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Résumé long en Français

Depuis son introduction, le Groupe de Renormalisation est devenu l’outil théorique de pré-
dilection pour comprendre et décrire les comportements collectifs caractérisés par une inva-
riance d’échelle émergente à proximité d’une transition de phase continue. Il offre un cadre
conceptuel puissant, mais les résultats exacts étant rares, la recherche de schémas d’ap-
proximation génériques et efficaces a été très active dès le départ. Une ligne de recherche
récente part d’une formulation exacte du Groupe de Renormalisation, sous la forme d’un
Groupe de Renormalisation Fonctionnel (GRF) pour les fonctionnelles génératrices dépen-
dant d’une échelle de coupure infra-rouge et introduit des approximations potentiellement
non-perturbatives via des ansatzes pour la fonctionnelle génératrice étudiée. La question que
nous abordons est de savoir dans quelle mesure de tels schémas d’approximation génériques
sont capables de décrire des problèmes spécifiques où le comportement à longue distance
implique des configurations fortement non-uniformes avec, par exemple, des excitations lo-
calisées.

Un exemple d’un tel schéma d’approximation au sein du GRF est le développement en
dérivées spatiales du champ de l’action moyenne effective (énergie libre de Gibbs à gros grain
("coarse-grained") dans le langage des systèmes magnétiques) qui consiste à tronquer la forme
fonctionnelle de cette dernière en puissances des moments extérieurs ou, de manière équiva-
lente, en gradients des champs. L’approximation par développement en dérivées se concentre
sur les propriétés à grande longueur d’onde et, en termes de configurations "coarse-grained"
du système, fonctionne comme un développement autour de configurations uniformes. On
peut donc se demander si un tel schéma est capable de saisir la physique associée à des
configurations non uniformes contenant, par exemple, des parois de domaine, des ondes de
spin, ou des défauts localisés que l’on dans l’analyse des instantons du modèle d’Ising en 1
dimension.

Dans ce travail, nous évaluons la capacité du développement en dérivées du GRF à
décrire quantitativement la physique à longue distance d’un modèle statistique sur toute
la gamme des dimensions spatiales sans connaissance a priori des configurations "coarse-
grained" pertinentes dans l’espace réel. Pour ce faire, nous examinons d’abord comment
les ordres les plus bas du développement en dérivées décrivent l’approche de la dimension
critique inférieure dlc de la théorie scalaire φ4 de type Ising qui est censée être contrôlée
par la prolifération d’excitations localisées (instantons). Nous tenons à souligner que notre
objectif n’est pas de fournir une autre description théorique de l’approche de la dimension
critique inférieure pour les systèmes appartenant à la classe d’universalité du modèle d’Ising,
une question qui est déjà bien comprise depuis plusieurs décennies. Notre intention avec cet
exemple est de développer une approche générale, non perturbative (mais approximative)
au sein du GRF qui servirait de référence pour des problèmes qui restent ouverts et dans
lesquels on pense que des configurations non uniformes jouent un rôle significatif, tels que la
phase à basse température des verres de spin d’Ising ou la dimension critique inférieure du
modèle d’Ising en champ aléatoire (RFIM) forcé loin de l’équilibre. La dimension critique
inférieure du RFIM à l’équilibre a été rigoureusement démontrée être dlc = 2, mais celle
du RFIM forcé loin de l’équilibre fait toujours l’objet de débats. Le GRF est bien adapté
à cette tâche car même les ordres d’approximation les plus bas sont connus pour saisir
des phénomènes non-perturbatifs non triviaux. Il présente l’avantage d’être une approche
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générale, contrairement aux méthodes spécialisées auxquelles on doit généralement avoir
recours pour saisir un tel comportement, comme la théorie des gouttelettes dans le cas du
modèle d’Ising juste au-dessus de dlc = 1, où des domaines fermés d’une orientation de spin
dans l’autre (les gouttelettes) doivent être introduits explicitement. De plus, la dimension
spatiale d est un paramètre de la théorie que nous pouvons faire varier continuellement au
sein du GRF. Nous montrons que la convergence du potentiel effectif de point fixe décrivant
le point critique du modèle est non-uniforme dans le champ lorsque la dimension d tend vers
dlc et se caractérise par l’émergence d’une couche limite autour des minima du potentiel.

Pour saisir le mécanisme de couche limite, il faut veiller à respecter la condition selon
laquelle le champ dimensionnel ne se redimensionne pas (avec la coupure infrarouge du
moment k introduite par la procédure GRF) à la dimension critique inférieure. Le fait que
le champ ne se redimensionne pas signifie que la transition est détruite par des fluctuations
dans la limite physique k → 0. Cela peut également être vu sous un autre angle. Si une
description correcte de la limite de la dimension critique inférieure peut être trouvée dans
le GRF, elle devrait tenir compte de la disparition de la transition et de la phase ordonnée.
Ces éléments sont représentés dans les équations de flot du GRF par un point fixe critique
et un point fixe de température nulle, respectivement. Le point fixe critique est un point col
avec autant de directions instables (pertinentes) qu’il y a de paramètres physiques pertinents
à ajuster pour que le système atteigne la criticalité. Le point fixe de température nulle est
un attracteur stable. La fusion des deux points fixes représente un événement de bifurcation
au cours duquel les directions instables (pertinentes) du point col deviennent marginales. Il
y a toujours une valeur propre triviale pertinente λ = −(d− 2 + η)/2 associée à la source
appliquée (champ magnétique). La condition pour qu’elle devienne marginale est la même
que pour le champ qui ne se remet pas à l’échelle.

Une autre caractéristique attendue de l’approche de la dimension critique inférieure,
également liée à la fusion des points fixes critiques et à température nulle dans la limite
d→ dlc, est que le propagateur de la théorie devrait s’approcher d’une singularité. En effet,
le point fixe à température nulle est associé à la phase ordonnée avec brisure de symétrie et
le retour à la convexité du potentiel effectif dimensionné le long du flot de renormalisation du
GRF est alors contrôlé par la présence d’une singularité dans le propagateur. (Les potentiels
effectifs dans le contexte du GRF doivent être convexes uniquement dans la limite physique
k→0, ou lorsque les flots de renormalisation se gèlent.)

Dans le chapitre 2, nous considérons le plus bas niveau du développement en dérivées
qui soit applicable, l’Approximation du Potentiel Local légèrement modifiée (LPA’). L’ap-
proximation de potentiel local (ou LPA) elle-même ne peut pas être utilisée pour décrire la
criticalité pour d < 2, car la dimension anormale du champ dans la LPA est fixée à η = 0
alors que l’exposant d− 2 + η qui apparaît dans la fonction de corrélation doit être positif.

Après avoir introduit les équations de point fixe (qui décrivent le point critique) dans
l’approximation LPA’ dans la section 1, nous avons présenté dans la section 2 des résultats
numériques obtenus dans cette approximation pour la théorie scalaire φ4 au-dessus de la
dimension critique inférieure (dlc). Les données numériques pour la position du minimum
du potentiel effectif, ϕmin, indiquent qu’il ne varie pas comme 1/

√
ε̃, comme cela avait été

supposé précédemment dans une étude antérieure du même problème par GRF, mais croît
au contraire plus lentement (ici, nous définissons ε̃ = (d− 2 + η)/[2(2− η)]). Nous trouvons
également une divergence apparente de u′′(ϕmin) en 1

ε̃ . Ces résultats numériques nous ont
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poussés à utiliser la Théorie des Perturbations Singulières (ou SPT), car la limite en ε̃ n’est
pas uniforme dans le champ pour les fonctions au point fixe. La SPT traite des équations
différentielles où la solution perturbée par un petit paramètre est qualitativement différente
de la solution non-perturbée. La Théorie des Perturbations Singulières a des applications dans
les oscillations non-linéaires, la mécanique de vol et la mécanique orbitale. Nous montrons
dans la section 3.2 que la solution de la LPA’ au point fixe est périodique lorsque ε̃ = 0 est
naïvement implémenté. Ainsi, cette solution avec ε̃ = 0 ne peut pas être la solution à l’ordre
dominant pour un potentiel effectif physique. La perturbation par un petit terme ε̃ → 0+

doit conduire à une image qualitativement différente. De ce fait, la Théorie des Perturbations
Singulières peut être utilisée pour construire une solution pour le potentiel effectif à l’ordre
dominant qui est uniformément valide sur toutes les échelles de champ.

Dans la section 3, nous avons étudié les propriétés de la solution du point fixe LPA’
à l’ordre principal de la limite ε̃ → 0+. Pour ce faire (et appliquer la SPT), nous avons
divisé le domaine de variation du champ en trois régions correspondant à des comportements
qualitativement différents. Il était essentiel de reconnaître l’émergence d’une couche limite
de largeur tendant vers zero comme une région intermédiaire, située entre une région interne
entre les deux minima du potentiel ±ϕmin et les régions où le potentiel u(ϕ) et ses dérivées
présentent un comportement en loi de puissance contrôlé par la partie d’échelle (scaling) de
leurs équations de flot de renormalisation.

À partir des conditions de raccordement entre ces régions et d’une solution implicite dans
la couche limite, nous avons trouvé analytiquement dans la section 3.4 que le propagateur
développe une singularité en champ nul lors de l’approche de la dimension critique inférieure
dlc. Grâce à cela, nous avons déterminé le comportement du minimum ϕmin et de la masse
renormalisée au minimum u′′ (ϕmin) lorsque ε̃ tend vers zéro (comme ϕmin ∝

√
ln(1/ ε̃) et

u′′ (ϕmin) ∝ 1/(ε̃ ϕmin)). L’identification de la singularité du propagateur comme cause de
la divergence de u′′ (ϕmin), pointée par les résultats numériques de la section 2, est une
conséquence significative de la procédure de raccordement. Cette singularité du propagateur
est en accord avec la fusion attendue du point fixe critique et du point fixe de température
nulle contrôlant la phase ordonnée, et c’est l’une des caractéristiques attendues de l’approche
de la dimension critique inférieure dlc.

Les conditions de raccordement entre les solutions dans les différents domaines ont éga-
lement été utilisées pour trouver la valeur de dlc en fonction du pré-facteur du régulateur
infrarouge dans la section 3.5. Nous soulignons que le raccordement à travers toutes les ré-
gions a été réalisé automatiquement, en ce sens qu’il peut être obtenu pour n’importe quelle
paire (dlc, α) - cela ne fixe aucune des valeurs. Il n’y a pas d’extremum pour les courbes dlc(α)
obtenues analytiquement, et donc le Principe de Sensibilité Minimale (PMS), une procédure
d’optimisation du régulateur infrarouge, ne peut pas être appliqué.

Dans le chapitre 3, nous avons considéré le niveau suivant après la LPA’ dans la hiérarchie
des troncations du développement en dérivées du champ, afin de vérifier la stabilité voire
une éventuelle amélioration des résultats lorsque l’on augmente l’ordre de l’approximation. Il
s’agit du deuxième ordre du développement en dérivées, ∂2. Nous n’avons pas pu progresser
analytiquement autant que pour la LPA’. Cela n’est pas si surprenant car les équations de
flot de renormalisation sont bien plus compliquées lorsque la fonction de renormalisation du
champ z (ϕ) varie avec le champ (comparé à la LPA’ où z (ϕ) = 1). Le raccordement entre les
solutions obtenues dans les différentes régions de la Théorie des Perturbations Singulières au
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niveau du potentiel effectif u (ϕ), ou de ses dérivées par rapport au champ, est analytiquement
plus accessible car la divergence de la position du minimum ϕmin vient de l’approche de la
singularité du propagateur près de ϕ = 0, ce qui détermine le comportement 1/δ (ε̃) =
O(1/(ε̃ ϕmin)) de la seconde dérivée u′′ (ϕ) dans la couche limite. En raison de l’équation
hautement non-triviale pour z (ϕ), il n’est cependant pas évident d’obtenir analytiquement
son comportement et de réaliser un raccordement approprié des différentes régions de la
Théorie des Perturbations Singulières. Cette ligne de recherche est toujours en cours.

Les équations de flot du GRF ont toutes un terme dépendant explicitement de ε̃ =
(d − 2 + η)/[2(2 − η)], où le petit paramètre ε̃ multiplie le champ lui-même et les dérivées
par rapport au champ des fonctions du RG. Comme nous avons obtenu des observations
numériques en faveur de la divergence de u′′(ϕmin) à partir des données au-dessus de dlc
(section 2), nous nous attendons à nouveau (comme dans LPA’) que le terme en ε̃ devienne
pertinent plus tôt que ce à quoi on pourrait s’attendre lorsque toutes les fonctions du RG
sont finies. L’équation pour z (ϕ) est couplée à ce potentiel effectif singulier, et les résultats
numériques montrent un pic de z (ϕ) à proximité de ϕmin. Nous nous attendons donc à ce
qu’une couche limite émerge autour de ϕmin au niveau ∂2, de manière analogue à ce qui se
passe dans la LPA’, mais avec un comportement non-trivial de z (ϕ) dans cette région. Les
résultats numériques de la section 2 pour d > dlc nous ont encouragés à explorer un ansatz
dans lequel la fonction de renormalisation du champ z(ϕ) diverge dans une couche limite
autour de ϕmin, mais de manière sous-dominante par rapport à u′′ (ϕ).

Avec cet ansatz, l’équation pour u′′(ϕ) dans la couche limite ne dépend plus de z(ϕ) à
l’ordre dominant, et nous avons trouvé analytiquement des solutions implicites à l’ordre do-
minant pour les deux fonctions, qui sont présentées dans la section 3. Ces équations peuvent
également être re-mises à l’échelle sous une forme qui est indépendante du régulateur. Cepen-
dant, le couplage des équations pour u′′(ϕ) et z(ϕ) dans la région interne nous a empêchés
de décrire cette région aussi bien qu’en LPA’, et nous n’avons pas encore réussi à trouver des
conditions de raccordement appropriées entre les différentes régions. Nous pensons que ces
conditions devraient déterminer le comportement de z(ϕmin) avec ε̃ et fournir des informa-
tions analytiques sur la valeur de la dimension critique inférieure dlc(α). Dans la section 3.4,
nous avons obtenu une évidence numérique qu’un extrémum de dlc(α) pourrait être présent
à ∂2, ce qui alors permettrait une optimisation du régulateur infrarouge via le principe de
Sensibilité Minimale, mais cela implique une extrapolation à partir des valeurs obtenues pour
d > dlc. Il est donc nécessaire de trouver des courbes dlc(α) plus fiables.

Dans la section 3.4.1, nous avons présenté les raisons pour lesquelles nous nous atten-
dons à ce que les résultats de la LPA’ concernant la dépendance de ϕmin en

√
ln(1/ ε̃) et

le développement d’une singularité dans le propagateur soient également présents dans l’ap-
proximation ∂2, comme le suggèrent les tendances numériques pour d > dlc et en supposant
que le raccordement est (en principe) possible au sein de la SPT.

Dans le chapitre 1, nous avons souligné que les points fixes critiques et de température
nulle fusionnent à la dimension critique inférieure dlc. Cela implique un certain nombre de
conséquences concernant la température critique et les exposants critiques que nous explorons
dans le chapitre 4, à la fois aux niveaux LPA’ et ∂2.

Dans la section 1, nous avons montré que la température critique Tc se comporte à
l’approche de la dimension critique inférieure comme Tc ∝ 1/ ln (1/Dϕ), où Dϕ, la dimension
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d’échelle du champ, est donnée par l’expression Dϕ ∝ ε̃ qui avait été trouvée dans la théorie
des gouttelettes en d = 1 + ε. La théorie des gouttelettes est basée sur un traitement détaillé
des parois de domaines de gouttelettes (bulles dans des régions de spins opposés) dans le
modèle d’Ising près de la dimension critique inférieure exacte, dlc = 1. Nous soulignons que
ε̃ 6= ε. De façon intéressante, à travers le mécanisme de la couche limite, le développement
en dérivées tronqué dans le GRF semble donc capturer un comportement qui implique des
fluctuations fortement non-uniformes (sous forme de gouttelettes).

En ce qui concerne les exposants critiques, nos résultats se limitent actuellement prin-
cipalementà des données numériques pour d > dlc, qui sont présentées dans la section 2.2.
Concernant les tentatives analytiques, dans la section 3, nous avons proposé une discussion
d’un mécanisme potentiel par lequel la valeur propre pertinente λ1 = −1/ν pourrait devenir
marginale dans la limite d→ dlc, en nous basant sur les similitudes des résultats numériques
avec les vecteurs propres de la valeur propre marginale triviale λ2 ∝ ε̃ dans le voisinage du
minimum du potentiel ϕmin. Cependant, jusqu’à présent, notre travail ne donne pas de ré-
ponse concluante sur la question de savoir si le développement en dérivées tronqué prédit que
1/ν tend vers zéro lorsque ε̃→ 0+. C’est un point qui mérite davantage d’attention dans les
recherches futures. L’exposant critique ν de la longueur de corrélation doit diverger en dlc,
où une mise à l’échelle essentielle ("essential scaling" en Anglais) est obtenue pour le modèle
d’Ising en relation avec la prolifération des instantons (kinks et anti-kinks) qui détruisent
la transition à température finie. Strictement parlant, la divergence de l’exposant critique
ν est une condition nécessaire mais pas suffisante pour retrouver un tel "essential scaling",
c’est-à-dire une divergence exponentielle de la longueur de corrélation, mais nous travaillons
toujours sur ce problème.

La conclusion que l’on peut tirer à ce stade est que les premiers ordres du développe-
ment en dérivées du champ au sein du GRF semblent au moins partiellement saisir l’effet des
configurations fortement non-uniformes contenant des gouttelettes qui contrôlent le compor-
tement critique des modèles purs de type Ising au voisinage de la dimension critique inférieure
(dlc = 1 dans le traitement exact). Ceci se produit à travers le mécanisme mathématique
d’une couche limite dans les fonctions de point fixe et est décrit par la Théorie des Pertur-
bations Singulières. Il reste à voir plus en détail si la prolifération des excitations localisées
(gouttelettes ponctuelles) qui détruisent la transition à dlc et conduisent à un "essential sca-
ling" peut être effectivement décrite par des approximations basées sur un développement
autour de configurations "coarse-grained" uniformes.

Dans les chapitres précédents, nous avons examiné si et comment le développement en
dérivées du champ dans le cadre du GRF peut reproduire des situations où la physique à
longue portée est dominée par des excitations spatialement localisées telles que les kinks et
les anti-kinks qui prolifèrent à la dimension critique inférieure dlc = 1 de la théorie scalaire
φ4 (qui est dans la classe d’universalité du modèle d’Ising) ou les gouttelettes qui contrôlent
le comportement critique à mesure que nous nous approchons de dlc. Dans le chapitre 5,
nous traitons un problème différent où des configurations de champ fortement non-uniformes
sont essentielles. Il s’agit de la phase ordonnée de la théorie scalaire φ4. Dans ce cas, il est
connu que la coexistence de phases (entre deux états ordonnés purs associés à la symétrie
brisée) implique une configuration non-uniforme sous forme d’une paroi de domaine. De
telles configurations non-uniformes permettent à la densité d’énergie libre ou au potentiel
effectif d’être strictement convexe (c’est-à-dire plate) pour des valeurs du champ situées
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entre les deux minima à la limite thermodynamique, comme l’exige leur définition par une
transformation de Legendre.

Nous avons obtenu des résultats préliminaires concernant le potentiel effectif dépendant
de l’échelle, la quantité centrale du GRF, dans la phase ordonnée de la théorie φ4 quand
d > 1. Dans ce cas, les configurations de champ qui contrôlent la thermodynamique et la
coexistence de phases associée sont des configurations non-uniformes de parois de domaine.
Ce qui est spécifique ici par rapport au point critique du même modèle en d = 1 + ε et
au comportement à la dimension critique inférieure en d = 1, c’est que les excitations sont
encore spatialement étendues (bien que seulement dans ε = d − 1 dimensions) de sorte que
leur coût les empêche de proliférer, contrairement aux gouttelettes près du point critique en
d = 1+ε ou aux kinks en d = 1. Le calcul peut donc être effectué à travers une approximation
de point col en présence d’un régulateur infrarouge, complété par des corrections à 1 boucle
associées aux fluctuations gaussiennes autour du point col. Nous avons montré que l’excès
d’énergie libre de la paroi de domaine associée à la tension de surface n’apparaît pas dans
l’expression du potentiel effectif dépendant de l’échelle car ce dernier est considéré à la
limite thermodynamique. La présence de la paroi de domaine est néanmoins nécessaire pour
produire la forme spécifique en k2ϕ2 qui décrit le retour à la convexité quand k → 0.

Il y a plusieurs aspects qui restent à compléter. Premièrement, nous devons terminer
le calcul à 1 boucle pour vérifier si la contribution non nulle à la limite thermodynamique
est proportionnelle à k2 comme il semble naïvement, ou si la dépendance en k est modifiée
pour devenir une loi de puissance plus faible, en particulier lorsque d < 2. Deuxièmement,
nous voulons déterminer si et comment les troncations les plus basses du développement en
dérivées du champ (LPA, LPA’, second ordre ∂2) sont capables de reproduire le compor-
tement prédit de l’action effective dépendant de l’échelle. Comme déjà mentionné, cela a
été démontré pour une large classe de régulateurs infrarouges pour d > 2. Cependant, nous
sommes principalement intéressés ici par d < 2 et plus spécifiquement par la proximité de la
dimension critique inférieure.

Pour résumer, dans ce travail, nous avons évalué comment la physique à longue portée de
systèmes statistiques, lorsqu’elle est contrôlée par des fluctuations fortement non-uniformes,
peut être décrite par le groupe de renormalisation fonctionnel avec un schéma d’approxima-
tion basé sur un développement autour de configurations "coarse-grained" uniformes (déve-
loppement en dérivées spatiales). Nous nous sommes concentrés sur l’exemple bien étudié
de la théorie φ4 de type Ising au voisinage de sa dimension critique inférieure dlc et avons
utilisé une combinaison d’approches numériques et analytiques (Théorie des Perturbations
Singulières, méthode du point col, etc.). Le principal résultat est que le mécanisme par lequel
le comportement critique du modèle lorsque d→ dlc est qualitativement reproduit aux pre-
miers niveaux de troncation du développement en dérivées est la convergence non-uniforme
des fonctions de point fixe dans leur dépendance au champ, associée à l’émergence d’une
couche limite. Des discussions supplémentaires et des perspectives sont également fournies
dans le chapitre de conclusion et certains détails techniques additionnels sont décrits dans
plusieurs annexes.
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Dugi sažetak na hrvatskom jeziku

Od svog uvođenja, Renormalizacijska Grupa (RG) je preferirana teorija za razumijevanje i
opis kolektivnog ponašanja karakteriziranog invarijantnošću na promjenu skale, kao npr. u
blizini kontinuiranih faznih prijelaza. RG pruža snažan konceptualni okvir za istraživanje,
no budući da su egzaktna rješenja uglavnom nedostupna, od samog početka vrlo je aktivna
potraga za generičkim i efikasnim aproksimacijskim shemama. Jedna od modernijih linija
istraživanja počinje od egzaktne formulacije Renormalizacijske Grupe, u obliku Funkcionalne
Renormalizacijske Grupe (FRG) za funkcionale ovisne o skali koji su generatori korelacijskih
funkcija, i uvodi potencijalno neperturbativne aproksimacije kroz "ansatze" za te funkcionale
ovisne o skali. Pitanje kojim se bavimo je u kolikoj mjeri takve generičke aproksimacijske
sheme mogu opisati specifične probleme u kojima na dugovalna svojstva znatno utječu ne-
uniformne konfiguracije, npr. lokalizirana pobuđenja.

Primjer jedne takve aproksimacijske sheme u sklopu FRG-a je takozvani derivacijski
razvoj efektivnog okrupnjenog djelovanja (okrupnjene /"coarse-grained" Gibsove slobodne
energije u jeziku magnetskih sustava) koji odgovara razvoju tog djelovanja po vanjskom mo-
mentu ili ekvivalentno po gradijentima polja. FRG formalizam i derivacijski razvoj uvedeni
su u poglavlju 1. Aproksimacija derivacijskim razvojem je primarno fokusirana na dugovalna
svojstva i, u terminima okrupnjenih konfiguracija sustava, funkcionira kao razvoj oko unifor-
mnih konfiguracija. Nameće se pitanje može li takva aproksimacijska shema ispravno opisati
fiziku povezanu s neunifrmnim konfiguracijama koje sadrže, npr. domenske zidove, spinske
valove ili lokalizirane defekte poput kinkova i anti-kinkova koji se javljaju u instantonskoj
analizi jednodimenzionalnog Isingovog modela.

U ovoj tezi analiziramo može li derivacijski razvoj u sklopu Funkcionalne renormalizacij-
ske Grupe opisati dugovalnu fiziku modela bez a priori poznavanja relevantnih okrupnjenih
konfiguracija, čak i kad su one vrlo neuniformne. U tu svrhu istražujemo kako niski redovi
derivacijskog razvoja opisuju prilazak donjoj kritičnoj dimenziji dlc skalarne φ4 teorije koja
dijeli klasu univerzalnosti s Isingovim modelom i u kojoj se stoga očekuje da je fizika na
dlc dominirana proliferacijom lokaliziranih pobuđenja (instantona). Naglašavamo da nam
nije cilj pružiti još jedan teorijski opis prilaska donjoj kritičnoj dimenziji za sustave u klasi
univerzalnosti Isingovog modela, budući da je to pitanje prilično dobro objašnjeno već prije
nekoliko desetljeća. Naša je namjera na ovom primjeru razviti općeniti, neperturbativni
(ali aproksimativni) pristup unutar FRG-a koji bi služio za probleme koji su još otvoreni
a u kojima se vjeruje da neuniformne konfiguracije igraju značajnu ulogu, poput npr. ni-
skotemperaturne faze Isingovih spinskih stakala ili donje kritične dimenzje neravnotežnog,
atermalno vođenog ("athermally driven") Isingovog modela s nasumičnim poljem (RFIM).
Za ravnotežni RFIM, rigorozno je pokazano da je donja kritična dimenzija dlc = 2, no za
RFIM van ravnoteže sama vrijednost dlc je i dalje upitna. FRG je vrlo pogodna metoda
za takve sustave budući da se zna da i najniži stupnji aproksimacija u sklopu FRG-a mogu
opisati netrivijalne neperturbativne pojave. Dodatna prednost FRG je i generalnost metode,
u opreci sa specijaliziranim pristupima koji se obično moraju koristiti da bi se opisali ovakvi
sustavi, poput kapljične teorije ("droplet theory") u slučaju Isingovog modela tik nad dlc
gdje je nužno zatvorene domene jedne spinske orijentacije uronjene u drugu orijentaciju (t.j.,
kapljice) eksplicitno uvesti i tretirati. Osim toga, prostorna dimenzija d je u FRG parametar
koji se može kontinuirano varirati. Pokazali smo da je konvergencija efektivnog potencijala
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u fiksnoj točki modela neuniformna u polju kad se dimenzija d približava dlc, s pojavom
graničnog sloja ("boundary layer") oko minimuma potencijala.

Kako bismo pronašli granični sloj i ispravno ga opisali, moramo paziti da je ispoštovan
uvjet da se dimenzionalno okrupnjeno polje ne reskalira (s infracrvenim pragom, momen-
tom k, uvedenim u FRG proceduri) na donjoj kritičnoj dimenziji. Prestanak reskaliranja
polja kad nastupi dlc znači da je prijelaz uništen fluktuacijama u fizikalnoj k → 0 granici.
Ovo se također može vidjeti i iz druge perspektive. Ako je moguće pronaći prikladan tret-
man donje kritične dimenzije FRG-om, on mora opisati nestajanje prijelaza i uređene faze.
Ta dva režima su u FRG tokovima predstavljena kritičnom i niskotemperaturnom fiksnom
točkom. Kritična fiksna točka je sedlo s toliko netabilnih (relevantnih) smjerova, koliko je
fizikalno relevantnih parametara koje treba podesiti kako bi sustav postao kritičan. S druge
strane, niskotemperaturna fiksna točka je stabilni atraktor. Stapanje te dvije fiksne točke
predstavljalo bi bifurkaciju pri kojoj bi nestabilni (relevantni) smjerovi sedla postali margi-
nalni. Postoji uvijek prisutna trivijalna relevantna svojstvena vrijednost λ = −(d− 2 + η)/2
povezana s vanjskim izvorom (magnetskim poljem). Uvjet njene marginalnosti istovjetan je
s uvjetom da se dimenzionalno polje ne reskalira.

Drugo svojstvo koje se očekuje pri prilasku donjoj kritičnoj dimenziji, a koje je također
povezano sa stapanjem kritične i niskotemperaturne fiksne točke u d → dlc granici, je da
bi propagator teorije trebao postati singularan. Tome je razlog što je niskotemperaturna
fiksna točka povezana s uređenom fazom slomljene simetrije gdje je povratak ka konveksnosti
dimenzionalnog efektivnog potencijala duž FRG tokova kontroliran prisutnošću singulariteta
u propagatoru (efektivni potencijali u FRG-u moraju biti konveksni tek u fizikalnoj k → 0
granici, ili na kraju tokova).

U poglavlju 2 razmatramo najniži primjenjiv red derivacijskog razvoja, minimalno mo-
dificiranu Aproksimaciju Lokalnim Potencijalom ("minimally modified Local Potential Ap-
proximation", LPA’). Nemodificirana LPA se ne može koristiti za opis kritičnosti u dimen-
zjama d < 2, budući da je anomalna dimenzija u LPA automatski postavljena na η = 0, a
eksponent d− 2 + η koji figurira u korelacijskoj funkciji mora biti pozitivan.

Nakon uvođenja jednadžbi fiksnih točaka (koje opisuju kritičnost) u LPA’ u podpo-
glavlju 1, u podpoglavlju 2 predstavili smo numeričke LPA’ račune za skalarnu φ4 teoriju
polja nad donjom kritičnom dimenzijom (dlc). Numerički podatci o lokaciji minumuma
efektivnog potencijala, ϕmin, pokazuju da se ona ne skalira kao 1/

√
ε̃ (ovdje definiramo

ε̃ = (d− 2 + η)/[2(2− η)]), kao što je bilo pretpostavljeno u ranijem FRG istraživanju.
Našli smo da ϕmin raste znatno sporije s 1/ ε̃. Također smo pronašli divergenciju druge
derivacije u minimumu, u′′ (ϕmin), kao ∼ 1/ ε̃. Ovi numerički rezultati potaknuli su nas da
koristimo Singularnu Perturbacijsku Teoriju (SPT), budući da ε̃ → 0+ granica RG funkcija
u fiksnoj točki nije uniformna u polju. SPT se bavi aproksimacijama rješenja diferencijalnih
jednadžbi čija su neperturbirana rješenja kvalitativno različita od onih perturbiranih nekom
malom veličinom. Singularna Perturbacijska Teorija je uspješno primjenjiva na npr. neline-
arne oscilatore, mehaniku letjelica i orbitalnu mehaniku. U podpoglavlju 3.2 smo pokazali
da je rješenje LPA’ jednadžbe fiksne točke (2.3) periodično u polju kad se naivno implemen-
tira ε̃ = 0. Takvo ε̃ = 0 rješenje je nefizikalno i ne može biti vodeći red rješenja za efektivni
potencijal. Perturbacija malim ε̃→ 0+ članom mora dati kvalitativno drukčije, neperiodično
rješenje. Zato koristimo Singularnu Perturbacijsku Teoriju kako bismo konstruirali vodeći
red ε̃→ 0+ rješenja za efektivni potencijal koje je valjano i fizikalno na svim skalama polja.
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U podpoglavlju 3 smo analitički istražili svojstva LPA’ rješenja za fiksnu točku u vo-
dećem redu ε̃ → 0+ granice. Kako bismo to učinili (i primijenili Singularnu Perturbacijsku
Teoriju), podijelili smo domenu polja ϕ na tri kvalitativno različite regije. Pri tome je bilo
ključno prepoznati razvoj graničnog sloja iščezavajuće širine kao srednje regije, locirane iz-
među unurašnje regije koja se nalazi među minimumima ±ϕmin i regije repova RG funkcija
gde se potencijal u (ϕ) i njegove derivacije ponašaju kao potencije polja (što je kontrolirano
skalirajućim dijelovima pripadnih jednadžbi toka).

Iz uvjeta za spajanje tih regija i implicinog rješenja koje smo našli unutar graničnog sloja,
u podpoglavlju 3.4 smo analitički pokazali da propagator razvija singularitet u ishodištu po-
lja, ϕ = 0, kad se približavamo donjoj kritičnoj dimenziji (dlc). Iz toga smo pronašli kako se
minimum ϕmin i vrijednost renormalizirane mase u minimumu, u′′ (ϕmin), skaliraju s ε̃ (kao
ϕmin ∝

√
ln (1/ ε̃) i u′′ (ϕmin) ∝ 1/(ε̃ ϕmin)). Identifikacija singulariteta propagatora kao

uzrok divergencije u′′ (ϕmin) na koju smo prvo posumnjali zbog numeričkih rješenja fiksne
točke nad dlc (podpoglavlje 2) je značajan rezultat analitički nađen procedurom asimptot-
skog spajanja različitih regija u okviru Singularne Perturbacijske Teorije. Ova singularnost
propagatora u skladu je s očekivanim stapanjem kritične fiksne točke s niskotemepraturnom
fiksnom točkom koja kontrolira uređenu fazu i jedna je od očekivanih obilježja prilaska donjoj
kritičnoj dimenziji.

Uvjeti spajanja regija su korišteni i za pronalazak analitičkih krivulja ovisnosti iznosa
donje kritične dimenzije dlc ove aproksimativne FRG teorije o korištenom inracrvenom re-
gulatoru, što je prezentirano u podpoglavlju 3.5. Naglašavamo da je spajanje kroz sve regije
ostvareno automatski, u smislu da je provedivo za sve (d, α) parove (gdje je α = O(1) prefak-
tor regulatora) - spajanje ne fiksira vrijednost ni d ni α. Također, analitičke dlc(α) krivulje
nemaju ekstrem, te stoga nije moguće koristiti ni Princip Minimalne Osjetljivosti (Principle
of Minimal Sensitivity, PMS) kao proceduru optimizacije regulatora kojom bismo pronašli
optimalni prefaktor α, te stoga i dlc.

U poglavlju 3 smo razmotrili sljedeći korak nakon LPA’ u hierarhiji derivacijskog razvoja,
kako bismo provjerili stabilnost ili pronašli moguća poboljšanja rezultata s povećavanjem
reda aproksimacije. Taj sljedeći korak je drugi red derivacijskog razvoja kojeg skraćeno nazi-
vamo ∂2. Analitički nismo ostvarili napredak na istoj razini kao u LPA’. To nije iznenađujuće,
budući da su jednadžbe toka dane u podpoglavlju 1 puno kompliciranije kad funkcija renor-
malizacije polja z (ϕ) ovisi o polju, u uspedbi s LPA’ gdje je z (ϕ)=1. Asimptotsko spajanje
rješenja među različitim regijama (u kontekstu Singularne Perturbacijske Teorije) na razini
efektivnog potencijala u (ϕ), ili njegovih derivacija po polju, je analitički puno jednostavnije
nego za z (ϕ) budući da je divergentno skaliranje minimuma ϕmin u terminima ε̃ posljedica
prilasku singularitetu propagatora u okolini ϕ = 0, što određuje i skaliranje druge derivacije
u′′ (ϕ) u graničnom sloju s 1/δ (ε̃) = O(1/(ε̃ ϕmin)). S druge strane, zbog vrlo netrivijalne
jednadžbe za z (ϕ), nije jasno kako analitički odrediti skaliranje te funkcije i posljedično
nije moguće ostvariti prikladno spajanje različitih regija. Ovaj aspekt istraživanja je i dalje
aktivan.

Sve jednadžbe toka i dalje imaju član koji eksplicitno ovisi o ε̃ = (d− 2 + η)/[2(2− η)],
u kojem mali parametar ε̃ množi samo polje, ϕ, i derivacije RG funkcija po polju. Budući
da smo i u drugom redu derivacijskog razvoja našli pokazatelje divergencije u′′ (ϕmin) iz
numeričkih rješenja za fiksne točke nad donjom kritičnom dimenzijom (koja su prikazana
u podpoglavlju 2), opet, kao i u LPA’, očekujemo da ε̃ član postane relevantan za manje
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vrijednosti polja nego što bi se očekivalo da su sve RG funkcije konačne. Jednadžba za
funkciju renormalizacije polja je spregnuta s takvim singularnim efektivnim potencijalom
i u numeričkim rješenjima nad dlc uočavamo da funkcija z (ϕ) razvija vrhove ("peaks") u
blizini minimuma, ±ϕmin. Stoga očekujemo da se i na razini ∂2 razvije granični sloj oko
ϕmin, analogno LPA’, ali s netrivijalnim ponašanjem z (ϕ) u toj regiji. Numerički reultati
podpoglavlja 2 za d > dlc su nas potakli da istražimo ansatz u kojem funkcija renormalizacije
polja z (ϕ) divergira u graničnom sloju oko ϕmin, ali subdominantno u usporedbi s u′′ (ϕ).

Korištenjem ovog ansatza, jednadžba za u′′ (ϕ) u graničnom sloju i u vodećem redu u
ε̃ → 0+ ne ovisi o z (ϕ), te smo u podpoglavlju 3 analitički pronašli implicitna rješenja
za obje funkcije (opet, u graničnom sloju i u vodećem redu). Jednadžbe se također mogu
reskalirati u oblik koji ne ovisi o regulatoru. S druge strane, jednadžbe za u′′ (ϕ) i z (ϕ) su
i dalje spregnute u unutarnjoj regiji. Zbog toga tu regiju nismo još uspjeli okarakterizirati
tako temeljito kao u LPA’, te još nismo našli primjerene uvjete spajanja među regijama
(u kontekstu Singularne Perturbacijske Teorije). Vjerujemo da bi ti uvjeti spajanja trebali
odrediti skaliranje z (ϕmin) s ε̃ i dati analitičke podatke o vrijednosti donje kritične dimenzije
dlc(α). U podpoglavlju 3.4 smo našli numeričke pokazatelje da bi krivulje dlc(α) mogle imati
ekstrem na razini ∂2, što bi omogućilo korištenje Principa Minimalne Osjetljivosti (PMS), no
to je uključivalo ekstrapolacije iz vrijednosti nad dlc. Za korištenje PMS-a je stoga potrebno
naći pouzdanije dlc(α) krivulje.

U podpoglavlju 3.4.1 smo izložili razloge zbog kojih očekujemo da se LPA’ rezultati o
skaliranju ϕmin kao

√
ln (1/ ε̃) i razvoju singulariteta propagatora ponove i na ∂2 razini,

kao što sugeriraju numerički trendovi na d > dlc i uz pretpostavku da je spajanje regija (u
principu) moguće.

U poglavlju 1 smo napomenuli da se kritična i niskotemperaturna fiksna točka stapaju na
donjoj kritičnoj dimenziji, što daje određena predviđanja za ponašanje kritične temperature
i kritičnih eksponenata koja istražujemo u poglavlju 4, na obje razine aproksimacije (LPA’
i ∂2).

U podpoglavlju 1 smo našli da se kritična temperatura skalira kao Tc ∝ 1/ ln (1/Dϕ) s
dimenzijom skaliranja polja Dϕ ∝ ε̃. Ovaj izra se slaže s rezultatima kapljične teorije na d =
1 + ε. Kapljična teorija se temelji na pažljivom tretmanu domenskih zidova kapljica (otoka
jedne orijentacije spina u suprotnoj orijentaciji) u Isingovom modelu u blizini egzaktne donje
kritične dimenzije, dlc = 1. Naglašavamo da ε̃ 6= ε. Interesantno je što ovaj rezultat ukazuje
da, kroz mehanizam graničnog sloja, aproksimacijska shema derivacijskog razvoja u sklopu
FRG-a naizgled uspjeva opisati ponašanje Tc povezano s vrlo neuniformnim konfiguracijama
(u obliku kapljica).

