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SUMMARY

This thesis explores the connection between radical isogenies and modular curves. Radi-

cal isogenies are formulas designed to calculate chains of isogenies of fixed small degree

N, introduced by Castryck, Decru, and Vercauteren in [17]. One significant advantage of

radical isogeny formulas over other formulas with a similar purpose is that they eliminate

the need to generate a point of order N that generates the kernel of the isogeny. While the

authors originally developed radical isogeny formulas using elliptic curves in Tate normal

form, in [54] Onuki and Moriya proposed radical isogeny formulas of degrees 3 and 4

on Montgomery curves and attempted to obtain a less complex form of radical isogenies

using enhanced elliptic and modular curves.

In this thesis, we will first translate the original setup of radical isogenies in Tate

normal form into the language of modular curves. Second, we will solve an open problem

introduced by Onuki and Moriya regarding radical isogeny formulas on X0(N).

Chapter 1 provides the necessary background, definitions, and results regarding group

theory, elliptic curves, modular curves, etc.

Chapter 2 gives a short introduction to cryptography and an overview of post-quantum

cryptography, mainly focusing on the isogeny-based post-quantum cryptography.

Chapter 3 introduces radical isogenies and radical isogenies on Montgomery curves.

The last two chapters are based on the author’s paper [58]. In Chapter 4, we generalize

radical isogenies using modular curves. In the final Chapter 5, we extend the setting from

the previous Chapter 4 to include the modular curve X0(N) and discuss the existence of

radical isogeny formulas in this extended setting.

Keywords: elliptic curves, isogenies, modular curves, enhanced elliptic curves, isogeny-

based post-quantum cryptography, radical isogenies.
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SAŽETAK

Ovaj rad istražuje vezu izmedu radikalnih izogenija i modularnih krivulja. Radikalne izo-

genije su formule namijenjene izračunu lanaca izogenija, gdje je svaka izogenija u tom

lancu malog, fiksnog stupnja N. Ove formule se u literaturi prvi put pojavljuju 2020. go-

dine u članku [17], autora Castrycka, Decrua i Vercauterena. Ono što razlikuje radikalne

izogenije od sličnih formula iste namjene, je to da kod njih ne postoji potreba za pozna-

vanjem ili generiranjem točke reda N na eliptičkoj krivulji koja generira jezgru izogenije.

Radikalne izogenije su originalno razvijene za krivulje u Tateovoj normalnoj formi, a kas-

nije su Onuki i Moriya, u svom članku [54], pokazali da postoje i radikalne izogenije na

Mongomeryjevim krivuljama stupnja 3 i 4, te su pokušali definirati jednostavniji oblik

radikalnih izogenija koristeći teoriju modularnih i obogaćenih eliptičkih krivulja.

Dva su glavna rezultata ovog rada. Prvo, pokazat ćemo da se radikalne izogenije u

Tateovoj normalnoj formi mogu generalizirati koristeći jezik modularnih krivulja. Drugo,

riješit ćemo otvoreni problem, koji se prvi put u literaturi pojavio u [54], a tiče se radikalnih

izogenija na modularnoj krivulji X0(N).

U poglavlju 1 definiramo osnovne pojmove i rezultate potrebne za ostatak rada, a

direktno vezane za teoriju grupa, eliptičke krivulje, modularne krivulje itd.

U poglavlju 2 dan je pregled osnovnih pojmova povezanih s kriptografijom, gdje se

posebno fokusiramo na post-kvantnu kriptografiju i post-kvantnu kriptografiju temeljenu

na izogenijama.

U poglavlju 3 definiramo radikalne izogenije i radikalne izogenije na Montgomeryje-

vim krivuljama.

U zadnja dva poglavlja, koja prate autoričin članak [58], iskazujemo glavne rezul-

tate ovog rada. U poglavlju 4 generaliziramo pojam radikalnih izogenija koristeći teoriju

modularnih krivulja. Zatim, u zadnjem poglavlju 5, dodatno proširujemo generalizaciju
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Sažetak

iz poglavlja 4 kako bismo uključili i modularnu krivulju X0(N), te razmatramo mogućnost

postojanja radikalnih izogenija u tom proširenom kontekstu.

Ključne riječi: eliptičke krivulje, izogenije, modularne krivulje, obogaćene eliptičke

krivulje, post-kvantna kriptografija bazirana na izogenijama, radikalne izogenije.
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INTRODUCTION

Post-quantum cryptography (PQC) is an area of cryptography focused on developing

cryptosystems resistant to attacks from both classical and quantum computers. These sys-

tems rely on hard mathematical problems different from the integer factorization problem

or (elliptic-curve) discrete logarithm problem, which most current cryptographic algo-

rithms rely on. PQC includes various approaches to cryptography, such as lattice, code,

multivariate, hash, and isogeny-based cryptography.

The first isogeny-based cryptosystem was proposed by Couveignes in 1997 [25], and

it was independently rediscovered by Rostovtsev and Stolbunov in 2006 [61]. They de-

scribed a non-interactive key exchange using ordinary elliptic curves. This scheme is

commonly referred to as CRS. This field gained new momentum in 2011 with the pro-

posal of SIDH by De Feo and Jao in [41], the supersingular isogeny Diffie-Hellman

key exchange. A variant of this algorithm called SIKE was a promising candidate for

NIST1 PQC standardization, but it was broken in several independent papers in August

2022 [15, 47, 60]. In 2018, Castryck, Lange, Martindale, Panny, and Renes introduced

CSIDH [18], a non-interactive key exchange protocol that adapts the CRS protocol to su-

persingular elliptic curves. The previously mentioned attacks on SIDH cannot be applied

to CSIDH.

Compared to other post-quantum protocols, smaller key and ciphertext sizes are the

main advantages of isogeny-based cryptography. On the other hand, the main disadvan-

tage of isogeny-based protocols has been the high computational cost of encryption and

decryption. These advantages and disadvantages are particularly evident in digital sig-

natures. SQISign, introduced in 2020 [28], is among the most promising and compact

isogeny-based digital signatures. It has seen some speed improvements in 2022 [29], but

1Short for National Institute of Standards and Technology.
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Introduction

despite this, it is still several orders of magnitude slower than other post-quantum signa-

ture schemes.

Protocols like CRS, CSIDH, or, for example, Charles, Goren, and Lauter’s hash func-

tion [20], share the need to compute isogenies of low degree in a finite field. An isogeny

can be computed from the coordinates of the points in its kernel using Vélu’s formu-

las [67]. To improve and accelerate isogeny computation, various approaches and variants

of Vélu’s formulas have been proposed for different curve models, such as Montgomery

curves in [23], Edwards curves [19, 43], and Hessian curves [57]. An algorithm by Bern-

stein, De Feo, Leroux, and Smith [12] reduces the cost of computation of isogeny of

degree N from O(N) to Õ(
√

N) and can be applied to Huff’s curves [71].

Radical isogenies are formulas designed for computing a chain of isogenies of the

same small degree between elliptic curves over a finite field, first introduced by Castryck,

Decru, and Vercauteren in 2020 [17]. The authors showed that using radical isogeny

formulas in CSIDH-512 leads to more efficient implementation and a speed-up of 19%,

see [17, Section 6.]. Furthermore, in 2022, the same group of authors, along with Houben

[16], proposed new and optimized radical isogeny formulas and achieved a speed-up of

35% of CSIDH-512 compared to the implementation without radical isogenies. In [17],

formulas were given for N f 13, and in [16] authors provided formulas for N f 37.

The concept of radical isogeny formulas was initially introduced for elliptic curves in

Tate normal form. Generally, an elliptic curve over a field k and a point on that curve of

an order N, where N g 4, are isomorphic to a unique pair of an elliptic curve of the form

E : y2 +(1− c)xy−by = x3 −bx2 with b,c ∈ k,

and a point P = (0,0) of the same order N. This form is known as the Tate normal

form and it provides two unique coefficients, denoted b and c. Given a cyclic isogeny

ϕ : E −→ E ′ = E/ïPð, radical isogeny formulas compute points P′ of order N on E ′ such

that the composition

E
ϕ−→ E ′ −→ E ′/ïP′ð

is cyclic of degree N2. The coordinates of P′ are elements of the smallest field that con-

tains the coefficients b and c, along with a radicand ρ that is a N-th root of a rational

expression in the coefficients b and c. The elliptic curve E ′ and point P′ are also isomor-

2



Introduction

phic to an elliptic curve in Tate normal form (for example, defined with coefficients b′

and c′) and a point (0,0) of order N. This allows us to use radical isogeny formulas again,

making the process iterative. The coefficients b′ and c′ can be expressed as elements of

the same field as P′.

As a first contribution of this thesis, in Chapter 4, we will extend the notion of radical

isogeny formulas to the language of modular curves. To achieve this, we will utilize en-

hanced elliptic curves, which are curves paired with additional torsion data and affiliated

with some congruence subgroup. The aforementioned parameters from Tate normal form

and the radicand ρ can all be regarded as functions on the set of equivalence classes of

enhanced elliptic curves. This generalization of radical isogenies for degree N is directly

related to the modular curve X1(N), congruence subgroup Γ1(N), and pairs of enhanced

elliptic curves consisting of an elliptic curve and a point of order N.

In [54], Onuki and Moriya introduced radical isogeny formulas of degrees 3 and 4 on

Montgomery curves. A Montgomery curve over a field k is an elliptic curve of the form

E : By2 = x3 +Ax2 + x,

where A,B ∈ k and B(A2 − 4) ̸= 0. Typically, the value of B is set to 1. The coefficient

A is called the Montgomery coefficient of E. For degree 4 (degree 3 is similar), there

exists a bijection between the set of equivalence classes of enhanced elliptic curves for

Γ0(4), denoted by S0(4), and the set of equivalence classes of enhanced elliptic curves

for Γ1(4). This bijective relation implies the existence of radical isogeny formulas for the

modular curve X0(4). The Montgomery coefficient A represents a class in the set S0(4),

see [54, Section 2.3.]. In other words, the coefficient A describes an enhanced elliptic

curve where the additional torsion data is a cyclic subgroup of order 4. The Montgomery

coefficient for the curve E ′ can be calculated by a rational expression depending on the

fourth root from 4(A+2), see [54, Theorem 8.].

