton decay in the

model that we plan to consider. This state is found in 5-dimensional scalar representation and corresponds

to S1 from Table 5.2. We will refer to it as Λ3 in what follows.

The specific operators for proton decay through scalar leptoquark can be written as follows [65, 66]:

OH(dα, eβ) = a(dα, eβ)uTLC−1 dα u
TLC−1 eβ (5.82)

OH(dα, e
C
β ) = a(dα, e

C
β )uTLC−1 dα e

C†

β LC−1 uC
∗

(5.83)

OH(dCα , eβ) = a(dCα , eβ) dC
†

α LC−1 uC
∗
uTLC−1 eβ (5.84)

OH(dCα , e
C
β ) = a(dCα , e

C
β ) dC

†

α LC−1 uC
∗
eC
†

β LC−1 uC
∗

(5.85)

OH(dα, dβ , νi) = a(dα, dβ , νi)u
T LC−1 dα d

T
β LC

−1 νi (5.86)

OH(dα, d
C
β , νi) = a(dα, d

C
β , νi) d

C†

β LC−1 uC
∗
dTα LC

−1 νi (5.87)

where C is charge conjugation operator and L = (1−γ5)/2. Coefficients in aforementioned operators are:

a(dα, eβ) =
1

M2
Λ3

(UT (A+AT )D)1α(UTCE)1β (5.88)

a(dα, e
C
β ) =

1

M2
Λ3

(UT (A+AT )D)1α(E†CB
†U∗C)β1 (5.89)

a(dCα , eβ) =
1

M2
Λ3

(D†CD
†U∗C)α1(UTCE)1β (5.90)

a(dCα , e
C
β ) =

1

M2
Λ3

(D†CD
†U∗C)α1(E†CB

†U∗C)β1 (5.91)

a(dα, dβ , νi) =
1

M2
Λ3

(UT (A+AT )D)1α(DTCN)βi (5.92)

a(dα, d
C
β , νi) =

1

M2
Λ3

(D†CD
†U∗C)β1(DTCN)αi (5.93)

where MΛ3
is the mass of scalar leptoquark, indices α and β are flavor indices that can take values of 1

and 2, as well as i = 1, 2, 3. Capital letters represent specific matrices, where A, B, C, and D are linear

combinations of the Yukawa couplings, while U , UC , D, DC , E, EC , and N are unitary matrices [66]. In

72



5.2. OPERATORS OF DIMENSION 6

our model, we have:

A = B → Y u =
MU

8v5
(5.94)

C = D → 1√
2
Y d =

ME√
2v5

(5.95)

U → U∗L (5.96)

E → E∗L = 1 (5.97)

EC → ER = 1 (5.98)

D → D∗L (5.99)

N → N∗ (5.100)

DC → DR (5.101)

UC → UR (5.102)

(5.103)

We will furthermore use the following expressions from previous subsection:

D†LUL = D(η)V TCKMD(κ) (5.104)

D(η) = diag(1, eiη1 , eiη2) (5.105)

U∗RD
∗
L = D(−ξ + κ)VCKMD(η) (5.106)

UL = DLD(η)V TCKMD(κ) (5.107)

All these expressions are needed to extract proton decay widths for our numerical analyses.

• a(dα, eβ)

a(dα, eβ) =
1

M2
Λ3

(UT (A+AT )D)1α(UTCE)1β =
1

M2
Λ3

[
U†L

MU

2v5
D∗L

]
1α

[
U†L

ME√
2v5

E∗L

]
1β

=
mE
β

M2
Λ3

2
3
2 v2

5

·
[
Mdiag
U U†RD

∗
L

]
1α

[
U†L

]
1β

=
mU

1 m
E
β

M2
Λ3

2
3
2 v2

5

·
[
U†RD

∗
L

]
1α

[
U†L

]
1β

=
mU

1 m
E
β

M2
Λ3

2
3
2 v2

5

· [D(−ξ + κ)VCKMD(η)]1α

[
U†L

]
1β

=
mU

1 m
E
β

M2
Λ3

2
3
2 v2

5

· [D(−ξ + κ)VCKMD(η)]1α

[
D(−κ)V ∗CKMD(−η)D†L

]
1β

=
mU

1 m
E
β

M2
Λ3

2
3
2 v2

5

· e−iξ1 · [VCKMD(η)]1α

[
V ∗CKMD(−η)D†L

]
1β

(5.108)

• a(dα, e
C
β )
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a(dα, e
C
β ) =

1

M2
Λ3

(UT (A+AT )D)1α(E†CB
†U∗C)β1

=
1

M2
Λ3

[
U†L

MU

2v5
D∗L

]
1α

[
E†R

M†U
4v5

U∗C

]
β1

=
1

M2
Λ3

23v2
5

[
Mdiag
U U†RD

∗
L

]
1α

[
M†UU

∗
R

]
β1

=
1

M2
Λ3

23v2
5

[
Mdiag
U U†RD

∗
L

]
1α

[M∗UU
∗
R]β1

=
mU

1

M2
Λ3

23v2
5

[
U†RD

∗
L

]
1α

[
U∗LM

diag
U URU

∗
R

]
β1

=
mU

1

M2
Λ3

23v2
5

[
U†RD

∗
L

]
1α

[
U∗LM

diag
U

]
1β

=
mU2

1

M2
Λ3

23v2
5

[
U†RD

∗
L

]
1α

[
U∗L

]
1β

=
mU

1

mE
β

· a(dα, eβ)

23/2
(5.109)

The useful and insightful result here is the relation between the two coefficients in Eqs. (5.108)

and (5.109) that reads:

a(dα, e
C
β ) =

mU
1

mE
β

· a(dα, eβ)

23/2
(5.110)

• a(dCα , eβ)

a(dCα , eβ) =
1

M2
Λ3

(D†CD
†U∗C)α1(UTCE)1β

=
1

M2
Λ3

[
D†C

ME√
2v5

U∗C

]
α1

[
U†L

ME√
2v5

E∗L

]
1β

=
mE
β

M2
Λ3

√
2v5

[
D†R

ME√
2v5

U∗R

]
α1

[
U†L

]
β1

=
mE
β

M2
Λ3

√
2v5

[
D†R

ME√
2v5

DLD(η)V TCKMD(κ− ξ)
]
α1

[
U†L

]
1β

=
mE
β

M2
Λ3

2v2
5

[
D†RMEDLD(η)V TCKMD(κ− ξ)

]
α1

[
U†L

]
1β

=
mE
β

M2
Λ3

2v2
5

· e−iξ1
[
D†RMEDLD(η)V TCKM

]
α1

[
V ∗CKMD(−η)D†L

]
1β

(5.111)

from where we can see that this a(dCα , eβ) coefficient does not depend on D(κ).

• a(dCα , e
C
β )
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a(dCα , e
C
β ) =

1

M2
Λ3

(D†CD
†U∗C)α1(E†CB

†U∗C)β1

=
mU

1 e
i(κ1−ξ1)

M2
Λ3

25/2 v2
5

[
D†RMEDLD(η)V TCKM

]
α1

[
U†L

]
1β

=
mU

1 e
−iξ1

M2
Λ3

25/2 v2
5

[
D†RMEDLD(η)V TCKM

]
α1

[
V ∗CKMD(−η)D†L

]
1β

(5.112)

from where we can see that this a(dCα , e
C
β ) coefficient does not depend on D(κ). And, again, the important

and insightful result here is the relation between the two coefficients:

a(dCα , e
C
β ) =

mU
1

mE
β

· a(dCα , eβ)

23/2
(5.113)

• a(dα, dβ , νi)

a(dα, dβ , νi) =
1

M2
Λ3

(UT (A+AT )D)1α(DTCN)βi =
1

M2
Λ3

[
U†L

MU

2v5
D∗L

]
1α

[
DT ME√

2v5

N

]
βi

=
1

M2
Λ3

23/2 v2
5

[
Mdiag
U U†RD

∗
L

]
1α

[
D†LMEN

∗
]
βi

=
mU

1 e
−iξ1+iκ1

M2
Λ3

23/2 v2
5

[
VCKMD(η)

]
1α

[
D†LMEN

∗
]
βi

(5.114)

and the last one:

• a(dα, d
C
β , νi)

a(dα, d
C
β , νi) =

1

M2
Λ3

(D†CD
†U∗C)β1(DTCN)αi =

eiκ1−iξ1

M2
Λ3

2 v2
5

[
D†RMEDLD(η)V TCKM

]
β1

[
D†LMEN

∗
]
αi

(5.115)

In order to find decay width, for some decay channels we will need:

∑
i

a(dα, dβ , νi)a
∗(dγ , dδ, νi) =

mU2

1

M4
Λ3

23v4
5

·
[
VCKMD(η)

]
1α
·

·
[
V ∗CKMD(−η)

]
1γ

[
D†LM

2
EDL

]
βδ

(5.116)∑
i

a(dα, d
C
β , νi)a

∗(dγ , d
C
δ , νi) =

1

M4
Λ3

22v4
5

·
[
D†RMEDLD(η)V TCKM

]
β1
·

·
[
DT
RMED

∗
LD(−η)V †CKM

]
δ1

[
D†LM

2
EDL

]
αγ

(5.117)∑
i

a(dα, dβ , νi)a
∗(dγ , d

C
δ , νi) =

mU
1

M4
Λ3

25/2v4
5

·
[
D†LM

2
EDL

]
βγ
·

·
[
VCKMD(η)

]
1α

[
DT
RMED

∗
LD(−η)V †CKM

]
δ1

(5.118)
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After derivation of all the coefficients needed for expressions for decay widths, we can provide decay

widths formulae for each channel:

• p→ π+ν̄

Γ(p→ π+ν̄i) =
(m2

p −m2
π+)2

32πm3
p

·A2
L ·
∣∣ASRCνiRL〈π+|(du)RdL|p〉+ASLC

νi
LL〈π

+|(du)LdL|p〉
∣∣2 (5.119)

where, again, AL is a parameter for renormalization from electroweak scale to 1GeV. We furthermore use

the following notation CνiRL = a(d, dC , νi) ≡ a(d1, d
C
1 , νi) and CνiLL = a(d, d, νi) ≡ a(d1, d1, νi) and rely on

the identity:

〈π+|(du)ΓdL|p〉 =
√

2〈π0|(du)ΓuL|p〉 with Γ = L,R [71] (5.120)

In Eqs. (5.116) through (5.118) we have given the most general expressions for products of different

coefficients. We will also need the following specific contractions with α = β = γ = δ = 1 when we

discuss proton decays with anti-neutrinos in the final state:

∑
i

a(d1, d1, νi)a
∗(d1, d1, νi) =

mU2

1

M4
Λ3

23v4
5

·
∣∣∣[VCKM]11

∣∣∣2[D†LM2
EDL

]
11∑

i

a(d1, d
C
1 , νi)a

∗(d1, d
C
1 , νi) =

1

M4
Λ3

22v4
5

·
∣∣∣[D†RMEDLD(η)V †CKM

]
11

∣∣∣2 · [D†LM2
EDL

]
11∑

i

a(d1, d1, νi)a
∗(d1, d

C
1 , νi) =

mU
1

M4
Λ3

25/2v4
5

·
[
D†LM

2
EDL

]
11
·
[
VCKM

]
11

[
DT
RMED

∗
LD(−η)V †CKM

]
11

Common matrix element for all three above written expressions is
[
D†LM

2
EDL

]
11
. It can be developed

in the following manner:

[
D†LM

2
EDL

]
11

= [D†L]1im
E2

i [DL]i1 = mE2

i

∣∣∣[DL]i1

∣∣∣2 = m2
e

∣∣∣[DL]11

∣∣∣2 +m2
µ

∣∣∣[DL]21

∣∣∣2 +m2
τ

∣∣∣[DL]31

∣∣∣2 (5.121)

Now the final expression for decay width p→ π+ν̄ is of this form:

Γ(p→ π+ν̄) =
(m2

p −m2
π+)2

32πm3
p

·A2
L ·

[
D†LM

2
EDL

]
11

M4
Λ3

22v4
5

·

·

{
A2
SR〈π+|(du)RdL|p〉2 ·

∣∣∣[D†RMEDLD(η)V †CKM

]
11

∣∣∣2+

+ A2
SL〈π+|(du)LdL|p〉2 ·

mU2

1

2

∣∣∣[VCKM]11

∣∣∣2 + ASRASL 〈π+|(du)RdL|p〉 〈π+|(du)LdL|p〉 ·
mU

1√
2
·

· 2 Re
([
VCKM

]
11

[
DT
RMED

∗
LD(−η)V †CKM

]
11

)}
(5.122)

We will not write explicit expression for decay width of p → K+ν because it is quite lengthy. Since it
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relies on Eqs. (5.116)–(5.118) it is analogous to the form of Γ(p→ π+ν).