Što se tiče kritičnih eksponenata, naši su rezultati trenutno uglavnom ograničeni na
numeričke podatke nad donjom kritičnom dimenzijom, koji su dani u podpoglavlju 2.2. U
vezi s analitičkim pristupom, u podpoglavlju 3 je raspravljen pretpostavljen mehanizam koji
bi mogao voditi do marginalnosti inače relevantne svojstvene vrijednosti λ1 = −1/ν u granici
donje kritične dimenzije, gdje je ν kritični eksponent korelacijske duljine ξ. Argumenti za
ovaj mehanizam bazirani su na sličnostima s numeričkim rezultatima za svojstvene vektore
trivijalno marginalne svojstvene vrijednosti λ2 ∝ ε̃, u okolini lokacije minimuma efektivnog
potencijala ϕmin. Ipak, ovaj rad u ovom trenutku ne daje definitivan odgovor na pitanje
predviđa li derivacijski razvoj isčezavanje 1/ν u granici ε̃ → 0+. Ovo pitanje je bitno i
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zahtjeva daljnje istraživanje. Kritični eksponent ν korelacijske duljine ξ mora divergirati
u donjoj kritičnoj dimenziji, gdje je u Isingovom modelu pronađeno esencijalno skaliranje
ξ povezano s proliferacijom instantona (kinkova i anti-kinkova) koji uništavaju prijelaz pri
svakoj konačnoj temperaturi. Strogo govoreći, divergencija kritičnog eksponenta je nužan (ali
ne i dovoljan) uvjet za esencijalno skaliranje, t.j., eksponencijalnu divergenciju korelacijske
duljine kao funkcije udaljenosti od kritičnosti u temperaturi, te stoga i dalje istražujemo ovaj
problem.

Zaključak koji se može donjeti u ovom trenutku je da niski redovi derivacijskog razvoja u
sklopu FRG-a naizgled barem donekle dobro opisuju efekte vrlo neuniformnih konfiguracija u
obliku kapljica koje kontroliraju kritično ponašanje sustava u klasi univerzalnosti Isingovog
modela kad se približavamo donjoj kritičnoj dimenziji (gdje je dlc = 1 u egzaktnom tret-
manu). Matematički mehanizam koji to omogućuje je granični sloj u funkcijama u fiksnoj
točci, a opisan je Singularnom Perturbacijskom Teorijom. Preostaje detaljnije vidjeti može
li se proliferacija lokaliziranih pobuđenja (točkastih kapljica) koja su odgovorna za uništenje
prijelaza u dlc i koja dovode do esencijalnog skaliranja efektivno opisati aproksimacijama
baziranim na razvoju oko uniformnih okrupnjenih konfiguracija.

U prethodnim poglavljima razmatrali smo derivacijski razvoj u sklpu FRG-a te kako
(i ako) isti može reproducirati fizikalne situacije u kojima je dugovalna fizika dominirana
prostorno lokaliziranim pobuđenjima kao što su kinkovi i anti-kinkovi koji se proliferiraju
na donjoj kritičnoj dimenziji skalarne φ4 teorije (koja je u klasi univerzalnosti Isingovg mo-
dela) ili kapljice koje kontroliraju kritično ponašanje kako se približavamo dlc. U poglavlju
5 se bavimo drukčijim problemom u kojem su bitne vrlo neuniformne konfiguracije polja.
to je uređena faza skalarne φ4 teorije. U ovom slučaju je poznato da koegzistencija faza
(dva čista uređena stanja slomljene simetrije) uključuje neuniformnu konfiguraciju u obliku
domenskog zida. Ovakve neuniformne konfiguracije omogućuju gustoći slobodne energije ili
efektivnom djelovanju da bude strogo konveksno (t.j., ravno) u unutrašnjoj domeni srednjeg
polja u termodinamičkoj granici, kao što i zahtijeva njihova definicija preko Legendreovog
transformata.

Našli smo preliminarne rezultate o efektivnom djelovanju ovisnom o skali, koje je cen-
talna veličina FRG-a, u uređenoj fazi φ4 teorije za d > 1. U ovom su slučaju konfiguracije
polja koje kontroliraju termodinamiku (i asociranu koegzistenciju faza) neunifromni domen-
ski zidovi. Što je specifično u ovom slučaju u odnosu na kritičnu točku istog modela u
d = 1 + ε i u odnosu na ponašanje na donjoj kritičnoj dimenziji d = 1 je da su pobuđenja
i dalje ekstenzivna u prostoru (iako samo u ε = d− 1 dimenzija). Zbog toga im se energija
skalira s Lε, što sprječava njihovu proliferaciju, za razliku od kapljica u blizini kritičnosti za
d = 1 + ε ili instantona za d = 1. Stoga u računu možemo koristiti aproksimaciju sedlene
točke u prisutnosti infracrvenog regulatora, komplementiranu "1-loop" korekcijama (korekci-
jama jedne petlje) koje proizlaze iz Gaussijanskih fluktuacija oko te sedlene točke. Dodatna
(u odnosu na homogeno/konstantno rješenje) slobodna energija domenskog zida povezana s
napetošću površine se ne javlja u izrazu za efektivni potencijal ovisan o skali, budući da je
isti veličina koja je definirana u termodinamičkoj granici gdje linearna mjera veličine sustava
L divergira, a ovaj doprinos se s njom skalira kao 1/L. Ipak, u opis povrata ka konveksnom
efektivnom potencijalu u fizikalnoj k → 0 granici nužno je uključiti ovo nehomogeno rješenje
(a ne samo homogena/konstantna stanja), budući da je domenski zid odgovoran za ∝ −k2ϕ2

doprinos potencijalu.



15

Postoji još nekoliko aspekata ovog računa koje želimo dovršiti. Prvo, potrebno je do
kraja provesti račune jedne petlje kako bismo provjerili je li njihov neiščezavajući doprinos
u termodinamičkoj granici proporcionalan s k2 kao što bi se naivno činilo, ili je ovisnost o
k modificirana (u smislu nižeg potencijskog zakona, ka, a < 2), pogotovo za d < 2. Drugo,
želimo usporediti ako i kako niži redovi derivacijskog razvoja (LPA, LPA’, drugi red ∂2)
mogu reproducirati time predviđeno ponašanje efektivnog djelovanja ovisnog o skali. Ovo
je pokazano za velik broj infracrvenih regulatora i dimenzije d > 2, no mi smo uglavnom
zainteresirani za d < 2 te, specifičnije, okolinu donje kritične dimenzije.

Da rezimiramo, u ovoj tezi smo razmatrali koliko dobro funkcionalna RG, koristeći
aproksimacijsku shemu koja se oslanja na razvoj oko uniformnih okrupnjenih konfigura-
cija (derivacijski razvoj), može opisati dugovalnu fiziku statističkih sustavima u kojima je
ona kontrolirana vrlo neuniformnim fluktuacijama. Usredotočili smo se na dobro proučen
primjer skalarne φ4 teorije, koja je u klasi univerzalnosti Isingovog modela, u režimu prila-
ska njenoj donjoj kritičnoj dimenziji dlc. Koristili smo kombinaciju numeričkih i analitičkih
(Singularna Perturbacijska Teorija, aproksimacija sedlene točke i.t.d.) pristupa. Glavni je
rezultat pronađeni mehanizam kojim je reproducirano kvalitativno ponašanje ovog modlea
u granici d→ dlc na niskim redovima derivativnog razvoja, za koji je presudna neuniformna
konvergencija (u polju) funkcija u fiksnoj točci povezana s pojavom graničnog sloja. U za-
ključnom poglavlju su također ponuđene daljne rasprave i perspektive ovog istraživanja, a
neki od tehničkih detalja obrađeni su u nekoliko dodataka.
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Chapter 1

Introduction

Since its introduction, the Renormalization Group (RG) has been the theoretical tool of
choice for understanding and describing collective behavior characterized by an emergent
scale invariance as in the vicinity of a continuous phase transition. It provides a powerful
conceptual framework but, exact results being scarce, the search for generic and efficient
approximation schemes has been very active from the beginning [1–6]. One recent line of
research starts from an exact formulation of the Renormalization Group, in the form of a
functional Renormalization Group (FRG) for scale-dependent generating functionals of cor-
relation functions [7–9], and introduces potentially nonperturbative approximations through
ansatze for the scale-dependent generating functional under study. The question that we
address is to what extent such generic approximation schemes are able to describe specific
problems in which the long-distance behavior involves strongly nonuniform configurations
with, e.g., localized excitations.

An example of such an approximation scheme within the FRG is the so-called derivative
expansion of the effective average action (coarse-grained Gibbs free energy in the language of
magnetic systems) which amounts to truncating the functional form of the latter in powers
of the external momenta or equivalently in gradients of the fields [10, 11]. The derivative-
expansion approximation focuses on the long-wavelength properties and, in terms of coarse-
grained configurations of the system, works as an expansion about uniform configurations.
One may therefore wonder if such a scheme is able to capture the physics associated with
nonuniform configurations containing, e.g., domain walls, spin waves, or localized defects
such as the kinks and anti-kinks found in the instanton analysis of the 1-dimensional Ising
model.

In this work we assess the ability of the derivative expansion of the FRG to quantita-
tively describe the long-distance physics of a model without a priori knowledge of the relevant
real-space coarse-grained configurations, even when they are strongly nonuniform. To do so
we investigate how low orders of the derivative expansion describe the approach to the lower
critical dimension dlc of the Ising-like scalar φ4 theory which is expected to be controlled
by the proliferation of localized excitations (instantons) [12–14]. FRG is well suited for this
task since even the lowest orders of approximations are known to capture nontrivial nonper-
turbative phenomena [15, 16], and it has an advantage of being a general approach, unlike
specialized approaches one must usually resort to capturing such behavior, like the droplet
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theory in the case of the Ising model just above dlc, where enclosed domains of one spin-
orientation in the other (the droplets) must be introduced explicitly [12–14]. Additionally,
the spatial dimension d is a parameter of the theory that we can vary. We show that the
convergence of the fixed-point effective potential describing the critical point of the model
is nonuniform in the field when the dimension d approaches dlc, with the emergence of a
boundary layer around the minimum of the potential. < At the lowest nontrivial approxi-
mation level (known as LPA’) this allows us to make analytical predictions for the value of
the lower critical dimension dlc and for the behavior of the critical temperature as d → dlc,
which are both found in fair agreement with the known exact results. We check the stability
of the results upon increasing the approximation order by studying the second order of the
derivative expansion (∂2). The ∂2 investigation is still in progress. As of yet, less has been
found analytically due to the complexity coming from the nontrivial field renormalization
function z (ϕ) (z (ϕ) = 1 in LPA’). Numerical results above the dlc show strong indications
that the boundary layer persists, tentatively with the same behavior of the critical tempera-
ture in the dlc limit. However, predictions of the value of the lower critical dimension require
matching the boundary layer solution with the rest of the field domain, which we have not
achieved at the present moment. We also consider for the same Ising-like scalar φ4 model
the ordered phase in the limit where d→ dlc. We focus on the way the effective potential in
the FRG becomes convex as the proper spatial fluctuations, which now involve nonuniform
configurations with a domain wall separating two phases, are included in the calculation.

1 Functional Renormalization Group

1.1 General Renormalization Group Principles

Consider a macroscopic system, composed of an arbitrarily large number of constituents that
interact. A correlation length ξ can be defined. This length scale is taken so that constituents
separated by distances larger than O(ξ) interact weakly, while those inside a volume of O

(
ξd
)

are strongly correlated and exhibit collective behaviors. Here, d is the spatial dimension.
One can then imagine building new, composite constituents from strongly correlated ones to
describe long-range physics.

We have described a fundamental idea behind Renormalization Group (RG) methods
[17–19]. Practically implementing such a scheme that builds an effective theory taking into
account the strong correlations is challenging. Nevertheless, RG is conceptually and compu-
tationally powerful. As it is based mostly on scaling arguments not relying on specificities
of the system, it is versatile and has proven its usefulness in many areas such as condensed
matter (e.g., many-particle fermionic [20] or bosonic [21] systems, density functional theory
[22–26]), cold atoms [27], high-energy physics [28–32] and quantum gravity [33, 34]. It deals
with quantum and classical systems in and out of equilibrium. We continue the discussion
in the context of equilibrium continuous phase transitions.

At criticality ξ diverges and one would have to integrate out all of the fluctuations in
the system, making the procedure no less complicated than calculating a partition function
from a microscopic theory. Surprisingly, a simplification occurs instead. As we coarse-grain
the microscopic details out, the only relevant length scale left in an arbitrarily large system
is the correlation length ξ. When ξ diverges we are left with scale invariance. This makes
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critical systems statistically self-similar when examined at different length scales. L. Kadanoff
[35, 36] realised that Widom’s conjecture [37] about the singular part of the free energy being
a homogeneous function of parameters which describe the deviation from the critical point is
a consequence of scale invariance. This self-similarity at different scales thus means that the
fluctuations coarse-grained up to some arbitrary length scale must be governed by effective
actions close to the one we start from, to maintain the probability distribution across scales.
Let us make this idea a bit more tangible, on a still abstract example where an approximate
RG procedure can be used (a similar discussion can be found in, e.g., [38]). We start from
a system that has one microscopic scale a (e.g., the lattice constant), and is described by
an action S.1 We coarse grain its possible configurations under the length scale ba, where
1 < b � ξ/a. In the next step we re-scale all the length scales by b. The coarse-graining
also changed the scale of the configurations (e.g., the field). We want to be able to map
to a statistically self-similar set of configurations, so we can also allow for the re-scaling of
the field by some scale ζ, which is generally different from b. This allows us to toggle the ζ
with regards to b, to keep the effective action of the approximately same form through this
transformation. We have roughly described some Renormalization Group transformation of
the action S, which we term Rb, consisting of coarse-graining, rescaling the lenght-scales (by
b) and renormalizing the fields (by ζ). We stress that these steps can alternatively be done
in Fourier (momentum) space, as will be done in the FRG.

Iterative applications of the Si+1 = RbSi transformation allows us to move in the space of
actions Si. The term "flow" is often used to describe this. The effective actions of self-similar
systems describing their long-range physical properties should not change at all under this
transformation, representing fixed points S∗ of the Rb operator that satisfy S∗ = RbS

∗. If
a system exhibits fluctuations below the scale at which it is strongly correlated, e.g., if we
start from a bare action, multiple RG steps might be necessary before a critical fixed point
describing long-range universal behavior is reached, S∗c = lim

n→∞
Rnb S0. We stress that critical

fixed points are not the only fixed points that exist. The correlation length is a physically
relevant scale and between Si+1 = RbSi it is transformed as ξi+1 = ξi/b. If we start from a
finite ξ0, RG steps make it smaller. We move away from the critical fixed point, meaning
that this fixed point is not fully attractive, but a saddle [41, 42] with as many unstable
directions as there are physical parameters needing to be fine-tuned to make the system
critical. These unstable directions are called relevant in the RG language. In a stereotypical
example, systems that move away from the fixed point that describes criticality flow towards
either the ordered phase (zero-temperature attractor/fixed point) or the disordered phase
(high-temperature attractor/fixed point) [17, 18, 38].

Contrary to the name, the Rb transformations (for different b’s) form a semi-group and
not a group: Rb=1 is an identity, taking two steps consecutively leads to the same result
as taking them simultaneously or Rb1Rb2 = Rb1+b2 , but we cannot restore the information
about the system under the scale we coarse-grained, so there is no invertibility.

It is convenient to calculate how physical quantities change under an infinitesimal rescal-
ing b→ b+db. This results in differential flow equations. The fixed points of these equations

1Many different formalisms exist. E.g, in Wilson’s RG [1, 39, 40] one builds an effective action S by
coarse-graining in momentum space and then rescaling the UV cutoff to match the original Λ. In FRG an
analogue of the Gibbs energy Γ is considered, also in momentum space, but an infrared (IR) momentum scale
is introduced and varied instead [8].
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conceptually correspond to the fixed points of the Rb operators, S∗ = RbS
∗.

Not all actions will flow into a critical fixed point S∗c , even if it exists. This is apparent,
as not all systems are critical. But if a system exhibits a continuous phase transition, varying
some relevant parameters, e.g., the temperature, can of course make it critical. To see how
this translates into the language of RG flows, we look at a system that is perturbed by some
arbitrarily small δS away from the critical fixed point, S = S∗c + δS.2 One can then linearize
the effect of the Renormalization Group transformations Rb on S (or the flow equations
themselves), in δS. In the language of nonlinear phenomena [41, 42], this gives the stability
matrix of the fixed point S∗c . The eigenvalues and eigendirections in the parameter space
of Si of this matrix are a crucial result of the RG. If the perturbed system given by S is
away from a fixed point along some of these directions, it will either flow into or away from
S∗c , depending on the corresponding eigenvalue. The stable directions along which the flow
ends up in the fixed point are called irrelevant, and they span the critical surface. It is
named a surface because it is of lower dimensionality than the space of the flows, allowing
for unstable directions. This is schematically presented in Fig. 1.1. In contrast, the fixed
points describing the ordered and disordered phase are usually fully stable (attractors). The
unstable directions that lead away from the fixed point are relevant, and moving along them
(i.e., parallel to linear combinations of the relevant eigenvectors) corresponds in principle
to the change of relevant physical parameters in an experimental setting. If there are n
physical parameters that need to be fine-tuned to achieve a transition, there must be n
relevant eigenvalues. Directions that are neither relevant or irrelevant are called marginal.
Their qualification requires going beyond linearization.

Due to scale invariance, near criticality, physical quantities display power-law dependence
on deviations of the values of these relevant physical parameters away from their critical
values [17–19, 43], for example on temperature with t = |1− T/Tc| or magnetic field with h
(away from h = 0) . Exponents of those power-laws are called critical exponents.

To see how this connects to scale invariance, we can consider the free energy density of
a system with two unstable (relevant) directions t and h, given by

f(t, h) = F (t, h)
V

, (1.1)

where V = Ld is the volume of the d-dimensional system under consideration. This corre-
sponds to a conventional critical point (a higher number of relevant directions is associated
with multi-critical points). Consider the coarse-graining and rescaling steps under which
there is a L → bL transformation. When near criticality, the system is scale invariant, so
the energy density is to remain the same:

f(t, h) = b−df(bytt, byhh). (1.2)

Here t → bytt (and analogously for h) has been used. This is due to the fact that rescaling
with b = b1b2 is the same as first rescaling by b2 and then b1, and that at criticality t = h = 0.

2For example, in many cases, it is enough to consider the space of actions Si to be spanned by a set of
couplings C = {C1, ..., CN} allowed by the symmetry of the problem in question. Actually, all couplings
allowed by symmetry must be considered, as they can be generated along the RG flow even if not present in
the initial condition of the flow. This seems formidable but usually most couplings turn out to be irrelevant
[17]. Then our perturbed system S = S∗c + δS would be given by couplings {C∗1 + δC1, ..., C

∗
N + δCN}, with

δCi � 1 and C∗i being their values in criticality.
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Figure 1.1 – Schematic representation of RG flows (picture taken from [38]). The stable
basin of attraction is the critical surface.

Minding that t and h are relevant directions, as we rescale we must move away from criticality,
so yt, yh > 0. These are the corresponding relevant eigenvalues. As an illustration of how
critical power-law scaling is recovered from Eq. (1.2), we can choose to rescale by such b that
bytt = 1:

f(t, h) = td/ytf
(
1, h/tyh/yt

)
. (1.3)

To connect to a standardly defined critical exponent, we can recall that the magnetization
m(t, h) is obtainable by differentiating f with respect to h, directly giving the scaling:

m(t, h) = t(d−yh)/ytm
(
1, h/h/tyh/yt

)
. (1.4)

The critical exponent of interest, β, is defined as m(t, h = 0) ∝ t−β, and we directly recover
β = −(d− yh)/yt, connecting the eigenvalues of the unstable (relevant) directions with the
critical exponents. Exponents for the susceptibility (γ), the heat capacity (α) or the source h
with respect to magnetization (δ) can be similarly connected to the eigenvalues yt and yh as
these physical quantities can be calculated from f(t, h). At the same time this also reproduces
and explains identities relating different exponents to each other (e.g., Rushbrooke’s identity,
α+ 2β + γ = 2 [19]), which were often first noticed in experiments.

The correlation length is similarly obtained as

ξ(t, h) = bξ(bytt, byhh) = t−1/ytξ
(
1, h/tyh/yt

)
, (1.5)

relating the relevant eigenvalue yt to the critical exponent ν, ξ ∝ t−ν , as yt = 1/ν.
Concepts and ideas of this general RG introduction can be found elaborated in more

detail in standard textbooks, lecture notes and reviews, like [15, 17–19, 38, 43–47].
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1.2 Functional Renormalization Group methodology

Many perturbative RG approaches in condensed matter physics are based on the Wilsonian
renormalization group [1, 39, 40]. Approaching RG in momentum space and separating low-
and high-momentum (compared to some introduced momentum scale k) fluctuations, it is
the first form of FRG. The implementation of schemes beyond perturbative RG is technically
complicated in the Willsonian RG. Due to the nonperturbative nature of the fluctuations that
are of interest to us, we turn to a more modern formulation of FRG, where the separation
between low- and high-momenta is smooth and one deals with the generating functional of
1-particle irreducible (1-PI) correlation functions instead of the action.

Functional RG (FRG) is used when the functional form of quantities (like, e.g., the
effective potential) are relevant, or when one needs to treat the problem at hand nonpertur-
batively [16]. FRG is an exact formulation of the RG ideas and as such it offers an exact flow
equation for the scale-dependent generating functional of 1-PI correlation functions (which
is, in the language of magnetism, the scale-dependent Gibbs free energy). This flow equa-
tion, known as the Wetterich equation [8, 16], is a complicated integro-differential equation
and it generally cannot be solved. Its remarkable usefulness lies in the fact that such a
formulation permits and suggests the use of nonperturbative approximation schemes, and
the search for generic and efficient approximation schemes has been very active from the
beginning [2–6, 39]. One of such nonperturbative schemes is the Derivative Expansion (DE),
which we will consider in this thesis.

In Section 1.1 we introduced general concepts necessary to discuss any RG procedure.
Now we can present a more formal picture for the FRG, starting from the partition function.

A general partition function Z[J ] for a system described by the action S[φ] is given by
the expression3

Z[J] =
∫

x
Dφ exp (−S[φ] + J · φ), (1.6)

where J is the source field, and the integral goes over all possible configurations of the field
φ. All energy-related quantities in Eq. (1.6) are reduced, meaning that the thermodynamic
β = 1/kBT is absorbed in S[φ].

Following the general RG idea, we want to treat the microscopic fluctuations separately
from the long-range ones. We do this in the momentum space for practical reasons. In this
picture the microscopic fluctuations are the field modes with relatively large momenta, the
"fast" ones. What is called fast is up to our choice. We artificially introduce a scale k into
the system, and regard the modes with momenta |q| ' k as fast, microscopic fluctuations.

To proceed, we need to decouple the fast from the slow modes in the partition function.
We do that by "weighing down" the slow modes by a k-dependent change in the effective
action ∆Sk[φ]:

Zk[J] =
∫
Dφ exp (−S[φ]−∆Sk[φ] + J · φ), (1.7)

3We use the conventions where
∫

x =
∫
ddx,

∫
q =

∫
ddq/(2π)d and "·" stands for the scalar product, in the

sense of A · B =
∑

i

∫
x Ai(x)Bi(x), and analogously for products of vectors and operators represented by

matrices. Bold quantities, like J, stand for N -component vectors, J(x) = (J1(x), ..., JN (x)).
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The concrete construction of ∆Sk[φ] involves an infrared (IR) regulator function Rk:

∆Sk[φ] = 1
2φ ·Rk · φ = 1

2

∫
q
Rk
(
q2
)
|φ(q)|2 (1.8)

The scale-dependent action Sk[φ] should respect the same symmetries as the starting
action S[φ] [16, 44]; so, when the problem is O(N > 1) or Z2 symmetric, we have Ri,j(q) =
Rk
(
q2)δi,j as was already taken into consideration in Eq. (1.8). More on the regulator will

be said in Section 1.2.2.
The ∆Sk[φ] is constructed so that it has minimal effect on the fast modes. The scale-

dependent partition function Zk[J] is then effectively the partition function including only
the microscopic, fast modes. Te k scale is the IR cutoff of such a system, in the sense that
fluctuations with momenta |q| . k are frozen out. This cutoff is constructed to be smooth.
By changing the IR cutoff k, we change the scale of the problem and move along the RG
flows. In the limit k → 0 all of the fluctuations are integrated over and Zk[J] corresponds to
the physical partition function in Eq. (1.6):

Zk=0[J] = Z[J], (1.9)

hence k = 0 is the physical limit of this procedure.

1.2.1 Effective action formalism

The free energy W [J] is defined from the partition function according to

W [J] = ln (Z[J]) (1.10)

The ensemble average of the field

ϕi(x) := 〈φi(x)〉 = ∂W [J]
∂Ji(x) . (1.11)

is the most probable state of the system [16]. More generally, W [J] is the generating func-
tional of the connected correlation functions [44]. Instead of the free energy W [J], which is
a function of the source field J(x), one can work in terms of its Legendre transform Γ[ϕ],
the effective action given by

Γ[ϕ] +W [J] = J ·ϕ, (1.12)

whose natural variable is the average field ϕ(x) itself. As already mentioned, Γ[ϕ] is the
generating functional of the 1-PI correlation functions [44]. In the language of magnetism,
W [J] is an analogue of the Helmholtz and Γ[ϕ] of the Gibbs free energy, and ϕ(x) is the
magnetization that can be used as an order parameter. In this picture, the source field J(x)
is a function of ϕ(x):

Ji(x) = δΓ[ϕ]
δϕi(x) . (1.13)
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We can define the scale-dependent equivalent of these quantities by using the scale-
dependent partition function Zk[J] (see Eq. (1.7)), starting with the free energy

Wk[J] = ln (Zk[J]). (1.14)

We want to construct a running effective action Γk[ϕ] which would interpolate between the
k = Λ limit, where all fluctuations are frozen, and mean-field theory is exact:

ΓΛ[ϕ] = S[φ = ϕ], (1.15)

and the Gibbs free energy Γ[ϕ] at k → 0, where all fluctuations are formally integrated into
the theory:

Γk=0[ϕ] = Γ[ϕ]. (1.16)

Notice that Eq. (1.15) holds for ∆SΛ → +∞, where it enforces the exactness of the saddle-
point approximation, and is approximate in practice where ∆SΛ is large but finite.

We modify the Legendre transform to reflect this [16]:

Γk[ϕ] +Wk[J] = J ·ϕ− 1
2ϕ ·Rk ·ϕ. (1.17)

A consequence of this modification of the Legendre transform is that as long as not all of
the fluctuations are integrated out, i.e., for k 6= 0, the effective action Γk[ϕ] does not need
to be convex. Convexity is instead expected for the quantity Γk[ϕ] + ϕ ·Rk · ϕ/2. In the
limit k → 0 the regulator term vanishes and Γk=0[ϕ] is convex, as it must be to match the
Gibbs free energy.

1.2.2 Regulator

To achieve the decoupling of fast and slow modes, the regulator function Rk
(
q2) must have

certain generic properties. The modifier of the action ∆Sk[φ] vanishes in k = 0 by construc-
tion, so that Γk=0 corresponds to the Gibbs free energy. Therefore we put Rk=0

(
q2) = 0.

In the opposite limit, ΓΛ is to correspond to the bare action S. Therefore, RΛ
(
q2) must be

much larger than any bare-action energy scale, so that all of the modes are "frozen" out by
∆SΛ � 1. Between these two limits, the function Rk

(
q2) must suppress the slow modes

with |q| < k, and not affect the fast ones. So a generic Rk
(
q2) function is a monotonously

decreasing function. It is usually of O
(
k2) for low momenta up to somewhat of a step at

|q| = k, after which it tends to rapidly vanish. A sketch of this is given in Fig. 1.2
The choice of the regulator function would have no effect on universal quantities in fixed

points, if one could do practical calculations exactly. Once approximation schemes are used
in the exact FRG flow equation, this introduces dependence on Rk

(
q2). For the results to be

useful, this dependence must not be significant and should also be understood. In practice,
we will use two different regulator functions and allow for a regulator prefactor α to be
adjustable to account for this. These are the Theta regulator and the exponential regulator,
respectively:

Rk
(
q2
)
∝ α

(
k2 − q2

)
Θ
(
k2 − q2

)
, Rk(q) ∝ αk2e−q2/k2

, (1.18)
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Figure 1.2 – Typical shape of the IR regulator function in dependence of momentum (picture
taken from [16]).

where Θ denotes the Heaviside step function. The proportionality constant that has not been
explicitly included in the above expressions pertains to the scaling of the regulator with k
and will be clear when we introduce the field renormalization and the so-called dimensionless
quantities in Section 1.2.5.

There exist several established ways of optimizing the choice of the regulator for the
use in the DE approximation scheme. The Litim-Pawlowski optimization method [48–51]
aims to maximize the convergence of a truncated flow (expanded in the field variable). The
Principle of Minimal Sensitivity (PMS) compares different prefactors α for a same regulator
function (it cannot compare across functional forms of the reguulator). It takes as optimal
the value of α at which the physical quantities, e.g., the critical exponents, are least sensitive
to its change (e.g., the value of α where the exponent η(α) admits an extremum) [16, 52, 53].
A third method is applicable to conformally invariant problems. This invariance results in
identities for the effective action, and a regulator is chosen to minimize the deviations from
these identities [54]. Good agreement has then been found with the prefactors optimized by
PMS.

1.2.3 Exact flow equation for the effective action Γk
We seek flow equations for an effective action describing the universality class of a scalar φ4

theory, as has been announced in the introduction to this chapter and will also be discussed
in Section 2. This means that the field ϕ is a scalar, and Γk[ϕ] is Z2-symmetric.

To see how the scale-dependent quantities change with k, we directly take the derivative
of the partition function, ∂kZk[J ]. When we express this in the terms of the scale-dependent
free energy Wk[J ] = ln (Zk[J ]); it is termed the Polchinski equation [7] and it reads:

∂kWk[J ] = −1
2

∫
x

∫
y
∂kRk(x− y)

(
δ2Wk[J ]

δJ(y)δJ(x) + δWk[J ]
δJ(y)

δWk[J ]
δJ(x)

)
. (1.19)

To arrive at the equation for Γk[ϕ], the Legendre transform relation Eq. (1.17) is partially
differentiated with respect to k. Care must be taken to switch from ∂k with the source J
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held constant, to the same derivative with a constant average field ϕ(x). One needs to use
the identity ∫

z

δ2Wk[J ]
δJ(x)δJ(z)

[
δ2Γk[J ]

δϕ(z)δϕ(y) +Rk(x− y)
]

= δ(x− y) (1.20)

to express the propagator in the RHS of Eq. (1.19) in terms of the effective action Γk[ϕ]:

Gk(x,y) = δ2Wk[J ]
δJ(x)δJ(y) =

[
δ2Γk[ϕ]

δϕ(y)δϕ(x) +Rk(x− y)
]−1

. (1.21)

Here [· · · ]−1 stands for the inverse of the operator. The propagator identity Eq. (1.20) is
found directly form taking a functional derivative of the expression for the source J(x),

J(x) = δΓ[ϕ]
δϕ(x) + [Rk · ϕ](x), (1.22)

with respect to the source itself, J(y), and using:

δJ(x)
δJ(y) = δ(x− y). (1.23)

The result is the exact Wetterich flow equation [8]:

∂kΓk[ϕ] = 1
2

∫
x

∫
y
∂kRk(x− y)

[
δ2Γk[ϕ]

δϕ(y)δϕ(x) +Rk(x− y)
]−1

(1.24)

We note that the regulator function Rk
(
q2) is constructed so that the derivative ∂kRk

in the flow equation decays fast enough for large momenta so that there is convergence in
the UV limit.

The flows are often tracked in the so-called renormalizaton time t = ln (k/Λ) < 0 where
Λ is some momentum scale larger than any of the physical scales in the problem. The change
of scale is then expressed by ∂t = k∂k.

The flow Eq. (1.24) can be written in compact form, representing the space-integrals by
a trace:

∂tΓk[ϕ] = 1
2 Tr

[
∂tRk

(
Γ(2)
k [ϕ] +Rk

)−1
]
, (1.25)

with Γ(2)
k [ϕ] denoting the second (functional) derivative of the effective action with respect

to ϕ. As we are considering the universality class of the scalar φ4 theory, we have taken ϕ(x)
to be a scalar. In the case of an N -component vector field ϕ(x) = (ϕ1(x), ..., ϕN (x)), a trace
over the components must also be taken in the RHS of the flow equation, Eq. (1.25) [16].

Defining an operator that only acts on the renormalization time dependence of the
regulator function, ∂̃t = (∂tRk)∂Rk , Eq. (1.25) can be recast in a form that is often more
practical for further algebraic manipulations:

∂tΓk[ϕ] = 1
2 ∂̃t Tr

[
ln
(
Γ(2)
k [ϕ] +Rk

)]
. (1.26)
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This makes apparent the 1-loop structure of the flow equation [55, 56]. If one uses the
mean-field value Γ(2)[ϕ] = S(2)[ϕ] in the RHS of Eq. (1.26), the 1-loop result [44, 57]

Γ1−loop[ϕ] = S[ϕ] + 1
2 Tr

[
ln
(
S(2)[ϕ]

)]
(1.27)

is recovered. This means that sensible approximation schemes for the FRG always reproduce
one-loop results.

1.2.4 Derivative expansion

The Derivative Expansion (DE) is an ansatz for the effective action Γk[ϕ]. It is a series in
the spatial derivatives of the average field, ∇ϕ(x), or equally in the momenta.

We are going to use the DE up to the second order (shortened to DE2 or ∂2), where the
ansatz is given by:

Γk[ϕ] =
∫

x

{
Uk[ϕ(x)] + 1

2Zk[ϕ(x)](∇xϕ(x))2
}
. (1.28)

The full field dependence of the functionals Uk[ϕ] (the effective potential) and Zk[ϕ] (the
field renormalization function) is kept, meaning that this approach is nonperturbative in the
couplings. Uk[ϕ] and Zk[ϕ] (and their field-derivatives) are in this text sometimes referred
to as RG functions.

To move forward with the Wetterich Eq. (1.24), we must find the ∂2 expression for
the propagator, and thus the second field derivative of the ∂2 effective-action ansatz from
Eq. (1.28):

Γ(2)
x,y[ϕ] := δ2Γk[ϕ]

δϕ(y)δϕ(x) =
{
U ′′k [ϕ]− 1

2Z
′′
k [ϕ](∇ϕ)2 − Z ′k[ϕ]∇2ϕ(x)

}
δ(x− y)+

− Z ′k[ϕ]∇ϕ(x)∇δ(x− y)− Zk[ϕ]∇2δ(x− y).
(1.29)

We are showing this expression to underline the fact that ∂2 is constructed with long-wave
fluctuations and physics in mind. One can note conceptual similarities with the Ginzburg-
Landau approach [58] from the ansatz in Eq. (1.28) itself, and indeed, the DE is best suited
to describe configurations with smooth, long-wavelength deviations from a uniform coarse-
grained field ϕ(x) = ϕ. This is made even clearer in the next step, where after computing
the necessary field derivatives, i.e., Eq. (1.29), we take ϕ(x) to be uniform. In addition, it
has been identified that the corrections to second order and higher in the DE are suppressed
by a factor η [53, 59], which is not a small quantity in the φ4 theory when one nears the
lower critical dimension dlc, where strongly nonuniform fluctuations proliferate.4 A natural
and still open question arises. How well can the derivative expansion deal with nonuniform
fluctuations? This is especially relevant for systems with complicated microscopic physics,
e.g., in the presence of quenched disorder, where such configurations are expected but un-
known, so that it is not always feasible to tailor theoretical treatments where nonuniform
fluctuations are introduced by hand.

4In fact, it is found to be η = 1 at dlc = 1 in the exact treatment of the Ising model [60, 61].
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We use round brackets for the ϕ dependence when it is taken uniform, for emphasis.
The effective potential is then given by

Uk (ϕ) = Γk (ϕ)
V

, (1.30)

and the flow equation for Uk (ϕ) is trivially inherited from the Wetterich equation Eq. (1.24)
for the effective action, evaluated with a uniform ϕ after all of the functional derivatives
involved have been carried out, like in Eq. (1.29).

To find the flow equation for the field renormalization function, we note that for a uniform
configuration, the second derivative of the action Γ(2)

x,y[ϕ] given by Eq. (1.29) reduces to:

Γ(2)
q (ϕ) = U ′′k (ϕ) +q2Zk (ϕ), (1.31)

where a Fourier transform has been performed. The function Zk (ϕ) can then be obtained
as

Zk (ϕ) = ∂Γ(2)
q (ϕ)
∂(q2)

∣∣∣∣∣
q2=0

, (1.32)

which allows us to find its flow equation by twice (functionally) differentiating the Wetterich
Eq. (1.24) with respect to the field, evaluating the outcome in a uniform configuration, taking
a Fourier transform of the result, and identifying the term ∝ q2.

With ϕ taken uniform in Eq. (1.29), the otherwise complicated problem of inverting the
functional on the RHS of Eq. (1.21) becomes algebraic in the momentum space, giving the
following expression for the propagator:

Gk
(
q2
)

= 1
U ′′k (ϕ) +Rk(q2) + q2Zk (ϕ) , (1.33)

a final ingredient needed in the Wetterich equation. Before proceeding with the expressions
for the ∂2 flow equations, we introduce dimensionless quantities.

1.2.5 Scale invariance at criticality and dimensionless quantities

We are interested in criticality, where scale invariance emerges due to the divergence of the
correlation length [17, 18, 43]. This invariance to changes in scale prompts us to consider
fixed points of the flow equations; yet, the use of an IR regulator explicitly introduces a scale
k, breaking down scale invariance. To get a clearer picture of the scale-invariant behavior, it
is common and practical [15, 16] to work with dimensionless (as opposed to dimensionful)
RG functions. We move from dimensionful to dimensionless (marked by a tilde) quantities
and vice versa by multiplying them with appropriate powers of the momentum cutoff k,
which is analogous to re-scaling after coarse-graining.

The scaling of momenta and lengths with k is simply

y = q2/k2 and x̃ = kx, (1.34)
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and the scaling of the rest of the relevant variables and functions that comes form dimensional
analysis of the effective-action ansatz Eq. (1.28) is given by:

Uk (ϕ) = kdũk(ϕ̃);

ϕ2 = Z−1
k k(d−2)ϕ̃2, Zk (ϕ) = Zkz̃k(ϕ̃), Rk

(
q2
)

= Zkk
2yr̃(y).