The authors of [54] explored the possibility of extending radical isogeny formulas to

the modular curve X0(N) when N g 5. We can summarize the idea behind this in a few

informal stages: take a modular curve of genus zero, such as X0(5). Find a parameter

that specifies its set of equivalence classes of enhanced elliptic curves, then a model of

a elliptic curve over X0(5) defined by that parameter (Tate, Montgomery, or something

3
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else), and then find a radical isogeny formula on such a curve. This approach is presented

as an example in [54, Section 4.] and in Example 3.2.5, which argues against the existence

of radical isogeny formulas for that curve. While it suggests that finding radical isogenies

for degrees greater than 4 may not be possible, a general answer was left as an open

problem. We provide a solution to this open problem in Chapter 5 by proving radical

isogeny formulas cannot exist on the set of equivalence classes of enhanced elliptic curves

for Γ0(N) when N g 5. To achieve this, we extend the setting of the previous chapter to

include modular curve X0(N).

Chapter 1 presents the necessary background, notation, definitions, and results that

will be used throughout this thesis. This includes a brief overview of some parts of group

theory, fields, fields extension, and Galois theory. We will also cover elliptic curves, iso-

genies of elliptic curves, divisors, pairings, congruence subgroups, and modular curves.

Chapter 2 reviews post-quantum cryptography, mainly focusing on isogeny-based

post-quantum cryptography. We will provide a brief introduction to cryptography and

elliptic-curve cryptography. We will also introduce basic primitives used in isogeny-based

post-quantum cryptography, and give an overview of CSIDH key exchange.

Chapter 3 provides the background on radical isogenies, including the definition, some

of their properties, and examples. This chapter will also introduce radical isogenies on

Montgomery curves and delve deeper into the previously mentioned open problem.

4



1. PRELIMINARIES

This chapter provides the necessary background. For the most part, the section regarding

some basic properties of groups, fields, and Galois theory follows [46]. The elliptic curves

section mostly follows [64] and [69], and the modular curves section follows [31].

1.1. GROUPS, GROUPS ACTION AND OVERVIEW

OF GALOIS THEORY

This section provides some basic definitions regarding the theory of groups, groups action,

and a short overview of basic notions from Galois theory. We will begin by defining a

group.

Definition 1.1.1. A group G is a set, together with a binary operation · : G×G −→ G,

that maps a pair (x,y) ∈ G×G to an element of G denoted x · y, and has the following

properties:

(i) It is associative:

(x · y) · z = x · (y · z), ∀x,y,z ∈ G.

(ii) It has a unique unit element (identity):

∃! e ∈ G such that e · x = x = x · e, ∀x ∈ G.

(iii) Every element has a unique inverse:

∀x ∈ G, ∃! y ∈ G such that x · y = y · x = e.

5



Preliminaries Groups, groups action and overview of Galois theory

Notice that the existence of the unit element also implies that G is a nonempty set.

The usual notation for the operation x · y is just xy, and for the inverse, it is x−1. When

the underlying operation is addition, we use the + notation and −x for the inverse. If the

binary operation is also commutative, G is called commutative or abelian group.

Example 1.1.2. The set of rational numbers forms a group under addition, denoted

(Q,+). The set of nonzero rational numbers forms a group under multiplication, denoted

(Q×, ·).

Definition 1.1.3. A group (G, ·) is a cyclic group if there exists an element g ∈ G such

that every element x ∈ G can be written in a form x = gn for some integer n. The element

g is called a generator of the group G.

Let G and G′ be groups. A homomorphism between G and G′ is a function f : G −→ G′

such that f (xy) = f (x) f (y), for all x,y ∈ G. Additionally, f maps the unit element e of

G to the unit element e′ of G′. A homomorphism between G and G′ is an isomorphism if

there exists a homomorphism g : G′−→G such that f ◦g and g◦ f are the identity mappings

on G′ and G respectively. A homomorphism f : G −→ G is called an endomorphism. An

isomorphism f : G −→ G is called an automorphism.

Example 1.1.4. The group (Z,+) is a cyclic group with a generator 1 (and also −1).

Any infinite cyclic group is isomorphic to this group. The group (Z/NZ,+) is a cyclic

group with a generator 1. Any cyclic group with N elements is isomorphic to this group.

Let (G, ·) be a group. A subgroup H of G is a subset of G containing the unit element

of G, closed under the inverse, and closed under the binary operation of G. In other words,

H is a subgroup of G if the restriction of the operation · to H ×H is a group operation on

H.

Example 1.1.5. Let G,G′ be groups and let f be a homomorphism from G to G′. The

kernel of the map f is a subset of G containing all elements x of G, such that f (x) = e′,

where e′ is a unit element for the group G′. The kernel of the map f is a subgroup of G.

Let (G, ·) be a group, and let H be a subgroup of G. A subgroup H is a normal

subgroup if

∀x ∈ G we have xHx−1 = H.

6



Preliminaries Groups, groups action and overview of Galois theory

The kernel of the homomorphism f from Example 1.1.5 is a normal subgroup.

Definition 1.1.6. Let (G, ·) be a group and let S be a set. The (left) group action of G on

S is a mapping G×S −→ S satisfying:

(i) If e is the unit element of G, then es = s, for all s ∈ S.

(ii) For all x,y ∈ G and s ∈ S, we have x(ys) = (xy)s.

A group action G×S −→ S is free if for all s ∈ S, gs = s implies g = e. In other words,

only the identity element fixes elements from the set S. The subset of S consisting of all

elements xs for x ∈ G, is called the orbit of s under G and it is denoted by Gs.

Galois theory

A number of results of this thesis are closely related to the notion of Galois extension.

Despite Galois theory being too broad of a subject to be covered in such a short section,

for completeness we will introduce the basic definitions and results, starting with the

definition of a field and a field extension.

Definition 1.1.7. Let k be a set together with two binary operations, multiplication and

addition. Then (k,+, ·) is a field if:

(i) With respect to addition, k is a commutative group, where the unit element is de-

noted by 0.

(ii) Multiplication is associative and commutative, and the unit element is denoted by

1.

(iii) 0 ̸= 1, and every nonzero element has a multiplicative inverse.

(iv) (distributivity) For all x,y,z ∈ k,

(x+ y)z = xz+ yz and z(x+ y) = zx+ zy.

Note that every field has at least two elements. The field k is finite if it contains a finite

number of elements. The number of elements in a finite field is also the order of that field.

7



Preliminaries Groups, groups action and overview of Galois theory

Example 1.1.8. The real numbers R, with the usual operations of addition and multipli-

cation form a field. The group of integers modulo prime number p, denoted by Z/pZ or

Fp, is a finite field.

The characteristic of a field k, denoted by char(k), is the smallest positive integer n

such that

1+ · · ·+1︸ ︷︷ ︸
n times

= 0,

i.e. the smallest positive integer needed to add multiplicative identity to get the additive

identity. If such an n does not exist, then the characteristic of the field is equal to zero.

Definition 1.1.9. A field k is a subfield of a field L if k ¦ L and field operations in k are

inherited from L.

The characteristic of a subfield is the same as the characteristics of the larger field. If

k is a subfield of a field L, then we also say that L is an extension field of k. This is usually

denoted L/k.

Example 1.1.10. The field of complex numbers C is a field extension of the field of real

numbers R.

There are several different types of field extensions, but we will consider only those

required to define a Galois extension.

Definition 1.1.11. Let k be a subfield of a field L. An element α of L is algebraic over k

if there exist elements a0, . . . ,an, n g 1 in k, not all equal to zero, such that

a0 +a1α + · · ·+anαn = 0.

To put it differently, an element of L is algebraic if it is a root of a nonzero polynomial

with coefficients in k. The set of algebraic elements of L over k is called the algebraic

closure of k, usually denoted by k. A field extension L of k is an algebraic extension if

every element of L is algebraic over k.

Definition 1.1.12. An algebraic extension L/k is a normal field extension if every irre-

ducible polynomial of k[x] which has a root in L splits into linear factors in L.

8



Preliminaries Groups, groups action and overview of Galois theory

Definition 1.1.13. An algebraic extension L/k is a separable extension if the minimal

polynomial of every element of L is separable (does not have multiple roots in an algebraic

closure over k).

Now we can define a Galois extension.

Definition 1.1.14. An algebraic extension L of a field k is a Galois extension if it is

normal and separable.

Let L/k be a field extension. Automorphism σ of L such that σ(x) = x, for all x ∈ k, is

called a k-automorphism of L. A set of all k-automorphism of L is denoted by Aut(L/k).

This, with respect to composition, is the automorphism group of L/k.

Definition 1.1.15. Let k be a subfield of a field L, and H a subgroup of automorphisms

of Aut(L/k). The fixed field of H is defined by

LH = {l ∈ L : σ(l) = l, ∀σ ∈ H}.

Remark. If L/k is an algebraic extension, then L/k is Galois extension if LAut(L/k) = k.

The group of automorphisms of a Galois extension L over k is called the Galois group

of L over k and is usually denoted by Gal(L/k). The identity element of this group is the

identity function on L. A cyclic extension is a Galois extension whose Galois group is

cyclic.

The main result of the Galois theory is that the Galois extension and Galois group

can be used to describe intermediate fields. This is given in the fundamental theorem of

Galois theory.

Theorem 1.1.16. Let L be a finite Galois extension of k, with Galois group G, and let

σ ∈ G. There is a bijection between the set of subfields E of L containing k (E is an

intermediate field), and the set of subgroups H of G, given by E = LH . The field E

is Galois over k if and only if H is normal in G, and if that is the case, then the map

σ 7→ σ |E induces an isomorphism of G/H onto the Galois group of E over k.

Proof. See [46, Chapter VI, Theorem 1.1.] ■

We will finish this section with a definition of radical and simple radical extension,

the importance of which will become obvious in Chapter 3.

9



Preliminaries Groups, groups action and overview of Galois theory

Definition 1.1.17. A radical field extension L of k is a field extension obtained by ad-

joining a sequence of n-th roots of elements.

Definition 1.1.18. Let k be a field. Field extension L/k is a simple radical extension of

degree N g 2 if there exists α ∈ L such that:

(i) L = k(α),

(ii) αN ∈ k,

(iii) xN −αN ∈ k[x] is irreducible.

Example 1.1.19. Examples of radical extensions of Q are Q(
√

2), Q( 3
√

2) or more gen-

erally Q( n
√

2).

10



Preliminaries Elliptic curves

1.2. ELLIPTIC CURVES

This section provides some basic definitions and results regarding the theory of elliptic

curves, isogenies of elliptic curves, divisors, and pairings. We start with the definition of

an elliptic curve.

Definition 1.2.1. Let k be a field. An elliptic curve E over k is a smooth (nonsingular)

projective curve of genus one with a specified base point OE . The point OE is called the

point at infinity.

Every such curve has an equation of the form

Y 2Z +a1XY Z +a3Y Z2 = X3 +a2X2Z +a4XZ2 +a6Z3,

where OE = [0,1,0] is the point at infinity and coefficients a1,a2,a3,a4,a6 ∈ k. Using the

transformations x = X
Z

and y = Y
Z

we get the usual form of elliptic curves called the long

Weierstrass equation

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6, (1.1)

always keeping in mind that there is an extra point at infinity.