• p→ π0e+
i

For this channel, we need the following matrix elements:

〈π0|(du)RuL|p〉 =
α√
2f

(1 +D + F ) (5.123)

〈π0|(du)LdL|p〉 =
β√
2f

(1 +D + F ) (5.124)

where D, F , α and β are, once again, parameters in chiral Lagrangian [79, 71, 69].

Relevant Lagrangian for this process is [66]:

L ∝ CeiRLO
ei
RL + CeiLRO

ei
LR + CeiLLO

ei
LL + CeiRRO

ei
RR (5.125)

where operators are [66]:

OeiRL = εabc(dRa)C uRb (uLc)C eiL (5.126)

OeiLR = εabc(dLa)C uLb (uRc)C eiR (5.127)

OeiLL = εabc(dLa)C uLb (uLc)C eiL (5.128)

OeiRR = εabc(dRa)C uRb (uRc)C eiR (5.129)

and coefficients [66] can be expressed with chiral Lagrangian parameters:

C
′ei
RL = αCeiRL (5.130)

C
′ei
LL = βCeiLL (5.131)

C
′ei
LR = αCeiLR (5.132)

C
′ei
RR = βCeiRR (5.133)

Now, we will make a relation in notation between our coefficients and the ones above mentioned:

a(dCα , eβ)
∣∣∣
α=1

= C
eβ
RL (5.134)

a(dα, e
C
β )
∣∣∣
α=1

= C
eβ
LR (5.135)

a(dα, eβ)
∣∣∣
α=1

= C
eβ
LL (5.136)

a(dCα , e
C
β )
∣∣∣
α=1

= C
eβ
RR (5.137)
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Previously, we have derived the relation between these coefficients in Eqs. (5.110) and (5.113):

a(dCα , e
C
β ) = Hβa(dCα , eβ) (5.138)

a(dα, e
C
β ) = Hβa(dα, eβ) (5.139)

Hβ =
mU

1

mE
β

· 1

23/2
(5.140)

The decay width for this process now can be derived in the following way:

Γ(p→ e+
β π

0) =
(m2

p −m2
π0)2

32πm3
p

· 1

2f2
·
{∣∣∣αa(dC , eβ) + β a(d, eβ)

∣∣∣2+

+
∣∣∣αa(d, eCβ ) + β a(dC , eCβ )

∣∣∣2 · (1 +D + F )2

=
(m2

p −m2
π0)2

32πm3
p

·A2
L ·

{∣∣∣a(dC , eβ)ASR〈π0|(du)RuL|p〉+

+ a(d, eβ)ASL〈π0|(du)LuL|p〉
∣∣∣2 +

∣∣∣a(d, eCβ )ASL〈π0|(du)LuL|p〉+

+ a(dC , eCβ )ASR〈π0|(du)RuL|p〉
∣∣∣2} (5.141)

• p→ η0e+
i

Γ(p→ η0e+
i ) =

(m2
p −m2

η0)2

32πf2m3
p

· 3

2
·

{∣∣∣C ′eiLL(1− D

3
+ F ) + C

′ei
RL(−1

3
− D

3
+ F )

∣∣∣2+

+
∣∣∣C ′eiRR(1− D

3
+ F ) + C

′ei
LR(−1

3
− D

3
+ F )

∣∣∣2}

=
(m2

p −m2
η0)2

32πf2m3
p

· 3

2
·

·

{∣∣∣βC ′eiLL(3−D + 3F ) · 1

3
+ αC

′ei
RL(1 +D − 3F ) · (−1

3
)
∣∣∣2+

+
∣∣∣βC ′eiRR(3−D + 3F ) · 1

3
+ αC

′ei
LR(1 +D − 3F ) · (−1

3
)
∣∣∣2}

=
(m2

p −m2
η0)2

32πm3
p

·

{∣∣∣CeiLL 〈η|(ud)L uL|p〉+ CeiRL 〈η|(ud)R uL|p〉
∣∣∣2+

+
∣∣∣CeiRR 〈η|(ud)L uL|p〉+ CeiLR 〈η|(ud)R uL|p〉

∣∣∣2} (5.142)

We have used relations for matrix elements:

〈η|(ud)R uL|p〉 = − α√
2f

(1 +D − 3F ) and 〈η|(ud)L uL|p〉 =
β√
2f

(3−D + 3F ) (5.143)

• p→ K0e+
i
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Γ(p→ K0e+
i ) =

(m2
p −m2

K)2

32πf2m3
p

·

{
1

2

∣∣∣−C̃ ′eiRL + C̃
′ei
LL + C̃

′ei
LR − C̃

′ei
RR−

− mp

mB
(C̃
′ei
RL + C̃

′ei
LL − C̃

′ei
LR − C̃

′ei
RR)(D − F )

∣∣∣2+

+
1

2

∣∣∣−C̃ ′eiRL + C̃
′ei
LL − C̃

′ei
LR + C̃

′ei
RR −

mp

mB
(C̃
′ei
RL + C̃

′ei
LL + C̃

′ei
LR + C̃

′ei
RR)(D − F )

∣∣∣2}

=
(m2

p −m2
K)2

32πf2m3
p

·

{
1

2

∣∣∣∣∣C̃ ′eiRL
[
−1− mp

mB
(D − F )

]
+

+ C̃
′ei
LL

[
1− mp

mB
(D − F )

]
+ C̃

′ei
LR

[
1 +

mp

mB
(D − F )

]
+

+ C̃
′ei
RR

[
−1 +

mp

mB
(D − F )

]∣∣∣∣∣
2

+
1

2

∣∣∣∣∣C̃ ′eiRL
[
−1− mp

mB
(D − F )

]
+

+ C̃
′ei
LL

[
1− mp

mB
(D − F )

]
+ C̃

′ei
LR

[
−1− mp

mB
(D − F )

]
+

+ C̃
′ei
RR

[
1− mp

mB
(D − F )

]∣∣∣∣∣
2}

(5.144)

Knowing relations between coefficients [66] and chiral Lagrangian parameters α and β:

C
′ei
RL = αCeiRL (5.145)

C
′ei
LL = βCeiLL (5.146)

C
′ei
LR = αCeiLR (5.147)

C
′ei
RR = βCeiRR (5.148)

we can now write:

Γ(p→ K0e+
i ) =

(m2
p −m2

K)2

32πf2m3
p

·

{
1

2

∣∣∣∣∣αC̃eiRL
[
−1− mp

mB
(D − F )

]
+

+ βC̃eiLL

[
1− mp

mB
(D − F )

]
+ αC̃eiLR

[
1 +

mp

mB
(D − F )

]
+

+ βC̃eiRR

[
−1 +

mp

mB
(D − F )

]∣∣∣∣∣
2

+
1

2

∣∣∣∣∣αC̃eiRL
[
−1− mp

mB
(D − F )

]
+

+ βC̃eiLL

[
1− mp

mB
(D − F )

]
+ αC̃eiLR

[
−1− mp

mB
(D − F )

]
+

+ βC̃eiRR

[
1− mp

mB
(D − F )

]∣∣∣∣∣
2}

(5.149)

Having for matrix elements the following relations:

〈K0|(us)R uL|p〉 = −α
f

(
1 + (D − F )

mp

mB

)
(5.150)

〈K0|(us)L uL|p〉 =
β

f

(
1− (D − F )

mp

mB

)
(5.151)
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we can write:

Γ(p→ K0e+
i ) =

(m2
p −m2

K)2

64πf2m3
p

·

{∣∣∣∣∣C̃eiRL〈K0|(us)R uL|p〉+ C̃eiLL〈K
0|(us)L uL|p〉+

+ (−1)C̃eiLR〈K
0|(us)R uL|p〉+ (−1)C̃eiRR〈K

0|(us)L uL|p〉

∣∣∣∣∣
2

+

+

∣∣∣∣∣C̃eiRL〈K0|(us)R uL|p〉+ C̃eiLL〈K
0|(us)L uL|p〉+

+ C̃eiLR〈K
0|(us)R uL|p〉+ C̃eiRR〈K

0|(us)L uL|p〉

∣∣∣∣∣
2}

(5.152)

Before we conclude this section, we stress that all the relevant parameters that appear in decay widths

for two-body proton decays via gauge and scalar mediation are known within the model that will be

considered in Chapter 7 except for two particular phases.
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Chapter 6

Experiments

You’re never given a dream

without also being given the

power to make it true.

Richard Bach

In previous chapters, we have discussed proton decay within a specific grand unified model that is

based on SU(5) gauge group. The two-body decay processes in question occur with the exchange of

either scalar leptoquark or gauge bosons via dim-6 operators. The associated proton lifetime for gauge

mediation can be easily estimated on dimensional grounds to be:

τP ∝
M4
G

α2
Gm

5
p

(6.1)

where MG is mass of gauge boson, αG is gauge coupling constant at that scale and mp is proton mass.

The scalar mediated proton decay, on the other hand, is estimated to be:

τP ∝
M4
T

Y 4m5
p

(6.2)

where MT is mass of scalar leptoquark and Y is a generic coupling constant at that scale. Again, this

can be deduced from the diagrams presented in Figs. 5.1 and 5.2.

Within a well define GUT theory, partial proton lifetimes should be, in principle, completely calculable.

This implies that MG, MT , αG, and Y could be indirectly observed through these rare processes. It is

expected that MG and MT are associated with very high energy scales that cannot be accessed with

conventional methods. The only hope to probe these scales is with dedicated proton decay experiments.

Experimental searches for these illusive processes have started decades ago with projects and experiments

such as Kolar Gold Mine [80], NUSEX [81], Homestake [82], Frejus [83], Soudan [84], IMB [85] etc. Nice

feature of these experiments is their direct connection to neutrino physics. Nowdays, the experiment with
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greatest capacity to detect nucleon decay is Super-Kamiokande.

6.1 What do experiments look for?

The search for proton decay is primarily based on theoretical and numerical predictions about channel

dominance, because proton can hypothetically decay into two, three or more particles in different, kine-

matically allowed, ways. So, instead of looking and analyzing all potential decays such as p → K+ν,

p → K0e+, p → η0e+, p → π+ν, p → π0µ+, p → e+e+e− etc., experimental searches are in practice

focused on specific decays, the ones with best statistical chance to be detected with implemented detector

technology. For example, in minimal SU(5) GUT model [86], the dominant channel is p→ π0e+ and ring

imaging water Cherenkov detectors such as Super-Kamiokande have very high efficiency in identifying

both e+ and π0. The experimental signal would be manifestation of three rings of Cherenkov light, one

from positron and two from γ rays to which π0 would decay as shown in Fig. 6.1.

Figure 6.1: Experimental signature of p→ π0e+ decay process

Most of the models in literature list two dominant two-body decay channels that are p → π0e+ and

p → K+ν. These two have been accordingly searched for and analyzed in recent years within Super-

Kamiokande for different values of exposures λi, signal efficiencies ε̂i ±4εi , total backgrounds b̂i ±4bi

etc [87, 9]. Based on these results, proton partial decay widths have been calculated for different confidence

levels (95%, 90% C.L. etc.) [88]. Even though Super-Kamiokande can search for proton decay via both

channels, it shows less sensitivity for p → K+ν mode. It is a water-based Cherenkov detector with a

fiducial mass greater than 20 ktons. However, K+ particle is produced below its Cherenkov threshold in

water, therefore it can be detected only indirectly via its decay particles.

82



6.1. WHAT DO EXPERIMENTS LOOK FOR?

Current lower limits of Super-Kamiokande of proton partial lifetimes for these two channels are [88]:

τp/Br(p→ K+ν) >



5.1× 1033 years at 95 % C.L.,

6.6× 1033 years at 90 % C.L.,

1.3× 1034 years at 68 % C.L.,

2.2× 1034 years at 50 % C.L.,

(6.3)

and

τp/Br(p→ π0e+) >



1.9× 1034 years at 95 % C.L.,

2.4× 1034 years at 90 % C.L.,

4.9× 1034 years at 68 % C.L.,

8.1× 1034 years at 50 % C.L..