(1.35)

In the second row of Eq. (1.35) a constant Zk is introduced, as from Γk (ϕ) we can infer the
scaling of, e.g., ϕ2Zk (ϕ), but not ϕ or Zk (ϕ) separately. For this, we look at the propagator
expression, Eq. (1.33), in combination with Eq. (1.35):

G−1
k

(
q2
)

= Zkk
2[ũ′′k(ϕ̃) + y(r̃(y) + z̃k(ϕ̃))

]
, (1.36)

where the expression in the square brackets is dimensionless. For small momenta and near
criticality we expect the propagator to behave as G−1(q2) ∼ |q|2−η [17], with η being the
anomalous dimension. The regulated G−1

k

(
q2) has a mass term as long as k 6= 0 and we do

not expect this behavior for |q| � k, so we introduce a scale-dependent anomalous dimension

ηk = −∂t ln (Zk), (1.37)

with the physical limit ηk→0 → η. To calculate it, we define Zk by imposing a renormalization
condition

z̃k(ϕ̃r) = 1 =⇒ Zk = Zk(ϕr) (1.38)

at some renormalization point ϕr which may be scale (k) dependent. Now, the anomalous
dimension can be calculated from

ηk = −∂t[ln (Zk(ϕr))]. (1.39)

If we could work with the exact Wetterich equation without approximations, the choice of
ϕr would be irrelevant. However, as with the regulator, once approximations are introduced,
one must consider the choice of ϕr. In the lowest order of the derivative expansion which is
called the Local Potential Approximation (LPA), Zk (ϕ) is taken as a constant and ηk = 0
by construction. We do not use LPA as η = 0 prevents us from studying the criticl behavior
below d = 2 (see Chapter 2). At the next order, the minimally modified LPA’, Zk (ϕ) is a
constant in the field but not in k so that it scales with the scaling dimension −ηk. It has
been found that for LPA’ it is best to renormalize at the location of the minimum of the
effective potential ϕmin,k [62, 63], and this is what we use. The next order is ∂2 itself, where
the specific choice of ϕr is less relevant. As it is more practical to enforce the Z2 symmetry,
at ∂2 we will renormalize in the origin, ϕ = 0.

The flow of a dimensionless function F̃ (ϕ̃) is connected to the flow of the dimensionful
function F (ϕ) over the corresponding scaling dimension DF :

∂t|ϕ F (ϕ) = βF and F (ϕ) = kDF F̃ (ϕ̃) =⇒
=⇒ ∂t|ϕ̃ F̃ (ϕ̃) = −DF F̃ (ϕ̃) +Dϕϕ̃F

′(ϕ̃) + βF̃ , with βF̃ = k−DF βF ,
(1.40)

where the β-functions represent the nontrivial part of the flow (which can be found from
the Wetterich Eq. (1.24)), and the rest is dubbed the scaling part of the flow (found by the
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standard chain rule for derivatives and switching from fixed ϕ to fixed ϕ̃). The β-functions
are actually functionals and depend on RG functions, the anomalous dimension η and contain
the regulator, as can be seen in Section 1.3.

In the rest of the chapters we drop the tilde from the dimensionless quantities to avoid
cluttering the notation, as we do not discuss their tilde-less dimensionful versions, unless
otherwise stated.

1.3 Flow equations in the second order of the derivative expansion

Directly following the above explained procedure leads to the flow equations for the dimen-
sionless effective potential and field renormalization function, given by

∂tuk (ϕ) =− duk (ϕ) +(2− ηk) ε̃k ϕu′k (ϕ) +2vd`(d)
0 (ϕ; ηk), (1.41)

∂tzk (ϕ) =ηkzk (ϕ) +(2− ηk) ε̃k ϕ z′k (ϕ) +

+ 2
d
vd

{ (
z′k (ϕ)

)2 [(2d+ 1) `(d+2)
2 (ϕ; ηk)− 2m(d+4)

4,0 (ϕ; ηk)
]
− dz′′k (ϕ) `(d+2)

1 (ϕ; ηk)+

+ 2z′k (ϕ)u′′′k (ϕ)
(
d`

(d)
2 (ϕ; ηk)− 2m(d+2)

4,0 (ϕ; ηk)
)
− 2

(
u′′′k (ϕ)

)2
m

(d)
4,0(ϕ; ηk)

}
.

(1.42)

The constant vd is the surface of a d-dimensional unit sphere, given by:

vd = 1
2d+1√πdΓ(d/2)

. (1.43)

It comes from the momentum integration on the RHS of the Fourier transform of the Wet-
terich Eq. (1.24), and so do the threshold functions `(d)

n and m(d)
n,0:

`
(d)
n>0(ϕ; ηk) =− 1

2

∫ +∞

0
dyyd/2−1∂̃y

{
gnk (y, ϕ), n > 0
ln (gk(y, ϕ)), n = 0

}
, (1.44)

m
(d)
n,0(ϕ; ηk) = −1

2

∫ +∞

0
dyyd/2∂̃y

{
(∂ygk(y, ϕ))2(g(y, ϕ))n−4

}
. (1.45)

Here g(y, ϕ) = k−(2−ηk)Gk
(
q2) is the dimensionless propagator and the derivation operator

∂̃y marked by a tilde only acts on the dimensionless regulator r(y), such that

∂̃yr (y) = −
(
ηkr (y) +2yr′ (y)

)
. (1.46)

This is because ∂̃y comes from the flow of the dimensionful regulator, ∂tRk
(
q2), and applies

to dimensionless quantities. Explicit expressions for the threshold functions are given in
Appendix A. We stress that the threshold functions are functionals of the Renormalization
Group functions and they also depend on the anomalous dimension ηk:

`(d)
n (ϕ; ηk) = `(d)

n

(
u′′k (ϕ), zk (ϕ); ηk

)
, m

(d)
n,0(ϕ; ηk) = m

(d)
n,0
(
u′′k (ϕ), zk (ϕ); ηk

)
. (1.47)
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In the flow equations Eqs. (3.2) and (3.3) we did not write out these dependences explicitly
to make the expressions less cluttered.

The full expressions for the relevant flow equations will also be given in Chapter 2 for
the minimally modified Local Potential Approximation (LPA’) and Chapter 3 for ∂2, where
they will be used.

2 Strongly nonuniform fluctuations

There are systems which are both theoretically interesting and relevant to the description
of real physical problems whose important qualitative and quantitative properties at long
distance are dominated by the effects of nonuniform fluctuations.

In the following we list a few examples of such systems and briefly touch on how they
are treated in the framework of the derivative expansion scheme for FRG.

First we consider the return to convexity of the scale-dependent effective action in the
ordered low-temperature phase of the O(N) model. The effective action Γ (corresponding
to the Gibbs free energy of a magnetic system) is a Legendre transform of the free energy
(defined as the logarithm of the partition function), and must thus be convex. It is not
simple to build an adequate description of the low temperature phase. One has to account
for the possible coexistence of different phases, meaning that even small changes in external
conditions can cause significant changes in the configurations the system can adopt. This
means that the convexity results from strongly nonuniform fluctuations in configuration
space which are hard to handle by perturbative methods. However, the return to convexity
in the ordered phase of the O(N) model can already be captured at the lowest order (LPA)
of the nonperturbative derivative expansion scheme of FRG, as discussed in [15, 64, 65] and
especially [66]. In the case of the ordered phase of O(N) treated by the FRG, one starts from
some nonconvex Landau action that has a double well shape which is regarded as the (mean-
field) initial condition, and the convexity is restored along the RG flows by integrating all
the fluctuations into the effective action. The fluctuations that are responsible for the return
to convexity are nonuniform configurations such as spin waves or domain walls [15, 65, 67],
and it is interesting that the LPA and ∂2 reproduce this property.

Another famous example, recently revisited in the FRG context in [68], is localized exci-
tiations (vortices) dominating the mechanism of the Berezinskii-Kosterlitz-Thouless (BKT)
transition. The BKT transition is observed in the O(N = 2) model in d = 2 [69–72], and
is found in other two-dimensional systems with global O(2) symmetry such as liquid helium
films [73–76], trapped 2d atomic gasses [77–80], 2d superconductors [81] and others. While
the Mermin-Wagner theorem [82] states that there can be no spontaneous symmetry break-
ing in d = 2 (which is the lower critical dimension for O(N > 2) models), a transition to
algebraic order (power-law decay of correlations with distance) happens due to the binding
of vortex-antivortex pairs. This is of interest to us as the vortices are localized topological
defects, as evident from their mapping to the 2d Coulomb gas of point charges [45, 71, 72] or
to the sine-Gordon model where vortices are conceptually connected to the soliton solutions
the model admits [72, 83], solitons being localized (and stable) wave solutions [84]. An FRG
description of the BKT transition using the second order of the derivative expansion was
first attempted about twenty years ago [85], and has been improved on in the last There
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is another recent study [86] whose interest is whether FRG can capture genuine topological
defects. The authors benchmark this starting from a one-dimensional anharmonic oscillator
(a quartic correction to the harmonic case is added). They aim to calculate the gap between
the ground state and the first excited state using FRG. It is clear that with a change of
sign of the mass term, they can switch to our double-well potential of the scalar φ4 the-
ory. However, their interest lies in the description of tunneling, which is a direction we plan
to undertake in the future and is out of the scope of this text. It is still interesting and
fitting to resent their results here, as they work in the regime where instantons (or kinks,
described in Section 2.2) rule the phyisics of the problem. The authors deal with a quantum
mechanical double well potential, so their results are given as a comparison of numerically
obtained average estimates of different formulations of the flow equations with the accurate
results coming from the Schrödinger equation approach to the problem. The agreement of
most FRG treatments used is excellent for the anharmonic oscillator, but in the case of the
double-well potential, this is not the case for relatively small values of the quartic coupling,
showing that the problem we are undertaking is once more not well, in full, represented in
the existing literature.

Another interesting system involving strongly nonuniform configurations is the Random
Field Ising Model (RFIM). The random field represents a quenched (static) disorder that
couples linearly with the local order parameter. This makes the RFIM a challenging problem
and an interesting example of collective behavior due to the competition between order
(from the interactions) and disorder (from the random fields). The long-distance physics is
controlled by nonuniform configurations in the form of avalanches and droplet excitations
that become scale-free at criticality. Their effect has been shown to be properly accounted
for by the truncated DE even at ∂2 and LPA’ thanks to a careful account of the functional
character of the RG [87–93]. The equilibrium RFIM has a lower critical dimension of dlc =
2 [94, 95], at which the fluctuations destroy the transition. The equilibrium and out-of-
equilibrium RFIM’s are not in the same universality class below d ≈ 5.1 [92, 96] even
though their critical exponents are numerically very close [97–99]. It is however not yet
clear whether they share the same lower critical dimension dlc = 2, with arguments both
for [100] and against [101]. The physics of in- and out-of-equilibrium cases is different.
In equilibrium, there is a critical fixed point for d > 2 corresponding to a paramagnetic-
to-ferromagnetic transition [102–104]. The out-of-equilibrium case describes a hysteresis
transition that appears when the RFIM is athermally driven by an external magnetic field. In
the limit of quasistatic changes of the applied field, a critical point is found on both branches
of the hysteresis curve (magnetization vs. field, with the field either increasing or decreasing)
[105–108]. The "phases" at play are a high-disorder phase with a smooth hysteresis curve
in the thermodynamic limit and a low-disorder phase with a discontinuous jump. Even
though they appear quite different, the two situations at criticality are characterized by the
presence of scale-free avalanches (which are discontinuous collective events) in the relevant
coarse-grained configurations. The FRG (and its generic approximation schemes, such as
DE) is especially relevant here as the avalanches cause nonanaliticities in the functional
dependence of the fixed-point effective action that cannot be treated perturbatively [92].

In all of these systems it is crucial to consider and appropriately account for nonuniform
fluctuations, and the DE seems to fare well with the task (even though still not everything
is clear about the FRG description of these systems). Yet, the jury is still out when the
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relevant coarse-grained configurations that control the large-scale behavior involve localized
excitations such as the kinks and anti-kinks found in the instanton analysis of the 1d Ising
model [109] or in the 1d sine-Gordon model [110, 111]. We therefore choose to investigate
the scalar φ4 theory near its lower critical dimension. It is the field-theoretical continuum
version of the Ising model [18, 19], as can be heuristically shown by using auxiliary-field
Hubbard-Stratonovich transformations [44, 112]. This makes it a paradigmatic model of a
discrete-symmetry system where the transition is destroyed by localized excitations - the
kinks and anti-kinks described in Section 2.2 in the context of the Ising model. The action
of the scalar φ4 theory is given by

S[φ] =
∫
ddx

{1
2(∇φ(x))2 + r

2φ
2(x) + g

4!φ
4(x)

}
(1.48)

and can be found in most textbooks on critical phenomena, e.g., [18, 19, 44, 113]. Here,
d is the spatial dimension and the constant g is the coupling constant for the interaction
term, which becomes irrelevant in the RG sense above the upper critical dimension duc = 4
[44, 114]. At and above duc = 4, depending on the sign of the coupling r, there can be
spontaneous symmetry breaking (r < 0) or just the disordered phase (r > 0), with r = 0
being the critical value leading to the identification r ∼ T − Tc.

We stress that, eventually, our interest lies in systems where the nature and existence of
suspected strongly nonuniform fluctuations is not simply accessible through a saddle-point
approximation, e.g., droplets of all kinds in glassy systems such as spin glasses [115–117].
When the nature of the the nonuniform fluctuations is unknown, one cannot use specifically
tailored approaches to capture the related physics. A possible path would then be to use
a generic approximation scheme such as DE, as one does not have to put in by hand the
putative nonuniform fluctuations. We are interested in the φ4 theory in this light.

2.1 Lower critical dimension

The effects of fluctuations at the critical point are not equally important in every spatial di-
mension d. Take a system that exhibits a continuous phase transition and whose constituents
have short-range interactions. In higher dimensions, each constituent has many neighbors to
interact with. These interactions favor ordering, which minimizes the energy contribution to
the free energy. When we go down in d there are less and less neighbors to interact with, and
the entropic contribution in the free energy becomes more and more significant compared to
the energy. This opposes ordering. The critical temperature is then pushed to progressively
lower values, until at some d = dlc ordering at finite temperatures becomes impossible. This
defines the lower critical dimension.

Take the φ4 theory as an example. Above the upper critical dimension, duc = 4, the
impact of the fluctuations on the critical behavior is negligible and the mean-field exponents
describe the criticality exactly [18, 118]. In the RG language, the quartic coupling becomes
irrelevant [17, 44]. Criticality is then described by the Gaussian fixed point, corresponding
to a non-interacting field theory described by quadratic fluctuations. Below duc this fixed
point becomes unstable, because the quartic interaction becomes relevant and grows under
RG transformations [17, 44]. This means that flows started near the Gaussian fixed point
move away from it as we coarse-grain and consider larger scales. Another critical fixed point,
the Wilson-fisher fixed point, emerges as the stable attractor of critical flows in d = 4 − ε,
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ε > 0 [2]. This is a nontrivial critical fixed point that accounts for interactions and gives
nontrivial critical exponents different from the mean-field ones. The perturbative predictions
given in terms of an expansion in ε = 4− d have been been found to give good results (even
for ε = 1 when resummation schemes are used) [118, 119]. However, as we go down towards
the lower critical dimension dlc, the role of the fluctuations becomes even more pronounced
and they have to be treated nonperturbatively in the coupling constant. For the O(N > 2)
models the second order ∂2 of the derivative expansion gives good results down to the lower
crtitical dimension dlc = 2 [16]. The fluctuations that destroy this transition, though, are
the Goldstone modes [82] which are in essence long-wavelength, extended fluctuations and
are properly captured by the derivative expansion.

Exact results for the Ising model in zero external field tell us that there is a continuous
transition at a finite temperature in d = 2 [120], but not in d = 1 [60]. Thus the exact lower
critical dimension is dlc = 1.

2.2 Peierls argument

While in this thesis we do calculations for the Ising universality class, our goal is not to
provide another characterization of this problem but to assess how approximations of the
FRG can describe the events that destroy ordering at dlc, which are kinks (or instantons
[84, 109]).

The Peierls argument states that proliferation of these localized excitations in a 1d Ising-
like system is due to their finite energetic cost and comes with an entropic gain that destroys
long-range order. The argument is detailed by Peierls in [121] and revisited in textbooks such
as [43, 45]. The essence of the argument can be demonstrated by considering the contribution
of one kink to the free energy of the ordered phase of the Ising model in d = 1.

The Hamiltonian for the Ising model with nearest-neighbor ferromagnetic interactions
is given by [60, 61]

H = −J
∑
〈i,j〉

sisj , J > 0, si = ±1, (1.49)

where 〈i, j〉 denotes nearest neighbors on the lattice. The energy for the 1d chain is minimized
by the ordered configuration where all of the spins point in the same direction (i.e., all si
have the same sign).

If we now choose a location along an ordered spin chain after which we flip all the spins
to the opposite sign, like in Fig. 1.3, there is a finite energetic cost of 2J associated with this
kink configuration.

...
...

...

Figure 1.3 – Example of an Ising chain configuration with one kink.
At finite temperatures, such excitations represent thermal fluctuations. For a thermal-

ized system, we need to consider the free energy F and account for their entropic contribution.
If there are N spins, there are ∼ N locations for the kink, and the entropic contribution of
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one kink is then ∝ ln (N):

∆F = ∆E − T∆S ≈ 2J − β−1 lnN N→∞−→ −∞. (1.50)

In the thermodynamic limit N → +∞ it is obviously more favorable to have a kink than
not to, and this only becomes more pronounced with more and more kinks which therefore
destroys any order (associated with a nonzero spontaneous magnetization).

The destruction of the transition in d = 1 by the proliferation of localized defects can
also be seen for example in the sine-Gordon model [110, 111] where the instantons connect
neighboring minima of the periodic potential (instead of across a double-well potential of
the φ4 theory).

As we want to assess the ability of the derivative expansion to describe the long distance
physics without a priori knowledge of the relevant real-space coarse-grained configurations,
kinks in a Z2-symmetric system are a better benchmark than the Goldstone modes that
destroy long-range ordering in models with a continuous symmetry.

2.2.1 In the context of FRG

At criticality and for the physical k → 0 limit, the dimensionful effective potential Uk (ϕ) is
convex and has a minimum in the origin, ϕmin = 0, reflecting the fact that the coarse-grained
dimensionful order-parameter field vanishes at the continuous phase transition. However,
this is not the case for the dimensionless effective potential. The fixed point solution for the
dimensionless effective potential ũ(ϕ̃) has a nonconvex double-well shape [15, 16], with finite
dimensionless minima in ±ϕ̃min.

Looking at the scaling of the field with the momentum cutoff k

ϕmin = k(d−2+η)/2ϕ̃min, (1.51)

we see that as long as d − 2 + η > 0, it is possible to have a finite dimensionless field with
the dimensionful one vanishing when k → 0, which describes a continuous transition. Even
for k > 0 and a finite dimensionfull ϕ, for d− 2 + η > 0 we have ϕ̃� ϕ. The dimensionless
perspective "magnifies" critical fluctuations around the origin. These fluctuations are small
and well controlled for k � 1 as long as d− 2 + η > 0. This is not the case when d− 2 + η =
0. The transition is destroyed by fluctuations. We see conceptual agreement with the
Peierls argument, which is then reflected in FRG as the field not rescaling or the condition
dlc − 2 + η(dlc) = 0, at the lower critical dimension.

This can also be seen from another perspective. If a correct description of the lower
critical dimension limit can be found in the FRG, it should account for the disappearance
of the transition and of the ordered phase. These are represented in FRG flows by a critical
fixed point and a zero-temperature fixed point, respectively. The critical fixed point is a
saddle with as many unstable (relevant) directions as there are physical relevant parameters
to be adjusted for the system to reach criticality. The zero-temperature fixed point is a
stable attractor (a sink for flows of dimensionfull quantities). The merging of the two fixed
points would represent a bifurcation event [41, 42] in which the unstable (relevant) directions
of the saddle become marginal. There is an always present trivial5 relevant eigenvalue λ =

5This will be discussed in Chapter 4, Section 3.
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−(d− 2 + η)/2 associated with the applied source (magnetic field). The condition for it
becoming marginal is the same as for the field not rescaling.

Another anticipated feature of the approach to the lower critical dimension, also related
to the merging of the critical and zero-temperature fixed points in the d → dlc limit, is
that the propagator of the theory should approach a singularity. This is because the zero-
temperature fixed point is associated with the symmetry-broken ordered phase and the return
to convexity of the dimensionful effective potential along the FRG flow is then controlled6

by the presence of a singularity in the propagator [15, 65, 66].
For practical reasons, we introduce the parameter

ε̃ = d− 2 + η

2(2− η) . (1.52)

This parameter vanishes at the lower critical dimension. We choose it instead of the scaling
dimension of the field Dφ = (d− 2 + η)/2 itself to simplify the fixed point equation for u′′ (ϕ)
but the two are simply proportional when d− 2 + η → 0.

In the following chapters we will use the FRG framework and flow equations as developed
for the description of critical phenomena. The phase transition does not exist at and below
ε̃ = 0. Hence, we focus on the ε̃ → 0+ limit, and take that we are in principle arbitrarily
close to it, but just above. This also means that we work in dimensions below d = 2, as a
negative ηdlc = 2− dlc would be unphysical.

Not much literature explicitly deals with the lower critical dimension of the scalar φ4

theory in the FRG derivative expansion. The paper by H. Ballhausen, J. Berges and C.
Wetterich (BBW) [122] is the most relevant for the issues we want to tackle in our research.
We have however found that they overlooked a key aspect of the approach to the lower
critical dimension, and this will be discussed in the next chapters.

3 Conclusion

In this introduction we have described how Renomalization Group (RG) methods in prin-
ciple build effective actions for long-wave degrees of freedom that describe criticality, where
microscopic details of the system are irrelevant and we encounter universality. We have in-
troduced the Functional RG (Section 1.2) and the derivative expansion (DE) approximation
scheme (Section 1.2.4) which we consider in this thesis. We want to see if DE descriptions
can be built for systems where strongly nonuniform fluctuations play a major role in the
long-distance physics. This is unclear as the DE is in essence an expansion in small mo-
menta around uniform configurations of the coarse-grained field. Still, the DE has proven
to be fruitful and versatile down to d = 2 [16], quite away from the upper critical dimension
(e.g., duc = 4 for the O(N) model) [16]. We will investigate how the lowest nontrivial DE
scheme (LPA’) and the next order in the DE hierarchy (the second order of DE, ∂2) handle
strongly nonuniform configurations in the case of the scalar φ4 theory near its lower criti-
cal dimension, where the proliferation of localized kinks destroy the transition (the Peierls
argument, Section 2.2). Special care must be taken in this limit to respect the condition

6As shown in [66] for the LPA, for some regulator choices the singularity may actually not work as a
barrier to the flow which then blows up at a finite scale k 6= 0.
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that the dimensionful field does not rescale at the lower critical dimension, as was discussed
in Section 2.2.1. We will also consider other possible signatures of the dlc limit, like the
relevant RG eigenvalues becoming marginal, the critical temperature approaching zero and
the propagator developing a singularity.
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Chapter 2

Approach to the lower critical
dimension within the modified
Local Potential Approximation
(LPA’)

The Local Potential Approximation, or LPA in short, is the lowest step in the hierarchy of
the derivative expansion (DE) scheme. The DE scheme has been presented in Section 1.2.4
of Chapter 1. In LPA one takes the dimensionfull field renormalization function Zk(ϕ) to
be a constant in k and ϕ [10, 123]. The higher order terms in the derivative expansion are
neglected.

However, the choice of Zk(ϕ) being constant in k is synonymous with putting the anoma-
lous dimension of the field η = 0. With this choice one cannot explore spatial dimensions
below d = 2. Looking at the generic shape of the propagator one expects near criticality
[44]:

G(x− y) ∝ 1
|x− y|d−2+η , (2.1)

one immediately sees that in the case of η = 0, the behavior for dimensions less than 2 would
be unphysical.

Hence, as we are interested in the limit of the lower critical dimension, we cannot start
at LPA but at LPA’ - the minimally modified Local Potential Approximation, where Zk(ϕ)
scales with k−η, but the dimensionless field renormalization function zk(ϕ) is a constant in
ϕ, which can be chosen to be 1.

1 Flow equations

The flow equations in LPA’ are obtained by using zk (ϕ) = 1 in the flow equations for the
second order of the derivative expansion (see Chapter 1, Section 1.3). The resulting equations

41
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are

∂tuk(ϕ) = −duk(ϕ) + (2− ηk) ε̃ ϕu′k(ϕ) + 2vd`(d)
0
(
u′′k(ϕ), 1; ηk

)
,

∂tzk(ϕ) = 0.
(2.2)

We remind of the definition of the renormalization "time" t = ln (k/Λ), and the renormal-
ization choice ϕr = ϕmin,k, with u′k(ϕmin,k) = 0, for the LPA’. The shorthand vd stands for
the surface of a d-dimensional unit sphere and comes from integration over the momentum,
and so do the threshold functions `(d)

n and m(ϕ)
n,0. For explicit expressions for the threshold

functions see Appendix A. They involve the propagator and its derivatives. The right-hand
sides of the flow equations are usually called beta (β) functions and comprise a scaling contri-
bution (the two first terms of the equation for uk(ϕ)) and a nontrivial contribution expressed
in terms of threshold functions.

To describe criticality, we need to solve the fixed-point equation for the effective po-
tential, ∂tuk (ϕ) = 0, while simultaneously satisfying the condition put on the anomalous
dimension by the renormalization condition zk(ϕmin,k) = 1. To mark fixed-point quantities,
we simply drop the k index to avoid cluttering the notation, e.g., uk (ϕ)→ u (ϕ) and ηk → η.
The fixed-point equation is then given by:

0 = −du(ϕ) + (2− η) ε̃ ϕu′(ϕ) + 2vd`(d)
0
(
u′′(ϕ), 1; η

)
,

with η = 4vd
d
m

(d)
4,0
(
u′′ (ϕmin), 1; η

)2(
u′′′ (ϕmin)

)4
.

(2.3)

It is, however, often more practical to work in terms of u′′ (ϕ) than u (ϕ) as will be seen in
this chapter, and u (ϕ) can be recovered from u′′ (ϕ) by twice integrating, up to a physically
irrelevant constant. Hence we also give here the fixed-point equation for u′′ (ϕ), which is
obtained by taking the second field-derivative of Eq. (2.3):

0 =− (2− η)u′′ (ϕ) +(2− η) ε̃ ϕu′′′ (ϕ) +

− 2vd
[
u(iv) (ϕ) `(d)

1
(
u′′(ϕ), 1; η

)
−
(
u′′′ (ϕ)

)2
`
(d)
2
(
u′′(ϕ), 1; η

)]
.

(2.4)

Note that it only involves u′′(ϕ) and its derivatives.

2 Numerical results above the lower critical dimension

We start by solving numerically for the fixed-point solutions at dimensions d above dlc (done
in FORTRAN90 [124]), where we do not expect any singular behavior. We subsequently
diminish the dimension d as much as the numerical procedure allows. This numerical in-
vestigation is meant to guide and complement analytical calculations, which give the main
results and are the focus of this chapter.

The conceptual steps of the computation can be outlined as follows. We look for the zeros
of the smooth function ∂tu′′k (ϕ) using a modified Newton-Raphson method and evaluating
the right-hand side of Eq. (2.2), at the same time self-consistently calculating the anomalous
dimension η from Eq. (2.3). As initial conditions, we use known fixed points at higher
dimensions for calculations at the lower ones. Starting from, e.g., the nontrivial fixed point
in d . 4, where we found it easier to estimate a usable numerical ansatz, we run the procedure
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until a fixed point in some lower dimension is found. This new fixed point is then used as
a new initial condition for solving at a lower dimension. This is how, in steps, we reach
relevantly low dimensions.

To avoid divergencies that are expected in the profile of the effective potential, we
actually conduct numerical calculations in terms of the susceptibility χ (ϕ) = (u′′ (ϕ) +α)−1,
and its flow equation, ∂tχk (ϕ) = −χ2

k (ϕ) ∂2
ϕ[∂tuk (ϕ)]. The χ (ϕ) is always bounded from

above with a maximum at ϕ = 0. For |ϕ| → +∞ the susceptibility has a power-law vanishing
tail1, unlike u (ϕ) or any of its derivatives, which diverge, rendering numerics useless in this
region. However, this is not conceptually relevant and we find that discussing u′′ (ϕ) is more
intuitive.

From its role in the correlation function, we expect the anomalous dimension η to be a
monotonically decreasing function of the dimension d. This is the case, as can be seen from
numerical results in Fig. 2.1a. In this section we refer to numerical results obtained with the
exponential regulator, as we found no qualitative difference when we used rΘ.

The parameter ε̃ that we have defined in Chapter 1,

ε̃ = Dφ

2− η = d− 2 + η

2(2− η) , (2.5)

is then monotonically increasing with the spatial dimension d, as can be seen from Fig. 2.1b.
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(a)

1.0 1.5 2.0
d

0.0

0.1

0.2

ε̃

α =0.8

α =1.0

α =1.5

(b)

Figure 2.1 – Dependence of the anomalous dimension η and the ε̃-parameter on the spatial
dimension d. Data plotted from numerically determined fixed-point solutions above dlc, with
the exponential regulator and three different regulator prefactor choices α. The dashed grey
lines are visual guides. Markers are plotted for every 30th data point.

The fixed-point solutions for the effective potential u (ϕ) and its second derivative u′′ (ϕ)
are plotted for a range of dimensions above dlc and regulator prefactor choices α in Fig. 2.2.

These solutions reach at lowest ε̃ ≈ 0.0138, or d ≈ 1.095 before they break. The nature of
the difficulties in the numerics is evident from the solutions themselves, before the procedure
breaks. The second derivative becomes very large near the location of the minimum of the

1The tail behavior is determined by the scaling part of the flow, as for |ϕ| → +∞ the threshold functions
vanish due to u′′ (ϕ) strongly diverging which causes the propagator itself to vanish.
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Figure 2.2 – Numerical fixed-point solutions for the effective potential u (ϕ) and its second
derivative u′′ (ϕ) calculated with rexp for a range of dimensions and regulator prefactors.

effective potential, and this means that it starts rapidly changing. The associated loss of
precision in any grid mesh makes finding a solution impossible. Aside from this, we can see
that u′′(0) tends to −α, which signals another expected singularity - that of the propagator.
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The second derivatives of the fixed-point effective potentials presented in Fig. 2.2 and
their tendency to diverge in ϕmin is especially interesting.

From the numerical results in the same Fig. 2.2 one can obtain the values of the location
of the minimum of the effective potential ϕmin. In O(N > 2) models, one has ϕmin ∝
1/
√
d− 2 = 1/

√
d− dlc [16], but from the numerical data, it is not clear how ϕmin scales

with ε̃ in our case. Power-law fits of ϕmin(ε̃), which are shown in Fig. 2.3b, give the following
exponents:

ϕmin
fit∝ 1

ε̃a
, a =


(0.1245± 0.0001) rexp, α = 0.8
(0.10301± 0.0002) rexp, α = 1.0
(0.0661± 0.0005) rexp, α = 1.5

(2.6)

From such low numerically obtained exponents we can only conclude that if ϕmin diverges,
it must do so very slowly.
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Figure 2.3 – Location of the minimum of the effective potential, ϕmin, obtained from numer-
ical fixed points in Fig. 2.2.

We turn to the data in Fig. 2.2 and discuss how the values of u′′(ϕmin) depend on ε̃ (d).
The accompanying power-law fits are shown in Fig. 2.4. The fitted exponents are as follows:

u′′ (ϕmin) fit∝ 1
ε̃b
, b =


(1.009± 0.003) rexp, α = 0.8
(1.023± 0.003) rexp, α = 1.0
(1.059± 0.003) rexp, α = 1.5

(2.7)

and they indicate that we should expect u′′(ϕmin) to diverge essentially as 1/ ε̃.
As mentioned, due to this divergence, the susceptibility χ (ϕ) becomes so small around

ϕmin as we lower d that we lose the necessary precision, which makes this procedure fail at
low ε̃ (d).

We found a way to analytically interpret and understand these results, as is laid out in
the following sections.
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Figure 2.4 – Value of the second derivative u′′ (ϕmin) in the location of the minimum of the
effective potential, ϕmin, obtained from numerical fixed points in Fig. 2.2.

3 Constructing the analytical solution

In the preceding Section 2 we have found that numerical results above dlc signal divergence
of the second derivative of the effective potential u′′ (ϕ) in the vicinity of the minimum ϕmin.
While because of this we cannot reach the dlc limit numerically, we shift it in our favor by
using the divergence in the ϕ ≈ ϕmin neighborhood to simplify the flow equations in this
region. This allows us to construct an analytical solution when ε̃→ 0.

The fixed-point equation for the first derivative u′ (ϕ), which is obtained by taking a
field-derivative of Eq. (2.3), is given by

0 = −1
2(d+ 2− η)u′ (ϕ) +(2− η) ε̃ u′′k (ϕ)′+βu′ (ϕ)

(
u′′ (ϕ), z (ϕ) = 1; η

)
, (2.8)

where βu′ (ϕ) stands for the nontrivial part. We turn our attention to the ε̃ term, as we
are interested in the ε̃ → 0 limit. We ask ourselves when does it become relevant, as for
small ϕ we expect it to be small compared to the rest of the equation. It is clear that if
u′′ (ϕ) diverges, the ε̃-term is significant at smaller fields than what we would assume for an
analytical potential. This means that we must be careful when assessing the ε̃-terms in the
flow equations. We need to use a method that allows for the different regions in ϕ to be
treated separately based on the relevance or irrelevance of the ε̃-term and provides a way
to match them into one continuous solution. This is the realm of the Singular Perturbation
Theory [125–129]. In this chapter we will show that it will allow us to build a physical
fixed-point solution in the leading order in ε̃, qualitatively different from the solution of the
ε̃ = 0 equation which we will show cannot be valid for fields with |ϕ| > ϕmin.

In the BBW reference [122] the subtlety of how the ε̃ term becomes relevant for fields
|ϕ| � 1/

√
ε̃ has been missed.

3.1 Singular Perturbation Theory analysis

Singular Perturbation Theory (SPT) deals with differential equations where the solution
perturbed by a small parameter is qualitatively different from the unperturbed solution. SPT
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has successful applications to nonlinear oscillations, flight mechanics and orbital mechanics
[125, 127]. We will show in Section 3.2 that the solution to the fixed-point Eq. (2.3) is
periodic when ε̃ = 0 is directly used. As such, the ε̃ = 0 solution cannot be the leading-
order solution for a physical effective potential. The perturbation by a small ε̃ → 0+ term
must lead to a qualitatively different picture. Because of this, we use SPT to construct a
leading-order solution for the effective potential which is uniformly valid over all field scales.

In SPT one divides the domain of the problem (in ϕ) into qualitatively different regimes.
In each of the regimes, different simplifications occur in the leading order for ε̃ → 0+. The
solutions of those simplified equations then need to be matched by requiring their asymptotic
limits to coincide in the matching regions between these regimes. In our problem there
are three different regions (or field scales) in which the effective potential has qualitatively
different behavior and the behavior of u′′ (ϕ) is driven by a different part of the fixed-point
Eq. (2.4):

• In the innermost region, between the two minima ±ϕmin, u′′ (ϕ) cannot diverge
on physical grounds and thus cannot make the propagator, and consequently the
nontrivial parts of the flows, small. We take ϕmin > 0 in the following. With ϕ
being finite the ε̃ term in the flow equation Eq. (2.3) is a nonsingular perturbation
in the dlc limit. This region is therefore described in the leading order in ε̃ by the
flow Eq. (2.4) with ε̃ set to zero:

u(ϕ) =2vd
d
`
(d)
0 (u(ϕ), 1; η) (2.9)

We call this the inner region.
• In the outermost region, where |ϕ| > ϕmin and |ϕ| → +∞, the nontrivial parts of

the flow must vanish due to the strong u′′ (ϕ) divergence. The behavior of the tails
of the RG functions is hence guided by the scaling parts of their flow equations.
For instance, the effective potential here follows the power law

0 =− du(ϕ) + (2− η) ε̃ ϕu′(ϕ) =⇒ u (ϕ) ∝ |ϕ|d/(2−η)/ ε̃. (2.10)

We call this the tail region.
• Between the inner and the tail regions, a boundary layer of vanishing width emerges

around ϕmin as ε̃→ 0+, where u′′ (ϕ) diverges but the threshold functions still need
to be considered. The rest of this subsection contains the qualification of this
boundary layer. (Due to the Z2 symmetry, a similar boundary layer takes place
around −ϕmin.)

For a schematic illustration of these regions see Fig. 2.5.
A standard SPT problem would have predefined boundary conditions (e.g., the value

of u′′(ϕ = 0)), which we clearly do not have, and the locations where the regimes change
would be readily evident from the parameters of the equation. From the numerical data of
Section 2 above dlc, showing the divergence of u′′ (ϕmin), we expect there to be a boundary
layer situated around the location of the minimum of the effective potential ϕmin, but we
do not know where ϕmin is in advance. We cannot determine where it is from numerical
results of Section 2, and we also wish to find the scaling of ϕmin with ε̃ analytically. Instead
of concrete values for the boundary conditions, we are guided by the fact that a physical
dimensionless effective potential for our problem should be of the double-well shape [16].
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INNER REGION TAIL

0

. . .

ϕmin
ϕ

δ (ε̃)

u (ϕ)− u (0)

Figure 2.5 – Schematic representation of the different relevant field-scales, including the
boundary layer of width δ (ε̃) around the location of the minimum of the effective potential
ϕmin, with the curve of the effective potential sketched.

What we know about the boundary layer from the divergence of u′′(ϕmin) is that it must
form somewhere around the minimum of the effective potential ϕmin, where u′′(ϕ) is very
large but the terms involving threshold functions should be comparable to the ε̃-term, so
that we are not in the tail region. Thus, per Singular Perturbation Theory, we introduce
two δ-scales that qualitatively describe this situation:

ϕ = ϕmin + δϕ(ε̃) x and u′′(ϕ) = g(x)
δg (ε̃) ,

where δϕ(ε̃), δg(ε̃) ε̃→0+
−→ 0 and x, g(x) = O(1).

(2.11)

In the following we show that for a nontrivial boundary layer regime, these scales must
"balance" (also known as the principle of dominant balance [126]) in the following way:

δ (ε̃) := δϕ (ε̃) = δg (ε̃) and ε̃ ϕmin = O(δ (ε̃)). (2.12)

The δϕ (ε̃) is the boundary layer width, as fields with |ϕ| � ϕmin+O(δϕ (ε̃)) give a diverging
boundary-layer field x. Wen we speak about being in the boundary layer, it is taken that
x = O(1). This makes the definition of the boundary layer in the effective potential (and its
derivatives) more precise: it is the range of fields ϕ for which x = O(1), with a δϕ(ε̃) we will
calculate. Equally, g(x) is by construction of O(1), and so are its derivatives.

Making the boundary layer regime from Eq. (2.11) explicit in the fixed-point equation
for the second derivative u′′ (ϕ), Eq. (2.4), and multiplying it by −δg (ε̃) /(2− η), we get
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term-by-term:

0 =g(x)− ε̃
(
ϕmin
δϕ (ε̃) + x

)
g′(x)+

+ 2vd
2− η

g′′(x)
δ2
ϕ (ε̃)`

(d)
1

(
g(x)
δg (ε̃) , 1; η

)
− δg (ε̃)

(
g′(x)

δg (ε̃) δϕ (ε̃)

)2

`
(d)
2

(
g(x)
δg (ε̃) , 1; η

). (2.13)

The proposed divergence of u′′ (ϕ) as 1/δg (ε̃) simplifies the propagator and hence also the
threshold functions `(d)

n . In Appendix A we show that in this case they scale as `(d)
n ∝

(δg (ε̃))−(n+1). This makes all the terms in the second row of Eq. (2.13) ofO
(
(δg (ε̃) /δϕ (ε̃))2

)
.

The chief lesson of SPT is that one needs to balance the δ-scales in a way that leaves
the remaining equation non-trivial. This way, even if we were to start with no knowledge of
the shape of fixed-point solutions above dlc, the SPT would recognize that the fixed-point
Eq. (2.4) has a potential to produce all three regimes in Fig. 2.5. In general the SPT shows
what regimes can occur in a differential equation and boundary conditions would determine
whether a certain regime emerges in the solution, and where in the field to place it. Here
physical arguments play that role, like the double-well shape of the effective potential that
we have already mentioned.

To see the regime that is neither the inner nor the tail region, the following conditions
must apply to the δ-scales and terms of Eq. (2.13):

• The terms involving threshold functions `(d)
n should not vanish (this would be the tail

region). They should also not diverge as that would mean a propagator singularity.2
If we are to expect a propagator singularity, we know from u′′ (ϕ) having a minimum
in ϕ = 0 that it is to be in the inner region, and not in the boundary layer. Hence
we have δ (ε̃) := δϕ (ε̃) = δg (ε̃).