In special cases, when the field characteristic is not equal to 2 or 3, the long Weier-

estrass equation can be reduced to the short Weierstrass equation. Let char(k) ̸= 2. The

substitution

y 7→ 1

2
(y−a1x−a3)

transforms the equation (1.1) into

E : y2 = 4x3 +b2x2 +2b4x+b6,

where

b2 = a2
1 +4a4, b4 = 2a4 +a1a3, b6 = a2

3 +4a6.

If additionally, char(k) ̸= 3, using the substitution

(x,y) 7→
(

x−3b2

36
,

y

108

)

11
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we get the short Weierstrass equation

y2 = x3 +27c4x−54c6,

where c4 = b2
2 −24b4 and c6 =−b3

2 +36b2b4 −216b6. Let b8 denote the coefficient

b8 = a2
1a6 +4a2a6 −a1a3a4 +a2a2

3 −a2
4.

With coefficients ai,bi,ci we can define the quantity ∆, which is the discriminant of the

elliptic curve E equal to

∆(E) =−b2
2b8 −8b3

4 −27b2
6 +9b2b4b6,

and j-invariant equal to

j(E) =
c3

4

∆(E)
.

When E is given as y2 = x3 +ax+b, discriminant and j-invariant are equal to

∆(E) =−16(4a3 +27b2), j(E) =−1728
(4a)3

∆(E)
.

The smoothness (nonsingularity) of the elliptic curve is generally characterized by the

values of partial derivations of the function at the points on the curve, i.e. at least one

partial derivation in a point should be different from zero. When a curve is given as

E : y2 = x3 +ax+b, nonsigularity is characterized by ∆(E) ̸= 0.

One of the most important properties of an elliptic curve is the ability to build a group

law on the points of the curve.

Definition 1.2.2 (Composition law, see [64, Chapter III, Section 2.]). Let E be an elliptic

curve over a field k. Let P,Q ∈ E, let l be the line through P and Q (if P = Q, let l be the

tangent line to E at P), and let R be the third point of intersection of l with E. Let l′ be the

line through R and OE . Then l′ intersects E at R,OE , and a third point. We denote that

third point by P+Q.

The composition law has all the expected ”addition” properties: it is commutative and

associative, it has a neutral element and an inverse; and, if we add three points on the

same line we get a neutral element.

12



Preliminaries Elliptic curves

Proposition 1.2.3. Together with the Composition law from Definition 1.2.2, E is an

abelian group with identity element OE . Additionally, suppose that E is defined over k.

Then

E(k) = {(x,y) ∈ k× k : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6}∪{OE},

a set of all the points on E defined over k, is a subgroup of E(k).

Proof. See [64, Chapter III, Proposition 2.2.]. ■

Explicit formulas for the addition of points on a curve (1.1) are given in [64, Chapter

III, Section 2.2.]. The following theorem gives the formula for an elliptic curve in the

short Weierstrass form.

Theorem 1.2.4. Let E be an elliptic curve over a field k of the form

E : y2 = x3 +ax+b,

and let P and Q be points on E.

(i) If P = OE , then P+Q = Q.

(ii) If Q = OE , then P+Q = P.

(iii) If P, Q ̸= OE , write P = (x1,y1) and Q = (x2,y2).

(iv) If x1 = x2 and y1 =−y2, then P+Q = OE .

(v) Otherwise, let λ be defined as

λ =





y2−y1

x2−x1
if P ̸= Q,

3x2
1+a

2y1
if P = Q,

and let

x3 = λ 2 − x1 − x2 and y3 = λ (x1 − x3)− y1.

Then P+Q = (x3,y3).

Proof. See [65, Chapter 6, Theorem 6.6.] ■

Definition 1.2.5. Let E be an elliptic curve, P ∈ E a point and N ∈ Z. A multiplication

by N map is a map [N] : E −→ E defined with:

13
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• [N]P =

N terms if N>0︷ ︸︸ ︷
P+ · · ·+P ,

• [N]P =

|N| terms if N<0︷ ︸︸ ︷
−P−·· ·−P,

• [0]P = OE .

A point P on the elliptic curve E is of order N if

[N]P = OE and [m]P ̸= OE for 0 < m < N.

Closely related to the map [N] is the torsion subgroup.

Definition 1.2.6. Let E be an elliptic curve and let N ∈ Z with N g 1. The N-torsion

subgroup of E, denoted by E[N] is the set

E[N] = {P ∈ E(k) : [N]P = OE}.

The torsion subgroup of E, denoted by Etors, is a set of points of finite order,

Etors =
∞⋃

N=1

E[N].

If E is defined over k, then Etors(k) denotes the points of finite order in E(k).

The following lemma gives the structure of the torsion subgroup.

Lemma 1.2.7. Let E be an elliptic curve over a field k and let N ∈ Z with N g 1. The

N-torsion group of E has the following structure:

• If char(k) ∤ N:

E[N]≃ (Z/NZ)2.

• If char(k) = p > 0, then one of the following is true:

(i) E[pe] = Z
peZ for all e g 1,

(ii) E[pe] = {OE} for all e g 1.

Proof. See [64, Chapter III, Corollary 6.4.]. ■

14
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In the second case in Lemma 1.2.7, for curves defined over a field of positive charac-

teristic p, the elliptic curve is ordinary when the torsion group is equal to E[p] ≃ Z/pZ,

and it is supersingular when the torsion group is equal to E[p]≃ {OE}.

The following lemma holds for a curve E as in (1.1), and a point P of order N g 4.

Lemma 1.2.8. Let E be an elliptic curve over k and let P ∈ E(k) be a point of order

N g 4. The pair (E,P) is isomorphic to a unique pair (E,P) of the form

E : y2 +(1− c)xy−by = x3 −bx2, P = (0,0) (1.2)

with b,c ∈ k and

∆(b,c) = b3(c4 −8bc2 −3c3 +16b2 −20bc+3c2 +b− c) ̸= 0.

Proof. This lemma will be used several times throughout this thesis. We give a complete

proof, and for additional details we refer to [66, Lemma 2.1.] and [35, Section 15.3.].

Let P = (xP,yP) be a point of order N g 4 on an elliptic curve

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6.

Assume that P is equal to (0,0), if not, use the translation (x,y) 7→ (x− xP,y− yP). This

implies a6 = 0, and, as the curve is nonsingular, one of the coefficients a3 and a4 should

be nonzero. The point P is not a point of order 2, so we can assume that a4 = 0, meaning

a3 ̸= 0 and the substitution (x,y) 7→ (x,y+ a4
a3

x) does not affect (0,0). The point P is also

not a point of order 3, so a2 ̸= 0. Set u = a2
a3
. Substitution (x,y) 7→

(
x
u2 ,

y

u3

)
does not affect

the point P = (0,0), and the curve equation is equal to

y2 +a−1
3 a1a2xy+a−2

3 a3
2y = x3 +a−2

3 a3
2x2.

To get the isomorphic curve E, set b = −a−2
3 a3

2 and c = 1− a−1
3 a1a2. The equation for

curve E is equal to

E : y2 +(1− c)xy−by = x3 −bx2.

The uniqueness of the parameters b and c, i.e. of the curve E, follows from the stan-

dard change of coordinates in [64, Chapter III, Table 3.1.] and [64, Chapter III, Proposi-

tion 3.1.(b).].
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The quantity ∆(b,c) is the discriminant of E so it is not zero. Conversely, if ∆(b,c) is

nonzero, then (E,P) defines an elliptic curve and a point that does not have order 1,2 or

3. ■

The curve E in (1.2) is said to be in Tate normal form.

Division polynomials are a useful tool for calculating multiples of points on an elliptic

curve.

Definition 1.2.9. Let E be an elliptic curve given by a Weierstrass equation

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6,

and let m ∈ Z. The m-division polynomial ψm ∈ Z[a1, . . . ,a6,x,y] is given by

ψ1 = 1,

ψ2 = 2y+a1x+a3,

ψ3 = 3x4 +b2x3 +3b4x2 +3b6x+b8,

ψ4 = ψ2 ·
(

2x6 +b2x5 +5b4x4 +10b6x3 +10b8x2 +(b2b8 −b4b6)x+(b4b8 −b2
6)
)
,

and then inductively by

ψ2m+1 = ψm+2ψ3
m −ψm−1ψ3

m+1 for m g 2,

ψ2ψ2m = ψ2
m−1ψmψm+2 −ψm−2ψmψ2

m+1 for m g 3.

Additionally, we define two more polynomials,

φm = xψ2
m −ψm+1ψm−1,

4yωm = ψ2
m−1ψm+2 +ψm−2ψ2

m+1.

Let P = (x1,y1) be a point on an elliptic curve E. Then, [N]P can be calculated as

[N]P =

(
φN(P)

ψN(P)2
,

ωN(P)

ψN(P)3

)
. (1.3)

Thus, P is a point of order dividing N on the curve if and only if ψN(P) = 0. The same

definition of division polynomials can be used for the form (1.2). Let Pm ∈ Z[b,c] be the

m-th division polynomial of the curve (1.2) evaluated at (0,0). If N g 4 and (E,P) is as
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in Lemma 1.2.8, i.e. we have unique b,c ∈ k with ∆(b,c) ̸= 0, then the point P ∈ E(K)

has order dividing N if and only if PN(b,c) = 0. The first couple of polynomials Pm are

P1(b,c) = 1,

P2(b,c) =−b,

P3(b,c) =−b3,

P4(b,c) = c ·b5,

P5(b,c) =−(c−b) ·b8.

For m g 4, let Fm ∈ Z[B,C] be Pm, with all the factors in common with ∆(b,c) and Pd , for

d < m, removed. The first couple of polynomials Fm are

F2(b,c) =
b4

∆(b,c)
∈Q(b,c),

F3(b,c) = b,

F4(b,c) = c,

F5(b,c) = c−b.

(1.4)

For N g 4, the point P = (0,0) on E as in (1.2) is of order N if and only if FN = 0. For

more details, see [66]. We will use polynomials FN in Chapter 3.

1.2.1. Isogenies of elliptic curves

This section covers the basics of isogenies of elliptic curves. For a general introduction

to the algebraic maps between projective varieties, we refer to [64, Chapter I, Section 3].

We give a short excerpt.

Definition 1.2.10. Let E and E ′ be elliptic curves over a field k. The map ϕ : E −→ E ′ is

a rational map if it is defined as ϕ = (u,v), where u and v are rational functions in k(E),

and not both equal to zero. For a point P ∈ E(k), we have ϕ(P) = (u(P),v(P)). The map

ϕ is defined at a point P if there exists a function g ∈ k(C)∗ such that u ◦ g and v ◦ g are

defined at P.1 The map ϕ is a morphism if it is defined for every point P ∈ E(k).