(6.4)

There are eight ways that proton can decay into mesons and anti-leptons and we will analyze all of

these eight channels utilizing experimental limits presented in Table 6.1 whenever we conduct numerical

analysis in this thesis.

Table 6.1: Experimental lower bounds on partial proton decay lifetimes at 90% C.L.

PROTON DECAY CHANNELS Proton lifetime bound at 90% C.L.

p→ π0e+ 2.4× 1034 years [9]

p→ π0µ+ 1.6× 1034 years [9]

p→ π+ν 3.9× 1032 years [89]

p→ η0e+ 1.0× 1034 years [90]

p→ η0µ+ 4.7× 1033 years [90]

p→ K0e+ 1.1× 1033 years [90]

p→ K0µ+ 3.5× 1033 years [13]

p→ K+ν 6.6× 1033 years [89]
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6.2 Future experiments

There are four major planned experiments [91] that are highly promising when it comes to improving

limits on proton lifetimes:

• DUNE - 68 kton liquid argon detector located in llinois and South Dakota, USA;

• ESSNUSB - 0.5 Mton water-Cherenkov detector in Sweden;

• Hyper-Kamiokande - 188 kton water-Cherenkov detector in Gifu, Japan;

• JUNO - 20 kton liquid scintillator detector located in Jiangmen, China.

6.2.1 DUNE [92, 93]

DUNE stands for Deep Underground Neutrino Experiment. It is located in USA, at two locations: Fer-

milab, near Chicago, and SURF, in South Dakota. This is a project aiming to study in detail neutrino

oscillations including CP violation in neutrino sector, neutrino mass hierarchy, but it will also look for a

proton decay processes. It is expected to start in 2026 and to collect data in next decade or more. There

are two detectors that will be positioned on the path of neutrino beam provided by the Long-Baseline

Neutrino Facility. This experiment is specific due to use of liquid argon technology (LAr). With this

technology, it will be possible to reconstruct events and particle types with great precision and accuracy

in time-projection chambers (TPCs). However, this type of construction and technology would not be

able to compete with water-based Cherenkov detector experiments when it comes to p → π0e+ decay

mode. Maximum detection efficiency is expected to be 40% to 45%. On the other hand, there is 97%

efficiency for decay mode p→ K+ν. This is due to specific analysis of energy loss profile of K+ particles.

6.2.2 ESSnuSB [94, 95, 96]

ESSnuSB stands for European Spallation Source Neutrino Super Beam. It is based on the European

Spallation Source (ESS) currently under construction at Lund in Sweden. Construction of the facility

and commissioning should take place in the period 2027–2034. In 2035 data taking should begin.

It is focused on lepton sector, namely on the precise measurements of CP violation parameters. It

will investigate the difference in the neutrino oscillation probabilities. Both neutrino and anti-neutrino

oscillations will be analyzed, muon neutrino to electron neutrino and electron anti-neutrino to muon

anti-neutrino. ESS linear accelerator is responsible for production of very intense neutrino beam that

reduces systematic errors. This would be possible thanks to the observation of the neutrino oscillations

at the second oscillation maximum. The linac pulse frequency would be doubled from 14 Hz to 28 Hz,
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once finished. Beside this, there are two detectors in construction plan. One would be near-detector,

close to the ESS accelerator and other would be far-detector, many kilometers away from linac.

The neutrino beam will be sent to the water-Cherenkov detector. This technology would take a step

forward into investigating open questions in leptonic sector such as the mass ordering and the mat-

ter/antimatter asymmetry. Beside this, there will be complementary research conducted in a domain of

fundamental physics, in particular proton decay.

6.2.3 Hyper-Kamiokande [97, 98]

Hyper-Kamiokande is an experiment that is to surpass Super-Kamiokande with its resources, research

capabilities and expectations. It can be considered as a successor to Super-Kamiokande. It will be lo-

cated, once built, on the site of the Kamioka Observatory, near Kamioka, in Japan. There will be a far

detector with a long baseline neutrino experiment for the J-PARC neutrino beam. This experiment will

be using ultra pure water, billions of litres, with volume 20 times larger than one currently used in Super-

Kamiokande. Beside its main purpose of investigation — CP violation — other physics questions will be

analyzed and researched for answers such as proton decay, atmospheric neutrinos, as well as neutrinos

from astronomical sources. When it comes to proton decay, Super-Kamiokande had set lower limit for

proton lifetime to be around 1034 years, and Hyper-Kamiokande is aiming to set lower limit to be around

1035 years.

6.2.4 JUNO [99, 100, 101]

JUNO stands for Jiangmen Underground Neutrino Observatory. It is located in China, and represents

an enormous experiment with vast variety of goals. Mainly, it is aiming to detect anti-neutrinos from

reactors. The purpose is to investigate and analyze neutrino oscillations. It is based on dual-calorimetry

technique. This is something relatively new in experimental and applied physics, with the two indepen-

dent photosensor systems. Beside focus on research on neutrino mass hierarchy, this experiment will be

looking into proton decay, astroparticle sources, and rare processes.

6.3 Future expectations

With more investments in experimental development, upgrades in detector technologies, resources, and

experimental facilities, it will be possible to achieve better sensitivity and produce more stringent con-

straints on proton partial lifetimes. We present current bounds on partial proton lifetimes and future
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Table 6.2: Future expectations for a ten-year period of data taking

decay channel current bound τp [years] future sensitivity τp [years]

p→ π0e+ 2.4× 1034 [9] 7.8× 1034 [10]

p→ π0µ+ 1.6× 1034 [9] 7.7× 1034 [10]

p→ η0e+ 1.0× 1034 [11] 4.3× 1034 [10]

p→ η0µ+ 4.7× 1033 [11] 4.9× 1034 [10]

p→ K0e+ 1.1× 1033 [12] -

p→ K0µ+ 3.6× 1033 [13] -

p→ π+ν 3.9× 1032 [14] -

p→ K+ν 6.6× 1033 [15] 9.6× 1033 [16] & 3.2× 1034 [10]

sensitivities where available, in Table 6.2 [90].
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Chapter 7

Specific SU(5) Model

All matter originates and exists

only by virtue of a force which

brings the particle of an atom to

vibration and holds this most

minute solar system of the atom

together. We must assume behind

this force the existence of a

conscious and intelligent mind.

This mind is the matrix of all

matter.

Max Planck

In Chapter 4 we have presented beautiful features and issues emerging from Georgi-Glashow SU(5)

model. The most prominent difficulties of Georgi-Glashow model are mass degeneracy problem, lack of

neutrino masses, and an inability to unify gauge couplings. Since it is the simplest gauge group that could

have explained the unification, particle physicists often tend to recur to its origins, if not for solution,

then for an inspiration.

In this thesis, we want to present a new and somewhat specific and indeed unique SU(5) [7, 74] model

that eliminates problems encountered in Georgi-Glashow model. The predictivity of this novel proposal

has been discussed in Ref. [7] whereas the viability of parameter space of the model has been studied in

Ref. [74].
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7.1 The model description

7.1.1 Particle content and notation

The model is built on eight representations: 5H , 24H , 35H , 5̄Fi, 10Fi, 15F , 15F , and 24V . The subscripts

stand for scalars (H), fermions (F) and gauge bosons (V), while index i stands for number of generations

(i = 1, 2, 3). The particle content of the model, except for the gauge fields from 24V , is summarized in

Table 7.1.

Table 7.1: Particle content of a specific SU(5) model and associated β-function coefficients

Type of SU(5) Standard Model β-function coefficients

representations state (SU(3), SU(2), U(1)) (b3, b2, b1)

scalar

5H ≡ Λ
Λ1

(
1, 2, 1

2

) (
0, 1

6 ,
1
10

)
Λ3

(
3, 1− 1

3

) (
1
6 , 0,

1
15

)

24H ≡ φ

φ0 (0, 0, 0) (0, 0, 0)

φ1 (1, 3, 0)
(
0, 1

3 , 0
)

φ3

(
3, 2,− 5

6

) (
1
6 ,

1
4 ,

5
12

)
φ3

(
3, 2, 5

6

) (
1
6 ,

1
4 ,

5
12

)
φ8 (8, 1, 0)

(
1
2 , 0, 0

)

35H ≡ Φ

Φ1

(
1, 4,− 3

2

) (
0, 5

3 ,
9
5

)
Φ3

(
3, 3,− 2

3

) (
1
2 , 2,

4
5

)
Φ6

(
6, 2, 1

6

) (
5
3 , 1,

1
15

)
Φ10

(
10, 1, 1

) (
5
2 , 0, 2

)

fermion

5Fi ≡ Fi
Li
(
1, 2,− 1

2

) (
0, 1, 3

5

)
dCi
(
3, 1, 1

3

) (
1, 0, 2

5

)

10Fi ≡ Ti

Qi
(
3, 2, 1

6

) (
2, 3, 1

5

)
uCi
(
3, 1,− 2

3

) (
1, 0, 8

5

)
eCi (1, 1, 1)

(
0, 0, 6

5

)

15F ≡ Σ

Σ1 (1, 3, 1)
(
0, 4

3 ,
6
5

)
Σ3

(
3, 2, 1

6

) (
2
3 , 1,

1
15

)
Σ6

(
6, 1,− 2

3

) (
5
3 , 0,

16
15

)

15F ≡ Σ

Σ1 (1, 3,−1)
(
0, 4

3 ,
6
5

)
Σ3

(
3, 2,− 1

6

) (
2
3 , 1,

1
15

)
Σ6

(
6, 1, 2

3

) (
5
3 , 0,

16
15

)
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There are couple of specific predictions of this model. Neutrinos are Majorana particles with mass

ordering corresponding to the normal hierarchy. And, one of the neutrinos is massless particle. Also,

the model provides firm predictions for partial proton decay lifetimes thus establishing the link between

experimental bounds on matter stability and a lower bound on the associated mass scales of new physics.

This will be explained in detail later on.

The Lagrangian of the model, with the exception of kinetic terms, is:

L ⊃

{
+Y uij T

αβ
i T γδj Λρεαβγδρ + Y dij T

αβ
i FαjΛ

∗
β + Y ai ΣαβFαiΛ

∗
β + Y bi ΣβγFαiΦ

∗αβγ

+ Y ci T
αβ
i Σβγφ

γ
α + h.c.

}
+MΣΣαβΣαβ + yΣαβΣβγφαγ−

− µ2
Λ(Λ∗αΛα) + λΛ

0 (Λ∗αΛα)2 + µ1Λ∗αΛβφαβ + λΛ
1 (Λ∗αΛα)(φβγφ

γ
β) + λΛ

2 Λ∗αΛβφγβφ
α
γ−

− µ2
φ(φβγφ

γ
β) + µ2φ

α
βφ

β
γφ

γ
α + λφ0 (φβγφ

γ
β)2 + λφ1 φ

α
βφ

β
γφ

γ
δφ

δ
α + µ2

Φ (Φ∗αβγΦαβγ)+

+ λΦ
0 Φ∗αβγΦαβγ(Λ∗ρΛ

ρ) + λ
′′

0 Φ∗αβγΦβγδΛ
δΛ∗α + µ3Φ∗αβγΦβγδφ

δ
α+

+ λ1 Φ∗αβγΦαδρφ
δ
βφ

ρ
γ + λ2 Φ∗αβρΦαβδφ

γ
ρφ

δ
γ +

{
λ
′
ΛαΛβΛγΦαβγ + h.c.

}
(7.1)

In comparison with the original Georgi-Glashow model, this model is extended with one additional

scalar representation 35H and an additional vector-like fermion generation represented with 15F and

15F . These additions are important in order to create an experimentally observed mismatch between

the masses of the down-type quarks and charged leptons, generate realistic neutrino masses, and provide

gauge coupling unification.

7.1.2 Symmetry breaking and unification

Since this proposal is an extension of Georgi-Glashow model, the symmetry breaking happens in the same

way: SU(5)→ SU(3)× SU(2)× U(1)→ SU(3)× U(1)em. The relevant VEVs are:

〈24H〉 =
v24√

15



1

1

1

− 3
2

− 3
2


(7.2)

and
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〈5H〉 =



0

0

0

0

v5


(7.3)

where v5 = 174.104GeV is the Standard Model VEV.