• The quantity ε̃ ϕmin /δ (ε̃) must not diverge, as no other term in Eq. (2.11) diverges.
In the boundary layer, it also must be relevant, i.e., not vanish. This directly gives
that ε̃ ϕmin is of O(δ (ε̃)).

• The ε̃ xg′(x) term drops out in the lowest order in ε̃, as it is by order of O(ε̃) smaller
than the first term, i.e., g(x).

If we wanted to do an analogous analysis for the inner or tail region, we would have to allow,
e.g., for some of the δ (ε̃)-scales not to vanish, depending on the case.

It follows that between the inner region and the tail region, a boundary layer emerges
with

ε̃ϕmin = O(δ(ε̃)) and u′′(ϕ) = O
( 1
δ(ε̃)

)
. (2.14)

From this analysis of the scales we expect ε̃ϕmin to vanish in the lower critical dimension.
Later in the text we will show that ε̃ϕmin does indeed vanish and ϕmin still diverges, but
much more weakly than the 1/

√
ε̃ predicted by [122] and in agreement with numerical results

in Section 2.
2This whole term, including the u(iv) (ϕ) and (u′′′ (ϕ))2 prefactors, comes from ∂2

ϕ`
(d)
0 . It being singular

would mean that `(d)
0 is nonanalytic, which would come from a propagator singularity.
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We continue by investigating the nontrivial regimes - the inner region and the boundary
layer. (Note that in SPT one usually speaks of “inner” and “outer” to characterize the
solution within the boundary layer (inner) and outside it (outer). Here we use a different
convention because it seems more appropriate for describing the various domains.)

3.2 Inner region and the ε̃ = 0 fixed-point solution

By inspecting the ε̃ = 0 fixed-point equation for u (ϕ) we will show that its solution is peri-
odic. If it were taken as a leading order solution at all field scales, this would be unphysical.
Instead, we find conditions for this solution (in its limit towards large fields) to be compat-
ible with the emergence of the boundary layer. It turns out that for this matching to be
possible, the propagator must develop a singularity in the field-origin ϕ = 0. As matching to
a boundary layer is crucial in building a physical fixed-point solution, so is the propagator
singularity.

We restate the ε̃ = 0 version of Eq. (2.3) for clarity:

u(ϕ) = 2vd
d
`
(d)
0
(
u′′(ϕ), 1; η = 2− d

)
. (2.15)

We set η = 2 − d in the threshold function as we are dealing with the ε̃ = 0 equation. On
the RHS is the positive3 threshold function `(d)

0 :

d

2vd
L
(
u′′(ϕ)

)
≡ `(d)

0
(
u′′(ϕ), 1; η

)
= −1

2

∫ +∞

0
dyyd/2

ηr(y) + 2yr′(y)
u′′(ϕ) + y(1 + r(y)) > 0, (2.16)

where we have introduced the shorthand L, to make the following Section 3.2.1 clearer, where
we will map this problem onto an anharmonic oscillator using general, abstract properties
of L(u′′ (ϕ)). This is to be followed by a more specific discussion in Section 3.2.2 focusing
on a practically revealing regulator choice rΘ and α = 1, making the issue more tangible.

3.2.1 Periodicity of the ε̃ = 0 solution

We start from Eq. (2.15), the ε̃ = 0 equation for the effective potential:

u(ϕ) = 2vd
d
`
(d)
0
(
u′′(ϕ), 1; η = 2− d

)
:= L

(
u′′(ϕ)

)
, (2.17)

and we take its second derivative, to treat L as a function of u′′ (ϕ):

∂2
ϕL
(
u′′(ϕ)

)
= u′′(ϕ). (2.18)

The right hand side of Eq. (2.17) (the function L), is a monotonically decreasing function of
its argument u′′(ϕ), which is readily shown from the properties of the threshold function:

∂`
(d)
0 (u′′(ϕ), 1; η)
∂u′′(ϕ) = −`(d)

1
(
u′′(ϕ), 1; η

)
< 0 =⇒ L′

(
u′′(ϕ)

)
= −2vd

d
`
(d)
1
(
u′′(ϕ), 1; η

)
< 0.

(2.19)
3This comes from the properties of the regulator.
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The monotonicity of L(u′′(ϕ)) means that the L − u′′(ϕ) relation can be inverted for any
regulator choice, albeit not explicitly, and we can express everything in terms of L as a
variable. When we choose to view L as an independent variable, we emphasize that by
naming it Φ, and in inverse we treat u′′ (ϕ) as a function of Φ:

L
(
u′′(ϕ)

)
:= Φ(ϕ), u′′(ϕ) := F (Φ). (2.20)

The choice of shorthand F is purposeful, as the Eq. (2.18) for u′′ (ϕ) can now be expressed
in a shape reminiscent of an equation of motion for a dynamical variable Φ where ϕ plays
the role of time and F of force, with a potential V :

Φ̈(ϕ) = F (Φ), V (Φ)− V (Φ0) = −
∫ Φ

Φ0
dΦ̃F

(
Φ̃
)
, Φ0 = Φ(ϕ = 0). (2.21)

Here we introduced the shorthand ∂ϕΦ(ϕ) = Φ̇ (ϕ).
As L(u′′(ϕ)) := Φ monotonically decreases with u′′(ϕ), so must its inverse, the force

u′′(ϕ) = L−1(L(u′′(ϕ)
))

= L−1(Φ) := F (Φ) (2.22)

monotonically decrease too, as a function of the dynamical variable Φ. This means that its
derivative is not positive, F ′(Φ) 6 0, showing the convexity of the potential V (Φ):

dV (Φ)
dΦ = −F (Φ) (by definition) =⇒ d2V (Φ)

dΦ2 = −dF (Φ)
dΦ > 0. (2.23)

As a physical effective potential u (ϕ) has a double-well shape, we expect any reasonable
effective potential to have an inflection point ϕi before ϕmin in which the second derivative
u′′(ϕi) = F (Φi) vanishes. From Eq. (2.23), we see that the potential V then has a minimum
at Φi. This makes V (Φ) convex with a minimum: a potential well.

Due to the parity condition u′′′(0) = 0, starting from the origin of "time" ϕ = 0, this
"particle" has velocity 0:

Φ̇(0) = −2vd
d
u′′′(0)`(1)

1
(
u′′(0), 1; 2− d

)
= 0, (2.24)

After "time" ϕ∗ has elapsed, the "particles" velocity Φ̇(ϕ∗) is again 0 after which it gets turned
around. Thus ϕ∗ is the half-period and can be implicitly calculated from the equation of
motion, Eq. (2.21), utilizing the fact that the velocity Φ̇ (ϕ) must vanish at both turnaround
points, those being ϕ = 0 and ϕ∗:

0 = Φ̇(ϕ∗)− Φ̇(0) =
∫ Φ(ϕ∗)

Φ(ϕ=0)
dΦ̃ F

(
Φ̃
)

=
∫ ϕ∗

0
dϕ̃ Φ̇(ϕ̃) F (Φ(ϕ̃)). (2.25)

In this subsection we have shown that the function `(d)
0 (u′′(ϕ), 1; d− 2) describes an orbit

Φ(ϕ) of a 1d particle in a convex potential well V (Φ) defined in Eq. (2.20) (an anharmonic
oscillator [130]). As such, `(d)

0 (u′′(ϕ), 1; d− 2) must be periodic in the field ϕ. This means
that the ε̃ = 0 solution for u (ϕ), which is by Eq. (2.15) proportional to this periodic threshold
function, must be periodic in the field ϕ too, with the same half-period ϕ∗ (for any regulator
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choice). The second derivative u′′ (ϕ) oscillates between its minimal value u′′(0) and the
maximal value u′′(ϕ∗).

In any dimension above the lower critical dimension dlc, no matter how small the positive
ε̃, a continuous phase transition exists. The periodic ε̃ = 0 fixed-point solutions by themselves
are not physically sound descriptions of a critical system. However, until the ε̃-term becomes
commensurate to other terms in Eqs. (2.3) and (2.4), the periodic solution is the leading-
order description of the inner region. This must end somewhere between ϕ = 0 and the
location of the first minimum of the periodic solution ϕ∗, because ϕ∗ is the half-period and
the Z2 symmetry tells us that the situation must be the same for the −ϕ∗ < ϕ < 0 fields.
Outside of this first period everything simply repeats and if the ε̃-term is to have any effect
anywhere it would have to have it in the first period too. When the ε̃-term becomes relevant,
the boundary layer soon develops around ϕmin. In the vicinity of ϕmin, u′′ (ϕ) is very large.
To make the matching possible, the maximum of the periodic solution u′′(ϕ∗) must then be
very large too, and the matching should take place at fields ϕM so that ϕM < ϕmin . ϕ∗.
What comes from this will be discussed in Section 3.4 about the matching arguments, once
the boundary layer solution has been introduced.

3.2.2 An illustrative example of periodicity

We present the arguments of Section 3.2.1 on the choice of the Theta regulator with the
prefactor α = 1. This regulator choice is motivated by the simplicity of the resulting relevant
threshold function:

`
(d)
0
(
u′′ (ϕ), 1; η

)
= 2(d+ 2− η)

d(d+ 2)
1

1 + u′′ (ϕ)
ε̃=0= 4

(d+ 2)
1

1 + u′′(ϕ) . (2.26)

This expression is calculated directly from using rΘ, α = 1 in the LPA’ expression for `dn
given in Appendix A, and it serves well in elucidating the concepts which we developed in
the universal, regulator independent discussion in Section 3.2.1.

One starts by taking the second field-derivative of Eq. (2.15):

u′′(ϕ) = ∂2L(u′′(ϕ))
∂ϕ2 (2.27)

This line of derivation is not the most practical for the sake of the current calculation, but the
step reflects Eq. (2.18) in the general case. With our regulator choice, the starting equation
Eq. (2.15) simplifies to

u(ϕ) = 8vd
d(d+ 2)

1
1 + u′′(ϕ) . (2.28)

Before proceeding we re-scale the field as ϕ̃ =
√
d(d+ 2)/8vd ϕ and the potential as ũ =

d(d+ 2)u/8vd, forsaking the tilde for simplicity:

u(ϕ) = 1
1 + u′′(ϕ) = L

(
u′′ (ϕ)

)
. (2.29)

We now invert the L − u′′(ϕ) relation, to express everything in terms of L as a variable,
which we have named Φ when conceptually used in the free-variable capacity:

L
(
u′′(ϕ)

)
:= Φ(ϕ), u′′(ϕ) := F (Φ). (2.30)
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giving the same equation of motion as Eq. (2.21):

Φ̈(ϕ) = F (Φ) (2.31)

The simplicity of Eq. (2.28) makes it possible to invert the L− u′′(ϕ) dependence explicitly
(for this specific regulator choice):

u′′(ϕ) = 1
L(u′′(ϕ)) − 1 or F (Φ) = 1

Φ − 1, (2.32)

and as such we can plot this "force" in Fig. 2.6a.
The most pertinent part of this discussion is the corresponding "potential" for this 1d

dynamical variable Φ:

F (Φ) = −dV (Φ)
dΦ

Eq. (2.32)=⇒ V (Φ)− V (Φinit.) = Φ− ln (Φ)− (Φinit. − ln (Φinit.)). (2.33)

In the process of integrating to get the potential, we used as the lower boundary any finite
(both not diverging and not vanishing) value of the dynamical variable, which we marked
Φinit.. We are interested solely in the shape of this function, for which this integration
constant is irrelevant. From Fig. 2.6b and V ′′(Φ) = 1/Φ2 > 0, we see that the "particle" is
in a convex potential well, and as such its trajectory Φ must be an orbit.

2 4 6 8 10
Φ

-1

2

4

6

8

10

F (Φ)

(a) F (Φ) = 1/Φ− 1
0 2 4 6 8 10

Φ

2

4

6

8

10

V (Φ) - const.

(b) V (Φ)− const. = Φ− ln (Φ)

Figure 2.6 – The "force" F and the "potential" V of te ε̃ = 0 solution for u (ϕ) as mapped to
the anharmonic oscillator, for r(y) = (1/y − 1)Θ(1− y). In the left panel, the dashed line at
F (Φ) = −1 is a visual guide. We note that Φ, by its definition over the threshold function
`
(d)
0 , must always be positive.

For this specific regulator choice, we solve the equation Eq. (2.29) numerically and plot
these periodic solutions for the potential in Fig. 2.7 to further underline the point that we
made analytically.

3.3 Boundary layer

We proceed by investigating the next regime, the boundary layer. In this section we will find
an implicit boundary layer solution for u′′′ (ϕ) expressed in terms of u′′ (ϕ). In later sections
this will allow us to consider the asymptotic behavior towards the tail and the matching
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u(φ)/u(0)

Figure 2.7 – Periodic ε̃ = 0 solutions for the fixed-point effective potential with rΘ and
α = 1. We note that the field and the potential have been rescaled by dimension-dependent
constants to yield the simple shape of Eq. (2.29). The solutions are parametrized solely by
u(0), as u′(0) vanishes from parity. In these units u(0) must be > 1, as u′′(ϕ) = 1/u(ϕ)− 1
and u(ϕ) starts off concavely. For u(0) ' 23 the system becomes stiff and no solutions
can be found, a numerical artifact of the adaptive Runge-Kutta method offered in Wolfram
Mathematica v12.1 [131]. Between these two u(0) values, the solutions are robustly periodic,
as we have shown analytically that they must be. We stress that u (ϕ) is defined up to a
physically irrelevant constant.

with the periodic solution. This information will allow us to analytically find the scaling of
ϕmin and u′′ (ϕmin) with ε̃ from matching with the solution for the inner region, and also the
value of the lower critical dimension itself, as a function of the IR regulator characteristics,
from joining with the tail region.

3.3.1 Boundary layer equations

We know from Section 3.1 on Singular Perturbation Theory that the boundary layer regime
is given by:

x = ϕ− ϕmin
δ (ε̃) , u′′ (ϕ) = g(x)

δ (ε̃) ,

with δ (ε̃) ε̃→0+
−→ 0 and x, g(x) = O(1).

(2.34)

Concerning the nontrivial parts of the flow, we have found the expressions for the threshold
functions in the boundary layer regime in Appendix A. They scale with the width of the
boundary layer δ (ε̃) as

`(d)
n

(
u′′ (ϕ), 1; η

)
= (δ (ε̃))n+1 L(d)

n (g(x)) +O
(
(δ (ε̃))n+2

)
, L(d)

n (g(x)) = O(1);

m
(d)
n,0
(
u′′ (ϕ), 1; η

)
= (δ (ε̃))n M (d)

n (g(x)) +O
(
(δ (ε̃))n+1

)
, M (d)

n (g(x)) = O(1).
(2.35)

The auxiliary functions L(d)
n and M (d)

n are defined as follows:

L(d)
n (g(x)) = (n+ δn,0) αA

(d)(η)
(g(x))n+1 , M (d)

n (g(x)) = αdA(d)(η)− α2B(d)(η)
(g(x))n , (2.36)
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where we introduced the positive regulator dependent constants A(d)(η) and B(d)(η):

A(d)(η) =
(
d+ 2− η

2

)∫ +∞

0
dyyd/2

[
r(y)
α

]
> 0,

B(d)(η) =
(
d+ 2− 2η

2

)∫ +∞

0
dyyd/2

[
(yr(y))′

α

]2

> 0.
(2.37)

From the considerations of the scaling parts of the flow in Eq. (2.13) we predict that we will
encounter a ε̃ ϕmin/δ (ε̃) term in the boundary layer equations. It is practical to substitute
it for the following:

ε̃ ϕmin
δ (ε̃) = 2αvdA(d)(η)

(2− η)
g′(0)

(g(0))3 = O(1). (2.38)

This expression for the location of the minimum ϕmin is found from the fixed-point equation
for u′(ϕmin) = 0 (see Appendix A).

By using Eq. (2.34) to Eq. (2.38) in the fixed-point equation for u′′ (ϕ), Eq. (2.4), we
arrive at the boundary-layer fixed-point equation:

0 =− (2− η)g(x) + 2αvdA(d)(η)
(
g′(0)g′(x)

(g(0))3 + 2(g′(x))2

(g(x))3 −
g′′(x)

(g(x))2

)
. (2.39)

3.3.2 Boundary layer solution

We found an analytical implicit solution for the dependence of g′(x) on g(x) itself, as an-
nounced on the beginning of Section 3.3.

We start by simplifying the equations using a reparametrization for ϕ (and consequently
x) which we call canonical field rescaling:

ϕc = ϕ√
2αvdA(d)(η)

(2− η)

.
(2.40)

We named this field canonical for the usual reason - because the canonical equation, Eq. (2.41),
is the simplest form of the boundary-layer fixed-point equation. This rescaling is useful at
both the LPA’ and ∂2 level. The labels x and g(x) are kept to avoid cluttering the notation
(see Appendix B).

Looking at the canonical equation for fixed-point g (x):

0 = g (x)−g
′(0)g′ (x)
(g(0))3 − 2(g′ (x))2

(g (x))3 + g′′(x)
(g (x))2 , (2.41)

one recognizes a part that is a total derivative. In the following equation we emphasize this
by writing out the derivation operator d/dx explicitly:

0 = g (x)− d

dx

[
g′(0)g (x)
(g(0))3 −

g′ (x)
(g (x))2

]
. (2.42)
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To find a solution for Eq. (2.42), we take the function in the square brackets as an independent
variable Y (x):

Y (x) := g (x)
(

g′(0)
(g(0))3 −

g′ (x)
(g (x))3

)
, (2.43)

and view g (x) as a function of it, G(Y (x)) := g (x), an identification that allows for this
differential equation to be once-integrated. The result follows:

G(Y )
G(0) = e−Y

2/2

1−
√
π

2
g′(0)

(g(0))2 erf
(
Y/
√

2
) (2.44)

and represents an implicit solution for g′ (x) in terms of g (x):

g (x)
g(0) =

exp

−(g (x))2

2

(
g′(0)

(g(0))3 −
g′ (x)

(g (x))3

)2


1−
√
π

2
g′(0)

(g(0))2 erf
[
g (x)√

2

(
g′(0)

(g(0))3 −
g′ (x)

(g (x))3

)] . (2.45)

Going to large boundary layer fields x, the boundary layer regime must continuously trans-
form into the tail region. In the tail region, u′′ (ϕ) must diverge stronger than in the boundary
layer where it does so as 1/δ (ε̃). This means that g(x) = δ (ε̃)u′′ (ϕ) must diverge in the
x→ +∞ limit.

To make use of this asymptotic argument in the boundary layer solution Eq. (2.45), we
need to also find the behavior of Y (x) in the same (tail) limit:

u′′ (ϕ) ∝ |ϕ|1/ ε̃ =⇒ u′′′ (ϕ) ∝ |ϕ|1/ ε̃−1 :

Y (x) = g′(0)
(g(0))3 |ϕ|

1/ ε̃ +O
(
|ϕ|−1−2/ ε̃

)
=⇒ Y (x) ∝ |ϕ|1/ ε̃,

(2.46)

where we used that the quantities in x = 0 must be of O(1) by definition of the boundary-
layer function g (x). We now use this limit of G(Y ) := g (x) diverging when Y (x) diverges to
pinpoint the value of g′(0)/(g(0))3, the only parameter on the right-hand side of Eq. (2.44).
It is more practical to express this in terms of 1/G(Y ):

G(0)
G(Y ) =eY 2/2

[
1−

√
π

2
g′(0)

(g(0))2 erf
(
Y/
√

2
)]

=

=eY 2/2
[
1−

√
π

2
g′(0)

(g(0))2

]
+ (g(0))2

g′(0)
1
Y

+O
( 1
Y 2

)
.

(2.47)

For this expression to vanish in the Y (x) → +∞ limit, the combination of O(1)-terms
multiplying the exponential divergence must be zero, leading to the following identification:

g′(0)
(g(0))2 =

√
2
π
. (2.48)
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The canonical solution in the boundary layer we arrived at through this asymptotic
matching of the tail to the boundary layer is given by:

g (x)
g(0) = e−Y

2/2

erfc
(
Y/
√

2
) =

exp

−(g (x))2

2

(√
2/π
g(0) −

g′ (x)
(g (x))3

)2


erfc
[
g (x)√

2

(√
2/π
g(0) −

g′ (x)
(g (x))3

)] . (2.49)

For purposes of visualizing this solution, we do some more rescaling:

x→ x̃ = g(0)x, g (x)→ g̃ (x̃) = g (x)
g(0) :

g̃ (x̃) =

exp

−(g̃ (x̃))2

2

(√
2
π
− g̃′ (x̃)

(g̃ (x̃))3

)2


erfc
[

g̃ (x̃)√
2

(√
2
π
− g̃′ (x̃)

(g̃ (x̃))3

)] .

(2.50)

We plot the parameter-free function g̃ (x̃) in Fig. 2.8.
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˜
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Figure 2.8 – Fixed-point solution for the boundary layer function g̃ (x̃) which describes the
second derivative of the effective potential in the boundary layer. For the definition and
implicit solution for g̃ (x̃) see Eq. (2.50).

3.4 Matching arguments for the inner region and the boundary layer

The boundary layer solution and the periodic solution of the ε̃ = 0 equation are leading-order
solutions in their respective regions. It is crucial to check that matching between these two
solutions can be enforced, so that a solution can be constructed for all field values. The
matching arguments at this leading order give us the scaling of the location of the minimum
ϕmin and of the second derivative u′′ (ϕmin) of the effective potential in ϕmin with ε̃.
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In Section 3.2.1 we have found u′′0 (ϕ) to be periodic, where the index 0 stands for the
solution of the ε̃ = 0 equation (exceptionally in this subsection). The periodic solution
u′′0 (ϕ) describes the inner regon in the leading order. In Section 3.2.1 we have argued that
the matching is to be done at such ϕM fields so that 1 � u′′0(ϕM ) � u′′ (ϕmin), u′′0(ϕ∗), or
ϕM < ϕmin . ϕ∗. The reason ϕmin must be less than ϕ∗ is that while doing the scale-
balancing of SPT, we assumed that the width of the boundary layer (i.e., δ (ε̃)) around ϕmin
vanishes as we approach ε̃ → 0+. Because of this, we know that for the boundary layer to
be able to emerge before ϕ∗, ϕmin must come before ϕ∗, as the boundary layer can be made
arbitrarily narrow around ϕmin by lowering the spatial dimension. All in all, the matching
happens at fields ϕM that are less than the minimum (in the positive ϕ region), but for which
the second derivative of the effective potential is very large (although less than the boundary
layer divergence of u′′ (ϕ)). This means that we can choose an interval of matching field ϕM ,
where both the periodic and the boundary layer solution are valid (in an asymptotic sense),
to be described by:

ϕmin − ϕM = O((δ (ε̃))a), 0 < a < 1, δ (ε̃)→ 0+, (2.51)

or in the terms of the boundary layer field x:

xM = ϕM − ϕmin
δ (ε̃) ∝ −(δ (ε̃))a−1 = −1

(δ (ε̃))|1−a|
→ −∞. (2.52)

This is then a region in which we cannot anymore say that u′′(ϕM ) is of O(1) (or even
finite), but it still does not diverge as fast as 1/δ (ε̃). Note that ϕM denotes a range of fields
for which Eq. (2.51) holds and not a specific "boundary field", as the asymptotic matching
between different filed scales is functional and not in a single value only.

We can show how u′′(ϕM ) (and u′′0(ϕM ), as they must behave the same) scales in the
leading order from the asymptotic behavior of the boundary layer solution in the matching
region. Here g(x)� 1, so that u′′ (ϕ) does not diverge as strongly as in the boundary layer.
The implicit expression Eq. (2.49) then reduces to:

g(0)
2g (x) = exp

(
(g′(x))2

2(g(x))4

)
, (2.53)

with a solution of the form:

−g(0)√
π
x ≈ erfi

(√
ln
(
g(0)

2g(x)

))
(2.54)

Inverting Eq. (2.54) we obtain the needed asymptotic limit:

g(0)
g (x) = x̃

√
ln (x̃)

{
2 + 1

2
ln [ln (x̃)]

ln (x̃) + · · ·
}
, x̃ := |x| g(0)√

2
. (2.55)

Finally, by using the fact that u′′ (ϕ) = g(x)/δ (ε̃) in the boundary layer and inserting
ϕM , we arrive at

u′′0(ϕ∗)� u′′(ϕM ) = O
(

1
(δ (ε̃))a

√
ln (1/δ (ε̃))

)
δ (ε̃)→0−→ +∞. (2.56)
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3.4.1 Propagator singularity

We discuss an important consequence of the divergence of u′′(ϕ∗), namely that for the peri-
odic solution to be matchable to the boundary layer solution, the propagator must develop
a singularity.

The only way for the `(d)
n functions to diverge is through the propagator singularity

(visible from heir defining expressions in Appendix A). In the following we find this divergence
of the threshold functions by connecting, as before, `(d)

0 (u′′ (ϕ), 1; η) to the dynamical variable
Φ(ϕ) of the mapped-to anharmonic oscillator (see Section 3.2.1).

Starting from the energy-balance Eq. (2.25) for the anharmonic oscillator, we can write

1
2Φ̇2(ϕ) =

∫ Φ(ϕ)

Φ0
dΦ̃F

(
Φ̃
)
, Φ̇(ϕ) = ∂ϕΦ(ϕ), Φ0 = Φ(ϕ = 0). (2.57)

We have dropped the index 0 from the periodic solution to simplify the notation. We remind
the reader that F (Φ) is actually the second derivative u′′ (ϕ). Then inside one half-period
from 0 to ϕ∗, one has

0 =
∫ u′′(ϕ∗)

u′′(0)
dww∂wΦ(w). (2.58)

where we have switched the measure from Φ(ϕ) to F (Φ) = u′′ (ϕ). Using partial integration,
Eq. (2.58) can be rewritten as:

0 = u′′(ϕ∗)Φ
(
u′′(ϕ∗)

)
− u′′(0)Φ

(
u′′(0)

)
−
∫ u′′(ϕ∗)

u′′(0)
dwΦ(w). (2.59)

The function Φ(ϕ) = (2vd/d)`(d)
0 (u′′ (ϕ), 1; η) is monotonically decreasing with u′′ (ϕ). When

u′′ (ϕ) diverges, as is the case for u′′(ϕ∗), `(d)
0 asymptotically goes to zero as ∝ 1/u′′(ϕ∗) (see

Appendix A), which means that u′′(ϕ∗)Φ(u′′(ϕ∗)) is of O(1). We again take advantage of
knowing this asymptotic limit of `(d)

0 by dividing the domain of the remaining integral in
Eq. (2.59) at some intermediate u′′(ϕc), which we choose positive and of O(1). Then, we
estimate the part of the integral from ϕc to ϕ∗ by∫ u′′(ϕ∗)

u′′(ϕc)
dwΦ(w) ≈

∫ u′′(ϕ∗)

u′′(ϕc)
dw

2αvdA(d)(2− d)/d
w

= 2αvdA(d)(2− d)
d

ln
(
u′′(ϕ∗)

)
+O(1).

(2.60)

Inserting this result in Eq. (2.59) and reverting to `(d)
0 for clarity, we obtain

αAd ln
(
u′′(ϕ∗)

)
= −u′′(0)`(d)

0
(
u′′(0), 1; η

)
−
∫ u′′(ϕc)

u′′(0)
dw `

(d)
0 (w, 1; η) +O(1). (2.61)

The left-hand side diverges, so the right-hand side must diverge too. Since both u′′(ϕc)
and u′′(0) are finite, the threshold function `

(d)
0 must carry this divergence. This thresh-

old function can only diverge if the propagator develops a singularity. The dimensionless
propagator at the LPA’ level is given by:

g
(
ϕ; y = q2/k2

)
= 1
u′′ (ϕ) +y(1 + r(y)) , (2.62)
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where y is the dimensionless momentum squared and must be positive. The pole is ap-
proached whenever the denominator vanishes. This can happen for different momenta, de-
pending on the regulator. For the Theta regulator there are two ways to approach the pole,
depending on α:

(
ypole, u

′′
pole

)
=
{

(0,−α), α < 1
(1,−1), α > 1,

(2.63)

as there is for the exponential regulator:
(
ypole, u

′′
pole

)
=
{

(0,−α), α < 1
(ln (α),−(1 + ln (α))), α > 1.

(2.64)

The singularity develops with the lowering of d towards dlc, and u′′pole < 0 is first approached
in ϕ = 0, as u′′ (ϕ) has a minimum there. In the limiting process, while ε̃ � 1 but not 0,
the value of u′′(0) must always stay slightly, but strictly, above the singular value u′′pole. This
qualitative picture is general (regulator independent). It has been found from the matching
conditions, meaning that it is connected to the divergence of u′′(ϕmin).

As the singularity is approached in the origin, we can estimate the threshold function
`
(d)
0 in ϕ = 0, from Eq. (2.61):

Φ(ϕ = 0) = 2vd
d
`0(d)

(
u′′(0)→ u′′pole, 1; 2− d

)
∼ 2αvdA(d)(2− η)

d
∣∣∣u′′pole∣∣∣ ln

(
u′′(ϕ∗)

)
→ +∞.

(2.65)

3.4.2 Divergence of the period of the ε̃ = 0 solution

The singularity of the propagator in the origin manifests itself in pushing the half-period
ϕ∗ to infinity. To show the divergence of ϕ∗, we will use the fact that the inflection point
ϕi of u (ϕ) happens before the minimum, ϕi < ϕ∗. We will first estimate the leading order
behavior of ϕi, and then show that it is the same for ϕ∗.

We use the energy balance equation for the dynamical variable Φ (see Section 3.2.1),

1
2
(
Φ̇(ϕ)

)2
=
∫ Φ(ϕ)

Φ0
dΦ̃F (ṽ), Φ0 = Φ(ϕ = 0), (2.66)

to express the field as

ϕ(Φ) = −
∫ Φ

Φ0

dΦ̃√∫ Φ̃
Φ0
dΦ̂F

(
Φ̂
) . (2.67)

We have chosen to first investigate the inflection point ϕi (and Φi = Φ(ϕi)). This is because
we know that F (Φ) = u′′ (ϕ) is a monotonically decreasing and negative convex function of
Φ for for Φi < Φ < Φ0. The fact that F (Φ) is convex can be shown using the properties of
the threshold functions. For start we expand F ′′(Φ):

F ′(Φ) = 1
∂FΦ =⇒ F ′′(Φ) = F ′(Φ)∂Φ

( 1
∂FΦ

)
= − ∂2

FΦ
(∂FΦ)2 . (2.68)
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We use the fact that Φ ∝ `(d)
0 to evaluate its derivatives,

∂nFΦ = 2vd
d
∂nu′′ (ϕ)`

(d)
0
(
u′′ (ϕ), 1; η

)
= (−1)n 2vd

d
`(d)
n

(
u′′ (ϕ), 1; η

)
, (2.69)

which, when introduced into Eq. (2.68), gives

F ′′(Φ) = d

2vd
`
(d)
2 (u′′ (ϕ), 1; η)(
`
(d)
1 (u′′ (ϕ), 1; η)

)3 > 0, (2.70)

showing that F (Φ) is indeed convex. The explicit expressions for the threshold functions are
given in Appendix A, and the fact that they are positive comes from the general properties
of the regulator function.

Convexity tells us that any of its secants lays above the F (Φ) curve [132]. Choosing the
intersection points to be at the origin ϕ = 0 and the inflection point ϕi, where the force
F (Φ (ϕ)) = u′′ (ϕ) vanishes, gives us an estimate of the intermediate values:

|F (Φ(ϕ = 0))| > |F (Φ(ϕ))| > |F (Φ(ϕ = 0))|Φ(ϕ)− Φi

Φ0 − Φi
, for 0 6 ϕ 6 ϕi. (2.71)

The first inequality comes from the monotonic decrease of Φ with u′′ (ϕ) = F which then also
holds for the inverse F (Φ), and we also account for u′′(ϕ) being negative before the inflection
occurs. We use Eq. (2.71) estimates for the F (Φ) in the integral expression for ϕ, Eq. (2.67),
to put limits on the inflection field ϕi from both above and below. The asymptotic behavior
of Φ0 (given in Eq. (2.65)) is utilized in Eq. (2.71) while integrating and combined with
some algebra, gives the following analytic estimate of the leading order for the location of
the inflection point:

π√
2

√√√√ αvdAd

d
(
u′′pole

)2

√
ln (u′′(ϕ∗)) > ϕi > 2

√√√√ αvdAd

d
(
u′′pole

)2

√
ln (u′′(ϕ∗)), (2.72)

showing that the inflection point ϕi diverges with the logarithm of u′′(ϕ∗):

ϕ∗ > ϕi ∼
√

ln (u′′(ϕ∗)). (2.73)

This already shows that the half period ϕ∗ diverges, but in Appendix C we also find that the
distance between the inflection point and the half-period vanishes, due to similar monotony
and convexity (in this case concavity) arguments:

ϕ∗ − ϕi . O
(

1√
ln (u′′(ϕ∗))

)
→ 0+, (2.74)

directly pinpointing the order of magnitude of the half-period of the periodic solution, in
terms of the second derivative in that field, u′′(ϕ∗):

O(ϕ∗) = O(ϕi)
Eq. (2.73)=⇒ ϕ∗ ∝

√
ln (u′′(ϕ∗)). (2.75)
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3.4.3 Scaling of the physical minimum ϕmin with ε̃

We have already noted that the matching of solutions from different SPT regions is not
a boundary-value problem, but that the matching must be done on the level of functions,
between the asymptotic forms.

Let us rewrite Eq. (2.4) in the following way:

u′′ (ϕ) = ε̃ ϕu′′′ (ϕ) + 2vd
(2− η)∂

2
ϕ

[
`
(d)
0
(
u′′ (ϕ), 1; η

)]
. (2.76)

In the matching region, the u′′ (ϕ) has to start to diverge in the ε̃ = 0 equation, so we can take
`
(d)
0 ∝ 1/u′′ (ϕ) (see Appendix A). On the other hand, the ε̃-term has to stop being relevant
in the BL equation for the match to be possible. In the region where we match them, both
the boundary layer and the ε̃ = 0 equation for the second derivative of the potential thus
have the same shape at the leading order,

u′′ (ϕ) = 2αvdA(d)(η)
(2− η) ∂2

ϕ

[ 1
u′′(ϕ)

]
, (2.77)

or, reparametrized into the canonical form (see Appendix B),

u′′ (ϕ) = ∂2
ϕ

[ 1
u′′(ϕ)

]
. (2.78)

We proceed by integrating Eq. (2.78) in the matching region ϕM (see Eq. (2.51)). We can
do this with the periodic solution

ϕ∗ − ϕM ≈
1

u′′(ϕM )
√

2 ln
(
u′′(ϕ∗)
u′′(ϕM )

) , (2.79)

or we can find the same ϕM from integrating with the boundary layer asymptotics in mind:

ϕmin − ϕM ≈
1

u′′(ϕM )
√

2 ln
(
u′′(ϕmin)
u′′(ϕM )

) ≈ 1

u′′(ϕM )
√

2 ln
( 1
ε̃ ϕminu′′(ϕM )

) . (2.80)

Taking into account that both Eqs. (2.79) and (2.80) hold for any ϕM , the location of the
actual minimum must obey

ϕmin ∼ ϕ∗ (2.81)

and the second derivatives must also match in the leading order:

u′′(ϕ∗) ∼ u′′(ϕmin) ∼ 1
δ (ε̃) = O

( 1
ε̃ ϕmin

)
Eq. (2.81)= O

( 1
ε̃ ϕ∗

)
. (2.82)

Using results of Section 3.4.2 elucidating the divergence of the half-period ϕ∗, we arrive at:

ϕmin ∼ ϕ∗ ∼
√

ln
(1
ε̃

)
,

u′′(ϕmin) ∼ u′′(ϕ∗) ∼
1

ε̃

√
ln
(1
ε̃

) . (2.83)
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INNER REGION TAIL

0

. . .

ϕm
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√
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ε̃
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→ 0+

u (ϕ)− u (0)

∝
√

ln
(1
ε̃

)
→ +∞

Figure 2.9 – The sketch of the SPT regions. We indicated the scales of the minimum ϕmin and
the width of the boundary layer δ (ε̃) that we have found from the leading-order fixed-point
solution constructed across the regions.

This scaling of ϕmin given in Eq. (2.83) agrees with the assumption of the boundary
layer width δ (ε̃) vanishing in the ε̃→ 0 limit:

δ (ε̃) ∼ ε̃
√

ln
(1
ε̃

)
. (2.84)

We note that δ (ε̃) describes the divergence of u′′ (ϕ) ∝ 1/δ (ε̃) in the boundary layer.
A very significant result of matching is then that we have found how the approach to the
singularity of the propagator in ϕ = 0 is reflected in the divergent scaling of ϕmin and
u′′ (ϕmin).

We can now complement the sketch of the SPT regions given in Fig. 2.5 with the actual
scales. The result is given in Fig. 2.9.

We now comment on the numerical results above the lower critical dimension presented
in Section 2. From them, we expected that if the location of the minimum ϕmin diverges, it
must do so very slowly, and that the value of the second derivative u′′ (ϕmin) should diverge
as 1/ ε̃.

Our numerical calculations cannot identify the logarithmic scalings that we have found
analytically, as those diverge very weakly when ε̃→ 0+. Nevertheless, from Fig. 2.10 we can
see that the numerical results are compatible with

ϕmin /
√

ln (1/ ε̃) = O(1), ε̃
√

ln (1/ ε̃) u′′ (ϕmin) = O(1). (2.85)
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(a) Scaling of the location of the minimum of the effective potential ϕmin. The
black dotted line is illustrative and shows how the dependence would look if
ϕmin ∝ 1/

√
ε̃.
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(b) Scaling of the second derivative in ϕmin, u′′ (ϕmin), with δ (ε̃) = ε̃
√

ln (1/ ε̃).

Figure 2.10 – Numerical fixed-point results obtained above the lower critical dimension from
solving for the fixed point using a Newton-Rhapson method (see Section 2), compared to
scaling obtained analytically in Section 3.4.3.
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3.5 Determination of the value of the lower critical dimension

While solving the boundary-layer equations in Section 3.3.2, we have found the value of
g′(0)/(g(0))2. The boundary-layer solution for u′′ (ϕ) is not the only place this parameter
occurs. We turn our attention to the expression for the anomalous dimension η as given by
the fixed-point equation, Eq. (2.3):

η =4vd
d
m

(d)
4,0
(
u′′ (ϕmin), 1; η

)(
u′′′(ϕmin)

)2 =

=4vdα
[
A(d)(η)− α

d
B(d)(η)

][
g′(0)

(g(0))2

]2

= 8vdα
π

[
A(d)(η)− α

d
B(d)(η)

]
,

(2.86)

where we have used the boundary-layer function g (x) and the fact that x = 0 for ϕ =
ϕmin. The boundary-layer expression for the threshold function m(d)

4,0 is listed in Eqs. (2.35)
to (2.37).

At the lower critical dimension itself, ε̃ vanishes. This gives η = 2− dlc for the anoma-
lous dimension. Combining this with the expression for the anomalous dimension given by
Eq. (2.86), we find the expression for the value of the lower critical dimension:

dlc = 2(π − α∗(dlc))
π + 4− 3α∗(dlc)

, α∗(d) =
{
α, rΘ (y)
α2−(1+d/2), rexp (y) .