Two elliptic curves E/k and E ′/k are isomorphic over k if there exists morphisms

ϕ : E −→ E ′ and φ : E ′ −→ E such that ϕ ◦ φ and φ ◦ ϕ are identity maps on E ′ and E

1Definition 1.2.24 outlines the conditions for a function to be considered defined at a point.
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respectively. The previously defined j-invariant provides a way to check if two elliptic

curves are isomorphic.

Proposition 1.2.11. Two elliptic curves are isomorphic over k if and only if they have

the same j-invariant.

Proof. See [64, Chapter III, Proposition 1.4.(b).]. ■

Theorem 1.2.12. Let ϕ be a morphism of curves. Then ϕ is either constant or surjective.

Proof. See [64, Chapter II, Theorem 2.3.]. ■

Let E and E ′ be curves over a field k and let ϕ be a nonconstant rational map defined

over k. Composition with ϕ induces an injection of function fields (also called pullback)

that fixes the field k,

ϕ∗ : k(E ′)−→ k(E), ϕ∗ f 7→ f ◦ϕ.

The function field k(E) is a finite extension of ϕ∗(k(E ′)).

Definition 1.2.13. Let E and E ′ be elliptic curves. An isogeny ϕ : E −→ E ′ is a noncon-

stant morphism satisfying ϕ(OE) = OE ′ .

Two elliptic curves E and E ′ are isogenous if there is an isogeny from E to E ′. Being

isogenous is an equivalence relation.

Example 1.2.14. The previously defined multiplication by N map is an isogeny.

Definition 1.2.15. Let ϕ : E −→ E ′ be a map of curves defined over k. If ϕ is constant,

we define the degree of ϕ to be 0. Otherwise, we say that ϕ is a finite map and we define

its degree to be

deg(ϕ) = [k(E) : ϕ∗(k(E ′))].

The degree of the multiplication by N map is N2. The degree of the zero isogeny

is zero. An isogeny is separable (inseparable, purely inseparable) if the finite extension

k(E)/ϕ∗(k(E ′)) is separable (inseparable, purely inseparable).

Theorem 1.2.16. Let ϕ : E −→ E ′ be an isogeny. Then ϕ is a homomorphism, i.e.

ϕ(P+Q) = ϕ(P)+ϕ(Q), ∀P, Q ∈ E.

18
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Proof. See [64, Chapter III, Theorem 4.8.]. ■

As a direct consequence of Theorem 1.2.16, we have that the kernel of an isogeny ϕ

is a finite subgroup ker(ϕ) = ϕ−1(OE ′) of E(k). The size of the kernel divides the degree

of the isogeny, and they are equal when the isogeny is separable. An isogeny is cyclic if

its kernel is a cyclic group.

Proposition 1.2.17. Let E be an elliptic curve and let C be a finite subgroup of E. There

exists a unique elliptic curve E ′ and a separable isogeny ϕ : E −→E ′ satisfying ker(ϕ) =C.

Proof. See [64, Chapter III, Theorem 4.12.]. ■

Proposition 1.2.17 implies the existence of an isogeny from a finite subgroup of a

curve. The proof of the Proposition 1.2.17 given in [64] is not constructive but there is

also a way to give a more algebraic proof with explicit formulas to build such an isogeny.

Theorem 1.2.18. Let E be an elliptic curve over a field k, given by the Weierstrass

equation

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6, ai ∈ k,∀i.

Let C be a finite subgroup of E(k). Then there exists an elliptic curve E ′ and a separable

isogeny ϕ from E to E ′ such that C = ker(ϕ). For a point Q = (xQ,yQ) ∈C with Q ̸=OE ,

define

gx
Q = 3x2

Q +2a2xQ +a4 −a1yQ,

g
y
Q =−2yQ −a1xQ −a3,

vQ =





gx
Q, if 2Q = OE ,

2gx
Q −a1g

y
Q, else

uQ = (gy
Q)

2.

Let C2 be the points of order 2 in C. Choose R ¢C such that we have a disjoint union

C = {OE}∪C2 ∪R∪ (−R)

(in other words, for each pair of non-2-torsion points P, −P ∈C, put exactly one of them

in R). Let S = R∪C2. Set

v = ∑
Q∈S

vQ, w = ∑
Q∈S

(uQ + xQvQ).
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Then E ′ has the equation

Y 2 +A1XY +A3Y = X3 +A2X2 +A4X +A6,

where

A1 = a1, A2 = a2, A3 = a3, A4 = a4 −5v, A6 = a6 − (a2
1 +4a2)v−7w.

The isogeny is given by

X = x+ ∑
Q∈S

(
vQ

x− xQ

+
uQ

(x− xQ)2

)
,

Y = y− ∑
Q∈S

(
uQ

2y+a1x+a3

(x− xQ)3
+ vQ

a1(x− xQ)+ y− yQ

(x− xQ)2
+

a1uQ −gx
Qg

y
Q

(x− xQ)2

)
.

Proof. See [69, Chapter 12, Theorem 12.16.]. ■

The formulas from Theorem 1.2.18 were originally given in [67] by Vélu, hence they

are usually called Vélu’s formulas. These formulas are the main tool in calculating isoge-

nies between elliptic curves.

Theorem 1.2.19. Let ϕ : E −→ E ′ be an isogeny of degree N. There exists a unique

isogeny

ϕ̂ : E ′ −→ E such that ϕ̂ ◦ϕ = [deg(ϕ)].

Proof. See [64, Chapter III, Theorem 6.1.]. ■

The isogeny from Theorem 1.2.19 is called the dual isogeny. The following theorem

addresses some properties of the dual isogeny.

Theorem 1.2.20. Let ϕ : E −→ E ′ be an isogeny of degree N. Then:

(i) ϕ̂ ◦ϕ = [N] on E and ϕ ◦ ϕ̂ = [N] on E ′.

(ii) Let λ : E ′ −→ E ′′ be an isogeny. Then

λ̂ ◦ϕ = ϕ̂ ◦ λ̂ .

(iii) Let ψ : E −→ E ′ be an isogeny. Then

ϕ̂ +ψ = ϕ̂ + ψ̂.
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(iv) For all m ∈ Z,

[̂m] = [m] and deg([m]) = m2.

(v) deg(ϕ̂) = deg(ϕ).

(vi) ̂̂ϕ = ϕ .

Proof. See [64, Chapter III, Theorem 6.2.]. ■

1.2.2. Divisors, Weil, and Tate pairing

We will start by defining a divisor for a curve and several other related concepts.

Definition 1.2.21. Let E be a curve. A divisor group for E, denoted by Div(E), is a free

abelian group generated by the points of E. A divisor D ∈ Div(E) is defined as a formal

sum

D =

{
∑

P∈E

nP(P) : nP ∈ Z, nP = 0, for all but finitely many P ∈ E

}
.

The degree of D is defined by

deg(D) = ∑
P∈E

nP.

The support of a divisor is the set of points P ∈ E for which nP ̸= 0. The divisors of degree

equal to zero form a subgroup of Div(E) :

Div0(E) = {D ∈ Div(E) : deg(D) = 0}.

If a curve E is defined over a field k, the Galois group Gal(k/k) acts on Div(E) and

Div0(E) as

Dσ = ∑
P∈E

nP(P
σ ), σ ∈ Gal(k/k).

A divisor D is defined over k if Dσ = D, for all σ ∈ Gal(k/k). Divisors defined over k are

called k-rational divisors and they form a group denoted by Divk(E).

Building on the definition of the divisor of a curve, we will now define the divisor for

a function f ∈ k(E)∗. This requires additional theoretical background and definitions that

we will provide here, but not in full detail. For more, refer to [64, Chapter II, Section 1.].

We will assume that the reader is familiar with the definitions of a ring, an ideal, and a

maximal ideal. Otherwise, they are available in [46].
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Proposition 1.2.22. Let E be a curve and P ∈ E a smooth point. Then k[E]P (the local

ring of E in P) is a discrete valuation ring (a principal ideal domain with unique maximal

ideal, but not a field).

Proof. See [64, Chapter II, Proposition 1.1.]. ■

Definition 1.2.23. Let E be a curve and P ∈ E a smooth point. The (normalized) valua-

tion on k[E]P is given by

ordP : k[E]P −→ {0,1,2, . . .}∪{∞}, ordP( f ) = sup{d ∈ Z : f ∈ Md
p},

where Mp is the maximal ideal of k[E]P.

Using ordP( f/g) = ordp( f )−ordp(g), it is possible to extend ordP to k(E),

ordP : k(E)−→ Z∪{∞}.

A uniformizer for E at a point P is any function t ∈ k(E) with ordP(t) = 1, i.e. a generator

for the ideal MP.

Definition 1.2.24. Let E be a curve, P ∈ E a smooth point and f ∈ k(E)∗. The order of

f at P is ordP( f ). If ordP( f ) > 0, then f has a zero at P, and if ordP( f ) < 0, then f has

a pole at P. If ordP( f )g 0, then f is regular (or defined) at P and we can evaluate f (P).

Otherwise, f has a pole at P and we write f (P) = ∞.

Proposition 1.2.25. Let E be a smooth curve and f ∈ k(E) with f ̸= 0. There are only

finitely many points of the curve E at which f has a pole or zero. Furthermore, if f has

no poles, then f ∈ k, i.e. it is a constant.

Proof. See [64, Chapter II, Proposition 1.2.]. ■

Now we are ready to define a divisor of a function. Let E be a smooth curve and

f ∈ k(E)∗. The divisor of the function f is given by

div( f ) = ∑
P∈E

ordP( f )(P).

This is well-defined because of Proposition 1.2.25. If σ ∈ Gal(k/k), then

div( f σ ) = (div( f ))σ .

Furthermore, if f ∈ k(E), then div( f ) ∈ Divk(E). The divisor of a function is used to

define a principal divisor.
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Definition 1.2.26. A divisor D ∈ Div(E) is principal if it has the form D = div( f ) for

some f ∈ k(E)∗. Two divisors are linearly equivalent, denoted by D1 ∼ D2, if D1 −D2 is

principal.

Pairings

Two of the most used pairings in cryptography are the Weil pairing and the Tate pairing,

both used in subsequent chapters.