Since there are two stages in symmetry breaking process, we have two VEVs at two different energy

scales. However, before we explicitly break SU(5) symmetry, associated representations can be freely

rotated. We do that to make adequate choice of basis for parameter counting and subsequent numerical

analysis. In particular, we go into basis where Y d is a diagonal matrix.

Particle content is specified in Table 7.1 from where we can outline some states that are a priori not

known, and by unknown, we mean their masses, that are crucial part of the gauge coupling unification

analysis of this specific model. Those are Φ1, Φ3, Φ6, Φ10 ∈ 35H , Σ1, Σ3, Σ6 ∈ 15F , φ1, φ8 ∈ 24H , and

Λ3 ∈ 5H .

In the process of SU(5) symmetry breaking, scalar fields φ3 and φ3 play a key role because they yield

necessary degrees of freedom to the proton mediating gauge bosons in 24V . Another information that

comes out of symmetry breaking is information on mass relations. In subsection 7.1.1 we have introduced

vector-like fermions 15F and 15F . The relevant Standard Model multiplets in 15F and 15F are denoted

with Σ1, Σ3, and Σ6. The masses of these multiplets are generated by the last two terms in the second

line of Eq. (7.1) from where we get the following mass relation:

MΣ6 = 2MΣ3 −MΣ1 (7.4)

Similar situation happens with states in 35H . There are four Standard Model multiplets in this

representation, but only three linearly independent contractions in Eq. (7.1) that generate their masses

from where one can deduce that:

M2
Φ10

= M2
Φ1
− 3M2

Φ3
+ 3M2

Φ6
(7.5)

The gauge coupling analysis shows that Φ1 needs to be very heavy (MΦ1 � v5). Other two states Φ3

and Φ6 tend to be light when the unification scale MGUT is large enough to be compatible with proton
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decay constraints. This implies, using Eq. (7.5), that Φ10 and Φ1 are both heavy and of the same mass,

from where it follows that the states Φ3 and Φ6 are both light and mass degenerate in a viable parameter

space. Now, having initially started with four different states in Eq. (7.5), we finally have only two mass

scales in 35H . Following this analysis, we come to one more degeneracy among masses. Namely, the fields

Σ1, Σ3 and Σ6 turn out to be mass degenerate with masses MΣ1
,MΣ3

,MΣ6
� v5. This happens in this

model where neutrinos have masses and unification is achievable. As with the previous set of fields, we

again reduce mass scales from three to one in case of vector-like fermions in 15F and 15F . Consequently,

a single mass scale in vector like fermions’ sector does not affect MGUT but rather the value of αGUT.

Figure 7.1: Simplified graphical representation of spontaneous symmetry breaking in SU(5)

Finally, we have six relevant mass scales governing the gauge coupling unification: one originates from

5H (Λ3), two from 24H (φ1 and φ8), two from 35H , and one from 15F and 15F . It is important to stress

that mass of Λ3 needs to be quite large, MΛ3 ≥ 3× 1011 GeV, so that proton does not decay rapidly via

scalar leptoquark mediation [102].

7.1.3 Mass generation mechanism

Neutrino masses

Neutrinos can either be Majorana or Dirac particles [103]. However, in our model, neutrinos are purely

Majorana particles. Since neutrinos reside in 5Fi of SU(5), or, more precisely, in doublet Li when

represented in terms of the Standard Model multiplets, the leading order contribution for generating

their mass via dim-5 operator at the one-loop level [104, 105] is shown in Fig. 7.2 [74].

It is clear that the state Λ1(1, 2, 1/2) as well as its VEV 〈5H〉 ≡ 〈Λ1(1, 2, 1/2)〉 are necessary for the

process of neutrino mass generation. Since we have quartic scalar coupling vertex with three Λ states and
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15F 15F 5F j5F i

35H5H

5H5H

Yi
a Yj

b

λ′
**

**

Σ1 Σ1 L jL i

Φ1Λ1

Λ1Λ1

Yi
a Yj

b

λ′
**

**

Figure 7.2: The Feynman diagrams of the leading order contribution towards Majorana neutrino masses
at the SU(5) (left panel) and the Standard Model (right panel) levels.

one Φ state, it follows that the relevant contraction here is the last term λ
′
ΛαΛβΛγΦαβγ in Eq. (7.1).

Due to the experimentally observed mismatch between the charged leptons and down-type quarks,

we need vector-like fermions in 15F and 15F to address this issue. It is a physical mixing between the

vector-like fermions and ordinary fermions from 10Fi that yields the mismatch. The consequences for

the charged fermion masses of this particular type of mixing have been previously analyzed within the

grand unified model based on SU(5) and supersymmetry [106]. One can notice from Table 7.1 that

quark doublets Qi ∈ 10Fi and a multiplet Σ3 ∈ 15F transform in the same manner under the Standard

Model. This is the reason why these states interact at the SU(5) symmetry breaking level. We can again

recognize the relevant mixing term from Eq. (7.1) with specific coefficient values:

L ⊃ 1

4

√
10

3
v24 Y

C
i Qi Σ3 (7.6)

where v24 is VEV defined in Eq. (7.2). It is precisely this VEV of 24H that helps create the mismatch

between the masses of the charged leptons and the down-type quarks.

The neutrino mass matrix elements, when MΣ1 , MΦ1 � v5, would be:

(MN )ij ≈
λ′v2

5

8π2
(Y ai Y

b
j + Y bi Y

a
j )

MΣ1

M2
Σ1
−M2

Φ1

ln

(
M2

Σ1

M2
Φ1

)
= m0(Y ai Y

b
j + Y bi Y

a
j ) . (7.7)

The neutrino mass matrix MN is composed out of two matrices with elements Y ai Y bj and Y bi Y aj . Other

contributions for MN are proportional to sum of Y ai Y bj and Y bi Y aj as well. Nonetheless, it is important

to say that these additional contributions are suppressed and therefore irrelevant. Now, based on this

information, it is certain that one of the neutrinos must be massless. There is a requirement for neutrino

mass scale:

m0 ≥
√

∆m2
31

2
(7.8)

where ∆m2
31 is the largest among two neutrino mass squared differences that are known from experi-

ment [107, 108, 109].
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Since in our model one of neutrinos is massless we can set m1 = 0 and hence the neutrino matrix

eleements are:

(MN )ij = m0

(
Y ai Y

b
j + Y bi Y

a
j

)
= (N diag(0,m2,m3) NT )ij , (7.9)

where N is unitary matrix and m2 and m3 are neutrino mass eigenstates. Unitary matrix N reads:

N =


eiγ1 0

0 eiγ2 0

0 0 eiγ3

V ∗PMNS, (7.10)

due to the fact that we are in the basis with charged leptons being in mass eigenstate basis. Here

VPMNS is the Pontecorvo-Maki-Nakagawa-Sakata unitary mixing matrix with three mixing angles, two

Majorana phases, and one CP violating Dirac phase. With inversion of Eq. (7.9) in order to start from

the generalized master formula for Majorana neutrinos:

f(yT1 My2 + yT2 M
T y1) = UTmU (7.11)

and using results in Refs. [110, 111], one can obtain from the normal ordering the following expressions

for Y aT and Y bT :

Y a T =
1

ρ
√

2


i r2 N12 + r3 N13

i r2 N22 + r3 N23

i r2 N32 + r3 N33

 , Y b T =
ρ√
2


−i r2 N12 + r3 N13

−i r2 N22 + r3 N23

−i r2 N32 + r3 N33

 , (7.12)

where r2 =
√
m2/m0 and r3 =

√
m3/m0. Note that there is an unknown parameter ρ in Eq. (7.12) that

accounts for the fact that the matrix elements of Y a and Y b are always featured as products in Eq. (7.9).

Since VPMNS has three phases (one CP violation Dirac phase and two Majorana phases), N matrix has

overall six phases. Besides three from VPMNS there are three more from Eq. (7.10) γ1, γ2, and γ3. Hence

in Eq. (7.12) we have six arbitrary phases. This is consistent with the process of trading the six real

parameters from Y a and Y b for three PMNS angles and three neutrino masses in procedure of inversion.

Charged fermion masses

We have already mentioned that in order to produce experimentally observed difference between masses

of charged leptons and the down-type quarks, we need vector-like fermions in 15F and 15F . It is the

physical mixing between the vector-like fermions and ordinary fermions from 10Fi that yields the required

mismatch. The mixing is allowed since quark doublets Qi ∈ 10Fi and a multiplet Σ3 ∈ 15F transform in
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the same manner under the Standard Model as one can notice from Table 7.1. Again, the consequences

for the charged fermion masses of this particular type of mixing have been previously analyzed within

the grand unified model based on supersymmetric SU(5) [106].

Since symmetry breaking happens at two scales, first one taking place at MGUT and second one

at electroweak scale, there are additional mixing terms at the electroweak level between the vector-like

fermions 15F and 15F , and other fermions in 5Fi and 10Fi . This occurs every time when these different

fermions tranform the same way under SU(3)× U(1)em with induced terms being proportional to v5.

Table 7.2: Decomposition of SU(5) states under SU(3)× U(1)em

SU(5) states decomposition SU(3) U(1)em

Qi
ui 3 2

3

di 3 − 1
3

Li
ei 1 −1

νi 1 0

Σ3

Σu 3 2
3

Σd 3 − 1
3

Σ1

Σν 1 0

Σe
C

1 1

Σe
CeC 1 2

The states from SU(5) that emerge with same transformation under SU(3) × U(1)em are given in

Table 7.2. From this second stage of symmetry breaking we have the following mass terms for charged

fermions:

L ⊃
(
ui Σu

)4v5(Y uij + Y uji)
1
4

√
10
3 v24Y

c
i

0 MΣ3


uCj

Σ
u

 (7.13)

+

(
di Σd

)v5Y
d
ij

1
4

√
10
3 v24Y

c
i

v5Y
a
j MΣ3


dCj

Σ
d

+

(
ei Σ

eC
)v5Y

d
ji v5Y

a
i

0 MΣ1


 eCj

Σe
C

 .

In order to generate neutrino masses along with the gauge coupling unification, we find some limits

and requirements for certain states. Namely, states Σu,d,e
C

need to be very heavy with the limit that

v24Y
c,MΣ1

,MΣ3
� v5. Now, the mass matrices for charged fermions are:
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MU =
(
1 + δ′2 Y cY c†

)− 1
2

4v5(Y u + Y uT ), (7.14)

MD =
(
1 + δ′2 Y cY c†

)− 1
2

v5

(
Y d + δ′ Y cY a

)
, (7.15)

ME = v5Y
d T , (7.16)

where MU , MD, and ME stand for up-type quarks, down-type quarks and charged leptons, respectively.

Parameter δ′ ≡
√

10/3v24/(4MΣ3
) is a dimensionless parameter and I is the 3×3 identity matrix. In our

model, in our specific space we analyze, contributions proportional to δ′2 Y cY c† are completely negligible

and Eqs. (7.14), (7.15), and (7.16) become:

MU = 4v5(Y u + Y uT ) , (7.17)

MD = v5

(
Y d + δ′ Y cY a

)
, (7.18)

ME = v5Y
d T . (7.19)

Masses of vector-like fermions are not changed in interaction with the Standard Model fermions and they

are:

MΣu = MΣd = MΣ3

(
1 + δ′2 Y c†Y c

) 1
2 ≈MΣ3 , MΣeC = MΣeCeC = MΣν = MΣ1

. (7.20)

To summarize, the extension of Georgi-Glashow SU(5) model with one vector-like set of fermions in

15F and 15F and one scalar representation 35H accomplishes the following:

• generates two neutrino masses;

• creates viable mismatch between the down-type quark and charged lepton masses;

• provides gauge coupling unification.
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Chapter 8

Correlation between proton decay

signatures

Science cannot solve the ultimate

mystery of nature. And that is

because, in the last analysis, we

ourselves are a part of the

mystery that we are trying to

solve.

Max Planck

In previous chapters, we have laid down the theoretical groundwork for our specific SU(5) model.

We have introduced the model and explored it in detail – the particle content, symmetry breaking

procedure, the process of generating fermion and scalar masses etc. Now, it is time to check the validity

of our model and present the correlation between proton decay signatures via gauge boson and scalar

leptoquark mediations. We will conduct the numerical analysis in four stages. We will first generate

viable gauge coupling unification points. We will follow this up with running of Yukawa couplings at the

one-loop level for those points. These two steps will be subsequently followed by numerical fit of fermion

masses, and, finally, extraction of proton decay signatures that we are after.