(2.87)

This dependence is plotted in Fig. 2.11. We observe that reasonable values are obtained

exp

Theta

0.6 1.2 1.8 2.4 3.0
α

1.0

1.5

2.0

dlc

Figure 2.11 – Dependence of the value of the lower critical dimension dlc on the regulator
prefactor α. The dlc = 1, dlc = 2 lines are included as a visual guide. We remind that due
to ηdlc = 2− dlc, we work below d = 2.

for the exponential regulator with the usual O(1) prefactors, where they are within 10% of
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the exact value, dlc = 1. The Theta regulator deviates more significantly. Unfortunately,
dlc does not display an extremum as a function of α which would allow us to determine an
optimal value by the use of the aforementioned principle of minimal sensitivity (PMS) (see
Chapter 1, Section 1.2.2). PMS tells us that the α which produces the best solutions can be
found by demanding that a small change in α around its optimal value minimally changes
the critical exponents or other universal physical quantities, such as dlc.

Knowing the dependence of dlc on the regulator prefactor, we turn back to the numer-
ical results above dlc. As an illustration, we plot extrapolated results for dlc for the rexp
and several prefactor choices. The extrapolations are done from the ε̃ (d) curves down to
the ε̃ (dlc) = 0 value. These results are displayed in Fig. 2.12. We can see that these ex-
trapolations are in good agreement with the analytical curve, speaking in favor of numerics
capturing the echoes of the singular d→ dlc limit at finite ε̃.

Figure 2.12 – Extrapolations (blue dots) for the value of the lower critical dimension for the
exponential regulator and several prefactors α compared to the analytical curve shown in
red. The gray lines dlc = 1 and α = 1 are included as visual guides.

4 Conclusion

After introducing the LPA’ fixed-point equations in Section 1, in Section 2 we have presented
numerical results in the LPA’ approximation for the scalar φ4 theory above the lower critical
dimension (dlc). The result for the location of the minimum of the effective potential, ϕmin,
indicates that it does not scale as 1/

√
ε̃, as is assumed in [122], but grows instead more

slowly (here, ε̃ = (d − 2 + η)/[2(2 − η)]). We also find a divergence of u′′(ϕmin) similar to
1/ ε̃. These numerical results drove us to use the Singular Perturbation Theory (SPT), as
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the ε̃ limit for the fixed-point functions is not uniform in the field.
Through the use of SPT in Section 3, we have investigated the properties of the fixed-

point LPA’ solution at the leading order of the ε̃ → 0+ limit. To do so, we have separated
the field domain into three qualitatively different regions. It was essential to recognize
the emergence of a boundary layer of vanishing width as an intermediate region, located
between an inner region situated between the two minima ±ϕmin and the tail region where
the potential u (ϕ) and its derivatives exhibit power-law behavior controlled by the scaling
part of their flow equations.

From the matching conditions between these regions and an implicit solution in the
boundary layer, we have analytically found in Section 3.4 that the propagator develops
a singularity in the origin of the field in the limit of the lower critical dimension. From
this, we have found the scaling of the ϕmin and u′′ (ϕmin) with ε̃ (as ϕmin ∝

√
ln (1/ ε̃)

and u′′ (ϕmin) ∝ 1/(ε̃ ϕmin)). The identification of the propagator singularity as the cause
of the divergence of u′′ (ϕmin) signaled by numerical results of Section 2 is a significant
consequence of the matching procedure. This singularity of the propagator is in agreement
with the expected merging of the critical fixed point and the zero-temperature fixed point
controlling the ordered phase and it is one of the anticipated hallmarks of the approach to
the lower critical dimension (dlc).

Matching conditions have also been used to find the value of dlc as a function of the
regulator prefactor in Section 3.5. We stress that matching through all of the regions has
been achieved automatically, in the sense that it can be done for any (dlc, α) pair - it does
not fix either of the values. There is no extremum for the analytical dlc(α) curves, so the
Principle of Minimal Sensitivity can also not be applied.

The critical temperature and critical exponents will be discussed in Chapter 4.
In the next chapter, we first investigate the same ε̃ → 0+ limit at the second order of

the derivative expansion.
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Chapter 3

Approach to the lower critical
dimension within the second order
of the derivative expansion (∂2)

In Chapter 2 we have provided a picture of the approach to the lower critical dimension of
the scalar φ4 theory in the minimally modified Local Potential Approximation (LPA’). LPA’
is the lowest approximation in the derivative expansion scheme of FRG that one can use to
reach systems at low spatial dimensions, d < 2. Here we check the stability of the results
upon increasing the approximation order. Some of the LPA’ results were also unsatisfactory,
as for example the lack of an optimal regulator prefactor α that would more crisply pinpoint
the value of the lower critical dimension. Hence, in this chapter we work in the second order
of the derivative expansion, ∂2. This is a line of research that we are still actively pursuing,
as the coupling of the equations for the effective potential and the field renormalization
function zk (ϕ) make the problem much more complicated than in LPA’ where zk (ϕ) = 1.

1 Flow equations

The flow equations are given in Chapter 1, Section 1.3. For completeness, we repeat here the
results for the flow of the dimensionless effective potential and field renormalization function:

∂tuk (ϕ) =− duk (ϕ) +(2− ηk) ε̃k ϕu′k (ϕ) +2vd`(d)
0 , (3.1)

∂tzk (ϕ) =ηkzk (ϕ) +(2− ηk) ε̃k ϕ z′k (ϕ) +

+ 2
d
vd

{ (
z′k (ϕ)

)2 [(2d+ 1) `(d+2)
2 − 2m(d+4)

4,0

]
− dz′′k (ϕ) `(d+2)

1 +

+ 2z′k (ϕ)u′′′k (ϕ)
(
d`

(d)
2 − 2m(d+2)

4,0

)
− 2

(
u′′′k (ϕ)

)2
m

(d)
4,0

}
,

(3.2)

where t = ln (k/Λ).
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We also use the flow equation for the second derivative u′′k (ϕ), which is derived by twice
differentiating ∂tuk (ϕ) with respect to the field:

∂tu
′′
k (ϕ) =− (2− ηk)u′′k (ϕ) +(2− ηk) ε̃k ϕu′′′k (ϕ) +

− 2vd
[
uivk (ϕ) `(d)

1 + z′′k (ϕ) `(d+2)
1 −

(
u′′′ (ϕ)

)2
`
(d)
2 +

− z′k (ϕ)u′′′k (ϕ) `(d+2)
2 −

(
z′k (ϕ)

)2
`
(d+4)
2

]
,

(3.3)

The flow equation for the second derivative of the effective potential u′′k (ϕ) is included here
because this function is present in the propagator of the theory and, consequently, in the
nontrivial parts of the flow of all the other RG functions. Its conceptual relevance and oper-
ational practicality are also evident from the LPA’ calculations of Chapter 2. The equation
for ∂tu′′k (ϕ) together with ∂tzk (ϕ) form a closed system of partial differential equations, and
u (ϕ) can be recovered by twice integrating u′′ (ϕ), up to a physically irrelevant constant.
We continue to work in u′′ (ϕ) instead of u (ϕ).

We proceed by searching for the fixed-point solutions of these equations which satisfy
∂tu
′′
k (ϕ) = 0 and ∂tzk (ϕ) = 0. The anomalous dimension η is calculated from ∂tzk (ϕ) = 0

evaluated at the renormalization field ϕr for which zk(ϕr) = 1. At the approximation level
∂2 we choose ϕr = 0.

In the following section we present numerical ∂2 results above dlc. In Chapter 2 on
LPA’, the numerical data was largely complemented and explained by analytical results,
which will unfortunately not be the case here. The ∂2 level is significantly more complicated
than the LPA’ equivalent due to the coupling between the u′′ (ϕ) and z (ϕ) equations, and
we have not been able to do as much analytically at the present moment. For instance, an
important difference is that we have found no way to properly determine the leading-order
solutions in the inner region as we did in Chapter 2, Section 3.2. Therefore, after a numerical
investigation at d > dlc, we will focus on the boundary layer region.

2 Numerical fixed-point results above the lower critical di-
mension

As in Chapter 2 Section 2 on LPA’, we solve for fixed points above the lower critical dimension
using a modified Newton-Rhapson method (done in FORTRAN90 [124]), until the procedure
fails at some d > dlc, for the same reason as in LPA’ - the problem is singular and we saturate
the precision. With Fig. 3.1 we illustrate solutions for the effective potential at the LPA’
and ∂2 approximation level. The solutions do not differ qualitatively for other choices of the
regulator function or prefactor, save for difficulties with rΘ for α > z(0) = 1 (for examples of
difficutiles, see Fig. E.1 in Appendix E), and we include some examples of different choices
in Appendix E.

In Fig. 3.1 we can see that the ∂2 fixed-point effective potential has the same apparent
features as in LPA’, including indications of a possible singular d → d+

lc limit. This is more
evident in the second derivative u′′ (ϕ). Comparing Fig. 3.1c and Fig. 3.1d we see in both
approximations the tendency of u′′(0) to diminish as the dimension is lowered, possibly
toward the propagator singularity, and a trend pointing toward the divergence of u′′ (ϕ) in
the neighborhood of ϕmin.
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Figure 3.1 – Numerical results for the fixed-point effective potential u (ϕ) and its second field-
derivative u′′ (ϕ) in the two lowest applicable consecutive orders of the derivative expansion.
In LPA’ the prescription for the field renormalization was done in ϕr = ϕmin, while at ∂2,
we used ϕr = 0.
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These shared qualitative propensities of the effective potential in both LPA’ and ∂2 lead
us to check for an analogous boundary layer in the second order of the derivative expansion.

Another clear indication of the need to investigate the ϕmin neighborhood separately
and with special care is the tendency of the field renormalization function to spike there as
the dimension is lowered, as seen in Fig. 3.2.

−1 0 1
ϕ/ϕmin

0

2

4

z
( ϕ

)

rexp, α =1.0

d =1.8

d =1.113

Figure 3.2 – Field renormalization function for d > dlc.

In Fig. 3.3 we compare the scaling of ϕmin and u′′(ϕmin) in LPA’ with the ∂2 results. We
see that the scaling analytically obtained at LPA’ is compatible with the numerical results
in ∂2. This is of course not a rigorous confirmation, and we do not treat it as such.

To underline this, we also plot the second derivative χ′′ (ϕ) of the dimensionless sus-
ceptibility χ (ϕ) = (α+ u′′ (ϕ))−1 in ϕmin (as seen in Fig. 3.5). We chose this function
out of operational practicality.1 We see that the results seem to be in agreement with
δ (ε̃)χ′′(ϕmin) = O(1) for δ (ε̃) ∝ ε̃

√
ln (1/ ε̃), which is the analytical LPA’ result for the

scaling. We note that in the reminder of this chapter we only assume δ (ε̃) → 0 and do not
use the analytical result from LPA’ on how δ (ε̃) scales with ε̃.

The difference between LPA’ and ∂2 is the field renormalization function. In LPA’, it
is taken that z (ϕ) = 1, but in ∂2 the fixed-point field renormalization function must be
calculated. A numerical result of such a calculation has already been shown in Fig. 3.2.
Other regulator choices are shown in Appendix E for plots of fixed-point solutions, Figs. E.2

1We remind that the numerics is actually carried out for the susceptibility χ (ϕ) = 1/(u′′ (ϕ) +α) as this
is a function bounded from above for |ϕ| → +∞, with a maximum in ϕ = 0, unlike u (ϕ) or any of its
field-derivatives, which have divergent tails with power law behavior determined by the scaling parts of their
flow equations.
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Figure 3.3 – Numerical results for the location of the minimum of the fixed-point effective
potential, ϕmin, in the ∂2 order, compared with the boundary layer scaling analytically
obtained for LPA’.
Full lines: rexp, dashed lines: rΘ.
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Figure 3.4 – Numerical results for the fixed-point value of the second field-derivative in the
location of the minimum, u′′(ϕmin), for the ∂2 order, compared with the boundary layer
scaling analytically obtained for LPA’.
Full lines: rexp, dashed lines: rΘ. Regulator prefactors α specified on the upper plot are
valid for both plots.
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Figure 3.5 – Numerical results for the fixed-point value of the second derivative of the sus-
ceptibility in the location of the minimum, χ′′(ϕmin), for the ∂2 order, compared with the
boundary layer scaling analytically obtained for LPA’.
Full lines: rexp, dashed lines: rΘ. Regulator prefactors α specified on the upper plot are
valid for both plots.
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and E.3, but there is no qualitative difference from what can be seen in Fig. 3.2 (rΘ, α > 1
results excluded). When calculating for d > dlc, we chose z(0) = 1, meaning that we used
the prescription ϕr = 0 for the field renormalization, as already stated. We remind that in
LPA’ it was optimal to renormalize at ϕr = ϕmin, but in ∂2 the choice is less relevant and
ϕr = 0 simplifies numerical calculations.

It is evident from Fig. 3.2 that z (ϕ) peaks in the vicinity of the location of the minimum
ϕmin. This makes it doubtful that we can take z (ϕ) to be of O(1) in the boundary layer,
as it was with z (ϕ) = 1 in LPA’. The question of the maximal value of z (ϕ) is especially
interesting as analytical arguments of SPT do not pinpoint the boundary layer scaling, and
we will have to use numerical indicators to form an ansatz for the behavior of the field
renormalization function in the boundary layer. With this in mind, we focus on the value
of z(ϕzmax) in its maximum, ϕzmax. From the shape of z (ϕ) in Fig. 3.2, we expect ϕzmax
to be in the boundary layer. We stress that we cannot claim with certainty that we are
numerically close enough to the dlc limit to capture the asymptotic behavior of the fixed-
point solutions, and one can in general not speak about a boundary layer in numerics. What
we are investigating are the trends in the vicinity of ϕmin as the dimension (or (ε̃)) is lowered.
We plot the results for z(ϕzmax) in Fig. 3.6.

We see from Fig. 3.6 that the maximum of z (ϕ) grows as we lower the dimension, and
we cannot exclude that it might diverge in the ε̃→ 0 limit. To better qualify this tentative
divergence, we define a scale κ (ε̃) as the measure of the ratio of z (ϕ) and u′′ (ϕ) in the
boundary layer:

z (ϕ)
u′′ (ϕ) ∝ κ (ε̃) in the boundary layer : z (ϕ) = κ (ε̃)

δ (ε̃) ζ (x),

with x = ϕ− ϕmin
δ (ε̃) = O(1) leading to ζ (x) = O(1).

(3.4)

However, if z (ϕ) diverges, from the comparison of the numerical data for z(ϕzmax) with the
LPA’ scaling δ (ε̃) shown in Fig. 3.6b, we expect it to do so more slowly than u′′ (ϕmin). (Yet,
we do not have firm proof of δ (ε̃) scaling the same in ∂2 as in LPA’, and we are above dlc.)
In Fig. 3.7 we show that the numerical results could possibly be compatible with

κ (ε̃) ≈ 1√
ln (1/ (ε̃))5 . (3.5)

This is of course not a strict determination and we do not use the actual scaling in Eq. (3.5)
in the following. We just use the compatibility of the d > dlc numerical results with z (ϕ)
diverging (but more slowly than u′′ (ϕ)) to justify the boundary-layer ansatz. We find the
spiking of z (ϕ) around the location of the minimum ϕmin instructive and we choose to focus
on a regime where δ (ε̃)� κ (ε̃)→ 0+.
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Figure 3.6 – Numerical results for the fixed-point value of the field renormalization function
in its maximum, z(ϕzmax), for the ∂2 order.
Full lines: rexp, dashed lines: rΘ.
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Figure 3.7 – Numerical results for the fixed-point value of the field renormalization func-
tion in its maximum, z(ϕzmax), for the ∂2 order. The first panel, Fig. 3.7a, shows that
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valid for all plots.
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3 Boundary layer

From the numerical insight obtained from results above the lower critical dimension in Sec-
tion 2 , we choose the following ansatz for the scaling of the field renormalization function
z (ϕ) in the boundary layer:

u′′ (ϕ)� z (ϕ)→ +∞ =⇒ 1
δ (ε̃) �

κ (ε̃)
δ (ε̃) → +∞ =⇒ δ (ε̃)� κ (ε̃)→ 0+, (3.6)

which describes a field renormalization function that diverges in the boundary layer, but
subdominantly with respect to the second derivative u′′ (ϕ).

The boundary layer regime is then given in full by

x = ϕ− ϕmin
δ (ε̃) : u′′ (ϕ) = 1

δ (ε̃)g (x), z (ϕ) = κ (ε̃)
δ (ε̃) ζ (x),

where x = O(1) means that g (x), ζ (x) = O(1) and δ (ε̃)� κ (ε̃) ε̃→0+
−→ 0+.

(3.7)

3.1 Boundary layer equations

From the considerations of the scaling parts of the flow we predict that we will encounter a
ε̃ ϕmin/δ (ε̃) term in the BL equations. It is convenient to substitute it for the following:

ε̃ ϕmin
δ (ε̃) = 2αvdA(d)(η)

(2− η)
g′(0)

(g(0))3 = O(1). (3.8)

The supporting expression for the location of the minimum ϕmin is found in Appendix C
from the fixed-point equation for u′(ϕmin) = 0. This step is analogous to LPA’.

Moving on to the nontrivial parts of the flow, we have found in Appendix A the threshold
functions to behave as:

`(d)
n

(
u′′ (ϕ), z (ϕ); η

)
= (δ (ε̃))n+1L(d)

n (g (x)) +O
(
κ (ε̃) (δ (ε̃))n+1

)
,

m
(d)
n,0
(
u′′ (ϕ), z (ϕ); η

)
= κ (ε̃) (δ (ε̃))n−1M (d)

n (g (x), ζ (x))+

+O
(
max

{
(δ (ε̃))n, (κ (ε̃))2(δ (ε̃))n−1

})
.

(3.9)

The auxiliary functions L(d)
n and M (d)

n are given by:

L(d)
n (g (x)) = (n+ δn,0) αA

(d)(η)
(g (x))n+1 , M (d)

n (g (x), ζ (x)) = ζ (x) αdA
(d)(η)

(g (x))n , (3.10)

with the regulator-dependent constant A(ϕ)(η) defined as in LPA’ (see Chapter 2, Eq. (2.37)):

A(d)(η) =
(
d+ 2− η

2

)∫ +∞

0
dyyd/2

[
r(y)
α

]
> 0. (3.11)

Inserting Eq. (3.7) to Eq. (3.11) in the fixed-point equations Eqs. (3.2) and (3.3), we arrive
at the boundary-layer fixed-point equations in the ε̃→ 0+ limit:

0 =− (2− η)g (x) +2αvdA(d)(η)
(
g′(0)g′ (x)

(g(0))3 + 2(g′ (x))2

(g (x))3 −
g′′ (x)

(g (x))2

)
, (3.12)
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0 = ηζ (x)−2αvdA(d)(η)
[
2(g′ (x))2

(g (x))4 ζ (x)−
(

g′(0)
(g(0))3 + 4g′ (x)

(g (x))3

)
ζ ′ (x) + 1

(g (x))2 ζ
′′ (x)

]
.

(3.13)

3.2 Boundary layer solution

When the field is rescaled to absorb constants and the boundary layer equations are cast in
their canonical form (see Appendix B), they are universal (regulator-independent):

0 = g (x)−g
′(0)g′ (x)
(g(0))3 − 2(g′ (x))2

(g (x))3 + g′′ (x)
(g (x))2 , (3.14)

0 = ηζ (x)−(2− η)
[
2(g′ (x))2

(g (x))4 ζ (x)−
(

g′(0)
(g(0))3 + 4g′ (x)

(g (x))3

)
ζ ′ (x) + 1

(g (x))2 ζ
′′ (x)

]
, (3.15)

Save for the aforementioned universality, another specificity of the δ (ε̃) � κ (ε̃) → 0+

regime is the complete decoupling of the Eq. (3.14) for g (x) from the function ζ (x). Neither
the universality nor the decoupling is present if z (ϕ) is taken to behave differently in the
boundary layer, but we stress that this did not inform our choice of ansatz.

Due to this decoupling, the implicit boundary layer solution for u′′ (ϕ) = g (x) /δ (ε̃) is
the same at the ∂2 approximation level as it is in LPA’. This solution is found in Chapter 2,
Section 3.3.2, and we restate the final canonical result here for completeness:

g(0)
g (x) = exp

(
(Y (x))2

2

)
erfc

(
Y (x)√

2

)
, Y (x) := g (x)

(
g′(0)

(g(0))3 −
g′ (x)

(g (x))3

)
. (3.16)

The canonical equation for ζ (x) can be further simplified by introducing the auxiliary
function f (x) = ζ (x) /(g (x))2:

Eq. (3.15) =⇒ 0 = f(x) +
(2− η

4− η

)[
g′(0)

(g(0))3 f
′(x)− 1

(g(x))2 f
′′(x)

]
, (3.17)

where we also used the equation Eq. (3.14) for g(x) to maximally simplify Eq. (3.17).
If we use the same auxiliary function Y (x) in the canonical fixed-point Eq. (3.17) for

F (Y (x)) := f(x), we arrive at an integrable differential equation:

0 = F ′′(Y )− Y F ′(Y )− nF (Y ), n = 4− η
2− η ∈ R+. (3.18)

There are two different classes of functions whose linear combinations constitute a full solu-
tion of Eq. (3.18) - hypergeometric functions of the 1F1 type and Hermite functions H:

Fn(Y ) = cF (n) 1F1

(
n

2 ,
1
2 ,
Y 2

2

)
+ cH(n) H

(
−n, Y√

2

)
, cF (n), cH(n) = const. in Y.

(3.19)
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The hypergeometric functions that solve Eq. (3.18) diverge as exp
(
Y 2/2

)
when Y diverges

[133]:

1F1

(
n

2 ,
1
2 ,
Y 2

2

)
=

√
2π√

2nΓ(n/2)
Y n−1eY

2/2 +O
( 1
Y n

)
. (3.20)

This is a relevant section of the domain in Y , as Y diverges towards the tail region,
Y (x→ +∞)→ +∞.2 The F (Y ) = ζ(x)/(g(x))2 ∝ z (ϕ) /(u′′ (ϕ))2 vanishes in this limit due
to the tail behavor of the RG functions z (ϕ) and u′′ (ϕ). Thus the hypergeometric functions
do not figure in a physical solution.

This leaves for the solution the Hermite functions:

Fn(Y ) ∝ H
(
−n, Y√

2

)
=⇒



ζη(x) ∝ (g(x))2 H
(
−4− η

2− η ,
Y (x)√

2

)
,

with Y (x) := g(x)
(

g′(0)
(g(0))3 −

g′(x)
(g(x))3

)
.

(3.21)

The numerical value of the proportionality constant is of no relevance, as Eq. (3.18) is
linear in F (Y ). These Hermite functions are well-behaved in all physical limits of Y for any
parameter n, including the tail limit. Thus, no n is pinpointed, and there is still a freedom
in the anomalous dimension η = 2(n− 2)/(n− 1). Therefore, finding the implicit boundary
layer solutions for g(x) (Eq. (3.16)) and ζ(x) (Eq. (3.21)) does not lead to a unique value
of the lower critical dimension dlc. This is in contrast with LPA’, where η was fixed from
the conditions on the asymptotic behavior of g(x) towards the tail region, and the dlc value
could be analytically found from ε̃→ 0+.

3.3 Expression for dlc in canonical boundary layer quantities

This freedom in dlc comes form the fact that different solutions exist for the boundary layer
field renormalization function ζ(x) for different values of the anomalous dimension η, all of
them seemingly physical.

The multiplicative freedom in ζ (x) due to the relevant equation being linear in it is not
what is at play here. These ζη (x) solutions vary in shape for different η, as one can see from
the implicit solution in Eq. (3.21). The value of dlc is parametrized by an invariant of the
boundary-layer symmetry (reparametrizing δ (ε̃) by and O(1) prefactor would not change it,
see Appendix B), ζ ′(0)/g(0):

ζ ′(0)
g(0) = 2

√
2
π
−
√

2
Γ
(

1 + 1
dlc

)
Γ
(1

2 + 1
dlc

) (3.22)

where we have used the canonical boundary layer equations, Eqs. (3.16) and (3.21), for g (x)
and ζ (x), together with ηdlc = 2 − dlc. For the full procedure, see Appendix D. We set
ζ(0) = 1, which we can choose as all equations are linear in ζ(x).

2Y (x) is built form the function g(x) and its derivatives, which are decoupled from ζ(x). Hence, the
arguments for its behavior can be inherited directly from LPA’.
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With this we have shown that we cannot determine the value of the lower critical di-
mension from the implicit boundary-layer solutions for the renormalization functions alone.
In obtaining these solutions we have already considered the necessary matching with the tail
region. Hence, information about the value of dlc should come form the matching condi-
tions of the boundary layer solutions to the inner region, which needs to fix the parameter
ζ ′(0)/g(0). Hopefully this could be achieved from matching z (ϕ) at the leading order, but at
the present moment we do not know how to do this analytically. Numerical attempts have
also not yet solved the matching issue, due to what we suspect to be a problem of extreme
sensitivity to boundary conditions.

As a consequence of the dlc relation in Eq. (3.22), if the location of the maximum of
z (ϕ) happens to coincide with that of the minimum of the effective potential, ϕzmax = ϕmin,
we would have ζ ′(0) = 0 and the value of the lower critical dimension would be precisely 1,
which is the value for the exact theory.

3.4 Extrapolations of the dlc value in ∂2 from numerical results at d > dlc

Being unable at this point to make progress with the matching between the boundary layer
and the inner region, we have proceeded to investigate the possible values of the lower critical
dimension dlc from results for ε̃ (d) at d > dlc, using the fact that ε̃ vanishes at dlc. The
dependence of the values of the lower critical dimension on the IR regulator function and
its prefactor are shown in Fig. 3.8. Extrapolations are by construction shaky. There are
nonetheless some signs that they might still produce interesting results, like the fact that the
numerical results for the scaling of ϕmin and u′′ (ϕmin) above dlc are already consistent with
the scaling one would expect in the ε̃→ 0+ limit, which speaks in favor of the effects of the
boundary layer already being felt at the finite ε̃ that we can reach numerically, or the good
agreement of the extrapolations with the analytical curve of dlc(α) in LPA’ (see Chapter 2,
Fig. 2.12).

The results in Fig. 3.8 point to physical inadequacy of fixed-point solutions where the
Theta regulator is used with α > z(0) = 1. We suspect that this is an atypical and sin-
gular situation with the Theta regulator, as the problem does not exist for the analytical
exponential regulator. Furthermore, one can see the problematic ε̃ (d) curves in Fig. E.1 of
Appendix E.

Looking at the dependence of the extrapolated values of dlc on the prefactor α in Fig. 3.8,
we observe that the dlc(α) function has an extremum. This would allow for the use of PMS,
if more reliable dlc(α) curves were found in the future. This is in contrast with LPA’, where
no extrema are present and therefore no optimization can be carried out. Results of such an
optimization procedure are shown in Fig. 3.9, for illustrative purposes only. At each d, the
prefactor α is varied and the extremum of d(α) is found, after which the dimension is lowered.
However, as the same algorithm is used for the calculation of the fixed-point solutions as in
Section 2, this procedure also fails for finite ε̃.

3.4.1 About the scaling of ϕmin with ε̃ and the propagator singularity

Save for the analytical dlc(α) curves, the results we have derived from matching at the level
of LPA’ are the scaling of the location of the minimum of the effective potential ϕmin with
ε̃ and the fact that the propagator develops a singularity in ϕ = 0. We have been able to
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(c) Combined results, with α > z(0) = 1 removed for the Theta regulator.

Figure 3.8 – Extrapolations of the value of the lower critical dimension for different regulator
function r and prefactor α choices. We again note the problematic α > z(0) = 1 solutions
for the Theta regulator. Lines α = 1 and d = 1.0 (and d = 0.9 for rexp) are included as
visual guides.
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Figure 3.9 – Numerical results for the optimal regulator prefactor α in the second order of
the derivative expansion ∂2 for the two regulator functions - exponential and Theta.

establish a maching and find the scaling of u′′ (ϕ) ∝ 1/δ (ε̃) with ε̃, as δ (ε̃) = O(ε̃ ϕmin),
and we have connected how the approach to the regulator singularity in ϕ = 0 determines
the scaling of ϕmin. However, the equation for z (ϕ) is highly nontrivial, and we do not
see how information on the scaling of z (ϕ) (i.e., κ (ε̃)) can be obtained from the vicinity
of ϕ = 0 or any other intermediate 0 < ϕ < ϕmin field. As we have not found analytical
matching criteria or established a numerical procedure for matching, in this section we limit
ourselves to considerations requiring only a few minimal assumptions. We stress that without
matching conditions, one cannot make crisp conclusions about the scaling of ϕmin or about
the propagator developing a singularity.

From the numerical data above dlc presented in Fig. 3.3, we see that if ϕmin diverges,
it must again do so very slowly. Furthermore, the second derivative u′′ (ϕ) diverges in the
vicinity of ϕmin, as seen in Fig. 3.4.

Still, the integral of u′′ (ϕ) from 0 to ϕmin must vanish:

∫ ϕmin

0
dϕu′′ (ϕ) = u′(0)− u′ (ϕmin) = 0. (3.23)

This implies that ϕmin should diverge. As u′′ (ϕ) diverges in the neighborhood of ϕmin, this
has to be somehow compensated by integrating negative values u′′ (ϕ) < 0 over a divergent
field-domain up to the neighborhood of ϕmin.

To elaborate, this integral can be separated along the SPT regions, so that one can use
the appropriate form of the leading-order solution to estimate it. We do so at some field ϕM
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in the matching region between the inner region and the boundary layer:

0 =
∫ ϕmin

0
dϕu′′ (ϕ) = IIN + IBL :

IIN =
∫ ϕM

0
u′′(ϕ̃)dϕ̃,

IBL =
∫ ϕmin

ϕM

u′′(ϕ̃)dϕ̃.

(3.24)

From Fig. 3.3, it is clear that if ϕmin diverges (and we just argued that it does), it does so
more slowly than, e.g., 1/

√
ε̃. We can then find some finite exponent a, so that the matching

field defined as

ϕM = ϕmin − b ε̃1−a, 0 < a < 1, b > 0, (3.25)

corresponds to the "left limit" of the boundary layer, where the boundary-layer field x is
negative and diverges:

xM = ϕm − ϕmin
δ (ε̃) = −b ε̃

1−a

δ (ε̃) ∝
−b

ε̃a ϕmin
→ −∞, (3.26)

where we have used the SPT result that δ (ε̃) = O(ε̃ ϕmin). In the case where z (ϕ)� u′′ (ϕ)
in the boundary layer (even if z (ϕ) diverges), the argumentation for δ (ε̃) = O(ε̃ ϕmin) is the
same as in LPA’ due to the decoupling of the equation for g(x) = δ (ε̃)u′′ (ϕ).

We continue by evaluating IBL at the leading order. Conveniently for this argument,
the function that we need to integrate in the boundary layer is u′′ (ϕ) = g(x)/δ (ε̃), and from
its canonical boundary layer equation in Eq. (3.14) we see that g(x) is a total derivative:

IBL =
∫ ϕmin

ϕM

u′′ (ϕ) dϕ = 1
δ (ε̃)

∫ ϕmin

ϕM

g(x)d(ϕmin + δ (ε̃)x) =

=
∫ 0

xM

g (x) dx = g(xM )
[
g′(0)

(g(0))3 −
g′(xM )

(g(xM ))3

]
.

(3.27)

Using the asymptotic form of g(x) for x→ −∞ (Chapter 2, Eq. (2.55)) and evaluating it in
ϕM , we arrive at

IBL ≈
√

2a ln (1/ ε̃) +O
(
ε̃0
)
. (3.28)

We stress that the asymptotic form in Eq. (2.55) gives for the second derivative u′′ (ϕ) =
g(x)/δ (ε̃) in the matching region

u′′(ϕM ) = O
(

1
ε̃1−a

√
ln (1/ ε̃)

)
, (3.29)

which diverges more slowly than the inverse of δ (ε̃) ∝ ε̃ ϕmin, as it must in ϕM :

ε̃ ϕmin

ε̃1−a
√

ln (1/ ε̃)
= ε̃a ϕmin√

ln (1/ ε̃)
→ 0. (3.30)
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Now, if we take that in principle there is matching, we can use Eq. (3.29) to put an upper
bound to the contribution of the matching region to the integral in the inner region, IIN .
The matching region is at most of width ε̃1−a in the ϕ field, and u′′ (ϕ) is there at most of
O
(
1/
(
ε̃1−a

√
ln (1/ ε̃)

))
, so that by using Jordan’s estimation lemma [134], this contribution

can at worse be of O
(
1/
√

ln (1/ ε̃)
)
→ 0, which is negligible compared to the IBL integral.

For the inner integral to compensate for the divergence of the boundary layer one, i.e.,

IIN = −IBL ≈ −
√

2a ln (1/ ε̃), (3.31)

the divergence must come from the domain of integration (as outside of the matching region
we integrate finite u′′ (ϕ)) which is up to the matching region, in the leading order, of
O(ϕmin), i.e.,

ϕmin ∝
√

ln (1/ ε̃), (3.32)

as in the LPA’. This again accounts for the slow divergence of ϕmin, which can in the d > dlc
numerical results be mistaken for ϕmin going to a constant in the ε̃→ 0+ limit.

In this discussion we have used that u′′ (ϕmin) diverges and that a value of a can be found
such that ε̃a ϕmin vanishes in the ε̃→ 0+ limit, both of which are strongly suggested by the
d > dlc numerical results presented in Section 2. Apart from this, only the assumption
that matching is in principle possible has been used. This can be translated into saying
that we have assumed that the coupling of the fixed-point equations for z (ϕ) and u′′ (ϕ) in
the inner region does not affect the behavior of u′′(ϕM ), nor the result for u′(ϕM ), in the
matching region. This is compatible with the numerical results of Section 2, where u′′ (ϕ)
can be seen to be qualitatively the same as in LPA’, but it should ideally be checked from
the matching conditions (which we presently do not have). While this makes the argument
not a rigorous demonstration, the assumptions that we have used are not very demanding
and are supported by numerical trends when d > dlc. We will use this scaling of ϕmin (and
consequently δ (ε̃)) in the following, e.g., in Chapter 4 when we will be discussing the critical
temperature and the critical exponents.

We also want to discuss the pole singularity, as it is what we expect in the ε̃→ 0+ limit
from the merging of the critical and the zero-temperature fixed points. We note that when
the propagator is singular, the threshold functions diverge. Consider then the value of the
effective potential in the origin, obtained from the flow equation Eq. (3.1) at the fixed point:

u(0) = 2vd
d
`
(d)
0
(
u′′(0), z(0) = 1; η

)
. (3.33)

If the propagator has a singularity, u(0) diverges. As u (ϕ) is defined up to some physically
irrelevant constant, for this to be significant we must compare u(0) to u (ϕ) (defined up
to the same constant) evalutaed at some other ϕ. If we evaluate the same Eq. (3.1) (in
the fixed point) in ϕmin, we find it to be u (ϕmin) ∝ δ (ε̃) → 0 (as u′ (ϕmin) = 0 makes it
proportional to `(d)

0 ∝ 1/u′′ (ϕ) ∝ δ (ε̃), see Appendix A). This means that the depth of the
minima compared to u(0), i.e., u(0) − u (ϕmin), diverges. This deepening of the minima as
the dimension is lowered can be seen in Fig. 3.1 for both ∂2 and LPA’, where in LPA’ we
have indeed found analytically that the propagator develops a singularity.
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We give a rough argument of how the propagator singularity is connected to the diver-
gence of ϕmin. When we have evaluated the integrals IBL and IIN , we have found them
to be of O

(√
ln (1/ ε̃)

)
= O(ϕmin) (with matching assumed). From the definition of these

integrals in Eq. (3.24), it is clear that IIN = −IBL = u′(ϕM ). The first derivative u′ (ϕ) for
the expected double-well shape of u (ϕ) is negative on the whole interval 0 < ϕ < ϕmin (so
no cancellation between negative and positive values of u′ (ϕ) can happen there, if we were
to integrate u′ (ϕ) to get u (ϕ)).

We now take another argument from numerical data at d > dlc. Looking at the shape of
u′ (ϕ) shown in Fig. 3.10, we see that u′ (ϕ) does grow before ϕmin, and we see no significant
narrowing or peaking which would suggest that u′ (ϕ) becomes negligible on a substantial
fraction of the 0 < ϕ < ϕmin domain. If we assume that this persists to the ε̃→ 0+ limit, the
integral

∫ 0
ϕmin

u′ (ϕ) dϕ = u(0)− u (ϕmin) would consist of contributions of always the same
(negative) sign that are not negligible on a substantial part of a diverging domain, making
the integral divergent too. This connects the propagator singularity with ϕmin being pushed
to infinity.

−1 0 1
ϕ/ϕmin

−2

0

2

u
′ (
ϕ

)

Figure 3.10 – Derivative u′ (ϕ) for d > dlc in the range 1.113 < d < 1.8, calculated with rexp
and α = 1. A horizontal black line at u′ (ϕ) = 0 is added as a visual guide.

The most reckless assessment based on the arguments that we have presented, and
which can be reduced to u (ϕ) =

∫
dϕ
∫
dϕu′′ (ϕ) and u′′ (ϕ) being mostly O(1) between the

matching region and the origin, would give u(0) = O
(
ϕ2
min

)
. This, though, agrees with a

leading-order estimate one can find from the inner region at LPA’ level, for example with
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the rΘ, α = 1 choice giving3 Eq. (2.29) of Chapter 2, Section 3.2.2, which we twice integrate:

Eq. (3.34) : u(ϕ) = 1
1 + u′′(ϕ) =⇒

=⇒ ϕM = ϕmin +O
(
ε̃1−a

)
= − 1√

2

∫ u(ϕM )�1

u(0)�1

du√
ln (u/u(0))− (u− u(0))

=

=

√
u(0)

2

∫ 1

u(ϕM )/u(0)

dx√
1− x+ ln (x)/u(0)

u(0)→+∞−→

√
u(0)

2

∫ 1

0

dx√
1− x

=
√

2u(0).

(3.34)

4 Conclusion

In this chapter we have considered the next step after LPA’ in the hierarchy of derivative
expansion truncations. This is the second order of the derivative expansion, ∂2. We have
not been able to advance analytically as far as in LPA’. This is not so surprising as the flow
equations shown in Section 1 are much more complicated when z (ϕ) is field-dependent (v.s
LPA’, where z (ϕ) = 1). The matching between solutions in different SPT regions at the level
of u (ϕ), or its field derivatives, is analytically more accessible since the divergent scaling
of ϕmin comes from the approach to the propagator singularity near ϕ = 0, determining
the scaling 1/δ (ε̃) = O(1/(ε̃ ϕmin)) of the second derivative u′′ (ϕ) in the boundary layer.
Because of the highly nontrivial equation for z (ϕ), it is however not clear how to analytically
obtain its scaling. This line of research is still in progress.

The flow equations have an ε̃ = (d− 2 + η)/[2(2− η)]-term, where the small parameter
ε̃ multiplies the field itself and the field derivatives of the RG functions. As we have found
numerical evidence of u′′(ϕmin) diverging from data above dlc (shown in Section 2), we again
expect that the ε̃ term becomes relevant earlier than one would expect when all the RG
functions are finite. The equation for z (ϕ) is coupled to this singular effective potential,
and the numerical results show spiking of z (ϕ) in the vicinity of ±ϕmin. We expect a
boundary layer to emerge around ϕmin also at the ∂2 level, analogously to LPA’, but with
a nontrivial behavior of z (ϕ) in this region. The numerical results of Section 2 for d > dlc
have encouraged us to explore the ansatz in which the field renormalization function z(ϕ)
diverges in a boundary layer around ϕmin, but subdominantly to u′′ (ϕ).

With this ansatz the equation for u′′ (ϕ) in the boundary layer does not depend on
z (ϕ) at leading order, and we have analytically found implicit leading-order boundary-layer
solutions for both functions in Section 3. However, the coupling of the equations for u′′ (ϕ)
and z (ϕ) in the inner region has prevented us from characterizing this region as well as in
LPA’, and we have not yet managed to find proper matching conditions between the different
regions. We believe that these conditions should determine the scaling of z(ϕmin) with ε̃ (or
in the language of this chapter, κ (ε̃)), and give analytical information on the value of the
lower critical dimension dlc(α). In Section 3.4 we have found numerical evidence that an
extremum of dlc(α) might be present at ∂2, which would allow for PMS, but this involves
an extrapolation from values above dlc. Finding more reliable dlc(α) curves is needed to
possibly use PMS in the future.