Let E/k be an elliptic curve, P ∈ E[N] a point on E, and fN,P ∈ k(E) a Miller function

i.e. a function on E with the divisor equal to N(P)−N(OE). There exists a function

gN,P ∈ k(E) such that

fN,P ◦ [N] = gN
N,P. (1.5)

Furthermore, their divisors are Galois invariant and [64, Chapter II, Proposition 5.8.] im-

plies that we can choose fN,P and gN,P to be in k(E). The function gN,P can be used to

define the Weil pairing. Let S ∈ E[N] be an N-torsion point where we allow S = P. For

any other point X ∈ E we have

gN,P(X +S)N = fN,P([N]X +[N]S) = fN,P([N]X) = gN,P(X)N .

The function
gN,P(X +S)

gN,P(X)
is, for every X , a Nth root of unity, i.e. it takes only finitely

many values and we can define a pairing

eN : E[N]×E[N]−→ µN

with

eN(S,P) =
gN,P(X +S)

gN,P(X)
,

where X ∈ E is any point such that gN,P(X +S) and gN,P(X) are both defined and nonzero.

The following proposition gives the basic properties of the Weil pairing:

Proposition 1.2.27. The Weil pairing eN has the following properties:

(i) It is bilinear:

eN(S1 +S2,P) = eN(S1,P)eN(S2,P),

eN(S,P1 +P2) = eN(S,P1)eN(S,P2).
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(ii) It is alternating:

eN(P,P) = 1.

(iii) It is nondegenerate:

if eN(S,P) = 1, for all S ∈ E[N], then P = OE .

(iv) It is Galois invariant:

eN(S,P)
σ = eN(S

σ ,Pσ ), ∀σ ∈ Gk/k.

(v) It is compatible:

eN,N′(S,P) = eN([N
′]S,P), for all S ∈ E[NN′] and P ∈ E[N].

Proof. See [64, Chapter III, Proposition 8.1.] ■

From the alternating property we have eN(S,P) = eN(P,S)
−1. An alternative to the

Weil pairing is the Tate pairing (or Tate-Lichtenbaum pairing). The definition of this

pairing over a field k is available in [64, Chapter XI, Section 9.]. The Tate pairing is a

well-defined bilinear pairing, see [64, Chapter XI, Proposition 9.1.]

There is a connection between divisors, the Miller function, and the Tate pairing.

Let k be a field, and N an integer such that char(k) ∤ N. Let E/k be an elliptic curve,

P1 ∈ E(k)[N] and P2 ∈ E(k)/NE(k). A Miller function fN,P1
is any function on E with

divisor N(P1)−N(OE). To calculate the Tate pairing, i.e. a bilinear map

tN : E(k)[N]×E(k)/NE(k)−→ k∗/(k∗)N : (P1,P2) 7→ tN(P1,P2),

where E(k)[N] consists of all the points in E[N] defined over k, we let D be a k-rational

divisor on E that is linearly equivalent to (P2)− (OE), and the support of which is disjoint

from {P1,OE}.2 The support of this divisor is disjoint from the divisor of the Miller

function fN,P1
, thus

fN,P1
(D) = ∏

P∈E

fN,P1
(P)nP

2As an example, we can take D = (P2)− (OE)+ div( f ), where div( f ) = OE − (P2)+ (P2 +T )− (T ),

and T /∈ {−P2,OE ,P1,P1 −P2} is an arbitrary point.
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is well-defined. Then, the Tate pairing can be calculated as

tN(P1,P2) = fN,P1
(D).

Furthermore, if P1 ̸= P2 and the Miller function is normalized3, the Tate pairing tN(P1,P2)

is equal to fN,P1
(P2).

We refer to [64, Chapter III, Section 8.] and [69, Chapter 3.] for more details on

pairings.

1.2.3. Elliptic curves over finite fields

Elliptic curves over finite fields are important for applications in cryptography and the

factorization of large integers. In this section, we will review some of the basic properties

of such curves, mostly related to the number of rational points and the structure of the

group E(k).

Definition 1.2.28. Let p > 3 be a prime. An elliptic curve over Fp := Z/pZ is given by

an equation of the form

E : y2 = x3 +ax+b, with a,b ∈ Fp, such that 4a3 +27b2 ̸= 0. (1.6)

The set of points on E with coordinates in Fp is

E(Fp) = {(x,y) ∈ Fp ×Fp : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6}∪{OE}.

Remark. Addition formulas from Theorem 1.2.4 applied to the points of elliptic curve

(1.6) give a point in E(Fp). The composition law from Definition 1.2.2 makes E(Fp) into

a finite group.

If we want to estimate the number of points in E(Fp) we could try to find all solutions

to the equation (1.6). For a small p we would calculate y for every value of x. An obvious

upper bound is 2p+1, since for every value of x we get two values for y. A more rigorous

bound is given in the following theorem.

3The leading coefficient of the function is equal to 1 when expanded in terms of the uniformizer x/y at

OE .
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Theorem 1.2.29 (Hasse). Let E/Fp be an elliptic curve defined over a finite field. Then

|#E(Fp)− p−1| f 2
√

p.

Proof. See [64, Chapter V, Theorem 1.1.]. ■

We can also go in the other direction: if m is an integer such that

m ∈ ïp+1−2
√

p, p+1+2
√

pð,

then there is an elliptic curve over Fp such that |E(Fp)|= m, see [26, Chapter 4, Theorem

14.18.]. The following theorem expounds on the structure of the group E(Fp).

Theorem 1.2.30. Let E/Fp be an elliptic curve defined over a finite field. Then

E(Fp)≃ Z/nZ or E(Fp)≃ Z/n1Z·Z/n2Z

for some integer n g 1 or for some integers n1,n2 g 1 with n1 dividing n2.

Proof. See [69, Chapter 4, Theorem 4.1.]. ■

For curves over finite fields, there is always a special endomorphism.

Definition 1.2.31. Let E be an elliptic curve defined over a finite field with q elements.

The Frobenius endomorphism π : E −→ E is defined as the map

π : (x,y) 7→ (xq,yq).

The proof of the Hasse theorem in [64, Chapter V, Theorem 1.1.] uses the Frobenious

endomorphism. There are two interesting facts to note:

• ker(π) = OE ,

• ker(π −1) = E(Fq).

Chapter 2 will provide examples illustrating the use of finite fields in cryptography.
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1.3. MODULAR CURVES

This section provides some basic definitions and results regarding the theory of congru-

ence subgroups, modular curves, and enhanced elliptic curves.

1.3.1. Congruence subgroups

We start with the definition of a modular group.

Definition 1.3.1. The modular group is a group of 2× 2 matrices with integer entries

and a determinant equal to 1,

SL2(Z) =
{(

a b
c d

)
: a,b,c,d ∈ Z,ad −bc = 1

}
.

Similarly, we define the principal congruence subgroup.

Definition 1.3.2. The principal congruence subgroup of level N > 0 is

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

In particular Γ(1) = SL2(Z). The reduction modulo N morphism Z −→ Z/NZ in-

duces a homomorphism SL2(Z)−→ SL2(Z/NZ) with kernel Γ(N), thus Γ(N) is a normal

subgroup in SL2(Z) of finite index. This homomorphism is a surjection, so there is an

induced isomorphism

SL2(Z)/Γ(N)
∼−→ SL2(Z/NZ).

The index of the subgroup Γ(N) in SL2(Z) is equal to

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
,

where the product is taken over all primes p dividing N.

Definition 1.3.3. A subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) ¢ Γ for

some N ∈ N. In this case, Γ is a congruence subgroup of level N.

From this definition, it is obvious that every congruence subgroup Γ has a finite index

in SL2(Z). Other standard congruence subgroups are

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
,

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ (∗ ∗

0 ∗) (mod N)
}
.
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These subgroups satisfy

Γ(N)¢ Γ1(N)¢ Γ0(N)¢ SL2(Z).

Additionally, Γ(N) is a normal subgroup of Γ1(N) because the map

Γ1(N)−→ Z/NZ,
(

a b
c d

)
7→ b (mod N)

is a surjection with kernel Γ(N). This induces an isomorphism

Γ1(N)/Γ(N)
∼−→ Z/NZ,

so the index [Γ1(N) : Γ(N)] is equal to N. Similarly, the map

Γ0(N)−→ (Z/NZ)×,
(

a b
c d

)
7→ d (mod N)

is a surjection with the kernel equal to Γ1(N), so Γ1(N) is a normal subgroup of Γ0(N)

and, using the induced isomorphism

Γ0(N)/Γ1(N)
∼−→ (Z/NZ)×,

the index [Γ0(N) : Γ1(N)] is equal to φ(N).4

1.3.2. Modular and enhanced elliptic curves

Let H denote the upper half-plane

H = {τ ∈ C : Im(τ)> 0}.

Let γ =
(

a b
c d

)
∈ SL2(Z) and τ ∈ H . The action of the modular group SL2(Z) on the

upper half-plane, also called fractional linear transformation, is defined as

γ(τ) =
(

a b
c d

)
(τ) =

aτ +b

cτ +d
.

This is a well-defined action because of the formula

Im(γ(τ)) =
Im(τ)

|cτ +d|2 .

We are now ready to define a modular curve.

4φ(N) is the Euler totient function, which counts the number of elements from {1, . . . ,N} relatively

prime to N.
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Definition 1.3.4. Let Γ be a congruence subgroup of level N in SL2(Z). The modular

curve Y (N) is defined as a quotient (set of orbits)

Y (N) = Γ/H = {Γτ : τ ∈ H }.

For the usual congruence subgroups Γ(N), Γ1(N), Γ0(N), we have

Y (N) = Γ(N)/H ,

Y1(N) = Γ1(N)/H ,

Y0(N) = Γ0(N)/H .

If the action is extended to H ∗ = H ∪Q∪{∞}, we can define the following modular

curves

X(Γ) = Γ/H ∗,

X(N) = Γ(N)/H ∗,

X1(N) = Γ1(N)/H ∗,

X0(N) = Γ0(N)/H ∗.

Complex elliptic curves

The quotients of the upper half-plane by the congruence subgroups can be described by

the sets of equivalence classes of elliptic curves that are enhanced with some torsion data.

Elliptic curves enhanced with torsion data are called enhanced elliptic curves.

Definition 1.3.5. Let E be an elliptic curve over an algebraically closed field5 the char-

acteristic of which does not divide N.

(a) An enhanced elliptic curve for Γ0(N) is an ordered pair (E,C), where C is a cyclic

subgroup of E of order N. Two enhanced elliptic curves (E,C) and (E ′,C′) are

equivalent if there exists an isomorphism E
∼−→ E ′ that takes C to C′. We denote the

set of equivalence classes of enhanced elliptic curves for Γ0(N) by

S0(N) = {enhanced elliptic curves for Γ0(N)}/∼ .