8.1 Numerical Analysis

8.1.1 Gauge coupling unification generation

In Chapter 7, in Section 7.1.1, we have outlined that some states, with a priori unknown masses, are

crucial for the gauge coupling unification analysis in our SU(5) model. Those states are Φ1, Φ3, Φ6,
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Φ10 ∈ 35H , Σ1, Σ3, Σ6 ∈ 15F , φ1, φ8 ∈ 24H , and Λ3 ∈ 5H . Since the neutrino mass scale depends

only on masses of two fields — Σ1 and Φ1 — we will present viable parameter space in the MΦ1
-MΣ1

plane. It is important to stress that in order for Yukawa couplings Y ai and Y bi to remain perturbative,

m0 parameter that appears as a prefactor in neutrino mass relation given in Eq. (7.7) needs to exceed

certain value. This value practically corresponds to the mass of the heaviest neutrino in the normal

hierarchy case since our model predicts one neutrino to be massless. Once gauge coupling unification is

achieved, the mass spectra of all the abovementioned fields are known, including the masses of proton

decay mediating gauge bosons as well as the parameters MGUT and αGUT. These mass spectra will be

used to run Yukawa couplings of the Standard Model charged fermions to MGUT, where the numerical

fermion mass fit will be performed and extraction of unitary matrices that take fermions from flavor into

mass eigenstate basis accomplished.

During this first stage of numerical analysis, we need to implement several constraints discussed in

Chapter 7 such as mass relations between states in 35H and 15F . Another constraint would be to impose

a lower mass limit for triplet Λ3 from 5H to be approximately 1012 GeV [102]. Our analysis of proton

decay signatures will eventually yield correct bound on MΛ3 .

Our aim here is to find the maximum possible unification scale MGUT for fixed MΦ1 and MΣ1 values

and associated mass spectra of all other fields. To accomplish maximization, we set a lower limit on

the masses of new physics’ states. We do this by introducing a scale M ≡ min(MJ), that represents

the lowest possible mass in the theory of the fields beyond the Standard Model content, where J =

Φ1,Φ3,Φ6,Φ10,Σ1,Σ3,Σ6, φ1, φ8,Λ3. We will consider three distinct cases for which we will present and

discuss the results. These are scenarios with M ≥ 1TeV, M ≥ 10TeV, and M ≥ 100TeV.

Three gauge coupling constants are α1, α2, and α3, where first two are associated with electroweak

interactions and the third with strong force. The one-loop level running can be summarized as:

αi(MGUT) = αi(MZ) + bi ln
MGUT

MZ
(8.1)

where bi, in this case, would be coefficients of the Standard Model particle content. However, if we go,

as we will do, from MZ to MGUT through several intermediate mass scales or, in other words, through

MJ
′s, we can write:

αi(MGUT) = αi(MZ) +
∑
J

bJi ln
MGUT

MJ
. (8.2)

Now, for each of three gauge coupling constants we can write:

α1(MGUT) = α1(MZ) +
∑
J

bJ1 ln
MGUT

MJ
, (8.3)
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α2(MGUT) = α2(MZ) +
∑
J

bJ2 ln
MGUT

MJ
, (8.4)

α3(MGUT) = α3(MZ) +
∑
J

bJ3 ln
MGUT

MJ
. (8.5)

With the assumption that these three couplings will meet at the GUT scale, meaning that all three

at that energy scale have the same value, we can subtract one from other in order to get the difference

between the two at MZ scale. For example, if we do this for Eqs. (8.4) and (8.5), we obtain:

0 = α3(MZ)− α2(MZ) +
∑
J

(bJ3 − bJ2 ) ln
MGUT

MJ

α3(MZ)− α2(MZ) =
∑
J

(bJ2 − bJ3 ) ln
MGUT

MJ(
α3(MZ)− α2(MZ)

)
ln

MZ

MGUT
=
∑
J

(bJ2 − bJ3 )
ln MGUT

MJ

ln MGUT

MZ

= B23 (8.6)

Analogously, if we subtract Eq. (8.3) from Eq. (8.4) we have:

0 = α2(MZ)− α1(MZ) +
∑
J

(bJ2 − bJ1 ) ln
MGUT

MJ

α2(MZ)− α1(MZ) =
∑
J

(bJ1 − bJ2 ) ln
MGUT

MJ(
α2(MZ)− α1(MZ)

)
ln

MZ

MGUT
=
∑
J

(bJ1 − bJ2 )
ln MGUT

MJ

ln MGUT

MZ

= B12 (8.7)

where we define coefficients Bij as:

Bij =
∑
J

(bJi − bJj )rJ . (8.8)

Again, coefficients bJi are the β-function coefficients of a specific particle J with mass MJ and rJ =

ln(MGUT/MJ)/ ln(MGUT/MZ). The relevant bJi (i = 1, 2, 3) are given in Table (7.1).

Eqs. (8.6) and (8.7) yield the following two identities [112] that imply successful unification if simul-

taneously satisfied:

B23

B12
=

5

8

sin2 θW − α(MZ)/αS(MZ)

3/8− sin2 θW
, (8.9)

ln
MGUT

MZ
=

16π

5α(MZ)

3/8− sin2 θW
B12

. (8.10)

It is these equations that we need to solve for maximum possible value ofMGUT by varying parameters
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rJ . Before we start to vary MJ
′s, there are three constraints we already mentioned, that one needs to

pay attention to. Again, first one comes from symmetry breaking in SU(5), regarding 15F , whose three

Standard Model multiplets need to satisfy mass relation:

MΣ6
= 2MΣ3

−MΣ1
. (8.11)

If one assumes that all the masses in Eq. (8.11) are positive, it is easy to show that these three

masses are practically degenerate and thus converge to single mass scale when it comes to gauge coupling

unification analysis. This is the scenario that we will investigate. Note, however, that there is a possibility

that these masses could take negative values, which actually can open up an additional parameter space

that we will not cover in this thesis. That would correspond to the scenario with degenerate Σ6 and Σ1

fields and light Σ3. Second constraint refers to Eq. (7.5) where, again, we have degenerate heavy masses

of Φ1 and Φ10 and degenerate light masses of Φ3 and Φ6. Basically, there are thus only two mass scales

for states in 35H . Third constraint would refer to Λ3, whose mass value we preliminary set to be at least

1012 GeV and vary it afterwards throughout the numerical analysis.

Once we implement these conditions, we can present available parameter space in two-dimensional

plane spanned by masses of Φ1 and Σ1 due to the fact that neutrino mass spectrum depends on it via

m0 in Eq. (7.7).

Maximization of MGUT value is accomplished via Eqs. (8.9) and (8.10), using Wolfram System

Modeler, Mathematica [113]. To obtain unification points, we use MZ = 91.1876GeV, αS(MZ) =

0.1193 ± 0.0016, α−1(MZ) = 127.906 ± 0.019, and sin2 θW = 0.23126 ± 0.00005 as our input param-

eters [114]. We present, as an example, in Fig. 8.1 obtained mass spectra and αGUT for three specific

points A (M ≥ 1TeV), A′ (M ≥ 10TeV), and A′′ (M ≥ 100TeV), where MΦ1
= MΣ1

= 1013.19 GeV.

In order to explain viable neutrino mass spectrum with perturbative couplings, we need to find ap-

propriate part of space where this is possible. Therefore, we set λ′ from Eq. (7.7) to be 1 in order

to generate the curve of constant m0 assuming that entries in matrices Y a and Y b cannot exceed one.

More specifically, we vary MΦ1
, MΣ1

, and six phases from Eq. (7.12) to find a region where the prod-

uct max(|Y ai |) max(|Y bj |), i, j = 1, 2, 3, takes value of one at most. Parameter space where product

max(|Y ai |) max(|Y bj |), i, j = 1, 2, 3, is greater than 1 is excluded since there is no viable neutrino mass

spectrum with perturbative couplings in that case.

Potentially viable parameter space to address neutrino mass can alternatively be found in the following

way. From Eq. (7.7), we can write:

λ′v2
5

8π2

MΣ1

M2
Σ1
−M2

Φ1

ln

(
M2

Σ1

M2
Φ1

)
= m0 (8.12)

where for our analysis we take λ′ = 1, v5 = 174GeV. We can separately consider two cases, one for
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mΣ1
6= mΦ1

when:

m0 =
v2

5

8π2

MΣ1

M2
Σ1
−M2

Φ1

ln

(
M2

Σ1

M2
Φ1

)
(8.13)

and second one when MΣ1
= MΦ1

where we take logarithmic series expansion expression:

ln

(
M2

Σ1

M2
Φ1

)
= 2 ln

(
MΣ1

MΦ1

)
= 2 ln

(
MΣ1

MΦ1

− 1 + 1

)
= 2 ln

(
MΣ1 −MΦ1

MΦ1

+ 1

)
= 2

MΣ1
−MΦ1

MΦ1

− · · · (8.14)

to have:

m0 =
v2

5

4π2

MΣ1

M2
Σ1
−M2

Φ1

· MΣ1
−MΦ1

MΦ1

. (8.15)

Expressions (8.13) and (8.15) allow us to obtain viable coordinates with respect to the neutrino mass

generation, within MΦ1
-MΣ1

plane via requirement that

m0 ≥
√

∆m2
31

2
, (8.16)

where m0 is given in Eqs. (8.15) and (8.13), and ∆m2
31 ' 2.5× 10−3 eV2 [115].

Since states in 15F and 15F are all degenerate in mass, this means that change in mass of state Σ1

does not effect the value MGUT. In other words, MGUT is constant for constant value of Φ1 mass. On

the other hand, αGUT decreases for the fixed value of MΦ1
with the increase of MΣ1

. From this one can

conclude that proton decay bound via gauge boson mediation in this model is more rigorous and strict

as mΣ1 decreases.

8.1.2 Yukawa coupling RGE running

The next step is to run the masses and mixing parameters of the Standard Model charged fermions to

the GUT scale using exact mass spectra that maximize MGUT. We have checked that the running of the

neutrino observables gives negligable change, therefore we take their low-scale values instead to save on

the computing time. Input data for RGE running is presented in Table 8.1.

We perform RGE running for each individual point of otherwise viable parameter space in MΦ1
-MΣ1

plane. In Fig. 8.3 we present the viable parameter space in the plane spanned by Φ1 and Σ1 masses,

since these are the only relevant parameters for neutrino mass scale. Values for MΦ1 and MΣ1 are taken

to go from 1010 GeV to 1013.5 GeV and from 107 GeV to 1014 GeV, respectively. More precisely, we use
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Table8.1: Experimentalobservablesassociatedwithchargedfermions[116]andneutrinosfornormal
ordering[117]with1σuncertainties(exceptforchargedleptons).

m(MZ)(GeV) Fitinput θCKM,PMNS
ij & δCKM & ∆m2

ij(eV2) Fitinput

mu/10 3 1.158±0.392 sinθCKM
12 0.2254±0.00072

mc 0.627±0.019 sinθCKM
23 /10 2 4.207±0.064

mt 171.675±1.506 sinθCKM
13 /10 3 3.640±0.130

md/10 3 2.864±0.286 δCKM 1.208±0.054

ms/10 3 54.407±2.873 ∆m2
21/10 5 7.425±0.205

mb 2.854±0.026 ∆m2
3 /10 3 2.515±0.028

me/10 3 0.486576 sin2θPMNS
12 /10 1 3.045±0.125

mµ 0.102719 sin2θPMNS
23 0.554±0.021

mτ 1.74618 sin2θPMNS
13 /10 2 2.224±0.065

logarithmicscalefrom10to13.5andfrom7to14inunitsoflog10(MΦ1
/1GeV)andlog10(MΣ1

/1GeV),

respectively,withdiscretizationstepof0.1forbothaxes.