In Section 3.4.1 we have presented reasons why we expect the LPA’ results about the
3Up to some rescaling by O(1) constants, given in Chapter 2, Section 3.2.2.
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scaling of ϕmin like
√

ln (1/ ε̃) and the propagator developing a singularity to be carried over
to ∂2, as suggested by the numerical trends at d > dlc and assuming that matching is (in
principle) possible.

In the next chapter we will discuss the behavior of the critical temperature and of the
critical exponents as one approaches the lower critical dimension at the level of both LPA’
and ∂2.
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Chapter 4

Critical temperature and critical
exponents in LPA’ and ∂2

In Chapter 1, Section 2.2.1 where we introduced the ε̃ → 0+ criterion for the lower critical
dimension dlc, we also stressed that the critical and zero-temperature fixed points merge in
dlc. This brought certain expectations for the critical temperature and the critical exponents
which we explore in this chapter.

1 Critical temperature

We expect the critical temperature to vanish at dlc, as Tc is progressively pushed to lower
values when decreasing the spatial dimension by the entropic contribution of the fluctua-
tions becoming more relevant. While the actual value of Tc is connected to the microscopic
properties of a system and as such is not a universal property, if we know the scaling of the
location of the minimum with ε̃, we can show how Tc vanishes in the ε̃ → 0+ limit for this
universality class.

Going down toward T = 0K, there are less and less thermal fluctuations, and the value
of the uniform coarse-grained order parameter field is bound to be in the neighborhood of the
location of the minima of the effective potential, ±ϕmin. The problem is Z2 symmetric and
we continue with ϕ > 0 fields without loss of generality. These ϕ ≈ ϕmin configurations in
the first approximation see the well of the effective potential as parabolic, ∝ (ϕmin − ϕ)2/2.
Their Boltzmann weights in the corresponding probability distribution are then given by

≈ exp
(
−ϕ

2
min

2

(
1− ϕ

ϕmin

)2
)
. (4.1)

Here we remind that the energy related quantities obtained from the FRG, like the effective
action Γ or the free energy W , are all reduced, by which we mean that they have a factor of
thermodynamic β = 1/kBT absorbed. This can be seen for instance from the definition of
the free energy, W [J ] = ln (Z[J ]). We can then interpret Eq. (4.1) as some finite potential
term ∝ (1− ϕ/ϕmin)2/2 multiplied by a diverging critical βc:

βc ∼ ϕ2
min ∼ ln

(1
ε̃

)
=⇒ Tc ∼

1
ln (1/ ε̃)

ε̃→0−→ 0. (4.2)
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The scaling we used for ϕmin in Eq. (4.2) has been shown in Chapter 2 analytically for LPA’,
and has been tentatively argued for ∂2 in Chapter 3.

The relation Tc ∼ 1/ϕ2
min is also respected in the O(N > 2) case at dlc = 2, where

Tc ∝ d − dlc and ϕmin ∝ 1/
√
d− dlc are found from equivalence with the nonlinear sigma

model near d = 2 [16]. This situation is however dominated by long-wave Goldstone modes,
and our interest lies with localized, strongly nonuniform kinks.

This is why it is more relevant to compare our finding with the results obtained by A. D.
Bruce and D. J Wallace (B&W) in their work on a droplet theory for the Ising model close
to its lower critical dimension dlc = 1. [12–14]. Their investigation is done as an expansion
in ε = d− 1 (note that ε 6= ε̃). That is not the only conceptual difference in our approaches.
B&W build a theory of the critical behavior by focusing on the statistical mechanics of
droplet configurations (droplets being bubbles of one phase enclosed by a domain wall)
entirely controlled by the surface tension. They obtain the following result for the critical
temperature:

Tc ∼ ε = d− 1. (4.3)

The results Eq. (4.2) and Eq. (4.3) for the critical temperature can be linked to the
scaling dimension of the field, Dϕ. In our FRG approach, Dϕ = (2− η) ε̃ and we have:

Dϕ = d− 2 + η

2 , Tc ∼
1

ln (1/Dϕ) , (4.4)

at the leading order. The key result of the B&W approach [12–14] is the behavior of Dϕ

itself, which is nontrivial as a function of ε = d− 1 and is given by

Dϕ ∼
e−2/(d−1)

d− 1 =⇒ d− 1 ∝ 1
ln (1/Dϕ) . (4.5)

Combining Eqs. (4.3) and (4.5) gives Tc ∝ 1/ ln (1/Dϕ) in the leading order, which is repro-
duced by our result, Eq. (4.4). We have thus recovered from FRG the correct scaling of Tc
with ε̃, without a priori knowing the value of dlc at which ε̃ = 0. This agreement with a
configuration-based theory is encouraging.

We stress that this scaling of Tc has been missed in the reference [122] which is the only
comparative FRG literature. Results there gave Tc ∝ Dϕ ∝ ε̃.

2 Stability of the critical fixed point

The expectation derived from the merging of fixed points regarding the values of the critical
exponents is that the relevant eigenvalues, from which we calculate them, should become
marginal (i.e., vanish) in the ε̃→ 0+ limit. This would allow the critical fixed point to merge
with the zero-temperature stable attractor.

For the critical fixed point of the scalar φ4 theory, we expect two relevant eigenvalues
corresponding to its unstable directions. One of the directions is conceptually connected
to the temperature. The critical exponent ν of the correlation length is calculated from
the related eigenvalue as λ1 = −1/ν. The eigenvector e1(ϕ) is even in ϕ [17]. The critical
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exponent ν should diverge at the lower critical dimension leading to the essential (as opposed
to the usual power law [17, 44, 45]) scaling of the correlation length with the temperature
distance from the transition, T − Tc (with Tc → 0). This essential scaling is for instance
present in the 1d Ising model, as can be seen from its exact solution [60, 61], where

ξ ∝ e2βJ , β = kBT and 2J is the "energy cost" of one kink. (4.6)

This also agrees with λ1 becoming marginal, as we expect from the fixed-point merging. The
other relevant eigenvalue, λ2, is associated with an odd eigenvector e2 (ϕ), and it gives the
scaling dimension of the magnetic field as d+λ2, with λ2 = −Dϕ. The rest of the eigenvalues
are expected to be irrelevant (positive) and of O(1) [17, 44].

2.1 Linearized flow equations

To analyze the stability of a fixed point, i.e., find and interpret the eigenvalues of the stability
matrix, we must investigate the flow in its neighborhood. For the case of the second order of
the derivative expansion, the FRG flows move in the space spanned by all possible functions
uk (ϕ) and zk (ϕ), while for LPA’ we have zk (ϕ) = 1. For practical reasons, in this work we
often speak in terms of u′′k (ϕ) instead of uk (ϕ). We use the shorthand Fi,k (ϕ) for all of these
functions (or their field-derivatives), while yi stands for their respective scaling dimensions.1
With this, we can write down a generic flow equation as

∂tFi,k (ϕ) = −yiFi,k (ϕ) +1
2(d− 2 + ηk)ϕF ′i,k (ϕ) +βFi,k (ϕ);k

(
u′′k (ϕ), zk (ϕ); ηk

)
, (4.7)

where the β-function is here the nontrivial part of the flow. The explicit LPA’ flow equations
are given in Chapter 2, Section 1, and the ∂2 ones are in Chapter 3, Section 1.

To investigate the flow in the vicinity of the fixed point, we must allow for small pertur-
bations of the RG functions away from the fixed point:

Fi,k (ϕ) = Fi (ϕ) +δFi (ϕ), δFi (ϕ)� 1, (4.8)

where we have again dropped the k-index to mark fixed-point quantities for which ∂tFi (ϕ) =
0. The flow equation for the arbitrarily small perturbation δFi (ϕ) is given from Eq. (4.7) by

∂tδFi (ϕ) =
[
−yi + 1

2(d− 2 + ηk)ϕ∂ϕ
]
δFi (ϕ) +

∑
j

δβFi (ϕ)(u′′ (ϕ), z (ϕ); η)
δFj (ϕ) δFj (ϕ) +

+
[
−∂ηyi + 1

2ϕF
′
i (ϕ) +∂ηβFi (ϕ)

(
u′′ (ϕ), z (ϕ); η

)]
δη +O

(
δ2
)
.

(4.9)

If we neglect all but linear terms in the perturbations, noted here by O
(
δ2)2, the equations

{∂tδFi (ϕ)} form the stability matrix of the fixed point [41, 42]. The question of stability
is now posed as an eigenproblem of this matrix. The flow-derivatives ∂t are here taken
with respect to the renormalization time t = ln (k/Λ), where Λ is some large momentum
scale, larger than all of the energy scales in the system (for instance the UV cutoff). As
one takes flows from the microscopic k = Λ limit to the physical limit k → 0 in which all

1E.g., the dimensionfull Zk(ϕ) scales as k−η, so the corresponding scaling dimension is yz = −η.
2The δ standing for perturbations should not be confused with the boundary layer width δ (ε̃).
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of the fluctuations are integrated, the t starts from 0 and becomes more and more negative.
Therefore, the relevant eigenvalues calculated form {∂tδFi (ϕ)} are the negative ones, λi < 0.
To reiterate, in the problem at hand, the scalar φ4 theory, we expect two such eigenvalues.
One is the relevant temperature-related eigenvalue λ1 = −1/ν, associated with an even
eigenvector e1 (ϕ). The other is the trivial eigenvalue for which λ2 = −Dϕ can be found
analytically, where Dϕ = (d − 2 + ηk)/2 = (2− ηk) ε̃k is the scaling dimension of the field.
The components of the corresponding eigenvector e2 (ϕ) projected on δFi,k (ϕ) are given by
the derivatives of the corresponding fixed-point functions

δFi,k (ϕ) ∝ F ′i (ϕ), (4.10)

and thus when the space in which we calculate the stability matrix is spanned by δu′′ (ϕ)
(or δχ (ϕ)) and δz (ϕ), e2 is odd. This is presented in Section 2.1.1

We clarify two conventions we tacitly introduced in Eq. (4.9). First, the sum in Eq. (4.9)
only goes over the RG functions that figure in the β functions:∑

j

: Fj (ϕ) ∈
{
u′′ (ϕ), z (ϕ)

}
. (4.11)

Second, the functional derivatives by a function Fi (ϕ), of field derivatives of the same func-
tion marked by F (n)

i (ϕ), stand for derivative operators:

δF
(n)
j (ϕ)
δFi (ϕ) = δi,j∂

(n)
ϕ . (4.12)

In the case of Eq. (4.9), these field-derivative operators act on the perturbations δFj (ϕ) to
their right in the β-function related sum.

The anomalous dimension is calculated by evaluating the flow equation for the field
renormalization function zk (ϕ) , in a suitably selected3 renormalization filed ϕr. By con-
struction, the zk(ϕr) does not change during the flow. Thus, we have the renormalization
condition:

0 = dzk(ϕr)
dt

= ∂tzk(ϕ)|ϕr + z′k(ϕr)(∂tϕr). (4.13)

Here, the ∂tzk(ϕ)|ϕr term is the flow with fixed ϕ post-factum evaluated in ϕr, which can
be chosen such that it flows, e.g., ϕr = ϕmin,k. The value of ηk is calculated from Eq. (4.13),
and δη = ηk[{Fi,k(ϕr)}]−η, with ηk linearized in the perturbations of Fi,k(ϕr). In numerical
calculations for d > dlc in Section 2.2, we choose ϕr = ϕmin (the fixed-point value, but when
the anomalous dimension is calculated interpolations are used to find the best ϕmin values
that need not be on the grid) for the LPA’, and ϕr = 0 for ∂2.

It is unclear whether analytical results (save for the trivial eigenvalue λ2 = −Dϕ) can
be obtained from this set of complicated partial differential equations which represent our
eigenvalue problem. The numerical results in Section 2.2 are currently the best FRG results

3On the LPA’ level, the best results are obtained at ϕr = ϕmin,k, the running minimum of the effective
potential [135, 136], which is what we use. On the ∂2 level this is less relevant and for simplicity we renormalize
in the origin, ϕr = 0.
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we have found about ν. Regarding analytical challenges, in Section 3 we discuss limitations of
using the leading-order fixed-point solutions we found using SPT to evaluate the fixed-point
terms in the perturbation equations Eq. (4.9). In the same section, while acknowledging
those limitations, we speculate on a mechanism that could give a marginal λ1 = −1/ν. The
discussion of such a mechanism is instigated by the numerical results for the components of
e1 in the boundary layer range.

2.1.1 The λ2 eigenvalue

Before we proceed, we show how the trivial λ2 eigenvalue is obtained, as we refer to its value
and its eigenvectors in Section 2.2 on numerical results above dlc, and in Section 3 to discuss
possible marginality of λ1 = −1/ν. We stress that we are primarily interested in the λ1
eigenvalue as it gives the critical exponent ν of the correlation length.

We start solving for λ2 by examining the Eq. (4.9) for the flow of a general RG function
perturbation. We compare its form to the flow equation of the field-derivative of the same
function (the one we perturbed in Eq. (4.9)):

∂t(∂ϕFi,k (ϕ)) = ∂ϕ(∂tFi,k (ϕ)) =
[
−yi + 1

2(d+ 2− ηk)
]
F ′i,k (ϕ) +1

2(d+ 2− ηk)ϕF ′′i,k (ϕ) +

+
∑
j

δβFi,k (ϕ)(u′′k (ϕ), zk (ϕ); ηk)
δFj,k (ϕ) F ′j,k (ϕ) .

(4.14)

We now rewrite Eq. (4.9) to reflect the fact that when we are conducting functional deriva-
tives by δFj (ϕ), this induces a similar structure as do field derivatives in Eq. (4.14):

∂tδFi (ϕ) =− 1
2(d− 2 + η)δFi (ϕ) +

[
−∂ηyi + 1

2ϕF
′
i (ϕ) +∂ηβFi (ϕ)

(
u′′ (ϕ), z (ϕ); η

)]
δη+

+
[
−yi + 1

2(d− 2 + ηk)
]
δFi (ϕ) +1

2(d+ 2− ηk)ϕδF ′i (ϕ) +

+
∑
j

δβFi (ϕ)(u′′ (ϕ), z (ϕ); η)
δFj (ϕ) δFj (ϕ) .

(4.15)

An ansatz for the eigenvector components imposes itself from this comparison of Eqs. (4.14)
and (4.15):

δFj (ϕ) = ckλ2F ′j (ϕ), (4.16)

with the same constant c for every j, taken arbitrarily small to allow for linearization.
It is now trivial to see that this ansatz reduces Eq. (4.15) to the following expression,

as then the last two rows of Eq. (4.15) correspond to RHS of the flow equation Eq. (4.14)
evaluated in the fixed point, and ∂tδFi (ϕ) = λ2ck

λ2F ′i (ϕ):

λ2ck
λ2F ′i (ϕ) =− 1

2(d− 2 + η)ckλ2F ′i (ϕ) +

+
[
−∂ηyi + 1

2ϕF
′
i (ϕ) +∂ηβFi (ϕ)

(
u′′ (ϕ), z (ϕ); η

)]
δη.

(4.17)
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The proper result, λ2 = −(d− 2 + η)/2 = −Dϕ, is thus obtained if δη = 0. As the
running anomalous dimension ηk is defined from the flow equation of zk(ϕ) (see Eq. (4.13)),
one must check that the linearized equation indeed leads to δη = 0. It is easy to see that with
Eq. (4.16) this is realized at the LPA’ level with the choice of renormalization prescription
ϕr = ϕmin,k and at the ∂2 level (and higher-order ones) with the choice ϕr = 0.

2.2 Numerical results above dlc for the relevant eigenvalues

In the numerical procedure (done in FORTRAN90 [124]), one pointwise (on the discrete
field-grid) perturbs the numerical fixed-point solutions by values as small as 10−10, then
calculates the resulting flow. This is how a stability matrix is built. It is then diagonalized
using methods native to LAPACK (Linear Algebra PACKage, written in FORTRAN90,
available at [137]).

We have appropriately found all but two of the eigenvalues to be irrelevant (positive and
of O(1)). As mentioned, the remaining two eigenvalues are relevant and identified by the
parity of their eigenvectors as λ1 = −1/ν (even) and λ2 = −Dϕ (odd). The results for λ1 and
λ2 in the LPA’ and ∂2 approximation are presented in Figs. 4.1 and 4.2 respectively. From
Figs. 4.1 and 4.2 it is evident that λ2 is in perfect agreement with the analytical prediction,
λ2 = −(2− η) ε̃, for both LPA’ and ∂2.
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Figure 4.1 – LPA’: Numerical results above dlc for the two relevant eigenvalues, calculated
with the exponential regulator. The prediction λ2 = −(2− η) ε̃ is also displayed in the right
panel. Markers are plotted for every 30th data point.

The tendency of λ1 = −1/ν to vanish in LPA’ as the dlc limit is approached is evident
in Fig. 4.1. Due to the logarithmic scales in ε̃ that we have analytically discovered in the
problem, parametric fitting to explore this unknown dependence would not be feasible.

The results for this eigenvalue are less conclusive at the level of ∂2. As we could be
dealing with logarithmic scaling in ε̃, λ1 might be vanishing, albeit very slowly, perhaps with
some power of 1/ ln (1/ ε̃). However, the results in Fig. 4.2 are also compatible with λ1 going
to a finite negative constant as ε̃→ 0+.

If we consider the droplet theory results [12–14], such a slow possible vanishing of 1/ν is
not so surprising. B&W indeed find 1/ν ∝ ε+O

(
ε2
)
(recall that ε = d− 1 6= ε̃). If we look
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Figure 4.2 – ∂2: Numerical results above dlc for the two relevant eigenvalues, calculated
with the exponential regulator. The prediction λ2 = −(2− η) ε̃ is also displayed in the right
panel.

at the leading order in ε in the expression for Dϕ in the droplet theory, we have

ε ∝ 1
ln (1/ ε̃) . (4.18)

This would translate into 1/ν ∝ 1/ ln (1/ ε̃) in our approach. In Fig. 4.3 we plot the LPA’
and ∂2 results for λ1 as a function of 1/ ln (1/ ε̃). We see that the LPA’ results are not
compatible with the slow, logarithmic vanishing of ν. If λ1 vanishes at the ∂2 level, however,
it seems that it must vanish even slower than 1/ ln (1/ ε̃).
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Figure 4.3 – Comparison of the scaling of ν obtained from FRG by numerical means at
d > dlc with the logarithmic scaling expected from droplet theory [12–14]. Note the different
ranges in ε̃ for the LPA’ and ∂2 data. For LPA’, markers are plotted for every 30th data
point.

In the hope of interpreting these results better, we have also investigated the eigenvectors.
The space in which the FRG flows unfurl in the case of the ∂2 ansatz is spanned by all possible
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functions u′′k (ϕ) and zk (ϕ), as previously stated. The diverging tails of the effective potential
and of its field derivatives u(n)

k (ϕ) are problematic from the numerical standpoint, so in the
case of numerical investigations, we perform the calculation by using χk (ϕ) = 1/(α+ u′′k (ϕ)),
the dimensionless susceptibility that has a vanishing tail. Therefore, our results which are
presented in Fig. 4.4 to Fig. 4.8 will be for the eigenvector components as projected onto
the perturbations δχ (ϕ) and δz (ϕ). The calculations shown are for the IR regulator rexp
with α = 1, but other choices did not give qualitatively different results. As expected, the
∂2 components given in Fig. 4.5 in relation to eigenvalue λ1 are even and those for λ2 are
odd. In LPA’ renormalizing at ϕmin > 0 introduces asymmetry, as seen in Fig. 4.4.
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Figure 4.4 – LPA’: Numerical results above dlc for the eigenvectors e1 and e2, corresponding
to eigenvalues λ1 = −1/ν and λ2 = −(2− η) ε̃ respectively. The data is obtained for rexp
with α = 1 at d = 1.095 (and ε̃ = 0.014). This shape is generic for the dimensions between
d = 2.200 and d = 1.095, which is the range that was calculated. The eigenvectors are
asymmetric in ϕ (e1 should be even and e2 odd), as is more evident in Fig. 4.4b. We suspect
that this is due to the asymmetry of the stability matrix induced by renormalization in the
location of the right minimum, ϕmin > 0.

We expect that the existence of the boundary layer in the fixed-point solution and the
related divergent scaling of the RG functions would lead to some nontrivial behavior of the
eigenvectors in this field range, as fixed-point solutions factor in the linearized eigenequations.
This brought us to more closely inspect the numerical eigenvector data around ϕmin. The
results make it more natural to start this discussion from the ∂2.

The results of interest at the level of ∂2 are shown in Fig. 4.6. The figures show a
"zoom" on the boundary layer region. We stress that the boundary layer develops as we
progress towards the ε̃ → 0+ limit, while the numerical calculations are done for finite ε̃
and we cannot say with certainty that they already capture the quality of the limit of the
lower critical dimension. When we speak of the boundary layer in the context of numerical
calculations above dlc, we refer to the range of fields where x = O(1) for x = (ϕ− ϕmin)/δ (ε̃)
and δ (ε̃) = ε̃

√
ln (1/ ε̃) is evaluated at the ε̃ we work in. We are nonetheless interested in the

trends the solutions exhibit as we diminish d. In the case of the δz (ϕ) component, the field
scale is centered around ϕzmax, the location of the maximum of z (ϕ). We expect that in
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Figure 4.5 – ∂2 : Numerical results above dlc for the components of the eigenvectors e1 and
e2, corresponding to eigenvalues λ1 = −1/ν and λ2 = −(2− η) ε̃ respectively. The data is
obtained for rexp with α = 1 at d = 1.113 (and ε̃ = 0.003). The rapid diminishing of the
δχ component and the nontrivial peaks of the δz component happen in the vicinity of ϕmin,
which is "zoomed in" in Fig. 4.6.
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the limit of the lower critical dimension ϕzmax is in the boundary layer, and from the nature
of the δz (ϕ) eigenvector component, it is useful to include the maximum in the "zoomed"
plots.
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Figure 4.6 – ∂2 : Numerical results above dlc for the components δχi and δzi of the eigen-
vectors ei=1,2. The data is obtained for rexp with α = 1 in the range of dimensions from
d = 1.2 down to 1.113. The boundary layer range of fields is zoomed in. For each d we plot
the same number of points around the minimum. The components of the ei as projected to
δχi and δzi are plotted scaled accordingly to the labels of the respective y axes. The data
points for c′(x) = χ′ (ϕ) and ζ ′(x) = z (ϕ) δ (ε̃) /κ (ε̃) are given for d = 1.113.

The nature we speak of is the observation from numerical data above dlc that in the
boundary layer, the e1 eigenvector projected on the perturbations δχ (ϕ) and δz (ϕ) resembles
in shape the functions χ′ (ϕ) and z′ (ϕ) respectively. For comparison, in Fig. 4.6 we have also
plotted the e2 components, for which we know that they truly correspond to the mentioned
derivatives of the RG functions. We see good agreement, both of the e2 with the derivatives,
and between e1 and e2. Note that the e2 corresponds to the derivatives in all fields, while
for e1 this is only observed in the neighborhood of ϕmin. We believe this is why, e.g., we
see better agreement with χ′ (ϕ) in the limit of negative x in Fig. 4.6b than in Fig. 4.6a.
To collapse the eigenvector plots onto the derivatives of the fixed-point functions, it seems
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that we must rescale them by the boundary layer scaling of χ (ϕ) and z (ϕ), namely we
must plot δχ (ϕ) /δ (ε̃) and δz (ϕ)×δ (ε̃) /κ (ε̃). We note that this is to be taken as an
illustration and that we use the scaling δ (ε̃) = ε̃

√
ln (1/ ε̃) strictly proven only in LPA’ and

κ (ε̃) = 1/
√

ln (1/ ε̃)5, which is a rough estimate. The main takeaway of this numerical data
is that the eigenvector components have a nontrivial structure in the field range around ϕmin,
and that it resembles derivatives of the RG functions.

While the overall scale of an eigenvector component is not relevant due to the linearity
of the equations, two things are. First, the ratio of amplitudes of the same eigenvector
for different values of the field. In this case, the full field plots in Fig. 4.6 already invite
attention to the boundary layer range, especially the δz (ϕ) component. Secondly, the ratio
of amplitudes in the same field for eigenvectors calculated for different dimensions, but with
the same value of numerical pointwise-perturbation when building the stability matrix. Here
collapses at different d, in a range from 1.2 down to 1.113, seem to happen for the same scaling
(as a function of ε̃ (d)), as can be seen in Fig. 4.6. Both of these observations encourage
investigations of the eigenproblem in the context of possible boundary layer simplifications.
This is not without difficulties and limitations, as will be discussed in Section 3.

For the case of LPA’, the results around ϕmin are less clear. In Fig. 4.7 we give the
tracking (as the ε̃ lowers) of the amplitude of the eigenpertubation evaluated in the location
of the minimum ϕmin. We reiterate that the overall amplitude of an eigenvector, which is
by construction a solution to a linear problem, is generally not relevant, but here we track
how the same numerical pointwise-perturbation builds into the value of δχ (ϕmin) at different
dimensions. We see form Fig. 4.7 that this value decreases monotonically, but from Fig. 4.7b
it is clear that it happens slower than the decrease of δ (ε̃), a scaling one might expect if
∂2 results are consulted, or if δχ (ϕ) scaled the same as χ (ϕ). Still, we show in Fig. 4.7 an
illustrative plot with a scaling of 1/ ln (1/ ε̃), to show the similarity in shape with χ′ (ϕ). This
similarity is less distinct than in ∂2, but we put more weight on the ∂2 results. LPA’ is the
lower approximation order, and additionally it is possible that this lack of clarity in scaling
of δχ1 in the vicinity of ϕmin, along with Fig. 4.8b showing a "weaker" collapse of the δχ2
eigenvector known to be ∝ χ′ (ϕ), indicates that the LPA’ might not reach the asymptotic
limit as fast as ∂2. We must also be aware that the renormalization done in ϕmin might
carry some problems, like the aforementioned asymmetry of Fig. 4.4, and that results in
LPA’ depend on the renormalization point [62, 63].
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Figure 4.7 – LPA’: Numerical results above dlc for the value o the eigenvector e1 in the
location of the minimum of the effective potential ϕmin. While a prefactor of the eigenvector
is irrelevant due to the eigenproblem inherently being linear, this amplitude is not to be seen
in that context, as it is achieved with the same numerical pointwise perturbation of 10−10

for all of the ε̃ we plot, so the ratios of the values are relevant.

−4 −2 0 2 4

x = (ϕ− ϕmin)/δ(ε̃)

0.00

0.01

0.02

0.03

0.04

δχ
1(
x

)
×

ln
(1
/ε̃

)

const. · c′ (x)

(a)

−4 −2 0 2 4

x = (ϕ− ϕmin)/δ (ε̃)

0.0

0.2

0.4

0.6

δχ
2(
x

)/
δ

( ε̃
)

const. · c′ (x)

(b)

Figure 4.8 – LPA’: Numerical results above dlc for e1,2. The data is obtained for rexp with
α = 1 in the range of dimensions from d = 2.2 down to 1.095. The boundary layer range
of fields is zoomed in. For each d we plot the same number of points around the minimum.
The data for smaller ε̃ thus seemingly has a wider domain, which is more noticeable here
than in the ∂2 plots in Fig. 4.6. The data points for c′(x) = χ′ (ϕ) are given for d = 1.095.

3 The open question of the marginality of λ1 = −1/ν

The merging of the zero-temperature fixed point with the critical fixed point requires the
relevant eigenvalues of the critical fixed point to become marginal. This is because the zero-
temperature fixed point is an attractor and the critical fixed point is a saddle, as it has
unstable directions which are physically relevant for the transition. This means that the
eigenvalues λ1 = −1/ν and λ2 = −Dϕ ∝ ε̃ should vanish in a proper description of dlc,
which must be checked.
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The trivial eigenvalue λ2 ∝ ε̃ does indeed vanish in the dlc limit, as can be seen both
analytically in Section 2.1.1 and from numerical results in Section 2.2. We obtained numerical
results for λ1 above dlc, presented in Section 2.2 that are congruent with marginality, but
are not conclusive.

As the results for the values of λ1 are inconclusive, we turn our attention to the corre-
sponding eigenvector e1. In the previous section we found that e1 projected onto δχ (and δz
at ∂2) seems to be very similar to the derivatives of the respective fixed-point RG functions,
χ′ (ϕ) and z′ (ϕ), in the vicinity of ϕmin. We continue with a tentative discussion based on
this. First, we take that a boundary layer around ϕmin,k persists after perturbation. Sec-
ond, we established previously that the fixed-point solutions inside the boundary layer can
be understood as an expansion in the orders of the correction (δ (ε̃) for LPA’ and κ (ε̃) for
∂2). We analogously assume that in this boundary layer, the e1 components δχ1 and δz1 can
be expanded too, and are in the leading order given by the derivatives:

δFi (ϕ) ∝ kλ1fi,0(x) + µi (ε̃) fi,1(x) + ...,

with some µi (ε̃)→ 0 when ε̃→ 0+ and fi,0(x) = f ′i(x),
(4.19)

where the lowercase fi represent the boundary layer functions (e.g., c(x) = χ (ϕ) /δ (ε̃) and
ζ(x) = z (ϕ) δ (ε̃) /κ (ε̃)) of the corresponding uppercase Fi. Thirdly, the proportionality
constants in Eq. (4.19) must be such that in the boundary layer δz/δχ = O(χ′ (ϕ) /z′ (ϕ)) =
κ (ε̃) /(δ (ε̃))2. All three of these points are strongly indicated by the numerical results of
Section 2.2 (moreso by the ∂2 data).

It is important to note that we take Eq. (4.19) only in the boundary layer, for two very
clear reasons. Firstly, the numerical agreement of e1 components with the derivatives is only
found in the neighborhood of ϕmin. Secondly, χ′ (ϕ) and z′ (ϕ), the derivatives in question,
are odd functions. While e1 components might correspond to them in the leading order in
the boundary layer, in the rest of the regions one must match to such forms that the full
eigenvector e1 across all ϕ is even.

Let us recall λ2. Its eigenvector e2 has components that were in the leading order same
as the assumed Eq. (4.19) form, as they are the derivatives of the corresponding RG functions
everywhere in the field.

Looking at the boundary layer, the same cancelations then must happen in the leading
order for the e1 as for the e2 components in Section 2.2 (choosing the renormalization
procedure with δη = 0). We stress that this does not mean that λ1 ∝ ε̃. On the contrary,
we expect the corrections to the leading order to put an upper limit on the value of λ1 =
−1/ν. The calculations of these corrections is a formidable task we have not done in the
present moment. If the fixed-point solutions are consulted, we might expect some slow
logarithmic behavior, which could account for the inconclusiveness of the λ1 numerical results
in Section 2.2. The most this approach could show without explicitly finding the corrections
is that λ1 → 0 in the leading order in the ε̃→ 0+ limit, where the boundary layer develops.
However, we believe that the assumptions about the boundary layer shape of e1 are strongly
backed by the numerical results of Section 2.2, and we aim to further explore this mechanism
of λ1 becoming marginal in future research.
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4 Conclusion

In this chapter we have discussed LPA’ and ∂2 results for the critical temperature Tc and
the critical exponents.

In Section 1 we have recovered the scaling of the critical temperature Tc ∝ 1/ ln (1/Dϕ)
with the scaling dimension of the field Dϕ ∝ ε̃ that had been found in the droplet theory
in d = 1 + ε [12–14]. The droplet theory is based on a careful treatment of domain walls
of droplets (bubbles in regions of opposite spins) in the Ising model near the exact lower
critical dimension of dlc = 1. We stress that ε̃ 6= ε. Interestingly, through the boundary layer
mechanism the truncated derivative expansion in the FRG appears to capture a behavior
that involves strongly nonuniform fluctuations (in the form of droplets).

Concerning the critical exponents, our results are currently mostly limited to numerical
data for d > dlc, which are presented in Section 2.2. Regarding analytical attempts, in
Section 3 we have offered a discussion of a tentative mechanism by which λ1 could become
marginal in the d → dlc limit, based on the similarities of the numerical results with the
eigenvectors of the trivially marginal eigenvalue λ2 ∝ ε̃ in the vicinity of the location of the
minimum of the potential ϕmin.

However, our research does not give a conclusive answer whether the truncated deriva-
tive expansion predicts 1/ν to vanish when ε̃ → 0+. This is something that deserves more
attention in future research. The critical exponent ν of the correlation length must diverge
in dlc, where essential scaling has been found for the Ising model in connection with the pro-
liferation of instantons (kinks and anti-kinks) that destroy the finite-temperature transition.
Strictly speaking, the critical exponent ν diverging is a necessary but not sufficient condition
to recover essential scaling. It might however be sufficient for the λ1 = −1/ν eigenvalue to be
marginal, as in generic cases of marginal variables logarithmic corrections can occur [17, 44].
We plan to investigate whether this can be translated into an exponential divergence of the
correlation length, i.e., essential scaling.



Chapter 5

The ordered phase of the φ4 theory
in the FRG when approaching the
lower critical dimension

In the previous chapters we have studied how the FRG within the truncated derivative
expansion can reproduce physical situations in which the long-distance physics is dominated
by spatially localized excitations such as the kinks and anti-kinks that proliferate at the
lower critical dimension of the Ising-like scalar φ4 theory or the droplets that control the
critical behavior when approaching this dimension. We now consider a different problem
where strongly nonuniform configurations of the field are important, the ordered phase of
the scalar φ4 theory. In this case indeed it is known that phase coexistence between the
two symmetry-broken pure states involves a nonuniform configuration that has the form of
a domain wall. This is what allows the free-energy density or effective action in the inner
domain of average field values to be strictly convex, i.e, flat, in the thermodynamic limit, as
required by its definition as a Legendre transform. The conventional mean-field description
misses this point and predicts a nonconvex Landau effective potential with a maximum
in zero field. The return to convexity under the influence of spatial fluctuations therefore
requires taking into account the domain-wall configurations. Compared to the localized
instanton and the droplets previously discussed, such configurations are spatially extended.
They appear as a kink in one dimension but are uniform in the remaining (d−1) dimensions.
As a result their contribution to the free energy above the minimum scales as Ld−1 in a large
but finite system of linear size L. On the other hand their contribution to the free-energy
density or effective action goes as 1/L and vanishes in the thermodynamic limit, leading to
a flat inner part of the effective action as a function of the average field.

We are interested in the way one can keep track of the nonuniform domain-wall config-
urations within the FRG. It is known that low orders of the derivative expansion, even the
lowest one (the LPA), describe the fluctuation-induced return to convexity of the effective
average potential for a large class of infrared regulators [15, 16, 65, 66]. Mathematically,
this takes place through the approach of the singularity (usually a pole) in the renormal-
ized propagator of the theory, and the inner part of the scale-dependent effective potential
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behaves at small IR cutoff k as [15, 16]

Uk(ϕ) = V (k)− b

2k
2ϕ2 +O(k2(d−2)) (5.1)

with b > 0 a constant of O(1). The inner part of the potential thus becomes flat in the
limit k → 0, as it should. The above expression has been established for d > 2 [15, 16, 65]
and no analogous expression has been derived when d < 2, which is the case of interest for
us. Furthermore, it is unclear how the above form of the scale-dependent effective potential
relates to the presence of domain-wall configurations. We therefore want to address this
point and derive the generic form of the scale-dependent effective potential Uk(ϕ) in the
phase coexistence region where a domain-wall configuration dominates the physics. Deep
enough in the ordered phase, i.e., physically, at low enough temperature, this amounts to
computing the scale-dependent generating functional through a saddle-point method in the
presence of an IR regulator. The calculation in the absence of regulator is standard and
indeed selects the proper domain-wall configurations and the Gaussian fluctuations around
it. A calculation in the presence of an IR regulator was done by Ringwald and Wetterich in
the case of the O(N ≥ 3) model [67]. There, the dominant nonuniform configuration is not
a domain wall but a spin wave. The study of the N = 1 case has never been undertaken and
this is what we do below. Another motivation is to investigate how the ordered fixed point
behaves in the limit d = 1 + ε with ε→ 0 because one knows that it should then merge with
the critical fixed point that we have studied earlier.

1 Formalism: saddle-point approximation

We consider the Ising-like scalar φ4 theory in a large system of linear size L in dimension
d = 1 + ε and 0 < ε < 1. The scale-dependent effective average action Γk[ϕ] can be obtained
from the functional integral

e−Γk[ϕ] =

=
∫
Dφ exp

(
− S[φ] +

∫
x

Γ(1)
k,x[ϕ][φ(x)− ϕ(x)]+

− 1
2

∫
xy

[φ(x)− ϕ(x)]Rk(x− y)[φ(y)− ϕ(y)]
) (5.2)

where the action of the φ4 theory in the ordered phase can be rewritten as

S[φ] =
∫

x

{1
2[∇xφ(x)]2 − 1

ξ2φ(x)2 + 1
2ξ2φ2

0
φ(x)4

}
, (5.3)

where φ0 is the minimum of the bare potential and ξ the bare correlation length.
We consider the system deep in the ordered phase where the correlation length is small.

Making the temperature explicit by rescaling the field by a factor
√
T so that the integrand

now has a 1/T prefactor as in a Boltzmann distribution, this amounts to considering the
limit of low temperature. One can then calculate the functional integral by the Laplace
method (or method of steepest descent), looking for saddle points.



107

We are primarily interested in the scale dependent effective potential Uk(ϕ) which is
obtained from the effective average action when the average field configuration is uniform,
i.e., Uk(ϕ) = Γk(ϕ)/Ld. From Eq. (5.2) we then derive

e−L
dUk(ϕ) =

=
∫
Dφ exp

(
−S[φ] + U ′k(ϕ)[

∫
x
φ(x)− Ldϕ]− 1

2

∫
xy

[φ(x)− ϕ]Rk(x− y)[φ(y)− ϕ]
)
.

(5.4)

The saddle-point approximation selects the classical configurations of the field φ(x) that
dominate the functional integral. One needs to solve

δS[φ]
δφ(x) = −∇2

xφ(x)− 2
ξ2φ(x)

(
1− φ(x)2

φ2
0

)
= U ′k(ϕ)−

∫
y
Rk(x− y)[φ(y)− ϕ] (5.5)

where Uk(ϕ) is given at leading order by

Uk(ϕ) = USP
k (ϕ) =

= S[φ∗k]
Ld

− U ′k(ϕ)
[ 1
Ld

∫
x
φ∗k(x)− ϕ

]
+ 1

2Ld
∫

xy
[φ∗k(x)− ϕ]Rk(x− y)[φ∗k(y)− ϕ] .