5A field k is algebraically closed if every nonconstant polynomial in k[x] has a root in k.
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(b) An enhanced elliptic curve for Γ1(N) is a pair (E,P), where P is a point of order

N. Two enhanced elliptic curves (E,P) and (E ′,P′) are equivalent if there exists an

isomorphism E
∼−→ E ′ that takes P to P′. We denote the set of equivalence classes

of enhanced elliptic curves for Γ1(N) by

S1(N) = {enhanced elliptic curves for Γ1(N)}/∼ .

Complex elliptic curves are defined using lattices.

Definition 1.3.6. A lattice in C is a set Λ = ω1Z·ω2Z with {ω1,ω2} a basis for C over

R. The usual normalizing convention is ω1
ω2

∈ H .

Two lattices Λ = ω1Z·ω2Z and Λ′ = ω ′
1Z·ω ′

2Z, with ω1
ω2

∈ H and
ω ′

1

ω ′
2
∈ H , are

equal if there is a matrix
(

a b
c d

)
∈ SL2(Z) such that

(
ω ′

1

ω ′
2

)
=
(

a b

c d

)(
ω1

ω2

)
.

Two lattices Λ, Λ′ are homothetic if there exists a complex number τ such that Λ = τΛ′.

Definition 1.3.7. Let Λ = ω1Z·ω2Z be a lattice. Let τ = ω1
ω2

and let Λτ = Z· τZ. A

complex torus is a quotient of the complex plane by the lattice:

C/Λτ = {z+Λτ : z ∈ C}.

There is a correspondence between elliptic curves and complex tori, i.e. for any ho-

motety class of complex tori there is an isomorphism class of elliptic curves and vice

versa, so we denote the quotient C/Λτ by Eτ . For more details about this correspon-

dence, we refer to [64, Chapter 6.].

Example 1.3.8. Let N be a positive integer and Λ a lattice. Multiplication by N is the

map

[N] : C/Λ −→ C/Λ, z+Λ 7→ Nz+Λ.

This is a well-defined map since NΛ¢Λ. Points z+Λ∈C/Λ such that [N](z+Λ) = 0 are

the N-torsion points of C/Λ. Because of an elliptic curve - complex tori correspondence,

if we let E denote the elliptic curve for complex tori C/Λ, N-torsion points are denoted

by E[N] and the map [N] is an isogeny.
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The definition of the sets S0(N) and S1(N) from Definition 1.3.5 remains unchanged

when the underlying field is C and E is a complex elliptic curve. Points of Y1(N) are in

bijection with isomorphism classes of pairs (E,P) ∈ S1(N). To establish this bijection, to

τ ∈ H , associate the pair (Eτ ,
1
N
+Λτ). Any pair (E,P) is isomorphic to (Eτ ,

1
N
+Λτ)

for some τ ∈ H and Eτ is isomorphic to Eτ ′ if and only if τ ′ ∈ Γ1(N)τ. So, we have the

following theorem:

Theorem 1.3.9. Let N be a positive integer. The moduli space for Γ1(N) is

S1(N) =

{[
Eτ ,

1

N
+Λτ

]
: τ ∈ H

}
.

Two points [Eτ ,
1
N
+Λτ ] and [Eτ ′ ,

1
N
+Λτ ′ ] are equal if and only if Γ1(N)τ = Γ1(N)τ ′.

Thus, there is a bijection

ψ1 : S1(N)
∼−→ Y1(N), [C/Λτ ,

1

N
+Λτ ] 7→ Γ1(N)τ.

Proof. See [31, Chapter 1, Theorem 1.5.1.]. ■

Theorem 1.3.9 has analogous versions for congruence subgroups Γ0(N) and Γ(N),

also part of [31, Chapter 1, Theorem 1.5.1.].

An alternative definition of modular curves

The definition of modular curves from the previous section is a standard (or classical)

one. Starting from some congruence subgroup Γ of SL2(Z), the quotient of the upper

half-plane by Γ is the modular curve Y (Γ), and the quotient of the extended upper half-

plane by the same congruence subgroup (i.e. adding the cusps) is the modular curve X(Γ).

Moreover, as we have seen in Theorem 1.3.9, equivalence classes of elliptic curves with

torsion data are parametrized with modular curves constructed from the usual congruence

subgroups Γ(N), Γ1(N) and Γ0(N).

Let N be a positive integer. In this subsection, to determine a field of definition of au-

tomorphisms of a modular curve in Section 4.2.2, we will generalise the above-mentioned

construction for an arbitrary subgroup of GL2(Z/NZ), where GL2(Z/NZ) is the group

of invertible 2× 2 matrices with entries from Z/NZ. We are following [63]. Let H be a
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subgroup of GL2(Z/NZ). To the subgroup H associate the congruence subgroup ΓH(N)

defined as

ΓH(N) := {M ∈ SL2(Z) : (M mod N) ∈ H ∩SL2(Z/NZ)} . (1.7)

In other words, the congruence subgroup ΓH(N) is the preimage of H ∩SL2(Z/NZ) un-

der the reduction modulo N map πN : SL2(Z) −→ SL2(Z/NZ). Moreover, ΓH(N) is a

congruence subgroup of SL2(Z), as Γ(N) = {M ∈ SL2(Z) : M ≡ I (mod N)} ¦ ΓH(N).

Over the complex numbers, the quotient Y (ΓH(N)) := ΓH(N)/H can be compactified

to the modular curve X(ΓH(N)) := ΓH(N)/H ∗. This curve has a model defined over

Q(ζN)
det(H), and when the map det : H −→ (Z/NZ)× is surjective, it has a model defined

over Q.

The modular curve X(ΓH(N)), similar to the classical case, parametrizes equivalence

classes of elliptic curves. Those equivalence classes are dependent on the subgroup H.

Definition 1.3.10. Let E be an elliptic curve over C, and let N be a positive integer. A

level N-structure is defined as an isomorphism φ : (Z/NZ)2 −→ E[N].

Remark. A level N-structure is a choice of basis for E[N]. It could be also defined as an

isomorphism E[N]−→ (Z/NZ)2.

Let (E,φ) and (E ′,φ ′) be pairs of an elliptic curve and a level N-structure. For the

moduli interpretation, we need an equivalence relation between such pairs together with

their connection to the subgroup H. In the following definition, an element h ∈ H is

considered as an isomorphism h : (Z/NZ)2 −→ (Z/NZ)2.

Definition 1.3.11. Pairs (E,φ) and (E ′,φ ′) are H-isomorphic if there is an isomorphism

ι : E −→ E ′ and an element h ∈ H such that:

h = (φ ′)−1 ◦ ι |E[N] ◦φ .

Being H-isomorphic is an equivalence relation, denoted by (E,φ)∼H (E ′,φ ′). The equiv-

alence class is denoted by [(E,φ)]H .

To complete the moduli interpretation, let Eτ =C/Λτ be a complex elliptic curve, for

τ ∈H and Λτ = Z·τZ. For the usual choice of basis for Eτ [N], let the level N-structure
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map φτ : (Z/NZ)2 −→ Eτ [N] be the map (1,0) 7→ 1/N and (0,1) 7→ τ/N. We have the

following bijection:

{[(Eτ ,φτ)]H : τ ∈ H } −→ Y (ΓH(N))

[(Eτ ,φτ)]H 7→ ΓH(N)τ.
(1.8)

The existence of the bijection (1.8) can be proven similarly to the proof of Theorem 1.3.9.

In other words, Y (ΓH(N)) parametrizes elliptic curves with the added H-structure.

The modular interpretation (1.8) can be used to define modular curves over more

general objects, by utilizing elliptic curves over arbitrary base schemes. The following is

a quick summary using [34] and [14], and the usual references for more details are [42]

or [40]. We will introduce some background and results regarding the theory of schemes

with most of the details omitted. Informally, we will consider a scheme S to be a more

general object than an algebraic variety. An elliptic curve over S is a pair (E −→ S,OE),

where the map E −→ S is proper and smooth, all fibres are geometrically connected curves

of genus 1, and OE is a (zero) section of E −→ S. The elliptic curve over a scheme is

denoted, as usual, by E/S, and it has the structure of a commutative group scheme.

Let (E,φ) denote a pair of an elliptic curve E over a Q-scheme S, and φ : (Z/NZ)2
S −→

E[N] an isomorphism of S-group schemes. This is an analogue to the level N-structure

from before, called a full-level N-structure, and a modular curve that parametrizes pairs

(E,φ) is denoted by Y (N). Its compactification is denoted by X(N) and called the modular

curve of full-level N.

Let γ ∈ GL2(Z/NZ) be a matrix. Every such matrix gives an automorphism of the

constant group scheme (Z/NZ)2
S, so γ acts on Y (N) by sending pair (E,φ) to pair (E,φ ◦

γ). This defines an action of GL2(Z/NZ) on Y (N), which can be uniquely extended to

X(N). Then, for every subgroup H of GL2(Z/NZ) we let XH be the quotient X(N)/H.

The model of YH =Y (N)/H over Z[1/N] is a coarse moduli space for elliptic curves with

H-structure, i.e. for pairs of elliptic curve E over a Z[1/N]-scheme S, where level N-

structure is the map φ : (Z/NZ)2
S −→ E[N], an isomorphism of S-group schemes, and the

equivalence relation is given by (1.8). This is also valid for an algebraically closed field

k, whose characteristic does not divide N, i.e. we have a bijection between YH(k) and

elliptic curves over k with H-structure.

Remark. At this point, for a subgroup H ∈ GL2(Z/NZ), we have two (definitions
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of) modular curves, one is X(ΓH(N)), and the other one is XH . Those modular curves

are of course connected. Over the complex numbers, if det(H) = (Z/NZ)×, the curve

XH(C) is connected, and equal to X(ΓH(N)). If det(H) ̸= (Z/NZ)×, then the curve

is not connected, and the number of connected components of X(ΓH(N)) is equal to

[(Z/NZ)× : det(H)].

The modular curve XH will be used in Section 4.2 to determine the field of definition

for automorphisms of modular curves.
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2. ISOGENY-BASED POST-QUANTUM

CRYPTOGRAPHY

In this chapter, we will cover the basics of cryptography and post-quantum cryptogra-

phy, and give an overview of isogeny-based post-quantum cryptography. We will mostly

follow [65] and [70].

2.1. INTRODUCTION TO CRYPTOGRAPHY

The primary purpose of cryptography is to ensure the secure transmission of sensitive

data or messages through an insecure channel. This is achieved by allowing only the

sender (often referred to as Alice) and the intended recipient (usually referred to as Bob)

the possibility of understanding the message. At its core, cryptography involves working

with the original message, known as plaintext, along with a cryptographic key and an

algorithm or scheme that utilizes the plaintext and the key to generate an unreadable

message, known as ciphertext. A collection of three algorithms, one for key generation,

one for encryption, and one for decryption is called a cryptosystem.