Recall,infirststep,wheregaugecouplingunificationanalysiswasconducted,thecompleteparameter

spacehasbeenanalyzedandreviewedpointbypoint.Inthesecondstageofnumericalanalysis,wetake

eachofthosepointsanduseRGEstoevaluateYukawacouplingsattheGUTscaleusingassociatedmass

spectrumofΦ1,Φ3,Φ6,Φ10∈35H,Σ1,Σ3,Σ6∈15F,φ1,φ8∈24H,andΛ3∈5H. Therenormalization

grouprunningforchargedfermion massesisperformedattheone-looplevelfortworeasons. First,

atthislevelofaccuracy,gaugecouplingunificationcanbestudiedandperformedseparatelyfromthe

runningoftheStandard Modelchargedfermionparameters.Second,thisrunninggivesfeedbacktothe

unificationonlyatthetwo-looplevel,whileunificationeffectstheYukawacouplingrunningalreadyat

theone-looplevel.SampleofRGErunningofYukawacouplingsforτ,bquark,andtquarkisgivenin

Figure8.2forthreespecificpointsA(M ≥ 1TeV),A (M ≥ 10TeV),andA (M ≥ 100TeV),where

MΦ1
=MΣ1

=1013.19GeV.

NumericalfitoftheStandard Modelvariablesisperformedafterwardsaswedescribenext.
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Figure 8.1: The gauge coupling unification spectra for unification points A (M ≥ 1TeV), A′ (M ≥
10TeV), and A′′ (M ≥ 100TeV), as indicated.
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Figure 8.2: The running of Yukawa couplings for top quark, bottom quark and tau lepton for unification
points A (M ≥ 1TeV), A′ (M ≥ 10TeV), and A′′ (M ≥ 100TeV), as indicated.
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8.1.3 Fermion mass fit

We work in the mass eigenstate basis for charged leptons. Hence, EL = ER = 1. This also means that

charged fermion masses are automatically accommodated in our model. On the other hand, we need to

simultaneously fit masses of down-type quarks and neutrinos together with PMNS matrix. Recall that

one neutrino is massless particle in our model. Also, there is no need to numerically fit up-type quark

sector, where, due to fact that MU = MT
U we have that UL ∼ UR. This simply means that we can always

exactly reconstruct up-type quark masses and CKM mixing parameters once we know DL from the fit.

Let us describe numerical fit of fermion masses in more detail. Recall that the Standard Model fermion

masses in our model can be found from the following Lagrangian:

L ⊃ −uTMUu
C − dTMDd

C − eTMEe
C − 1

2
νTMNν + h.c. , (8.17)

where MU , MD, ME , and MN are given in Eqs. (7.17), (7.18), (7.19), and (7.9), respectively.

The fermion mass eigenstate basis, generally, can be defined through

MU = ULM
diag
U U†R , (8.18)

MD = DLM
diag
D D†R , (8.19)

ME ≡ ELMdiag
E E†R , (8.20)

MN = NMdiag
N NT , (8.21)

where UL, UR, DL, DR, EL, ER, and N are the unitary transformation matrices defined in Chapter 5 in

Eqs. (5.57)–(5.61).

We notice that down-type quark mass matrix of Eq. (7.18) and the neutrino mass matrix of Eq. (7.7)

share the same Yukawa coupling row matrix Y a. Hence the need for a combined data fit for these two

sectors. For that reason, we minimize a χ2 function which is defined as

χ2 =
∑
k

P 2
k , Pk =

Tk −Ok
Ek

, (8.22)

where, Tk, Ok, and Ek represent theoretical prediction, measured central value, and experimental 1σ

error for the observable k, respectively. This observable k will take values from neutrino and down-type

quarks’ sectors. In this fitting procedure, the Yukawa coupling matrices Y a, Y b, and Y c are determined

against three down-type quark masses, two neutrino mass-squared differences and three mixing angles

in the neutrino sector. In other words, they will be output of our numerical fit. Again, we demand

perturbativity and utilize the criteria χ2/n ≤ 1 where n(= 8) is the number of fitted observables.

The output of our fit are DL, DR, two Majorana phases and CP violating phase in PMNS matrix,

107



CHAPTER 8. CORRELATION BETWEEN PROTON DECAY SIGNATURES

whereas model stipulates that

UL = DLdiag(1, eiη1 , eiη2)V TCKM diag(eiκ1 , eiκ2 , eiκ3) = DLD(η)V TCKMD(κ) (8.23)

UR = U∗L diag(eiξ1 , eiξ2 , eiξ3) = U∗LD(ξ), (8.24)

EL = I , (8.25)

ER = I , (8.26)

N = diag(eiγ1 , eiγ2 , eiγ3)U∗PMNS = D(γ)U∗PMNS . (8.27)

Here we introduce notation for four diagonal phase matrices D(η), D(κ), D(ξ) and D(γ). VCKM is

the mixing matrix with one CP violating phase (δCKM) and UPMNS is the PMNS mixing matrix with one

CP violating phase and two Majorana phases. Again, the connection between UL and UR in Eq. (8.24) is

due to the fact that MU = MT
U . Note that the fit does not provide information on entries of D(η), D(κ)

and D(ξ). We will discuss if and when they enter proton decay predictions.

One of the outcomes of the numerical fit is that the neutrino sector exhibits normal mass hierarchy.

This can be explained as follows. From Eq. (7.16) one can conclude that Yukawa matrix Y d is a hi-

erarchical diagonal matrix, where its entries are completely determined by the charged lepton Yukawa

couplings. Again, we work in the mass eigenstate basis for the charged leptons. Since the matrix elements

(MD)ij are proportional to the linear combination of (Y d)ij and Y ci Y
a
j , it is obvious that Y a and Y c

should ideally both be hierarchical matrices to produce a good fit to data. This, on the other hand, is

possible to achieve only for the normal ordering of the neutrino masses. Put differently, for the inverted

scenario the entries in the first row and the first column of the neutrino mass matrix MN are typically

of the same order, whereas the lower 2× 2 block is required to be somewhat smaller in magnitude. This,

again, would be in conflict with hierarchical form of Y a.

To summarize, this model accommodates charged lepton masses, the up-type quark masses, and the

CKM parameters exactly. Combined numerical fit of the neutrino mass and mixing parameters, and the

down-type quark masses yields DL and DR and consequently UL and UR. There are five unknown phases

in UL and three additional phases in UR. However, in next section we show that for the analysis of the

leading source of proton decay we only need two of these phases, i.e., η1 and η2 of Eq. (8.23), that reside

in UL.

Viable parameter spaces of our model for M ≥ 1TeV, M ≥ 10TeV, and M ≥ 100TeV scenarios are

shown in panels of Fig. 8.3 in MΦ1-MΣ1 plane together with contours of constant values of MGUT and

αGUT. The contours for MGUT are given in units of 1015 GeV and are shown as the vertical solid lines

while the contours for αGUT are given as dot-dashed lines that run horizontally. The parameter space

that corresponds to MGUT ≤ 6× 1015 GeV is discarded in this numerical study in all three instances due

to the fact that such a low MGUT is a priori not realistic with regard to the experimental input on the
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proton decay lifetimes.

There are two dashed curves in all three plots of Fig. 8.3. With the outermost one we mark the

boundary after which it is not possible to generate the correct mass scale for neutrinos with perturbative

couplings, since their product exceeds value of 1 with certainty.

The region between the two dashed lines corresponds to the so-called ”grey” zone of parameter space,

meaning that in that region it is sometimes, but not always, possible, for some special choice of the six

phases featured in Eq. (7.12), to find perturbative solution to the neutrino mass fit. The region to the

left of the innermost dashed line gives correct neutrino mass fit for arbitrary choices of the six phases.

Green solid contours are used to mark the naive bound on the correct neutrino mass scale. These green

lines are generated by setting 2m0/
√

∆m2
31 to 1, 10, and 100, as indicated in the plots of Fig. 8.3, for

λ′ = 1.

Note that there is already proton decay exclusion bound visible on all three panels in Fig. 8.3. This

bound is actually provided by the numerical analysis of proton decay signatures and not some naive

estimates.

Overall, the parameter space we investigate is in-between MGUT = 6 × 1015 GeV and the outermost

dashed line after which it is not possible to produce the neutrino mass observables with perturbative

couplings.

8.1.4 Proton decay signatures

We have discussed proton decay in detail in Chapter 5, where we pointed out that amongst many types of

proton decay, we would investigate two-body channels via gauge boson and scalar leptoquark mediations.

After theoretical setup of how to evaluate proton decay widths, we conduct the numerical analysis where

our idea is to accurately identify the most dominant channels for both types of proton decay, and compare

these with current experimental limits and future expectations for a ten-year period of data taking at

C.L. of 90%.

Experimental bounds on proton decay lifetimes put constrain on allowed masses of associated medi-

ators. The result of this numerical analysis is presented in Fig. 8.3. Namely, parameter space presented

in Fig. 8.3 is constrained by experimental limit on the partial lifetime of p → π0e+ process due to the

fact that it is the existing measurement of p → π0e+ that provides the most stringent bound. We will

elaborate on this in the next paragraph.

Since the mass spectrum for all the particles is known in each unification point, as well as MGUT,

once we have accomplished the fermion sector fit, a lower bound for MGUT can be set using experimental

data on proton decay lifetimes. The region to the left from "proton decay bound" in Fig. 8.3 has been

ruled out in this manner. It turns out that the partial lifetime limit of the process p→ π0e+ is the most

constraining one. Again, the decay width for this process [66] is:
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Γ(p→ π0e+) =
mpπ

2

(
1− m2

π

m2
p

)2

A2
L

α2
GUT

M4
GUT

×
(
A2
SL

∣∣c(ec, d)〈π0|(ud)LuL|p〉
∣∣2 +A2

SR

∣∣c(e, dc)〈π0|(ud)RuL|p
∣∣2〉) , (8.28)

where the relevant matrix elements are
〈
π0
∣∣(ud)LuL

∣∣p〉 = 0.134(5)(16) GeV2 and
〈
π0
∣∣(ud)RuL

∣∣p〉 =

−0.131(4)(13) GeV2 [71]. Recall, the coefficients c(eC , d) and c(e, dC), in our model, are

c(eCα , dβ) = e−iξ1
(
(D∗L)11 + (UTLD

∗
L)11(U∗L)11

)
, (8.29)

c(e, dC) = e−iξ1(D†R)11 . (8.30)

Since these coefficients come under square in Eq. (8.28), the phase parameter ξ1 vanishes and the only

two relevant parameters that are not determined by the fermion mass fit are η1 and η2 from Eq. (8.23).

Matrix elements of DL and DR are obtained through numerical fit and UL can be expressed via DL in

relation to CKM matrix. Therefore, only η1 and η2 parameters survive to be varied in order to find the

smallest possible value for |c(eCα , dβ)|.

We present the viable parameter space in MΦ1-MΣ1 plane in Fig. 8.3. Again, values for MΦ1 and

MΣ1
are set from 1010 GeV to 1013.5 GeV and from 107 GeV to 1014 GeV, respectively, or in logarithmic

scale from 10 to 13.5, and from 7 to 14 of log10(MΦ1
/ 1GeV) and log10(MΣ1

/ 1GeV), respectively, with

discretization step of 0.1 for both axes. One can observe three sets of contours for constant values of

MGUT, αGUT, and m0 for |λ′| = 1. In three panels in Fig. 8.3, one can see straight vertical, thin black

lines which represent MGUT, and almost horizontal dashed lines that represent αGUT. Knowing this, due

to the decay width dependence onMGUT and αGUT, i.e., Γ ∼ α2
GUT/M

4
GUT, proton decay bound marked

with pink line additionally denoted "proton decay bound" is presented on all three panels for different

unification scenarios.

Proton decay via gauge bosons

Once we have determined the parameter space for M ≥ 1TeV, M ≥ 10TeV, and M ≥ 100TeV scenarios,

we examine eight proton decay channels via gauge boson mediation for each of them. It was previously

mentioned and explained that these decays depend on a priori two unknown parameters η1 and η2

except for the channels with antineutrinos in the final state. Hence, we use experimentally determined

and observed values for all other parameters as input, while varying η1 and η2 for each point of interest

in associated parameter space. Again, this will be performed for all three scenarios, i.e., M ≥ 1TeV,

M ≥ 10TeV, and M ≥ 100TeV. We thus vary η1 and η2 to find the maximum and minimum values of

proton decay width for each channel. Once the minimum and maximum values for each decay channel
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width are known, the plots that depict predicted ranges can be created.