(5.6)

with φ∗k(x) the ϕ-dependent saddle-point solution. When deriving the above expression for
Uk(ϕ) with respect to ϕ and using the saddle-point equation one obtains a self-consistency
equation, 0 = [U ′′k (ϕ) +Rk(q2 = 0)][ 1

Ld

∫
x φ∗k(x)− ϕ], which implies that

1
Ld

∫
x
φ∗k(x) = ϕ (5.7)

in the limit of large L, and the effective potential in the saddle-point approximation can be
rewritten in this limit as

USP
k (ϕ) = S[φ∗k]

Ld
+ 1

2Ld
∫

xy
φ∗k(x)Rk(x− y)φ∗k(y)− (ϕ2/2)Rk(q2 = 0). (5.8)

The uniform solution of the above equation which leads to the standard mean-field
(Landau) description is simply φ∗k = ϕ (from Eq. (5.7)) and USP

k (ϕ) = S(ϕ)/Ld = ϕ2[−2 +
(ϕ2/φ2

0)]/(2ξ2), which indeed satisfies Eqs. (5.5) and (5.6). As is well known, the Landau
effective action is nonconvex even in the limit k → 0 and this solution cannot be valid for
all fields. Indeed, the Hessian matrix around the saddle point can be diagonalized in Fourier
space and is equal to

Γ(2)
k [ϕ] = q2 +Rk(q2)− 2

ξ2

(
1− 3ϕ

2

φ2
0

)
. (5.9)

Obviously when ϕ2 is small enough (ϕ2 ≤ (φ2
0/3)[1−(ξ2k2/2) minq(q2+Rk(q2))]), the uniform

saddle point is unstable and is not an acceptable solution (the 1-loop correction due to the
integration over the Gaussian fluctuations around the saddle-point then becomes imaginary).
As is known for k = 0, the proper saddle-point is a nonuniform configuration in the form
of a domain wall which leads to a more stable solution in a whole inner region of the field
(away from the minima), where the effective potential is now flat, hence convex. We expect
that the same is true in the presence of an IR regulator, at least for small k.
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2 Domain-wall saddle-point solution

We now look for a nonuniform solution of the saddle-point equation. We anticipate that the
relevant solution is a domain wall which has a kink-like shape in one dimension, which we
simply denote as x, and is uniform in the (d−1) remaining dimensions, labelled by x⊥ (x can
of course equally well be chosen in any of the d directions of space but this degeneracy does
not affect the results). In the following we set ξ and φ0 to 1 (so that Uk is then expressed
in units of φ2

0/ξ
2) and we search for a solution φ∗k(x) = fk(x‖ = x) with fk(x) approaching

plus or minus a constant at large distance |x|. Eq. (5.5) can be reexpressed as

f ′′k (x) + 2fk(x)[1− f2
k (x)] = k3

∫ L/2

−L/2
dy r(k(x− y))f(y) + [−U ′k(ϕ) + k2

∫ L/2

−L/2
dy r(x− y)ϕ]

(5.10)
where we have defined

∫
x⊥ Rk(x) = k3r(kx) (so that Rk(q2 = 0) =

∫
dxk3r(kx) = O(k2)),

neglecting subdominant terms that go to zero when the system size L is large. One also has
the condition (see Eq. (5.7))

1
L

∫ L/2

L/2
dxfk(x) = ϕ. (5.11)

We anticipate that U ′k(ϕ) goes to zero as k2 when k → 0 (see Eq. (5.1) and we define
bϕ = U ′k(ϕ)/k2 (where b is a constant to be determined below). As a consequence, the whole
right-hand side of Eq. (5.10) goes to 0 as k2. In the absence of a regulator, when k = 0,
one recovers the standard instantonic equation for a kink,[84] f ′′0 (x) + 2f0(x)[1− f2

0 (x)] = 0
with boundary conditions such that f0 approaches +1 (the minimum of the bare potential
in reduced units) when x is large and −1 when −x is large. The well-known solution is a
hyperbolic tangent,

f0(x) = tanh(x− a) (5.12)

where a ≡ a(ϕ) is fixed by Eq. (5.11), i.e., at the zeroth order, a = a0 ≈ −(L/2)ϕ plus terms
that decay exponentially with L, provided ϕ stays away from ±1.

We then look for a solution of the form

fk(x) = f0(x) + k2f1(x) + · · · , (5.13)

where the ellipses denote subdominant terms when k → 0 and L → ∞ (the order of the
limits may be important and will be discussed below). The function f1(x) is the solution of

f ′′1 (x) + 2f1(x)[1− 3f2
0 (x)] = k

∫ L/2

−L/2
dy r(k(x− y))f0(y)− [b−

∫ k(L/2−x)

−k(L/2+x)
dy r(y)]ϕ. (5.14)

Some care is needed to take into account different domains of values of x: |x− a| < O(1/k),
|x−a| ∼ O(1/k), and near the boundaries where L/2−|x| ∼ O(L0). Details on the derivation
are given in Appendix F. The final result reads

f1(x) = f1(0)
cosh2(x− a)

− α

4 g(k(x− a)) + α

8 [−ϕ+ sgn(x− a)]
[
1− g

(
k

(
L

2 − |x|
))]

, (5.15)

where g(x) = 2
∫ x
0 dy r(y)/α and α =

∫+∞
−∞ dy r(y). For instance, for a Gaussian regulator,

r(y) = α exp
(
−y2/2

)
/
√

2π (we called it the exponential regulator in the previous chapters
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because it is exponential in the variable q2), g(x) = erf(x/
√

2). The last term of the above ex-
pression helps enforcing the boundary conditions when x→ ±L/2. Note that for consistency
one must have b = α.

The location of the kink, a ≡ ak(ϕ), is corrected from its zeroth-order value as the
solution must satisfy Eq. (5.11). One obtains

ak(ϕ) = −ϕL2

(
1 + α

4 k
2 + · · ·

)
(5.16)

up to subdominant terms when k → 0 and L→∞.
Reinstalling ξ and φ0 we can finally express the kink-like saddle-point solution in the

presence of an IR regulator as
φ∗k(x)
φ0

= tanh((x− ak)/ξ)+

+ k2ξ2
{

f1(0)
cosh2((x− a0)/ξ)

− α

4 g(k(x− a0))+

+ α

8

[
− ϕ

φ0
+ sgn(x− a0)

][
1− g

(
k

(
L

2 − |x|
))]}

,

(5.17)

with ak ≡ ak(ϕ/φ0) = −(ϕ/φ0)(1 + (α/4)k2 + · · · )L/2. When x → L/2, φ∗k(x)/φ0 →
1 − k2ξ2(α/8)(1 + ϕ/φ0) and when x → −L/2, φ∗k(x)/φ0 → −1 − k2ξ2(α/8)(−1 + ϕ/φ0),
all of this in the limit where k → 0 and L→∞. Note that contrary to calculations of kinks
and other instantons in zero applied field, the location of the domain wall is fixed by the
condition that the spatial average of the saddle-point solution is equal to the classical field
ϕ and that translational invariance is then broken in the x direction.

3 Scale-dependent effective potential at the saddle-point level

From the saddle-point solution obtained in the preceding section we can now calculate the
inner part of the scale-dependent effective potential through Eq. (5.8). One has to be cautious
about the noncommutation of the two limits k → 0 and L→∞. After a lengthy calculation
given in Appendix G, we obtain that the contribution associated with the IR regulator is
equal to

1
2Ld

∫
xy
φ∗k(x)Rk(x− y)φ∗k(y)− (ϕ2/2)Rk(q2 = 0) = α

k2

2
(
φ2

0 − ϕ2
)

+O
(
k

L

)
(5.18)

and the contribution coming from the bare action to
S[φ∗k]
Ld

= − φ2
0

2ξ2 + 4
3
φ2

0
ξL
, (5.19)

up to subdominant terms at least in O
(
k4). When k = 0 one recovers the 1/L contribution

due to the domain wall, as discussed above.
However, the FRG considers a different limit where L→∞ before k → 0. In this limit,

the saddle-point approximation leads to

USP
k (ϕ) = − φ2

0
2ξ2 + 1

2αk
2φ2

0 −
1
2αk

2ϕ2, (5.20)
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which is precisely the form of Eq. (5.1) with b = α.

The above result suggests several comments:
• First, contrary to what one may naively assume, the effective potential of a large

but finite system is not simply obtained from the scale-dependent effective potential
in the finite system by replacing k by 1/L. Eq. (5.20) would then lead to a term in
1/L2, which is not the correct dependence.

• Second, the signature of the domain wall which is very clear in the 1/L correction is
more indirect in the scale-dependent effective potential in the thermodynamic limit.
For instance, the term in k2ϕ2, which is purely due to the regulator and appears
very mundane as it only involves α, is present because of the presence of the domain
wall separating two bulk regions of opposite average magnetization (otherwise the
left-hand side of Eq. (5.18) is simply zero). The same reasoning applies to the
contribution of the bare action.

• Finally, despite the fact that the dimension d no longer appears in the expression,
the result is only valid for d > 1. Indeed, it assumes that the thermodynamics of
the ordered phase is dominated by a single domain wall. This is only true if d > 1 so
that the extensive contribution of the domain wall diverges as Ld−1 when L→∞.
In d = 1, the kinks and anti-kinks have an energy of O(1) and therefore proliferate
(and destroy the long-range order).

Provided that the Hessian associated with the domain-wall saddle-point configuration
is definite positive, which we will address in the next section, the expression for the scale-
dependent average potential in Eq. (5.20) is valid in the inner region, i.e., when |ϕ| � φ0.
To be more specific, we compare the results obtained with the domain wall and with the
uniform configuration. As argued before, the latter is valid for large values of the average
field. The nonuniform (domain-wall) result is less than the uniform one when

− φ2
0

2ξ2 + 1
2αk

2φ2
0 −

1
2αk

2ϕ2 <
ϕ2

2ξ2 [−2 + (ϕ2/φ2
0)], (5.21)

which implies when k → 0,
ϕ2
φ2

0
< 1− αk2ξ2. (5.22)

We illustrate the scale-dependent effective potential obtained by simply patching the domain-
wall and the uniform solutions for decreasing values of k in Fig. 5.1.



111

−1.0 −0.5 0.0 0.5 1.0
ϕ/φ0

−0.50

−0.49

−0.48

−0.47

−0.46

−0.45

ξ2
U
k
(ϕ

)/
φ

2 0

k → 0

Figure 5.1 – Scale-dependent effective potential Uk(ϕ) as a function of ϕ/φ0 for decreasing
values of the IR cutoff k in the ordered phase of the φ4 theory in d > 1 dimensions. The
potential is obtained at the saddle-point approximation level by simply patching together
the contribution coming from the domain wall in the inner region and that coming from the
uniform solution in the outer region.

4 Gaussian fluctuations around the domain-wall solution and
1-loop calculation

In the previous section we have derived the nonuniform saddle-solution in the form of a
domain wall in dimension d > 1. We now need to consider the Gaussian fluctuations around
the saddle-point, fluctuations that control the stability of the latter and, when integrated
over, give a 1-loop contribution to the effective potential.

The Hessian operator around the domain-wall saddle point is given by

Γ(2)
k,xy(ϕ) =

[
−∂2

x −∇2
x⊥ −

2
ξ2

(
1− 3φ∗k(x)2

φ2
0

)]
δ(d)(x− y) +Rk(x− y) (5.23)

and is no longer diagonalizable in Fourier space due to the nonuniform spatial dependence
of φ∗k(x). It is nonetheless convenient to perform the Fourier transform on the transverse
coordinates x⊥, which after inserting the first terms of the expansion of the saddle-point
solution when L→∞ and k → 0, leads to

Γ(2)
k,q⊥x,p⊥y(ϕ) =δ(q⊥ + p⊥)

([
− ∂2

x + q2
⊥ −

2
ξ2 + 6

ξ2 tanh2(x− ak
ξ

)
]
δ(x− y)

+ k2
[
12 tanh

(
x− ak
ξ

)
f1

(
x

ξ

)
δ(x− y) + kr

(
q2
⊥
k2 , k(x− y)

)]
+ · · ·

)
,

(5.24)
where ak(ϕ/φ0) and f1(x/ξ) are defined in Section 2. For the Gaussian regulator already
introduced, r(q2

⊥/k
2, k(x − y)) = α exp

(
−q2
⊥/(2k2)

)
exp

(
−k2(x− y)2/2

)
/
√

2π. We rewrite
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the above expression as

Γ(2)
k,q⊥x,p⊥y(ϕ) =δ(q⊥ + p⊥)

(
M

[0]
k;xy(q

2
⊥) + k2M

[1]
k;xy(q

2
⊥) + · · ·

)
, (5.25)

where the operators M [0]
k (q2

⊥) and M [1]
k (q2

⊥) are defined by

M
[0]
k;xy(q

2
⊥) =

[
−∂2

x + q2
⊥ + αk2 exp

(
− q2

⊥
2k2

)
− 2
ξ2 + 6

ξ2 tanh2(x− ak
ξ

)
]
δ(x− y),

M
[1]
k;xy(q

2
⊥) = 12 tanh

(
x− ak
ξ

)
f1

(
x

ξ

)
δ(x− y)+

+ kα exp
(
− q2

⊥
2k2

)[
exp

(
−k2(x− y)2/2

)
√

2π
− δ(k(x− y))

]
.

(5.26)

The stability of the saddle point is governed by the sign of the determinant of the Hessian
operator and the 1-loop correction to the effective average potential is given by the logarithm
of the determinant, or equivalently by the trace of the log of the Hessian, more precisely by

U1−loop
k (ϕ) = 1

2Ld ln det Γ(2)
k (ϕ) = 1

2L

∫
dd−1q⊥
(2π)d−1 Tr ln

(
M

[0]
k (q2

⊥;ϕ) + k2M
[1]
k (q2

⊥;ϕ) + · · ·
)
.

(5.27)
If M [0] is invertible and k → 0, one can rewrite the above expression as

1
2L

∫
dd−1q⊥
(2π)d−1

(
Tr lnM [0]

k (q2
⊥;ϕ) + k2 Tr

[
M

[0]
k (q2

⊥;ϕ)−1M
[1]
k (q2

⊥;ϕ)
]

+O(k4)
)

(5.28)

where there is still some k dependence in the operators.
We are still working on the full calculation of the above expression when L→∞ and k →

0, but we already have some preliminary results concerning the first contribution that only in-
volvesM [0]

k . This operator indeed appears in the instanton literature, and the eigenfunctions
and eigenvalues of the associated Schrödinger equation are exactly known [84, 138]: there are
two discrete eigenvalues, q2

⊥ + αk2 exp
(
−q2
⊥/
(
2k2)) and q2

⊥ + αk2 exp
(
−q2
⊥/
(
2k2)) + 3/ξ2

and a continuum of eigenvalues indexed by a momentum q. The first discrete eigenvalue
corresponds to a translation mode associated with the freedom to move the location of the
kink. In the present problem where the location of the kink is fixed by Eq. (5.11) this mode
cannot contribute to the spectrum of M [0]

k . The second mode does contribute and gives a
term in (J0 + J1k

d+1)/L. Finally, the contribution due to the continuum of eigenvalues is
more conveniently calculated by considering the ratio of two operators, M [0]

k and the related
ϕ-independent operator [−∂2

x + q2
⊥ + αk2 exp

(
−q2
⊥/(2k2)

)
+ 4/ξ2]δ(x − y) which is simply

obtained by replacing the hyperbolic tangent by 1 (the associated contribution to the effec-
tive potential goes into the term V (k) in Eq. (5.1) and is thus inessential). We are therefore
interested in

∫
dd−1q⊥
(2π)d−1 ln det

−∂
2
x + q2

⊥ + αk2 exp
(
− q2

⊥
2k2

)
− 2

ξ2 + 6
ξ2 tanh2(x−akξ )

−∂2
x + q2

⊥ + αk2 exp
(
− q2

⊥
2k2

)
+ 4/ξ2

 = J0 + J1k
d+1

L
+ Ik,

(5.29)
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where Ik only involves the continuum of eigenvalues in M [0]
k and the first term is due to the

discrete mode. We consider the inner region of the effective potential where |ϕ| is sufficient
less than φ0 so that (L/2) ± ak(ϕ) ∼ (1 ± (ϕ/φ0))L/2 ∼ L/2. From [139], one knows the
determinant of the ratio that appears in Ik in a closed form, which leads to

Ik =
∫

dd−1q⊥
(2π)d−1 ln

[
(
√
· · · − 2)(

√
· · · − 1)

(
√
· · ·+ 2)(

√
· · ·+ 1)

]
,
√
· · · =

√√√√ξ2q2
⊥ + αξ2k2 exp

(
−

q2
⊥

2k2

)
+ 4.

(5.30)

An advantage of the above expression is that thanks to the ratio of operators one can take
the UV cutoff to ∞ when d < 2 in the integral over q⊥, which can then be rewritten as

Ik = 2vd−1

∫ ∞
0

dy y
d−3

2 ln
[

(
√
· · · − 2)(

√
· · · − 1)

(
√
· · ·+ 2)(

√
· · ·+ 1)

]
,
√
· · · =

√
ξ2y + αξ2k2 exp

(
− y

2k2

)
+ 4,

(5.31)
where v−1

d−1 = 2dπ(d−1)/2Γ((d − 1)/2). Even when k = 0 the integrand in Eq. (5.31) is
integrable when y →∞ (for d < 2) and y → 0 (for d > 1), and one finds that

Ik = I0 + I1k
d−1 (5.32)

where subdominant terms when k → 0 are neglected. The term I0 combines with J0 to
give the 1-loop correction to the surface tension in the ordered phase when k = 0. It is the
counterpart of the calculation performed by Brezin and Feng near the critical point [139].

In the limit considered in the FRG where L → ∞ before k → 0, one can see that the
first contribution to the 1-loop scale-dependent effective potential, involving the trace of the
logarithm of M [0]

k , is zero in the thermodynamic limit because it is multiplied by 1/L. A
nonvanishing contribution to the k2 term is expected from the second contribution involving
the trace of (M [0]

k )−1M
[1]
k . It is however more difficult to handle and its calculation is still

in progress.

5 Conclusion

We have obtained preliminary results concerning the scale-dependent effective action, the
central quantity of the FRG, in the ordered phase of the φ4 theory when d > 1. In this
case the field configurations that control the thermodynamics and the associated phase co-
existence are nonuniform domain-wall configurations. What is specific here compared to the
critical point of the same model in d = 1+ ε and the behavior at the lower critical dimension
in d = 1 is that the excitations are still extended (although only in ε = d − 1 dimensions)
so that their cost prevents them from proliferating, contrary to droplets near the critical
point [12–14] in d = 1 + ε or instantons in d = 1 [84, 109]. We have found that the excess
free-energy of the domain wall associated with the surface tension does not appear in the ex-
pression of the scale-dependent effective potential, Eq. (5.1) or Eq. (5.20), because the latter
is considered in the thermodynamic limit. The presence of the domain wall is nonetheless
necessary to produce the specific form in k2ϕ2 that describes the return to convexity when
k → 0.
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There are several aspects that have yet to be completed. First, we have to finish the
1-loop calculation to check if the nonvanishing contribution in the thermodynamic limit is
proportional to k2 as it naively appears or if the dependence on k is modified to a smaller
power law, especially when d < 2. Second, we want to address if and how the lower trun-
cations of the derivative expansion (LPA, LPA’, second-order ∂2) are able to reproduce the
predicted behavior of the scale-dependent effective action. As already mentioned, this has
been shown for a large class of IR regulators for d > 2. Yet, we are mostly interested here
by d < 2 and more specifically by the vicinity of the lower critical dimension.



Chapter 6

Conclusions and perspectives

In this thesis we have presented a functional renormalization group (FRG) description of
the approach to the lower critical dimension dlc in the scalar φ4 theory at criticality. We
have explored this in the two lowest truncations of the (nonpertubative) derivative expansion
approximation scheme of FRG. These are the minimally modified Local Potential Approxi-
mation (LPA’, Chapter 2) and the second order of the derivative expansion (∂2, Chapter 3).
The motivation for the work was to test how this generic approximation scheme, which has
proven to be accurate in dimensions d > 2 [16], is able to describe dimensions close to the
lower critical dimension in a system with discrete symmetry. This is interesting because
it is known that the long-distance physics is in this case controlled by the proliferation of
localized, strongly nonuniform fluctuations. On the other hand, the derivative expansion by
construction describes well the smooth, long-wavelength fluctuations around uniform config-
urations of the coarse-grained order-parameter field [15, 16]. It is not clear when and how
the effects of strongly nonuniform fluctuations are captured by this approximation scheme.
This is why we benchmark it on the case of the scalar φ4 theory, where the mechanism of the
transition and of its disappearance as one approaches the lower critical dimension is known.
The strongly nonuniform configurations of relevance are droplets (enclosed domain walls)
that become point-like kinks and anti-kinks at the lower critical dimension dlc = 1 [12–14],
where they proliferate. We stress that our goal is not to provide yet another theoretical
description of the approach to the lower critical dimension for systems in the universality
class of the Ising model, a question which has been quite well understood for several decades.
It is to benchmark a generic nonperturbative but approximate FRG approach to later tackle
problems that are still open and where strongly nonuniform configurations presumably play
an important role such as the low-temperature phase of the Ising spin glasses [140] or the
lower critical dimension of the athermally driven random-field Ising model (RFIM). The
lower critical dimension of the RFIM in equilibrium has been rigorously shown to be dlc = 2
[94, 95], but that for the far-from-equilibrium driven RFIM is still debated [100, 141, 142].

At the level of the LPA’, we find that the limit of the fixed-point effective action is
nonuniform in the (average) field when approaching the lower critical dimension, with the
emergence of a boundary layer around the minimum of the dimensionless potential. The
effective potential becomes singular. We use Singular perturbation Theory (SPT) [125–128]
to investigate the leading-order fixed-point solution. From matching conditions between
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different SPT regions, we analytically recover that the propagator develops a singularity at
ϕ = 0, as one would expect from the merging of the critical and zero-temperature fixed
points. This pushes the location of the minimum of the effective potential ϕmin to diverge.
We have found it to scale as

√
ln (1/ ε̃), where ε̃ = (d− 2 + η)/[2(2− η)] is proportional to

the scaling dimension Dϕ of the average field and vanishes in the d → dlc limit
(
ε̃→ 0+).

This scaling of ϕmin is at odds with the outcome of an earlier FRG study [122]. We find
the width of the boundary layer to vanish like δ (ε̃) ∝ ε̃

√
ln (1/ ε̃)→ 0+. From the matching

conditions we have also analytically found the dependence of the dlc value on the regulator
function (and its prefactor α). At the level of the LPA’, the dlc(α) curves do not have an
extremum, preventing the use of PMS optimization to better pinpoint the value of dlc.

We have studied whether the description of the approach to the lower critical dimension
dlc improves as one considers higher orders of the derivative expansion. The next step is
the ∂2, where one considers coupled flow equations for two functions, the effective potential
and the field renormalization function. Work is now in progress to analytically solve the
fixed-point equation via SPT along the lines of the LPA’ calculation. However, the existence
of two coupled differential equations make the problem much more difficult. As a result we
have not been able so far to satisfy matching conditions between all the regions. We believe
this matching would give us the scaling of z (ϕ) in the boundary layer and the (regulator-
dependent) value of dlc. We have included preliminary results at the ∂2 level, mostly relying
on numerical calculations for d > dlc. From the divergence of u′′ (ϕmin) found there to be
congruent with LPA’ results, one expects the same mechanism of a nonuniform convergence
to the lower critical dimension limit with the emergence of a boundary layer around the
minimum of the dimensionless potential. The numerical results for d > dlc are compatible
with ϕmin scaling similarly as in LPA’. Based on a boundary layer solution, with an ansatz
that z (ϕ) diverges in the boundary layer (but subdominantly to u′′ (ϕ)), we have given a
tentative argument supporting this result and showing that the propagator again develops
a singularity. Using extrapolations of ε̃ (d) curves to the ε̃ → 0+ limit, we have seen the
possible appearance of an extremum in dlc(α), opening the prospect for PMS optimization.
We have also found that not all regulators produce numerical ε̃ (d) curves that seem to have
a propper ε̃→ 0+ limit.

Concerning other expectations that come from the merging of the critical fixed point
and the zero-temperature fixed point associated with the ordered phase, at both LPA’ and ∂2
levels, we have found that the critical temperature Tc appropriately vanishes in the d→ dlc
limit (Chapter 4). The way Tc behaves in ε̃ or equivalently in the field dimension Dϕ is found
to be in agreement with the d = 1 + ε result of the droplet theory [12–14], and was missed
by an earlier FRG study [122]. Regarding the expected marginality of the −1/ν eigenvalue,
no analytical results have been found at either LPA’ or ∂2 level, but the numerical results
for d > dlc given in Chapter 4 are compatible (yet not conclusive) with −1/ν → 0 at both
levels. The ∂2 results (compared to LPA’) appear more in line with the form of divergence
of the correlation length exponent ν predicted by the droplet theory [12–14]. Confirming
or refuting that the truncated derivative expansion of the FRG appropriately captures the
marginality of −1/ν is an important future goal, as it also relates to the essential scaling
(exponential instead of power-law) of the correlation length ξ that is expected at the lower
critical dimension (from, e.g., exact 1d Ising results, [60, 61]). The critical exponent ν
diverging is a necessary but not sufficient condition for the exponential scaling of ξ with
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the temperature distance from the transition. As marginal eigenvalues are accompanied by
logarithmic corrections to scaling [17, 44] which might translate to this exponential behavior
of ξ, it is possible marginality of −1/ν might nonetheless be a sufficient condition, which is
something we aim to explore in the future.

The conclusion that can be drawn at this point is that low orders of the derivative expan-
sion within the FRG appear to at least partially capture the effect of strongly nonuniform
configurations in the form of droplets that control the critical behavior of pure Ising-like
models when approaching the lower critical dimension (dlc = 1 in the exact treatment). This
takes place through the mathematical mechanism of a boundary layer in the fixed-point func-
tions and is described within SPT. It remains to be seen in more detail if the proliferation
of localized excitations (point-like droplets) that destroy the transition in dlc and lead to
essential scaling can be indirectly described by the approximations based upon expanding
around uniform coarse-grained configurations.

In Chapter 5 we consider another problem where strongly nonuniform configurations of
the field are important, the ordered phase of the scalar φ4 theory. The return to convexity
under the influence of spatial fluctuations requires taking into account the domain-wall con-
figurations. We are interested in the way one can keep track of such configurations within
the FRG. A calculation in the presence of an IR regulator was done by Ringwald and Wet-
terich in the case of the O(N ≥ 3) model[67], but the study of the N = 1 case had never
been undertaken. Another motivation is to investigate how the ordered fixed point behaves
in the limit d = 1 + ε with ε → 0 because one knows that it should then merge with the
critical fixed point that we have studied earlier. We find that the presence of the domain
wall is necessary to produce a specific dependence in k2ϕ2 for the scale-dependent effective
potential that describes the return to convexity when the IR cutoff k → 0. We aim to finish
the 1-loop calculation to check how its contribution scales with k in d < 2. This calculation
is the necessary step to then assess if and how the lower truncations of the derivative ex-
pansion (LPA, LPA’, second-order ∂2) are able to reproduce the predicted behavior of the
scale-dependent effective action, especially in the vicinity of the lower critical dimension.

Some points we have learned through this research about the dlc limit and which we want
to stress are as follows. The d→ dlc limit is marked by the dimensionful field not rescaling
with the IR cutoff scale k, so that its scaling dimension ∝ ε̃ must vanish. The limit for the
fixed-point functions is nonuniform in the field, i.e., the solutions to the ε̃ = 0 equations are
not physical leading-order solutions and SPT must be used to construct proper ones. We
stress that the value of the lower critical dimension should be calculated in a numerical FRG
scheme from the ε̃→ 0+ condition (using some regulator optimization procedure). Inversely,
if one works at a fixed spatial dimension that one anticipates to be the lower critical dimension
(e.g., d = 1), care must be taken so that the ε̃→ 0+ condition is respected. As we have seen
in the present work, depending on the choice of IR regulator, d = 1 may actually be above or
below the lower critical dimension of the approximate FRG theory. This might thus involve
regulator optimization. The idea to optimize a regulator so that the phase transition is not
present in dlc was proposed in [110]. The authors, though, needed to know a priori not only
the value of dlc but also some measure of distance in parameter space between fixed points
that were to merge and disappear along with the transition (in [110] this was exemplified on
the 1d sine-Gordon model). This severely limits the applicability of the methods to systems
about which a lot is already known, and we wish to investigate systems whose theoretical
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description is far from complete. Also, the method did not find an optimization for which
the transition actually disappears, and the improvements were minimal. We are interested in
whether the simpler ε̃→ 0+ condition can be implemented instead. This is a point we intend
to investigate in subsequent research, as we have not yet found such regulator optimization
in existing relevant systems, e.g., 1d barrier-penetrating problems [109, 135, 143–145].



Appendix A

Threshold functions - definitions
and limits

Threshold functions contain the momentum integrals in the nontrivial parts of FRG flow
equations in the derivative expansion scheme.

In this section expressions and properties of the threshold functions `(d)
n,0(ϕ; η) andm(d)

n,0(ϕ; η)
will be given. Some of these can be found in the main text, but we restate them here for
completeness.

We drop the index k from renormalization group functions, the anomalous dimension
and the ε̃-parameter to make the expressions clearer.

1 Definitions

`
(d)
n>0(u(ϕ), z (ϕ); η) =− 1

2

∫ +∞

0
dyyd/2−1∂̃y

{
gn(y, ϕ), n > 0
ln (g(y, ϕ)), n = 0

}
, (A.1)

m
(d)
n,0(u(ϕ), z (ϕ); η) = −1

2

∫ +∞

0
dyyd/2∂̃y

{
(∂yg(y, ϕ))2(g(y, ϕ))n−4

}
. (A.2)

Here g(y, ϕ) is the dimensionless propagator (not to be mistaken for the boundary layer
function g(x) = δ (ε̃)u′′ (ϕ)) and the derivation operator ∂̃y marked by a tilde only acts on
the dimensionless regulator r(y), such that:

∂̃yr (y) = −
(
ηkr (y) +2yr′ (y)

)
. (A.3)

This is because ∂̃y comes from the flow of the dimensionful regulator, ∂tRk
(
q2), and applies

to dimensionless quantities. The threshold functions are defined with a minus sign, so that
they would be overall positive.
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2 Explicit expressions

We give the ∂2 expressions as the LPA’ ones are readily available from them by putting
z(ϕ) = 1:

`
(d)
n>0(u(ϕ), z (ϕ); η) =− 1

2(n+ δn,0)
∫ +∞

0
dyyd/2

(
ηr(y) + 2yr′(y)

)
(g(y, ϕ))n+1, (A.4)

m
(d)
n,0(u(ϕ), z (ϕ); η) = −1

2

∫ +∞

0
dyyd/2

(
z (ϕ) +r (y) +yr′ (y)

)
(g(y, ϕ))n×

×
{
ny
(
z (ϕ) +r (y) +yr′ (y)

)(
ηr(y) + 2yr′(y)

)
g(y, ϕ)+

− 2
[
ηr (y) +y(η + 4)r (y) +2y2r′′ (y)

]}
,

(A.5)

and the propagator (not to be mistaken for the boundary layer function g(x) = δ (ε̃)u′′ (ϕ))
is given by:

g(y, ϕ) = 1
u′′ (ϕ) +y(z (ϕ) +r (y)) . (A.6)

3 Limits in the boundary layer

Although explicitly derived for the boundary layer, the expression for `(d)
n,0(ϕ; η) derived in

this section can be used any time u′′ (ϕ) diverges, remembering to return g(x) = δ (ε̃)u′′ (ϕ)
outside of the boundary layer.

3.1 At LPA’

The second derivative u′′ (ϕ) = g (x) /δ (ε̃) diverges as 1/δ (ε̃), so the threshold functions in
this limit must vanish as powers of δ (ε̃):

`
(d)
n>0(u(ϕ), 1; η) = −1

2(n+ δn,0)
∫ +∞

0
dyyd/2

(ηr(y) + 2yr′(y))
(u′′ (ϕ) +y(1 + r (y)))n+1 =

= −1
2(n+ δn,0)

(
δ (ε̃)
g (x)

)n+1 ∫ +∞

0
dyyd/2

(
ηr(y) + 2yr′(y)

)
+O

(
(δ (ε̃))n+2

)
=

= (δ (ε̃))n+1 L(d)
n (g (x)) +O

(
(δ (ε̃))n+2

)
, L(d)

n (g (x)) = O(1).

(A.7)

We integrate the r′ (y) by part and introduce the shorthand A(d)(η):

A(d)(η) = −1
2

∫ +∞

0
dyyd/2

(
η

[
r(y)
α

]
+ 2y

[
r′(y)
α

])
=

=
(
d+ 2− η

2

)∫ +∞

0
dyyd/2

[
r(y)
α

]
.

(A.8)

Using this in the expression Eq. (A.7) for `(d)
n>0(ϕ; η), we get:

L(d)
n (g (x)) = (n+ δn,0) αA

(d)(η)
(g (x))n+1 . (A.9)
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The threshold function m(d)
n,0(ϕ; η) is given by

m
(d)
n,0(u(ϕ), 1; η) = −1

2

∫ +∞

0
dyyd/2

1 + r (y) +yr′ (y)
(u′′ (ϕ) +y(1 + r (y)))n×

×
{
ny
(
1 + r (y) +yr′ (y)

) (ηr(y) + 2yr′(y))
u′′ (ϕ) +y(1 + r (y))+

− 2
[
ηr (y) +y(η + 4)r (y) +2y2r′′ (y)

]}
=

= 1
2

(
δ (ε̃)
g (x)

)n ∫ +∞

0
dyyd/2

{
α(d+ 2− η)

[
yr(y)
α

]′
+

− α2(d+ 2− 2η)
[(

yr(y)
α

)′]2}
+O

(
(δ (ε̃))n+1

)
=

= (δ (ε̃))n M (d)
n (g (x)) +O

(
(δ (ε̃))n+2

)
, M (d)

n (g (x)) = O(1).

(A.10)

We integrate the r′ (y) by part to use A(d)(η) (same as Eq. (A.8)), and introduce the short-
hand B(d)(η):

B(d)(η) =
(
d+ 2− 2η

2

)∫ +∞

0
dyyd/2

[(
yr(y)
α

)′]2

. (A.11)

Using this in the expression Eq. (A.10) for m(d)
n>0, we get:

M (d)
n (g (x)) = αdA(d)(η)− α2B(d)(η)

(g (x))n . (A.12)

3.2 At ∂2

We offer here general shapes of the threshold functions for all five conceivable regimes in the
x = O(1) region for the behavior of κ (ε̃), which is defined as:

z (ϕ) = κ (ε̃)
δ (ε̃) ζ(x), where for x = O(1) we have ζ(x) = O(1). (A.13)

The scaling of the threshold functions is:
1. z (ϕ)→ 0 ⇐⇒ κ (ε̃)� δ (ε̃)→ 0 :

`(d)
n

(
u′′ (ϕ), z (ϕ); η

)
= (δ (ε̃))n+1L1(g (x);n, d),

m
(d)
n,0
(
u′′ (ϕ), z (ϕ); η

)
= (δ (ε̃))nM1(g (x);n, d).

(A.14)

2. z (ϕ) = O(1) ⇐⇒ κ (ε̃) = δ (ε̃)→ 0 :

`(d)
n

(
u′′ (ϕ), z (ϕ); η

)
= (δ (ε̃))n+1L2(g (x);n, d),

m
(d)
n,0
(
u′′ (ϕ), z (ϕ); η

)
= (δ (ε̃))nM2(g (x), ζ (x);n, d).

(A.15)
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3. u′′ (ϕ)� z (ϕ)→ +∞ ⇐⇒ δ (ε̃)� κ (ε̃)→ 0 :

`(d)
n

(
u′′ (ϕ), z (ϕ); η

)
= (δ (ε̃))n+1L3(g (x);n, d),

m
(d)
n,0
(
u′′ (ϕ), z (ϕ); η

)
= κ (ε̃) (δ (ε̃))n−1M3(g (x), ζ (x);n, d).

(A.16)

4. z (ϕ) = O(u′′ (ϕ))→ +∞ ⇐⇒ κ (ε̃) = 1 :

`(d)
n

(
u′′ (ϕ), z (ϕ); η

)
= (δ (ε̃))n+1L4(g (x), ζ (x);n, d),

m
(d)
n,0
(
u′′ (ϕ), z (ϕ); η

)
= (δ (ε̃))n−1M4(g (x), ζ (x);n, d).

(A.17)

5. u′′ (ϕ)� z (ϕ)→ +∞ ⇐⇒ κ (ε̃) = 1 :

`(d)
n

(
u′′ (ϕ), z (ϕ); η

)
=
(
δ (ε̃)
κ (ε̃)

)n+1
L5(ζ (x);n, d),

m
(d)
n,0
(
u′′ (ϕ), z (ϕ); η

)
=
(
δ (ε̃)
κ (ε̃)

)n−1
M5(ζ (x);n, d).

(A.18)

We call to attention that not all of the Li and Mi functions depend on ζ (x), and some are
in turn not dependent on g (x).

3.2.1 Expressions for the threshold functions

In the relevant regime of δ (ε̃)� κ (ε̃)→ 0, the threshold function `(d)
n,0(ϕ; η) is given by the

same expression as for the LPA’ case (see Eq. (A.7)), as the propagator again simplifies in
the same way.

The expression for m(d)
n,0(ϕ; η) which has terms linear in z (ϕ) is, however, different:

m
(d)
n,0(u(ϕ), 1; η) = Eq. (A.5) =

= κ (ε̃) (δ (ε̃))n−1M (d)
n (g (x), ζ (x)) +O

(
max

{
(δ (ε̃))n, (κ (ε̃))2(δ (ε̃))n−1

})
,

M (d)
n (g (x)) = O(1),

(A.19)

with the function M (d)
n (g (x)) given by

M (d)
n (g (x), ζ (x)) = ζ (x) αdA

(d)(η)
(g (x))n , with A(d)(η) defined in Eq. (A.8), as in LPA’.

(A.20)



Appendix B

Canonical field

1 Boundary layer symmetry

If we are were to redefine the δ (ε̃) scale to aδ (ε̃), where a is of O(1), the new boundary
layer function gnew(xnew) would now simply be g(x/a)/a in terms of the old quantities, and
the boundary layer equation for gnew(xnew) would be the same as Eq. (2.39). This happens
because in the boundary layer we have only kept the lowest order in δ (ε̃), so all of the terms
of course scale with the same multiple of δ (ε̃). In ∂2 this is supplemented by the following
symmetry in ζ (x):

ζ (x)→ bζ

(
x

a

)
, (B.1)

where b is an O(1) scale. This scale is otherwise arbitrary, as the boundary-layer fixed-point
Eq. (3.13) for the field renormalization function is linear in ζ (x). This is also true only
for the regime where z (ϕ) diverges subdominantly to u′′ (ϕ) in the boundary layer. This is
obviously not the case for the full equations, i.e. rescaling ϕ and u′′ (ϕ) in the analogous
manner would leave residual a’s in the flow equation. It sounds trivial, but it also hangs
on our choice to identify δu (ε̃) and δx (ε̃) in Section 3.1. While SPT tells us that these two
scales must be of the same order, to put the proportionality constant between them to 1 was
a choice, allowed by the fact that any other O(1) constant can be absorbed in the definition
of the boundary layer field x (or the function g(x)). One of the takeaways from this is that
we have not yet used the freedom in rescaling of x to simplify the boundary layer equations
as much as we can, and we do this by introducing a canonical field. We call it so because
equations are often termed canonical when they are cast in their simplest form.

2 Canonical equations

If we define a canonical field as

ϕc = ϕ√
2αvdA(d)(η)

(2− η)

,
(B.2)
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this then reflects in the boundary layer field x:

x = ϕ− ϕmin
δ (ε̃) =⇒ xc = ϕc − ϕc,min

δ (ε̃) = x√
2αvdA(d)(η)

(2− η)

.
(B.3)

We then call this the canonical boundary layer field. Correspondingly, we term any functions
of the canonical field canonical functions.

The use of canonical variables and functions consequently simplifies the boundary-layer
fixed-point equations:

0 = g (x)−g
′(0)g′ (x)
(g(0))3 − 2(g′ (x))2

(g (x))3 + g′′ (x)
(g (x))2 , (B.4)

0 = ηζ (x)−(2− η)
[
2(g′ (x))2

(g (x))4 ζ (x)−
(

g′(0)
(g(0))3 + 4g′ (x)

(g (x))3

)
ζ ′ (x) + 1

(g (x))2 ζ
′′ (x)

]
, (B.5)

where we omit the index c of the canonical boundary layer field xc and we reuse the existing
pool of shorthands with gc(xc) → g (x), ζc(xc) → ζ (x) for the canonical functions gc(xc) :=
g(xc) and ζc(xc) := ζ(xc), to avoid cluttering the notation.