Depending on the type of key used, cryptosystems can be either symmetric or asym-

metric. In symmetric cryptography, the sender and the recipient share the same key. The

sender uses the key to encrypt the message, and the recipient to decrypt it. The main

disadvantage of this principle is that they need to exchange the symmetric key before

secure communication can start. The symmetric cryptosystem is visually represented in

Figure 2.1. One of the most known and used symmetric cryptosystems is the Advanced

Encryption Standard (AES), which became the NIST standard in 2006, see [36] for the

description of the algorithm.
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Figure 2.1: Symmetric encryption

Symmetric cryptography remained the sole method used until 1976, and the introduc-

tion of asymmetric cryptography in [32]. In this type of cryptography, all participants

have a pair of keys: one secret and used for decryption, and the other public (asymmetric

cryptography is also called public-key cryptography) and used for encryption. Asymmet-

ric cryptography’s primary advantage is that there is no need to exchange keys before

secure communication can begin. The security of public-key cryptosystems relies on the

existence of a trapdoor one-way function, i.e. an invertible function that is easy to calcu-

late in one direction but difficult to compute in reverse, except when the auxiliary trapdoor

information is known. An asymmetric cryptosystem is visually represented in Figure 2.2.

Figure 2.2: Asymmetric encryption

36



Isogeny-based cryptography Introduction to cryptography

In the next section, we will introduce some basic ideas concerning public-key cryptog-

raphy, as this branch of cryptography has been particularly affected by the development

of quantum computers.

2.1.1. Public-key cryptography

The discrete logarithm problem is the basis for a number of public-key cryptographic

constructions. We will start with the most general definition of the problem in a group

setting.

Definition 2.1.1. Let (G, ·) be a finite group. The discrete logarithm problem (DLP) for

G is to determine, for an element g ∈ G, and an element h ∈ ïgð, the least positive integer

x satisfying

g ·g · · ·g ·g︸ ︷︷ ︸
x times

= h.

One of the first examples of DLP is the previously mentioned work introduced in [32],

known as the Diffie-Hellman key exchange, a way to exchange a shared secret (usually

a symmetric key) between the sender and the recipient. The description of the Diffie-

Hellman key exchange, when the underlying group is the finite field F∗
p, can be summa-

rized as:

• Alice and Bob agree on a large prime p and a nonzero integer g having a large order

in F∗
p. Those values are public.

• Alice picks a secret integer a, while Bob picks a secret integer b. Those integers are

used to compute values

A ≡ ga (mod p) and B ≡ gb (mod p).

• The public values A and B are exchanged.

• Using their secret integers, Alice can compute

A′ ≡ Ba (mod p),

and Bob can compute

B′ ≡ Ab (mod p).
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• The values A′ and B′ are the same since

A′ ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ B′ (mod p).

• This common value is their exchanged key, i.e. their shared secret.

The algorithm that efficiently computes large powers of number g modulo number p

is called the Square-and-multiply algorithm, see [65, Section 1.3.2.]. An example of a

public-key cryptosystem based on a discrete algorithm problem, and a direct extension of

the Diffie-Hellman key exchange is Elgamal, see [65, Section 2.4.].

Elliptic curve discrete logarithm problem

Given the definition of the discrete logarithm problem and the existence of a group law on

the points of an elliptic curve, it is natural to assume that the discrete logarithm problem

can be extended to the elliptic curve setting.

Let E be an elliptic curve over a finite field Fp. Alice chooses a point P, an integer n

and computes Q = [n]P. She publishes points P and Q and n remains secret. An attacker

(usually referred to as Eve) needs to find out how many times should she add P to get Q.

Definition 2.1.2. Let E be an elliptic curve over the field Fp, and let P and Q be points in

E(Fp). The elliptic curve discrete logarithm problem (ECDLP) is the problem of finding

an integer n such that Q = [n]P.

The Diffie-Hellman key exchange for elliptic curves is:

• Alice and Bob agree on a large prime p, an elliptic curve E over Fp, and a point P

in E(Fp). Those parameters are public.

• Alice chooses a secret integer nA and computes the point

QA = [nA]P.

Bob chooses a secret integer nB and computes the point

QB = [nB]P.

• They exchange QA and QB.
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• Alice computes the point [nA]QB and Bob computes the point [nB]QA.

• The shared secret is

[nA]QB = [nA]([nB]P) = [nB]([nA]P) = [nB]QA.

An attacker Eve needs to solve ECDLP of the form [nA]P = QA to get the shared secret

used between Alice and Bob. Similarly to the Square-and-multiply algorithm mentioned

before, the algorithm that efficiently computes [nA]P, [nB]P is called the Double-and-add

algorithm, see [65, Section 6.3.1.].

The concept of using elliptic curves in cryptography was first independently proposed

by Koblitz [45] and Miller [51]. They suggested that the ECDLP might be more difficult

than the DLP in a finite field. Consequently, elliptic curve cryptosystems should require

smaller key sizes while offering better performance. Despite these advantages, it was not

until the late 2000s that elliptic curves became widely used and started to prevail over

other public-key cryptosystems.

An example of a public-key cryptosystem based on an elliptic curve discrete algo-

rithm problem, and a direct extension of the Elgamal algorithm to elliptic curves, is the

Menezes-Vanstone algorithm, see [65, Chapter 6, Table 6.13.].

RSA algorithm

In 1977 in [59], Rivest, Shamir, and Adleman (hence the name RSA), introduced one of

the first public-key cryptosystems, the security of which lies in the difficulty of factoring

large numbers. The basic description of the algorithm is as follows:

• Key creation:

Alice chooses secret primes p and q. Alice also chooses encryption exponent e with

gcd(e,(p−1)(q−1)) = 1.

The modulus N = pq and the exponent e are public.

• Encryption:

Bob chooses the plaintext m and uses Alice’s public key (N,e) to compute

c ≡ me (mod N).

39



Isogeny-based cryptography Introduction to cryptography

He sends the ciphertext c to Alice.

• Decryption:

Alice computes d satisfying

ed ≡ 1 (mod (p−1)(q−1)),

and then computes

m′ ≡ cd (mod N).

The computed m′ is equal to the plaintext m.

The assumption behind RSA is that solving xe ≡ c (mod N) is easy for the person who

knows the values p and q, because they can be used to calculate value φ(N) = (p −
1)(q − 1) and consequently d, but hard for anybody else (an attacker). In the secure

implementations of RSA, the modulus N should be several hundred digits long.

Digital signatures

Digital signatures are a branch of public-key cryptography designed to replace physical

signatures on paper. In this scenario, Alice, as an owner of a digital document, creates

additional data directly linked to the document and uses it to prove that the digital doc-

ument is uniquely associated with her. A digital signature scheme consists of two main

components, the signing algorithm and the verification algorithm. In its simplest form, it

can be summarized as:

• Let D denote the document that Alice wants to sign. The private and the public key

are denoted by Kpri and Kpub.

• Alice uses a signing algorithm that takes her private key Kpri and the document D

as inputs and returns signature Dsign.

• Bob uses a verification algorithm that takes document D, signature Dsign, and the

public key Kpub as inputs, and the output returns true if the verification is successful

and false if not.

Any signature scheme should at least satisfy:
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• From the public key Kpub, an attacker cannot determine the private key Kpri, or a

different key that can produce the same signature Dsign.

• From the public key Kpub, the list of documents D1, . . . ,Dn and their signatures

D1
sign, . . . ,D

n
sign, an attacker cannot determine a valid signature for any other new

document. In other words, the knowledge of any number of document-signature

pairs does not provide the attacker new, useful information.

The following is the RSA digital signature variant.

• Key creation:

Alice chooses secret primes p and q. Alice also chooses verification exponent e

with

gcd(e,(p−1)(q−1)) = 1.

Values N = pq and e are public.

• Signing:

Alice computes d satisfying

de ≡ 1 (mod (p−1)(q−1)).

Alice signs document D by computing

S ≡ Dd (mod N).

• Verification:

Bob computes Se (mod N) and verifies that is equal to D.

Further examples of digital signature schemes are given in Section 2.2.2.
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2.2. INTRODUCTION TO POST-QUANTUM

CRYPTOGRAPHY

Post-quantum cryptography is an area of cryptography that focuses on developing cryp-

tosystems resistant to attacks from both classical and quantum computers. We will start

with a short introduction to quantum computing and quantum computers. More details

can be found in [70, Chapter 14.].

2.2.1. Quantum computing

When observed on a small scale, particles, such as atoms and subatomic particles tend

to behave differently than what is expected in classical physics. For a brief moment,

particles can behave like waves, where different waves can superpose to merge into bigger

waves, or they can cancel each other out. This behavior is studied by quantum physics

(mechanics).

The development of quantum computers is based on two quantum physics phenom-

ena. The first is the quantum superposition, a way for a particle or an object to exist in

more than one state simultaneously. An object will remain in this state until measured,

after which it collapses in one of the states, each one with a certain probability of being

observed. Quantum superposition is the basis for a qubit, the quantum analogue of a clas-

sical bit. Qubit is a bit that can be 0 or 1, or both of them at the same time. The second

important principle is quantum entanglement. Multiple qubits can become entangled with

each other, even when they are not physically connected, and measuring one of the qubits

has a direct correlation to the state of the other qubits.

The idea of quantum computing, i.e. building a computer based on the physical

phenomena from quantum mechanics, first appeared in 1980. American physicist Be-

nioff [10], was the first to describe a quantum computer, and, in a way, introduced the

quantum Turing machine. At the time of writing this thesis, IBM has developed a 433-

qubit computer1.

1https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-

Processor-and-Next-Generation-IBM-Quantum-System-Two
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The first impact of quantum computers on cryptography came in 1994, when Shor

[62], demonstrated that there is an efficient quantum algorithm (an algorithm that runs on

the quantum computer) for finding discrete logarithms and factoring integers. When/if a

big enough quantum computer is built, this algorithm, appropriately called Shor’s algo-

rithm, breaks the basic primitives used in asymmetric cryptography. The number of qubits

needed for the factorization of the big numbers used by today’s modern cryptography is

not known, it is of course a lot more than 433, nevertheless, it is evident that quantum-safe

protocols need to be developed.

We will briefly mention the impact of quantum computers on symmetric cryptography.

In 1996 in [39], Grover introduced a quantum search algorithm, i.e. an algorithm that

optimizes a search of an unordered list. For an unordered list of N elements, a search on

a classical computer takes on average N/2 operations, while the Groves algorithm can

perform the same search in
√

N operation. This algorithm could, for example, be used for

brute-forcing a symmetric key. A 128 bit key could be broken on a quantum computer

in 264 operations (2127 on the classical computer). The ”fix” for the Grover algorithm is

easier: increasing the length of the symmetric key used to at least 256 bits.