We have taken one specific point, that is very close to the current proton decay bound, namely point

Q featured in the upper panel of Fig. 8.3 with coordinates MΦ1 = 1011.5 GeV and MΣ1 = 108.7 GeV to

showcase implementation of our approach. The results of our analysis for that point are given in left

panel of Fig. 8.4. For channels with antineutrinos, i.e., p → π+ν and p → K+ν, one can observe no

flavor dependence as we have previously shown this in Eq. (5.27). Namely, with summation over neutrino

flavors, any information associated with neutrino mixing parameters or any other phases vanishes from

these proton decay signatures.

The channels with a charge lepton in final state exhibit dependence on η1 and η2, where η2 effect can

be neglected for all practical purposes. This can be seen in left panels of Fig. 8.5, where we give examples

of η1 and η2 dependence for p→ π0e+ and p→ η0µ+ at point Q. Note that even η1 effect is rather mild.

Explicit calculation of effects of η1 and η2 for point Q yields the following variations of decay widths: 2%

(p → π0e+), 32% (p → π0µ+), 0% (p → π+ν), 2% (p → η0e+), 63% (p → η0µ+), 2% (p → K0e+),

4% (p → K0µ+), and 0% (p → K+ν). These variations correspond to lengths of vertical blue bars of

Fig. 8.4.

There are two proton decay channels shown in Fig. 8.4 — p → π0µ+ and p → η0µ+ — that exhibit

the largest dependence on η1. This is due to the fact that various contributions towards their decay

widths are of approximately same magnitudes that even the smallest change in a single phase induces a

large effect.
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Figure 8.3: Experimentally viable parameter space of the model for scenarios when M ≥ 1TeV, M ≥
10TeV, and M ≥ 100TeV, as indicated. For details, see the text.
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(b) scalar leptoquark mediation

Figure 8.4: Proton decay widths for eight decay channels via (a) gauge boson and (b) scalar leptoquark
mediations for point Q with coordinates of MΦ1 = 1011.5 GeV and MΣ1 = 108.7 GeV within M ≥ 1TeV
scenario.

Proton decay via scalar leptoquark

The same numerical procedure can be performed to find proton decay widths via scalar leptoquark

mediation. Note that we need to indicate the mass of scalar leptoquark. Hence, we set up initial value

of Λ3 to be 2 × 1012 GeV and proceed with the same numerical analysis as in the case of mediation via

gauge boson for point Q of M ≥1TeV scenario. We, again, perform maximization and minimization for

η1 and η2 parameters to plot predicted ranges using red bars as shown in right panel of Fig. 8.4. One

can conclude that the only channel to be observed with certainty in experiments after a ten-year period

of data taking is p → K+ν. All other channels are not to be seen in decades to come in this model if

scalar leptoquark mediation is the dominant source.

Uncertainty in prediction for proton decay widths for scalar leptoquark mediation is much more

prominent than for gauge boson mediation. This is due to the fact that relevant widths depend not

only on unitary transformations, but on Yukawa coupling matrix entries as well. We demonstrate the

dependence on parameters η1 and η2 in Fig. 8.5 for p → π0e+ and p → η0µ+. The variation of η1

and η2 yields the following decay width changes for point Q: 75% (p → π0e+), 91% (p → π0µ+), 76%

(p → π+ν), 76% (p → η0e+), 94% (p → η0µ+), 81% (p → K0e+), 92% (p → K0µ+), and 76%

(p→ K+ν).

113



CHAPTER 8. CORRELATION BETWEEN PROTON DECAY SIGNATURES

(a) p→ π0e+ via gauge boson (b) p→ π0e+ via scalar leptoquark

(c) p→ η0µ+ via gauge boson (d) p→ η0µ+ via scalar leptoquark

Figure 8.5: Contour plots of proton decay widths in units of GeV scaled with factor of 10−67 for point
Q as a function of η1 and η2 for p → π0e+ ((a) and (b)) and p → η0µ+ ((c) and (d)) decay channels,
where left panels correspond to mediation via gauge boson and right panels are for mediation via scalar
leptoquark.

Correlation between two different proton decay mediations

In order to accomplish comparative study between gauge boson and scalar leptoquark mediation signa-

tures for the partial proton decay lifetimes, we have chosen one particular point in viable parameter space

for each of three scenarios M ≥ 1TeV, M ≥ 10TeV, and M ≥ 100TeV as our starting point. Namely,

these are points Q, Q′, and Q′′ in Fig. 8.3. Since we are interested in those parts of parameter space that

could be probed, at least in principle, in future experiments, the points Q, Q′, and Q′′ were chosen to be

near to the current proton bound expressed as pink straight line in Fig. 8.3. We subsequently evaluate

α2
GUT/M

4
GUT at these points to be able to find all other points that satisfy criteria that the associated

value of α2
GUT/M

4
GUT at those points is within ±3% with respect to the values extracted for points Q, Q′,

and Q′′. This requirement is needed in order to capture enough points for our study, as our parameter

space in Fig. 8.3 is given with lattice spacing of 0.1 for both MΦ1 and MΣ1 parameters. Once all these

points are known, we evaluate gauge boson mediated proton decay widths for all eight channels where
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we also vary η1 and η2 phases in a manner outlined before. The results for all three scenarios for gauge

boson mediation obtained with this procedure is summarized in Fig. 8.6.

The points that are used to study proton decay signatures via gauge boson mediation are the same

points we use to look at proton decay via scalar leptoquark mediation. To generate associated proton

decay widths, we take that MΛ3
= 2 × 1012 GeV for M ≥ 1TeV scenario and MΛ3

= 1.6 × 1012 GeV for

scenarios M ≥ 10TeV and M ≥ 100TeV. These choices ensure that the scalar mediated proton decay

signatures will be observed with certainty at future proton decay experiments. The outcome of this

numerical analysis is presented in Fig. 8.7.

Finally, we place signatures for both types of mediation side by side in Fig. 8.8, where blue bars

are used for gauge boson mediation predictions, red bars are used for predictions associated with scalar

leptoquark mediation, current experimental limits are represented by thin black lines, and grey dashed

lines stand for future expectations after a ten-year period of data taking at 90% C.L., if and where

available.

Several comments are in order. For gauge boson mediation the uncertainty in predictions for partial

proton lifetimes with charged leptons in final state comes from three sources: (i) ±3% originates from

the fact that α2
GUT/M

4
GUT ratio is allowed to vary from point to point due to the discrete nature of our

parameter space, (ii) unitary transformations, including CKM values, that also vary from point to point,

and (iii) unknown phases η1 and η2. For antineutrinos in final states, the uncertainty originates only

from first two sources.

When it comes to scalar leptoquark mediation, the uncertainty primarily originates from the fact that

the fermion mass fit varies from point to point and the need to vary phases η1 and η2 to find accurate

lower and upper bounds for associated proton decay widths. Note, however, that the uncertainties in

proton decay widths associated with scalar leptoquark mediation are much larger than those associated

with gauge boson mediation. This is primarily due to fact that gauge boson mediation is affected by

unitary transformations of the Standard Model fermion fields whereas the scalar leptoquark mediation is

proportional to products of Yukawa couplings of those fermions.

Side by side comparison of Fig. 8.8 leaves us with the following conclusions. If this model is realized

in nature, and if proton is observed to decay to π0 and e+, the decay is mediated via gauge boson, and

if it is observed to decay to K+ and ν, the decay is mediated via scalar leptoquark. If both p → π0e+

and p → K+ν are observed, there is also a possibility to observe third process p → π0µ+ within the

ten-year period of data taking. This would also require fortuitous interference between the gauge and

scalar leptoquark contributions at the amplitude level. The remaining five channels will be experimentally

inaccessible in decades to come within this particular scenario.
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Figure 8.6: Proton decay channels via gauge boson mediation within M ≥ 1TeV, M ≥ 10TeV, and
M ≥ 100TeV scenarios, where thin black horizontal lines represent current experimental limits, blue
vertical bars stand for expected ranges within the model under consideration, and horizontal grey dashed
lines represent future experimental sensitivities after a ten-year period of data taking at 90%C.L.
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Figure 8.7: Proton decay channels via scalar leptoquark mediation within M ≥ 1TeV, M ≥ 10TeV,
and M ≥ 100TeV scenarios, where thin black horizontal lines represent current experimental limits, red
vertical bars stand for expected ranges within the model under consideration, and horizontal grey dashed
lines represent future experimental sensitivities after a ten-year period of data taking at 90%C.L.
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Figure 8.8: Correlation of proton decay signatures via gauge boson and scalar leptoquark mediation
within M ≥ 1TeV, M ≥ 10TeV, and M ≥ 100TeV scenarios. Thin black lines represent current
experimental limits, blue vertical bars are predictions for gauge boson mediation signatures, red vertical
bars are corresponding predictions for scalar leptoquark mediations and grey dashed lines represent future
experimental sensitivities after a ten-year period of data taking at 90%C.L.
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Chapter 9

Discussion

A true student is like a sponge.

Absorbing what goes on around

him, filtering it, latching on to

what he can hold. A student is

self-critical and self-motivated,

always trying to improve his

understanding so that he can

move on to next topic, the next

challenge. A real student is also

his own teacher and his own

critic. There is no room for ego

there.

Ryan Holiday

À la fin...

Proton decay is an exciting and appealing hypothetical prediction with many facets. We have opted

to investigate one particular path paved in a specific SU(5) model. In that model, we have analyzed

proton decay to two-body final states, and we have found accurate predictions for all eight possible decay

channels via gauge boson and scalar leptoquark mediation. We briefly spell out our main findings in

what follows.

9.1 Summary and conclusions

There are only two possible types of mediators of proton decay within the model in question. The

anticipated experimental signal of these decay processes can, hence, originate solely from gauge boson
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mediation, or entirely from scalar leptoquark mediation, or from combination of the two. Our analysis

stipulates that we can conclude with certainty that if in experiments proton is observed to decay to π0

and e+, the decay is mediated via gauge boson, and if it is observed to decay to K+ and ν, the decay is

mediated via scalar leptoquark. If both p→ π0e+ and p→ K+ν are observed, there is also a possibility

to observe third process p → π0µ+ within the ten-year period of data taking. This would also require

fortuitous interference between the gauge and scalar leptoquark contributions at the amplitude level. The

remaining five channels will be experimentally inaccessible in decades to come. Again, two channels that

might be observed in future experiments are p → π0e+ and p → K+ν. If both are observed, then the

third channel p→ π0µ+ might be accessible.

The beauty of a specific SU(5) model we have been analyzing proton decay in, lies in its simplicity

since the only parameters that are not determined via fermion mass fit that affect proton decay predictions

are two phases η1 and η2. Moreover, in case of gauge boson mediation, almost all dependence falls solely

on η1.

The fact that the proton decay signatures from two different sources of new physics can be predicted

at this level of accuracy has not been observed in other models of SU(5) unification. Moreover, there does

not exist a single correlation study of proton decay signatures via two different sources of new physics in

the literature. This work can serve as an example of a self-consistent study of proton decay signatures and

might be used as a guide on how to analyze models with similar features if and when they are identified.

Finally, the tools developed in this analysis are applicable to other models of unification and can thus be

of help in generating accurate predictions for expected proton decay signatures.
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Appendix A

Einstein index notation

Everyone and everything that

shows up in the world of form in

this universe originates not from

a particle, as quantum physics

teaches us, but from an energy

field. That energy field can be

called God, soul, spirit, or

consciousness. It looks a certain

way, sounds a certain way, and

feels a certain way. I try to stay

in harmony with what I believe it

sounds and feels like.

Wayne Dyer

A convenient notation in expressions with vectors, matrices and tensors is Einstein index notation.

There are some rules that need to be followed in this notation:

• Any term in an expression can have each index only two times,

• Repeated indices are the ones summation is conducted over, and

• Each term must have identical not repeating indices.

For example, if one wants to do summation over index i in certain expression such as:

A =
∑
j

Bijrj (A.1)

then it would read as:

A =
∑
j

Bijrj ≡ Bijrj (A.2)
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whereas this expression:

C = Bijrjpj + qi (A.3)

would not be correct in this index notation due to the fact that first rule was not followed (index j is

repeated more than two times in first term).

Another example of invalid expression in this notation is this:

D = Bijkrk + Eil (A.4)

because first term has non-repeated index j and second l.

A.1 Free and dummy indices

Using Eq. (A.2), we can rewrite and add:

A =
∑
j

Bijrj ≡ Bijrj = (Br)i = qi (A.5)

Free indices are indices present on both sides of equation, and in case of Eq. (A.5), that is for example,

index i.