Appendix C

Concerning the location of the
minimum of the effective potential

In this appendix we list some results and calculation steps that are needed to show the
behavior of the location of the minimum of the effective potential ϕmin.

1 Fixed-point expression for ϕmin

This expression is obtained from the fixed point equation for the first derivative of the
effective potential:

0 = ∂tu
′ (ϕ) =

= −1
2(d+ 2− η)u′ (ϕ)−(2− η) ε̃ ϕu′′ (ϕ)−2vd`(d)

1
(
u′′ (ϕ), z (ϕ); η

)(
z′ (ϕ) +u′′′ (ϕ)

)
,

(C.1)

by evaluating it in ϕ = ϕmin and using u′ (ϕmin) = 0.

As in ϕ = ϕmin the boundary layer scaling applies, we can use the expressions for the
threshold functions found in that regime in Appendix A, to directly find the expression in
the LPA’ and ∂2 case (corresponding to Chapter 2, Eq. (2.38) and Chapter 3, Eq. (3.8) in
the main text):

ε̃ ϕmin
δ (ε̃) = 2αvdA(d)(η)

(2− η)
g′(0)

(g(0))3 = O(1). (C.2)

The expression is the same at both approximation levels, as the subdominant divergence
of z (ϕ) in the used ansatz gives the same boundary layer limit for the threshold functions
`
(d)
n (ϕ; η) in the ∂2, as it does with z (ϕ) = 1 in the LPA’.
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2 From the inflection point to the location of the minimum
at LPA’

From results of Chapter 2, Section 3.2.1 we can write the distance between the inflection
point ϕi and the minimum/half-period ϕ∗ of the ε̃ = 0 periodic solution for u′′ (ϕ) as:

ϕ∗ − ϕi =
∫ Φi

Φ∗

dΦ̃√∫ Φ̃
Φ∗ dΦ̂F

(
Φ̂
) , Φ∗ = Φ(ϕ∗), Φi = Φ(ϕi). (C.3)

We examine the integral in the denominator, the function

H(Φ) =
∫ Φ

Φ∗
dΦ̂F

(
Φ̂
)
. (C.4)

As F
(
Φ̂
)

= u′′ (ϕ), H(Φ) is a monotonically increasing function of Φ for Φ 6 Φi. We can
show that it is concave, by taking its second derivative:

H ′′(Φ) = F ′(Φ) = d

2vd
[
∂u′′ (ϕ)`

(d)
0 (u′′ (ϕ), 1; η)

] = − d

2vd`(d)
1 (u′′ (ϕ), 1; η)

< 0, (C.5)

Any secant of a concave function lies beneath it [132]. We choose the intersection points to
be Φi and Φ∗, using it to make an estimate for the Φ between the intersections:

H(Φ) > H(Φi)
( Φ− Φ∗

Φi − Φ∗

)
=⇒

∫ Φ

Φ∗
dΦ̂F

(
Φ̂
)
>
∫ Φi

Φ∗
dΦ̂F

(
Φ̂
)( Φ− Φ∗

Φi − Φ∗

)
(C.6)

Inserting this into Eq. (C.3) results in the following upper bound:

ϕ∗ − ϕi 6
√√√√ Φi − Φ∗∫ Φi

Φ∗ dΦ̂F
(
Φ̂
) ∫ Φi

Φ∗

dΦ̂√
Φ̂− Φ∗

= 2 Φi − Φ∗√∫ Φi
Φ∗ dΦ̂F

(
Φ̂
) . (C.7)

Going forward, we recall that Φi ∝ `
(d)
0 (u′′(ϕi) = 0, 1; η) = O(1). This allows us to neglect

Φ∗, as Φ∗ ∝ `
(d)
0 (u′′(ϕ∗)� 1, 1; η) = αA(d)(η)/u′′(ϕ∗) → 0 (because u′′(ϕ∗) must diverge to

allow for a boundary layer), where results of Appendix A have been used. What remains is
the following integral:∫ Φi

Φ∗
dΦF (Φ) = −

∫ u′′(ϕ∗)

0
dww∂w`

(d)
0 (w, 1; η) ∼ αA(d)(η) ln

(
u′′(ϕ∗)

)
. (C.8)

where in the last step we used partial integration (and results of Appendix A for the behavior
of the threshold function when u′′(ϕ) � 1 - the asymptotic behavior is the same as in the
boundary layer, as long as u′′ (ϕ) diverges), and an O(1) contribution has been neglected.

The expressions Eqs. (C.7) and (C.8) combined finally give

ϕ∗ − ϕi . 2
√

vd
αdA(d)(η)

`
(d)
0 (u′′ (ϕ) = 0, 1; η)√

ln (u′′(ϕ∗))
→ 0+, (C.9)

which shows that ϕ∗ and ϕi have the same asymptotic behavior.



Appendix D

The expression for dlc at ∂2

We start from the implicit solution Eq. (3.21) in Chapter 3 for the auxiliary function f(x):

f(x) = ζ(x)
g(x)2 and F (Y ) = F0H

(
−n, Y√

2

)
, with F (Y ) = f(x). (D.1)

The constant F0 can be expressed in terms of physical quantities (remember that n = n(η)
as in Eq. (3.21)):

F0 = ζ(0)
g(0)2H(−n, 0)

=
2nζ(0)Γ

(
n+ 1

2

)
√
πg(0)2 , as Y (x = 0) = 0. (D.2)

If we look at the first derivative of f(x)

f ′(x = 0) = ζ ′(0)
(g(0))2 − 2

√
2
π

ζ(0)
g(0) (D.3)

and use that f(x) = F (Y ):

dF (Y )
dx

∣∣∣∣
x=0

= −
√

2nY ′(0)F0H(−(n+ 1), 0) = −
√

2
ζ(0)Γ

(
n+ 1

2

)
g(0)Γ

(
n

2

) ,

using Y ′(x) = g(x) (from Eqs. (2.42) and (2.43) in Chapter 2),

(D.4)

we can combine Eqs. (D.2) to (D.4) into

ζ ′(0)
g(0)ζ(0) = 2

√
2
π
−
√

2
Γ
(
n+ 1

2

)
Γ
(
n

2

) , (D.5)

which is the expression Eq. (3.22) from Chapter 3 of the main text, where we use ζ(0) = 1.
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Appendix E

Supplementary plots of numerical
∂2 fixed-point solutions for d > dlc

The role of this section is to display some more fixed-point solutions above dlc. In Figs. E.2
and E.3 we show fixed-point solutions for u′′ (ϕ) and z (ϕ) for a range of dimensions. The
results do not differ qualitatively for most regulator and prefactor choices. What is prob-
lematic is rΘ with α > z(0) = 1. When plotting ε̃ (d) curves, like in Fig. E.1, the rΘ with
α > z(0) = 1 curves show that these choices should not be used to investigate the ε̃ → 0
limit, as is also seen from the extrapolations of the dlc values from these ε̃ (d) curves in Chap-
ter 3, Section 3.4. They seem to not be able to properly capture the limit ε̃ (d) → 0+. The
problem does not exist for the analytical exponential regulator, and we think that this is an
atypical and singular situation with the Theta regulator. This is why results with such reg-
ulator prefactor values have not been plotted in Chapter 3. We can also discern the different
behavior of the fixed-point solution for the field renormalization function for these cases in
Fig. E.3, especially in Fig. E.3f compared to the rest of z (ϕ) plots in Figs. E.2 and E.3. From
these fixed-point solutions, we also see that the numerical procedure has failed on strangely
low dimensions, an artifact of the aforementioned mishandling of the ε̃ (d) → 0+ limit for
these regulator choices.
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Figure E.1 – Numerical results for the dependence of the ε̃ parameter on the spatial dimen-
sion, in the second order of the derivative expansion ∂2. We remind that ε̃ is proportional to
the scaling dimension Dφ of the dimensionfull order-parameter field. We are showing results
for multiple choices of regulator prefactors α, as listed on te legends. Full lines: rexp, dashed
lines: rΘ. In Fig. E.1a, we show the problematic α > z(0) = 1 values for the Theta regulator,
while in Fig. E.1b they have been removed to illustrate otherwise good agreement between
rexp and rΘ, and for different α.
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Figure E.2 – Numerical fixed-point solutions for the second derivative of the effective poten-
tial u′′ (ϕ) and the field renormalization function z (ϕ) calculated with rexp for a range of
dimensions and regulator prefactors.
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Figure E.3 – Numerical fixed-point solutions for the second derivative of the effective po-
tential u′′ (ϕ) and the field renormalization function z (ϕ) calculated with rΘ for a range
of dimensions and regulator prefactors. We note the unreasonably low dimensions for
α > z(0) = 1.



Appendix F

Kink solution of the saddle-point
equation when k → 0

We seek the solution of the saddle-point Eq. (5.14) from Chapter 5 which we restate here:

f ′′1 (x) + 2f1(x)[1− 3f2
0 (x)] = k

∫ L/2

−L/2
dy r(k(x− y))f0(y)− [b−

∫ k(L/2−x)

−k(L/2+x)
dy r(y)]ϕ. (F.1)

For concreteness we consider the Gaussian IR regulator but similar results are obtained with
other regulators. To start, we simplify the RHS of Eq. (F.1) by using tanh(x) ≈ sgn(x):

f ′′1 (x) + 2f1(x)
(
1− 3 tanh(x− a)2

)
=
{
b− 1

2 (α [k(L/2− x)] + α [k(L/2 + x)])
}
ϕ+

+ α [k(x− a)] + 1
2 (α [k(L/2− x)]− α [k(L/2 + x)]) ,

where α(x) = 2
∫ x

0
dy r(y).

(F.2)

Using the Gaussian regulator, this turns into:

r(x) = α√
2π

exp
(
−x2/2

)
=⇒ α(x) = α erf(x/

√
2)

(F.2)=⇒ f ′′1 (x) + 2f1(x)
(
1− 3 tanh(x− a)2

)
=

=
{
b− α

2
(
erf
[
k(L/2− x)/

√
2
]

+ erf
[
k(L/2 + x)/

√
2
])}

ϕ+

+ α erf
[
k(x− a)/

√
2
]

+ α

2
(
erf
[
k(L/2− x)/

√
2
]
− erf

[
k(L/2 + x)/

√
2
])
.

(F.3)
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We introduce the spatial variable z with the origin in the location of the kink, and introduce
the shorthand µ = a/L = O(1):

z = x− a :

f ′′1 (z) + 2f1(z)
(
1− 3 tanh(z)2

)
=

=
{
b− α

2
(
erf
[
k(L/2(1 + µ)− z)/

√
2
]

+ erf
[
k(L/2(1− µ) + z)/

√
2
])}

ϕ+

+ α erf
[
kz/
√

2
]

+ α

2
(
erf
[
k(L/2(1 + µ)− z)/

√
2
]
− erf

[
k(L/2(1− µ) + z)/

√
2
])
.

(F.4)

We continue solving this equation depending on the scale of z:
1. z ≤ O(1/k):

f ′′1 (z) + 2f1(z)
(
1− 3 tanh(z)2

)
≈ {b− α}ϕ, (F.5)

where we put kL→ +∞, as z ≤ O(1/k) does not "see" the edges.
The solution to Eq. (F.5) is:

f1(z ≤ O(1/k)) =ϕ

4 (b− α)
(

cosh(z)2 − 3/2
cosh(z)2

)
+

+A
(

tanh(z) + 1
3 sinh(2z) + z

cosh(z)2

)
+ B

cosh(z)2 ,

(F.6)

where A,B = const. are to be determined from joining the z domains.
2. z = ζ/k, ζ = O(1):

f1(z = O(1/k)) = g(ζ) :

k2g′′(ζ) + 2g(ζ)
(
1− 3 tanh(ζ/k)2

)
≈ −4g(ζ) ≈ {b− α}ϕ+ α erf

(
ζ/
√

2
)

=⇒

=⇒ g(ζ) = −b− α4 ϕ− α

4 erf
(
ζ/
√

2
)
,

(F.7)

so the solution at this scale is

f1(z = O(1/k)) = −b− α4 ϕ− α

4 erf
(
kz√

2

)
. (F.8)

3. |x| = L/2− u, u = O(1), u > 0:
We use a boundary condition where we constrain f ′′1 (x) ≈ 0 near the edges of the
system, as we search for kink-like solutions.
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(a) x > 0:

f1(z = L/2 + a− u) = h+(u) :

h′′+(u) + 2h+(u)
(
1− 3 tanh(L/2 + a− u)2

)
≈ −4h+(u) ≈

≈
{
b− α

2

(
erf
[
ku√

2

]
+ erf

[
k(L− u)√

2

])}
ϕ+

+ α erf
[
k√
2

(L/2(1 + µ)− u)
]

+ α

2

(
erf
[
ku√

2

]
− erf

[
k√
2

(L− u)
])

=⇒

=⇒ h+(u) ≈ −b− α4 ϕ− α

4 + α

8 (1− ϕ) erfc
[
ku√

2

]
.

(F.9)

(b) x < 0:

f1(z = −L/2 + a+ u) = h−(u) :

h′′−(u) + 2h−(u)
(
1− 3 tanh(L/2 + a− u)2

)
≈ −4h−(u) ≈

≈
{
b− α

2

(
erf
[
k(L− u)√

2

])
+ erf

[
ku√

2

]}
ϕ+

− α erf
[
k√
2

(L/2(1− µ)− u)
]

+ α

2

(
erf
[
k√
2

(L− u)
]
− erf

[
ku√

2

])
=⇒

=⇒ h−(u) ≈ −b− α4 ϕ+ α

4 −
α

8 (1 + ϕ) erfc
[
ku√

2

]
.

(F.10)

Combining the results of Eq. (F.9) and Eq. (F.10), we find the solution near the edges
of the system to be:

f1(|x| = L/2−O(1)) = −b− α4 ϕ− sgn(x)α4 + α

8 (sgn(x)− ϕ) erfc
(
k√
2

(L/2− |x|)
)
.

(F.11)

In table F.1, we track the limits of f1 on the borders of the considered regions. We do this to
join the solution across these domains. For this we need to make sure that the neighboring
limits in the mentioned table correspond to each other. Here we took into account that
1/k � 1, and that near the edges of the system sgn(x) = sgn(z).

Table F.1 – The limits of f1.
z = 0 |z| � 1 ζ = 0

f1 (0) = B − ϕ (b− α) /8 (b− α)× (� 1)+ −(b− α)φ/4
+ sgn(z)A× (� 1)

|ζ| → +∞ u→ +∞ u = 0
−(b− α)ϕ/4− sgn (z)α/4 −(b− α)ϕ/4− sgn (z)α/4 −(b− α)ϕ/4− α(sgn(x) + ϕ)/8
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We see that to join the function together, we must have b = α and put A = 0. Now we have:

Table F.2 – The limits of f1, connected.
z = 0 |z| � 1 ζ = 0 |ζ| → +∞ u→ +∞ u = 0

f1 (0) = B 0 0 − sgn (z)α/4 − sgn (z)α/4 −α(sgn(x) + ϕ)/8

Now that we construct the full solution, we must be mindful not to include the same contri-
butions twice. The table F.2 is a good check of that, and from the fourth and fifth column
we conclude that keeping the erf in Eq. (F.8) means foregoing the − sgn(x)α/4 in Eq. (F.11).
All in all, the solution for the k2 correction over the whole domain is (where we put φ0 and
ξ back in):

f1(x/ξ)
φ0

= f1(0)
cosh ((x− a)/ξ)2 −

α

4 erf
(
k(x− a)√

2

)
+

+ α

8

(
sgn

(
x

ξ

)
− ϕ

φ0

)
erfc

(
k√
2

(L/2− |x|)
)
.

(F.12)



Appendix G

Expression for the effective average
potential for the domain-wall
saddle point

1 Contribution associated with the IR regulator

For concreteness we consider the Gaussian IR regulator but similar results are obtained with
other regulators. For the regulator1 contribution we have the following simplification:

αk2+d

2Ld
√

2πd
∫
Ld
dx
∫
Ld
dy
(
φ∗k

(
x‖
)
− ϕ

)
exp

(
−k

2 (x− y)2

2

)(
φ∗k

(
y‖
)
− ϕ

)
=

= αk2+d

2Ld
√

2πd
∫
Ld−1

dx⊥
∫
Ld−1

dy⊥ exp
(
−k

2 (x⊥ − y⊥)2

2

)
×

×
∫ L/2

−L/2
dx‖

∫ L/2

−L/2
dy‖

(
φ∗k

(
x‖
)
− ϕ

)
exp

−k2
(
x‖ − y‖

)2

2

(φ∗k (y‖)− ϕ) ,
(G.1)

after which we calculate:

∫
Ld−1

dx⊥
∫
Ld−1

dy⊥ exp
(
−k

2 (x⊥ − y⊥)2

2

)
= Ld−1

∫
Ld−1

dx⊥ exp
(
−k

2x2
⊥

2

)
=

= Ld−1k1−d√2πd−1
(G.2)

Putting Eq. (G.2) into Eq. (G.1), we continue:

1We use the regulator Rk (q,p) = αk2δ (p + q) exp
(
−q/2k2) and Fourier-transform it using the conven-

tion FT [f ] (x) =
∫
dq/
√

2πd exp (−iq · x) f (q).
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αk2+d

2Ld
√

2πd
∫
Ld
dx
∫
Ld
dy
(
φ∗k

(
x‖
)
− ϕ

)
exp

(
−k

2 (x− y)2

2

)(
φ∗k

(
y‖
)
− ϕ

)
=

= αk3

2L
√

2π


∫ L/2

−L/2
dx‖

∫ L/2

−L/2
dy‖

(
φ∗k

(
x‖
)
− ϕ

)
exp

−k2
(
x‖ − y‖

)2

2

(φ∗k (y‖)− ϕ)
 =

= α
k2

2
{
ϕ2 − 2ϕI1 + I2

}
,

I1 = k

L
√

2π

∫ L/2

−L/2
dx‖φ∗k

(
x‖
) ∫ L/2

−L/2
dy‖ exp

−k2
(
x‖ − y‖

)2

2

 ,
I2 = k

L
√

2π

∫ L/2

−L/2
dx‖

∫ L/2

−L/2
dy‖φ∗k

(
x‖
)

exp

−k2
(
x‖ − y‖

)2

2

φ∗k (y‖) .
(G.3)

In the preceding expressions we used the index ‖ to emphasize the direction parallel to the
kink solution.
The next step is to calculate the integrals I1 and I2:

I1 = 1
2L

∫ L/2

−L/2
dxφ∗k(x)

(
erf
(
k(L/2 + x)√

2

)
+ erf

(
k(L/2− x)√

2

))
≈

≈ φ0
2L

∫ L/2

−L/2
dx tanh

(
x− a
ξ

)(
erf
(
k(L/2 + x)√

2

)
+ erf

(
k(L/2− x)√

2

))
.

(G.4)

Here we neglected the part of φ∗k that is proportional to k2, which will be shown to be
appropriate later.
This is still incalculable, so we approximate tanh→ sgn:

I1 ≈
φ0
2L

{
−
∫ a

−L/2
dx

(
erf
(
k(L/2 + x)√

2

)
+ erf

(
k(L/2− x)√

2

))
+

+
∫ L/2

a
dx

(
erf
(
k(L/2 + x)√

2

)
+ erf

(
k(L/2− x)√

2

))}
=

= φ0
kL

√
2
π
e−

1
8k

2(µ+1)2L2 (
e

1
2k

2µL2 − 1
)

+

− φ0
2

(
(1 + µ) erf

(
kL

2
√

2
(1 + µ)

)
− (1− µ) erf

(
kL

2
√

2
(1− µ)

))
kL→+∞−→ −µφ0 +O

( 1
kL

)
,

where µ = 2a
L
, 0 < µ < 1

(G.5)

and combining with the expression for a from Eq. (5.16) in Chapter 5 we have I1 ≈ αϕ.
We also check that it is justified to disregard the part of φ∗k that is proportional to k2 in
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expression Eq. (G.4),:

k2

L

∫ L/2

−L/2
dx

(
erf
(
k(L/2 + x)√

2

)
+ erf

(
k(L/2− x)√

2

))
f1 (x) ∝

∝ k2

L

∫ L/2

−L/2
dx

(
erf
(
k(L/2 + x)√

2

)
+ erf

(
k(L/2− x)√

2

))
×

×
{

f1(0)
cosh ((x− a)/ξ)2 −

α

8

{
2 erf

(
k(x− a)√

2

)
−
(

sgn(x/ξ)− ϕ

φ0

)
erfc

(
k(L/2− |x|)√

2

)}}
.

(G.6)

Using the Jordan’s estimation lemma [134] and seeing that all of the subintegral functions
are at most of O(1), one promptly sees that Eq. (G.6) is at most of O(k2), and I1 is already
multiplied by k2 in the full expression for the regulator part of the action Eq. (G.3), so we
can neglect the contribution in Eq. (G.6).
The approximation tanh→ sgn is used to calculate I2, too:

I2 = k

L
√

2π

∫ L/2

−L/2
dx‖

∫ L/2

−L/2
dy‖φ∗k

(
x‖
)

exp

−k2
(
x‖ − y‖

)2

2

φ∗k (y‖) =

= kφ2
0

L
√

2π

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy exp

(
−k

2 (x− y)2

2

)
×

×
{

sgn ((x− a)/ξ) sgn ((y − a)/ξ) + 2k2 sgn ((x− a)/ξ) f1(y) + k4f1(x)f1(y)
}
,

(G.7)

We calculate I2 part by part, but in all instances, it turns out to be beneficial to calculate
the integral over x in Eq. (G.7) in the cases with sgn ((x− a)/ξ) first:
∫ L/2

−L/2
dx sgn ((x− a)/ξ) exp

(
−k

2 (x− y)2

2

)
=

= 1
k

√
π

2

(
2 erf

(
k(x− a)√

2

)
+ erf

(
k (L/2− x)√

2

)
− erf

(
k (L/2 + x)√

2

))
.

(G.8)

We continue on with the integration:
1. sgn ((x− a)/ξ) sgn ((y − a)/ξ):

kφ2
0

L
√

2π

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy exp

(
−k

2 (x− y)2

2

)
sgn ((x− a)/ξ) sgn ((y − a)/ξ) =

= φ2
0

(
(1 + µ) erf

(
kL

2
√

2
(1 + µ)

)
+ (1− µ) erf

(
kL

2
√

2
(1− µ)

)
− erf

(
kL√

2

))
+

− φ2
0

kL

√
2
π

(
3 + e−

1
2k

2L2 − 2e−
1
8k

2L2(1−µ)2 − 2e−
1
8k

2L2(1+µ)2) kL→+∞−→ φ2
0 +O

( 1
kL

)
(G.9)

The rest of I2 involves f1:
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2. sgn ((x− a)/ξ) / cosh
(
y − a
ξ

)2
:

k3

L

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy sgn ((x− a)/ξ) exp

(
−k

2 (x− y)2

2

)
/ cosh

(
y − a
ξ

)2
∝

(G.8)
∝ k2

L

∫ L/2

−L/2
dx

(
2 erf

(
k(x− a)√

2

)
+ erf

(
k (L/2− x)√

2

)
− erf

(
k (L/2 + x)√

2

))
cosh ((y − a)/ξ)2 ≤

≤ k2

L

∫ L/2

−L/2
dx

∣∣∣∣ (2 erf
(
k(x− a)√

2

)
+ erf

(
k (L/2− x)√

2

)
− erf

(
k (L/2 + x)√

2

)) ∣∣∣∣∣∣ cosh ((y − a)/ξ)2 ∣∣ ≤

≤ k2

L

∫ L/2

−L/2
dx

∣∣∣∣ (2 erf
(
k(x− a)√

2

)
+ erf

(
k (L/2− x)√

2

)
− erf

(
k (L/2 + x)√

2

)) ∣∣∣∣ ≤
≤ k2 max

x∈[−L/2,L/2]

∣∣∣∣ (2 erf
(
k(x− a)√

2

)
+ erf

(
k (L/2− x)√

2

)
− erf

(
k (L/2 + x)√

2

)) ∣∣∣∣ ≤ 4k2.

(G.10)

Here we again used the Jordan’s estimation lemma.
As I2 is in Eq. (G.3) already multiplied by k2, we neglect Eq. (G.10), which would be
of order k4.

3. sgn ((x− a)/ξ)
{

2 erf
(
k(x− a)√

2

)
−
(

sgn(x/ξ)− ϕ

φ0

)
erfc

(
k(L/2− |x|)√

2

)}
:

k3

L

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy sgn ((x− a)/ξ) exp

(
−k

2 (x− y)2

2

)
×

×
{

2 erf
(
k(x− a)√

2

)
−
(

sgn(x/ξ)− ϕ

φ0

)
erfc

(
k(L/2− |x|)√

2

)}
∝

(G.8)
∝ k2

L

∫ L/2

−L/2
dx

(
2 erf

(
k(x− a)√

2

)
+ erf

(
k (L/2− x)√

2

)
− erf

(
k (L/2 + x)√

2

))
×

×
{

2 erf
(
k(x− a)√

2

)
−
(

sgn(x/ξ)− ϕ

φ0

)
erfc

(
k(L/2− |x|)√

2

)}
.

(G.11)

Due to erf, sgn and ϕ/φ0 being of at most O(1), and the same logic used in Eq. (G.10),
Eq. (G.11) can be disregarded too.

4. f1(x)f1(y)
This part of the integral is multiplied by k7/L (k3 from the regulator and k2 from
each f1). The subintegral function is composed of 0 < exp

(
−k2 (x− y)2 /2

)
≤ 1 and

different powers of 0 < 1/ cosh ((x− a)/ξ)2 ≤ 1 and erf, erfc and sgn functions, all of
at most O(1). To make an estimate of the order of magnitude, we can put everything
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but the regulator to be equal to 1. Then we have to assess the following:
k7

L

∫ L/2

−L/2
dy

∫ L/2

−L/2
dx exp

(
−k

2 (x− y)2

2

)
=

= k5
(
k
√

2π erf
(
kL√

2

)
− 2
L

(
1− exp

(
−k

2L2

2

)))
.

(G.12)

This can be neglected.
All in all, we have

I2 ≈ φ2
0 +O

( 1
kL

)
+O

(
k2
)

(G.13)

The results of this subsection, combined, give the IR regulator contribution:
1

2Ld (φ∗k − ϕ) ·Rk · (φ∗k − ϕ) ≈ αk
2

2
(
φ2

0 − ϕ2
)

+O
(
k

L

)
+O

(
k4
)
. (G.14)

2 Contribution associated with the bare action

We calculate:
1
Ld
S[φ∗k] = 1

L

∫ L/2

−L/2
dx

{1
2
(
φ′∗k(x)

)2 − 1
ξ2φ∗k(x)2 + 1

2ξ2φ2
0
φ∗k(x)4

}
(G.15)

1. The k = 0 contribution from φ0 tanh ((x− a)/ξ):
1
Ld
S[φ∗,k=0] = − φ2

0
2ξ2 + 4φ2

0
3ξL

(G.16)

2. The O
(
k2) terms in 1

2L
∫ L/2
−L/2 dx(φ′∗k(x))2:

First we find the derivative:
dφ∗k(x)
dx

= φ0
ξ

{ 1
cosh ((x− a)/ξ)2 − 2ξ2k2f1(0) sinh ((x− a)/ξ)

cosh ((x− a)/ξ)3 +

− α ξ3k3

2
√

2π
exp

(
−k

2

2 (x− a)2
)

+ α
ξ2k2

8 sgn′ (x) erfc
(
k√
2

(
L

2 − |x|
))

+

+ α
ξ3k3

4
√

2π
|x|′
(

sgn
(
x

ξ

)
− ϕ

φ0

)
exp

(
−k

2

2

(
L

2 − |x|
)2
)} (G.17)

We can eliminate the sgn′(x/ξ) part from Eq. (G.17), because it is 6= 0 only at x = 0,
where the erfc decays as exp

(
−k2L2/8

)
/(kL) with the linear size of the system L.

When we square the expression Eq. (G.17), no other factors can recuperate that, so
we neglect the sgn′(x/ξ) term. Similarly, |x|′ = sgn(x/ξ) everywhere except in x = 0,
but there it is multiplied by exp

(
−k2L2/8

)
, so we can put |x|′ = sgn(x/ξ):

dφ∗k(x)
dx

= φ0
ξ

{ 1
cosh ((x− a)/ξ)2 − 2ξ2k2f1(0) sinh ((x− a)/ξ)

cosh ((x− a)/ξ)3 +

− α ξ3k3

2
√

2π
exp

(
−k

2

2 (x− a)2
)

+ α
ξ3k3

4
√

2π

(
1− sgn

(
x

ξ

)
ϕ

φ0

)
exp

(
−k

2

2

(
L

2 − |x|
)2
)}

.

(G.18)
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We continue on to the O
(
k2) contribution of Eq. (G.18) part by part:

(a) sinh ((x− a)/ξ) / cosh ((x− a)/ξ)5:

k2

L

∫ L/2

−L/2
dx

sinh ((x− a)/ξ)
cosh ((x− a)/ξ)4 ∝

∝ k2

L

(
1

cosh (L(1− µ)/ξ)4 −
1

cosh (L(1 + µ)/ξ)4

)
L→+∞−→ 0.

(G.19)

(b) exp
(
−k2(x− a)2/2

)
/ cosh ((x− a)/ξ)2:

k3

L

∫ L/2

−L/2
dx

exp
(
−k2(x− a)2/2

)
cosh ((x− a)/ξ)2 ≤ k3

L

∫ L/2

−L/2
dx exp

(
−k2(x− a)2/2

)
=

= k3

kL

√
π

2

(
erf
((1 + µ)kL

2
√

2

)
+ erf

((1− µ)kL
2
√

2

))
kL→+∞−→ 0.

(G.20)

(c) exp
(
−k2(L/2− |x|)2/2

)
/ cosh ((x− a)/ξ)2:

0 ≤k
3

L

∫ L/2

−L/2
dx

exp
(
−k2(L/2− |x|)2/2

)
cosh ((x− a)/ξ)2 ∝

∝ k3

L

(∫ 0

−L/2
dx

exp
(
−k2(L/2 + x)2/2

)
cosh ((x− a)/ξ)2 +

∫ L/2

0
dx

exp
(
−k2(L/2− x)2/2

)
cosh ((x− a)/ξ)2

)
∝

∝ k3
(∫ 0

−1
dx

exp
(
−k2L2(1 + x)2/8

)
cosh (L(x− µ)/2ξ)2 +

∫ 1

0
dx

exp
(
−k2L2(1− x)2/8

)
cosh (L(x− µ)/2ξ)2

)
∝

∝ k3
(∫ 1

0
dx

exp
(
−k2L2(1− x)2/8

)
cosh (L(x+ µ)/2ξ)2 +

∫ 1

0
dx

exp
(
−k2L2(1− x)2/8

)
cosh (L(x− µ)/2ξ)2

)
≤

≤ 2k3
∫ 1

0
dx exp

(
−k

2L2

8 (1− x)2
)
∝ k3

kL
erf
(
kL

2
√

2

)
kL→+∞−→ 0.

(G.21)

(d) sgn(x/ξ) exp
(
−k2(L/2− |x|)2/2

)
/ cosh ((x− a)/ξ)2:

Can be neglected, with justification following Eq. (G.21) closely.

The rest of the terms are of O
(
k4), as we integrate O(1) functions over the interval of

size L, and there is a k4/L prefactor. Concerning the functions of kx, they have an
additional k prefactor with which the change in measure dx→ d(kx)/k reduces.

3. The O
(
k2) terms in − 1

Lξ2
∫ L/2
−L/2 dxφ∗k(x)2:

(a) tanh ((x− a)/ξ) / cosh ((x− a)/ξ)2:

k2

L

∫ L/2

−L/2
dx

tanh ((x− a)/ξ)
cosh ((x− a)/ξ)2 ∝

∝ k2

L

( 1
1 + cosh (L(1− µ)/ξ) −

1
1 + cosh (L(1 + µ)/ξ)

)
L→+∞−→ 0.

(G.22)
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(b) tanh ((x− a)/ξ) erf
(
k(x− a)/

√
2
)
:

k2αφ
2
0

2L

∫ L/2

−L/2
dx tanh

(
x− a
ξ

)
erf
(
k√
2

(x− a)
)
≈

≈ k2αφ
2
0

2L

∫ L/2

−L/2
dx sgn ((x− a)/ξ) erf

(
k√
2

(x− a)
)

=

= k2αφ
2
0

4

{
(1 + µ) erf

(
kL

2
√

2
(1 + µ)

)
+ (1− µ) erf

(
kL

2
√

2
(1− µ)

)}
+

+ k2

kL

αφ2
0√

2π

{
e−k

2L2(1−µ)2/8 + e−k
2L2(1+µ)2/8 − 2

}
kL→+∞−→ αk2φ

2
0

2

(G.23)

(c) tanh ((x− a)/ξ) erfc
(
k(L/2− |x|)/

√
2
)
:

k2

L

∫ L/2

−L/2
dx tanh

(
x− a
ξ

)
erfc

(
k√
2

(L/2− |x|)
)
≈

≈ k2

L

∫ L/2

−L/2
dx sgn ((x− a)/ξ) erfc

(
k√
2

(L/2− |x|)
)

=

= −k2
{

erfc
(
kL

2
√

2

)
− (1− µ) erfc

(
kL

2
√

2
(1− µ)

)}
+

+ 2
√

2
π

k2

kL

{
e−k

2L2/8 − e−k2L2(1−µ)2/8
}
kL→+∞−→ 0

(G.24)

(d) sgn(x/ξ) tanh ((x− a)/ξ) erfc
(
k(L/2− |x|)/

√
2
)
:

k2

L

√
π

2

∫ L/2

−L/2
dx sgn(x/ξ) tanh

(
x− a
ξ

)
erfc

(
k√
2

(L/2− |x|)
)
≈

≈ k2

L

∫ L/2

−L/2
dx sgn(x/ξ) sgn ((x− a)/ξ) erfc

(
k√
2

(L/2− |x|)
)
∝

∝ k2

kL

{
e−k

2L2(1−µ)2/8 − 1
}
− k2

√
π

2
√

2
(1− µ) erfc

(
kL

2
√

2
(1− µ)

)
kL→+∞−→ 0

(G.25)

(e) f1(x)2:

k4

L

∫ L/2

−L/2
dxf1(x)2 is at worst of order k

4

L
× L = k4, (G.26)

and can thus be neglected (f2
1 (x) is of order ≤ O(1) on the whole domain, we use

the Jordan’s estimation lemma).
4. The O

(
k2) terms in 1

2Lξ2φ2
0

∫ L/2
−L/2 dxφ∗k(x)4:
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(a) tanh ((x− a)/ξ)3 / cosh ((x− a)/ξ)2:

k2

L

∫ L/2

−L/2
dx

tanh
(
x− a
ξ

)3

cosh
(
x− a
ξ

)2 ∝

∝ k2

L

{
tanh4

(
L

2ξ (1− µ)
)
− tanh4

(
L

2ξ (1 + µ)
)}

L→+∞−→ 0

(G.27)

(b) tanh ((x− a)/ξ)3 erf
(
k(x− a)/

√
2
)
:

− k2 αφ
2
0

2Lξ2

∫ L/2

−L/2
dx tanh

(
x− a
ξ

)3
erf
(
k√
2

(x− a)
)
≈

≈ −k2 αφ
2
0

2Lξ2

∫ L/2

−L/2
dx sgn ((x− a)/ξ) erf

(
k√
2

(x− a)
)

=

= −k2αφ
2
0

4ξ2

{
(1 + µ) erf

(
kL

2
√

2
(1 + µ)

)
+ (1− µ) erf

(
kL

2
√

2
(1− µ)

)}
+

+ k2 αφ2
0√

2πξ2

{ 1
kL

(
2− e−k2L2(1+µ)2/8) − e−k2L2(1−µ)2/8)

)}
kL→+∞−→ −k2αφ

2
0

2
(G.28)

(c) tanh ((x− a)/ξ)3 erfc
(
k(L/2− |x|)/

√
2
)
:

k2

L

∫ L/2

−L/2
dx tanh

(
x− a
ξ

)3
erfc

(
k√
2

(L/2− |x|)
)
≈

≈ k2

L

∫ L/2

−L/2
dx sgn ((x− a)/ξ) erfc

(
k√
2

(L/2− |x|)
)
∝

∝ k2

kL

{
e−k

2L2(1−µ)2/8 − e−k2L2/8
}

+

+ k2

2

√
π

2

{
erfc

(
kL

2
√

2

)
− (1− µ) erfc

(
kL

2
√

2
(1− µ)

)}
kL→+∞−→ 0

(G.29)

(d) sgn(x/ξ) tanh ((x− a)/ξ)3 erfc
(
k(L/2− |x|)/

√
2
)
:

k2

L

∫ L/2

−L/2
dx sgn(x/ξ) tanh

(
x− a
ξ

)3
erfc

(
k√
2

(L/2− |x|)
)
≈

≈ k2

L

∫ L/2

−L/2
dx sgn(x/ξ) sgn ((x− a)/ξ) erfc

(
k√
2

(L/2− |x|)
)
∝

∝ k2

kL

{
e−k

2L2(1−µ)2/8 − 1
}
− k2

2 (1− µ) erfc
(
kL

2
√

2
(1− µ)

)
kL→+∞−→ 0

(G.30)

(e) Involving f2
1 (x), f3

1 (x) and f4
1 (x):

All of the functions involved in these integrations are at most of order O(1),
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and we integrate on (−L/2, L/2). Using the Jordan’s estimation lemma again,
the integrals can be maximally of order L, and are multiplied by k2n/L, where
n = 2, 3, 4. The "strongest" contribution is then maximally of order O(k4), and
can be neglected.

The O
(
k2) contributions from φ∗k(x)2 and φ∗k(x)4 terms cancel out, as using tanh ≈ sgn we

have:

− 1
ξ2φ∗k(x)2 + 1

2ξ2φ2
0
φ∗k(x)4 =

= O
(
k0
)
− 2φ

2
0
ξ2 f1(x) sgn (x− a)

(
1− sgn (x− a)2

)
+O

(
k4
)
,

(G.31)

and sgn (x− a)2 = 1 (everywhere but x = a, but we are integrating this function).
Summing up all the contributions in this subsection, for the action contribution to the inner
saddle point effective potential we get:

S [φ∗k] = − φ2
0

2ξ2 + 4φ2
0

3ξL
(G.32)

Combining Eq. (G.14) and Eq. (G.32), we arrive at the full inner saddle point effective
potential:

USP
k (ϕ) = − φ2

0
2ξ2 + 1

2αk
2φ2

0 −
1
2αk

2ϕ2. (G.33)

Note that one can use the virial relation [84] that relates the contributions of the kinetic
(derivative) term and of the potential term to the saddle-point action as a check of several
formulas. Indeed, due to the fact that the field is a solution of the saddle-point differential
equation,

∂2
xφ∗k(x) = V ′(φ∗k(x)), (G.34)

where V (φ) is the bare potential. Multiplying both sides by ∂xφ∗k(x) and integrating with
respect to x gives

1
2[∂xφ∗k(x)]2 = V (φ∗k(x)) + const., (G.35)

so that up to an additive constant (which is simply equal to φ2
0/
(
2ξ2)[1 +O

(
k4)] for the φ4

theory) the kinetic and the potential contributions are equal at the saddle-point level.

We also note that we have replaced ak (ϕ) with the k = 0 value, which is justified as ak (ϕ)
does not figure in the O

(
k0) contribution to the action (and thus the effective potential).

The next terms are of O
(
k2), so their correction, if ak 6=0 (ϕ) was used, would be of O

(
k4)×

ak=0 (ϕ) /L, which we neglect.
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