Dummy indices are indices present on one side of equation, but not on the other. Also, these indices

come in an even amount of times in each product. In Eq. (A.5) that is index j.

A.2 The Kronecker δ, Levi-Civita εijk and metric tensor gµν

In writing expressions in Einstein’s notation, but also in others as well, symbols mentioned in the title of

this section, are not just useful but also inevitable when deriving expressions and doing calculations.

We will start with Kronecker δ symbol that reads like this:

δij =

 1 i = j

0 i 6= j
(A.6)

or with Iverson brackets:

δij = [i = j] (A.7)

The role of this symbol is to replace one index by another:
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δij vi = vj (A.8)

There are also these two properties:

viδij = vj (A.9)

δikδkj = δij (A.10)

from where we can conclude that δ matrix is identity matrix. For 3× 3 it reads:

δij =


1 0 0

0 1 0

0 0 1

 (A.11)

Levi-Civita εijk symbol or tensor is a tensor that in dependence of permutation of indices gives three dif-

ferent values. Since we started with Levi-Civita in three-dimensional space, we will give its mathematical

formulation in that specific case:

εijk =


1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2)

−1 if (i, j, k) is (1, 3, 2), (2, 1, 3) or (3, 2, 1)

0 if i = j, j = k or k = i

(A.12)

In four-dimensional space, it would read like this:

εijkl =


1 if (i, j, k, l) is an even permutation of (1, 2, 3, 4)

−1 if (i, j, k, l) is an odd permutation of (1, 2, 3, 4)

0 otherwise

(A.13)

For example:

ε1432 = −ε1234 = −1

ε2134 = −ε1234 = −1

ε4321 = −ε1324 = −(ε1234) = −1

ε2132 = −ε2132 = 0 (A.14)

In general case, in n dimensions, we can write it as:
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εa1a2a3...an =


1 if (a1a2a3 . . . an) is an even permutation of (1, 2, 3, . . . n)

−1 if (a1a2a3 . . . an) is an odd permutation of (1, 2, 3, . . . n)

0 otherwise

(A.15)

In product of two vectors a and b, we can use Levi-Civita in Einstein notation in the following form:

(a× b)
i

= εijka
jbk (A.16)

In the triple scalar product, it is used in this form:

a · (b× c) = εijka
ibjck (A.17)

Metric tensor gµν reads:

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


=

 1 0

0 −I3

 (A.18)

We have further discussed, used and explained this tensor in appendices B and C.
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Dirac algebra and gamma matrices

I seem to have been only like a

boy playing on the seashore, and

diverting myself in now and then

finding a smoother pebble or a

prettier shell than ordinary,

whilst the great ocean of truth

lay all undiscovered before me.

Isaac Newton

Paul Dirac introduces [57] a Hamiltonian linear regarding the momentum operator, for the purpose

of having a relativistically covariant equation for the quantum mechanical wave function:

H = γ0 (γ · p +m) (B.1)

where m is the particle mass and p is the momentum operator. These γ0 and γ matrices are dimen-

sionless. Standard 4 × 4 Dirac matrices γµ = {γ0, γ1, γ2, γ3} represent the set of conventional matrices

that generate the matrix representation of Clifford algebra. In Minkowski space, where metric M = {xµ}

is denoted as pseudo-euclidean, due to the form of the metric tensor gµν :

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


=

 1 0

0 −I3

 (B.2)

the column vectors on which the γµ matrices act become a space of spinors. Gamma matrices in Dirac

representation are of this form:
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γ0 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


γ1 =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0



γ2 =



0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0


γ3 =



0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



(B.3)

In order for gamma matrices to generate Clifford algebra, they must obey the anticommutation

relation:

{
γµ, γν

}
= γµγν + γνγµ = 2gµνI4 (B.4)

where I4 denotes the unit matrix 4× 4.

B.1 The fifth gamma matrix

The fifth gamma matrix is used in quantum mechanics’ theories with the term of chirality. Namely, the

projector of left and right handed states is defined with γ5:

PL =
1− γ5

2
(B.5)

PR =
1 + γ5

2
(B.6)

The matrix γ5 itself is defined in the Dirac basis in the following form:

γ5 = i γ0 γ1 γ2 γ3 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


(B.7)

It has some interesting properties:
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• Hermitian matrix: (
γ5
)†

= γ5 (B.8)

• With eigenvalues ±1: (
γ5
)2

= I4 (B.9)

• Anticommutes with the other four gamma matrices:

{
γ5, γµ

}
= γ5γµ + γµγ5 = 0 (B.10)

B.2 Trace properties and charge conjugation

There are several trace identities that apply for gamma matrices:

1. Tr (γ0) = 0

2. Tr (γµ1 · · · γµn) = 0 for n = 2k + 1

3. Tr (γ5γµ1 · · · γµn) = 0 for n = 2k + 1

4. Tr (γµγν) = 4gµν

5. Tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ)

6. Tr (γ5) =Tr (γµγνγ5) = 0

7. Tr (γµ1 · · · γµn) =Tr (γµn · · · γµ1)

Gamma matrices are also used in defining charge conjugation operator:

CγµC−1 = −(γµ)T (B.11)

where C = γ0γ2 with a property C−1 = C† = CT = −C.

In quantum field theory, in the studies and discussions on Dirac fields, it is often used Feynman slash

notation or as it is sometimes referred as Dirac slash notation [118]:

/A
def
= γµAµ (B.12)

There are specific identities in this notation, derived from identities that gamma matrices obey:

1. /A/B = A ·B − iAµσµνBν with σµν = i
2 [γµ, γν ]

2. /A /A = AµAνγµγν = 1
2A

µAν(γµγν + γνγµ) = 1
2A

µAν 2 gµνI4 = A2
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3. /∂2
= ∂2 · I4

4. Tr ( /A/B) = 4 (A ·B)

5. Tr (γ5 /A/B) = 0

6. γµ /Aγµ = −2 /A

7. γµ /A/Bγµ = 4 (A ·B)

8. Tr ( /A) =Tr ( /A/B /C) =Tr ( /A/B /C /D/E) = 0
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Appendix C

Fierz Transformations

Life cannot have had a random

beginning. . . The trouble is that

there are about 2000 enzymes,

and the chance of obtaining them

all in a random trial is only one

part in 1040 000 an outrageously

small probability that could not

be faced even if the whole

universe consisted of organic

soup.

Fred Hoyle

Fierz identities or Fierz transformations [119] represent an useful tool in quantum field theory. More

precise, we employ this tool in explicit calculations in four-fermion interactions. In this thesis, proton

decay processes include four-fermion interactions.

For each particle involved, there is a corresponding spinor. In an expression to which we apply Fierz

identities, there are two Dirac bilinears in a product that is usually called quadrilinear:

[ω̄1Mω2][ω̄3M
′ω4] (C.1)

Dirac bilinears can be placed in any order in its product, but the spinors cannot. Therefore, the order

of appearance of four spinors is important and it will play the major role in Fierz identities.

In Appendix A we have presented Dirac matrices and algebra. Using these matrices, it is possible

to construct set of 16 matrices in order to have 16-dimensional space of all the 4 × 4 matrices. The set

usually [120] corresponds to matrices in the following way:
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APPENDIX C. FIERZ TRANSFORMATIONS

Γ1
S ≡ 1,

Γ1
V to Γ4

V ≡ γµ,

Γ1
T to Γ6

T ≡ σµν , (µ < ν),

Γ1
A to Γ4

A ≡ iγµγ5,

Γ1
P ≡ γ5,

(C.2)

where we have already known:

γ5 = i γ0 γ1 γ2 γ3 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


and σµν =

i

2
[γµ, γν ] . (C.3)

Since the form of the metric tensor gµν is given with:

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


=

 1 0

0 −I3

 (C.4)

we can then write: {
γµ, γν

}
= γµγν + γνγµ = 2gµν1 (C.5)

Knowing these propreties:

Tr[γµ] = 0,

Tr[γµγν ] = 4gµν

Tr[γµγαγν ] = 0

Tr[γµγαγνγβ ] = 4 (gµαgνβ − gµνgαβ + gµβgαν )

(C.6)

together with Eq. (C.2), we can deduce the basis for derivation of all Fierz identities:

Tr[ΓIΓJ ] = δJI (C.7)

where I and J can represent A, P, S, T and V.

Previously defined set of 16 matrices in Eq. (C.2) we can redefine in writing it in the following
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way [121, 122]:

ΓA =
{

1, γ0, iγ1, iγ2, iγ3, γ01, γ02, γ03, iγ12, iγ13, iγ23, iγ012, iγ013, iγ023, γ123, iγ0123
}
. (C.8)

Lower-order matrices are defined in Eq. (B.3), and higher-order matrices are built from these:

γ01 =
1

2

(
γ0γ1 − γ1γ0

)
γ02 =

1

2

(
γ0γ2 − γ2γ0

)
γ03 =

1

2

(
γ0γ3 − γ3γ0

)
γ12 =

1

2

(
γ1γ2 − γ2γ1

)
γ13 =

1

2

(
γ1γ3 − γ3γ1

)
γ23 =

1

2

(
γ2γ3 − γ3γ2

)
γ012 =

1

3

(
γ0γ12 − γ1γ02 + γ2γ01

)
γ013 =

1

3

(
γ0γ13 − γ1γ03 + γ3γ01

)
γ023 =

1

3

(
γ0γ23 − γ2γ03 + γ3γ02

)
γ123 =

1

3

(
γ1γ23 − γ2γ13 + γ3γ12

)
γ0123 =

1

4

(
γ0γ123 − γ1γ023 + γ2γ013 − γ3γ012

)
(C.9)

The identity we will be using in Fierz transformation is:

(
ΓA
)
ij

(
ΓB
)
kl

=
∑
C,D

CABCD
(
ΓC
)
il

(
ΓD
)
kj

. (C.10)

Eq. (C.10) is linear decomposition. This is viable since all Γ
′
s form a complete basis for all 4 × 4

matrices. Our next step is to find coefficients CABCD . Firstly, we will multiply Eq. (C.10) by
(
ΓE
)
li

(
ΓF
)
jk
:

(
ΓE
)
li

(
ΓF
)
jk

(
ΓA
)
ij

(
ΓB
)
kl

=
∑
C,D

CABCD
(
ΓE
)
li

(
ΓF
)
jk

(
ΓC
)
il

(
ΓD
)
kj

(C.11)

tr
(
ΓEΓAΓFΓB

)
=
∑
C,D

CABCD tr
(
ΓEΓC

)
tr
(
ΓFΓD

)
(C.12)

tr
(
ΓEΓAΓFΓB

)
= 16CABCD (C.13)

CABCD =
1

16
tr
(
ΓCΓAΓDΓB

)
. (C.14)
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Eq. (C.13) was derived from completeness relation and eq. (C.14) comes from relabelling of indices.

Next we directly apply matrix identity:

(
ω1ΓAω2

) (
ω3ΓBω4

)
= (ω1)i (ω2)j (ω3)k (ω4)l

(
ΓA
)
ij

(
ΓB
)
kl

= (ω1)i (ω2)j (ω3)k (ω4)l
∑
C,D

CABCD
(
ΓC
)
il

(
ΓD
)
kj

=
∑
C,D

CABCD
(
ω1ΓCω4

) (
ω3ΓDω2

)
(C.15)

in order to derive the Fierz identities or transformations:

(ω1ω2) (ω3ω4) =
∑
C,D

C11
CD

(
ω1ΓCω4

) (
ω3ΓDω2

)
=
∑
C,D

1

16
tr
(
ΓCΓD

) (
ω1ΓCω4

) (
ω3ΓDω2

)
=

1

4

∑
C

(
ω1ΓCω4

) (
ω3ΓCω2

)
(C.16)

(ω1γ
µω2) (ω3γµω4) =

∑
C,D

1

16
tr
(
ΓCγµΓDγµ

) (
ω1ΓCω4

) (
ω3ΓDω2

)
=
∑
C′,D′

1

16
tr
(

ΓC
′
ΓD
′
)(

ω1ΓC
′
γµω4

)(
ω3ΓD

′
γµω2

)
=

1

4

∑
C

(
ω1ΓCγµω4

) (
ω3ΓCγµω2

)
(C.17)

where ΓC
′

= ΓCγµ.
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