2.2.2. Areas of post-quantum cryptography

Post-quantum cryptography is a direct response of the cryptographic community to the

quantum ”threat”. In an effort to gather and standardize post-quantum cryptography,

NIST announced at PQCrypto in 2016 and later issued a formal call2 for quantum-resistant

encryption schemes (or key encapsulation mechanism - KEM) and signature schemes.

The submission deadline for the first round was in November 2017. In the initial

round, there were 69 accepted candidates, out of which 5 were later withdrawn. Among

the accepted candidates, there were 45 encryption/KEM schemes and 19 signature schemes.

A number of submissions (25) were broken during the first round of evaluation, and some

of them did not satisfy the NIST security criteria. Consequently, only 17 encryption/KEM

schemes and 9 signature schemes were chosen to advance to the second round, see [2].

The second round started in January 2018 and lasted until July 2020. During this

2https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-

cryptography-standardization/Call-for-Proposals
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round, from 26 candidates, 7 schemes were attacked or broken, leaving 15 schemes to

proceed to the third round, see [53]. The 15 schemes were divided into two categories: fi-

nalists and alternate candidates. The finalists, 4 encryption/KEM schemes and 3 signature

schemes, were considered most likely to be ready for standardization soon after the end

of the third round. The alternate candidates, 5 encryption/KEMs schemes and 3 signature

schemes, were considered ready to be standardized after one more round of evaluation.

The third round concluded in July 2022 [3], and as a result, one encryption/KEM scheme

and three signature schemes were selected for standardization.

From the NIST standardization process, several bigger areas of post-quantum cryp-

tography became apparent. While many schemes were specifically designed for this stan-

dardization effort, some of them have been around for several decades. We give an infor-

mal overview of these areas, along with references to more detailed information:

• Lattice-based cryptography ([11, Chapter 5.]):

Let v1, . . . ,vn ∈ Rm be a set of linearly independent vectors. A lattice L generated

with vectors v1, . . . ,vn is the set

L = {a1v1 + · · ·+anvn, a1, . . . ,an ∈ Z}.

The security of lattice-based cryptography is based on the hardness of lattice prob-

lems, more notably the shortest vector problem (SVP), and its variants. In an SVP,

given a lattice as input, the goal is to return the shortest (exact or approximate)

nonzero vector in that lattice.

This is the most promising area for post-quantum cryptography. Many lattice-based

cryptosystems are efficient and easy to implement and the security claim behind

them is strong and well-studied. Currently, there are no known quantum algorithms

capable of solving lattice problems that perform significantly faster than the best-

known classical algorithms.

It is not surprising that in both categories, KEM and signatures, NIST selected

lattice-based cryptosystems. Specifically, for KEM, the selected system is CRYSTALS-

KYBER [7], and for signatures, NIST selected CRYSTALS-DILITHIUM [9] and

Falcon [37]. Other notable lattice-based cryptosystems are the first one ever, intro-

duced by Ajtai in [1] or NTRU [21], a third-round finalist.

44



Isogeny-based cryptography Introduction to post-quantum cryptography

• Multivariate cryptography ([11, Chapter 6.]):

Multivariate public-key cryptography is based on multivariate polynomials (a poly-

nomial in more than one variable) over a finite field. The public key is given by a

set of quadratic polynomials, and the evaluation of these polynomials at any given

value represents encryption/decryption. Notable schemes include Oil and Vine-

gar [44], and until recently Rainbow [33], a third-round finalist broken in [13].

• Code-based cryptography ([11, Chapter 4.]):

In code-based cryptography, the error-correcting code is an underlying one-way

function. The first example of a public-key code-based encryption scheme was

introduced by McEliece in [48]. A variant of this scheme [4], called the Classic

McEliece, is a fourth-round finalist. The private key is the binary irreducible Goppa

code, the public key is the random generator matrix of a randomly permuted version

of that code and the ciphertext is a codeword with added errors, removable only by

the Goppa code’s owner. Code-based cryptography is characterized by the large

public key size, but fast encryption and decryption. Other notable examples include

BIKE [5] and HQC [49], both of them KEM schemes and alternate candidates in

the third and candidates in the fourth round.

• Hash-based cryptography ([11, Chapter 3.]):

Hash-based schemes are mostly digital signature schemes built upon a crypto-

graphic hash function; their security relies on collision resistance3 of the hash func-

tion. The first hash-based signature scheme was introduced by Merkle in [50]. An-

other notable scheme is SPHINCS+ [6], selected as one of the signature schemes

for standardization.

• Isogeny-based cryptography:

The following section will delve deeper into isogeny-based cryptography. The only

isogeny-based candidate for NIST standardization was SIKE [8], a fourth-round

candidate, but the algorithm was completely broken in various papers [15, 47, 60]

in 2022.

3Hash function is collision-resistant if it is hard to find two different inputs of the same hash value.
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2.3. SELECTED SCHEMES FROM

ISOGENY-BASED CRYPTOGRAPHY

In the introduction, we mentioned the main developments in the history of isogeny-based

cryptography. This includes the initial concept of using isogenies proposed by Cou-

veignes in 1997 (which was also independently published by Rostovtsev and Stolbunov

in 2006), the introduction of the first hash function by Charles, Goren, and Lauter in

2006, the key exchange SIDH by de Feo and Jao in 2011, the alternative key exchange

approach CSIDH introduced by Castryck, Lange, Martindale, Panny, and Renes in 2018,

and the digital signature scheme SQISign introduced by De Feo, Kohel, Leroux, Petit,

and Wesolowski in 2020, to mention but a few. The goal of this section is to provide an

overview of the CSIDH key exchange.

2.3.1. Isogeny graphs

Isogeny-based cryptography is based on isogeny graphs. This section provides some

background on graphs and isogeny graphs, following [27]. We start with the definition of

a graph.

Definition 2.3.1. An undirected graph G is a pair (V,E) where V is a finite set of vertices

and E ¢V ×V is a set of unordered pairs called edges.

Two vertices v and v′ are connected by an edge if {v,v′} ∈ E. A path between two

vertices v,v′ is a sequence of vertices v −→ v1 −→ v2 −→ ·· · −→ v′ such that each vertex is

connected to the next by an edge. A graph is considered connected if any two vertices

have a path connecting them, otherwise, it is considered disconnected. The diameter of a

connected graph is the largest of all distances between its vertices. The degree of a vertex

is the number of edges pointing to (or from) it. A graph where every edge has degree k is

called k-regular.

Definition 2.3.2. Let K be a field and l a positive integer not divisible by char(K). The

l-isogeny graph G over K is a graph where the nodes are elliptic curves defined over K,
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up to K-isomorphism, and edges are l-isogenies between those elliptic curves if such an

isogeny exists.

Commonly, because of Proposition 1.2.11, the nodes in the isogeny graph are defined

as j-invariants. From Theorem 1.2.19, we know that every isogeny has a dual isogeny of

the same degree, so isogeny graphs are considered undirected. The connected component

of an l-isogeny graph, when ignoring special nodes where the j-invariant is equal to 0 or

1728, has one of two shapes, it is a volcano or a Pizer graph. For more details see [56].

We continue with general graph theory. The adjacency matrix of a graph G = (V,E),

where V = {v1, . . . ,vn}, is the n× n matrix where the element at (i, j) is 1 if there is an

edge between vi and v j and 0 otherwise. When the graph is undirected, the adjacency

matrix is symmetric and has n real eigenvalues

λ1 g ·· · g λn.

In a k-regular graph, the largest and smallest eigenvalues λ1 and λn satisfy k = λ1 g λn g
−k. A k-regular graph such that |λi| f

√
k−1 for any λi except λ1, is called a Ramanujan

graph.

Definition 2.3.3. Let ε > 0 and k g 1. A k-regular graph is called a (one-sided) ε-

expander if

λ2 f (1− ε)k,

and a two-sided ε-expander if it also satisfies

λn g−(1− ε)k.

Informally, an expander graph is an undirected graph where every subset of the ver-

tices has the expanding property, i.e. it is connected with a large number of vertices from

its complement.

Let Gi = (Vi,Ei) be a sequence of k-regular graphs with #Vi −→ ∞. This sequence is

a one-sided (two-sided) expander family if there is an ε > 0 such that Gi is one-sided

(two-sided) for all sufficiently large i.

Theorem 2.3.4. Let k g 1, and let Gi be a sequence of k-regular graphs. Then

max(|λ2|, |λn|)g 2
√

k−1−o(1), as n −→ ∞.
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In a graph G = (V,E), a random walk of length i is a path v1 −→ ·· · −→ vi, defined

by randomly selecting vertices v j uniformly among the neighbours of v j−1. The mixing

property of an expander graph says that the random walks of length close to its diameter

terminate on any vertex with probability close to uniform. According to the next theorem,

supersingular graphs are Ramanujan.

Theorem 2.3.5. Let p and l be distinct primes.

(i) All supersingular j-invariants of curves in Fp are defined in Fp2 .

(ii) The number of isomorphism classes of supersingular elliptic curves over Fp is equal

to

p+





0, if p ≡ 1 (mod 12),

1, if p ≡ 5,7 (mod 12),

2, if p ≡ 11 (mod 12).

(iii) The graph of supersingular curves in Fp with l-isogenies is connected, l+1 regular,

and has the Ramanujan property.

Proof. See [27, Part III, Theorem 47.]. ■

Theorem 2.3.5 implies that isogeny graphs have a good mixing property, which makes

them suitable for cryptography. For example, the Charles-Goren-Lauter hash function

[20] starts from an arbitrary vertex v1 in an expander graph, then takes a random walk

(without backtracking) according to the string to be hashed, and outputs the arrival vertex.

Previously mentioned schemes CRS and CSIDH both operate on a union of several large

subgraphs on the same vertex set.

2.3.2. Diffie-Hellman in an isogeny setting

In this section, we will provide a brief overview of one of the most known isogeny-based

schemes, the CSIDH (commutative-SIDH), keeping with the original paper [18]. The

theory behind this scheme is complex and goes beyond the scope of this thesis. However,

as we will see in the next chapter, CSIDH benefits from radical isogenies. We start with

Couveignes’s definition of a hard homogeneous space.
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Definition 2.3.6. A hard homogeneous space consists of a finite commutative group G

acting freely and transitively on some set S. We denote the action with ∗. The following

operations are required to be easy (e.g., polynomial-time):

(i) Compute the group operations in G.

(ii) Sample randomly from G with (close to) uniform distribution.

(iii) Decide validity and equality of a representation of elements of S.

(iv) Compute the action of a group element g ∈ G on some s ∈ S.

The following problems are required to be hard (e.g., not polynomial-time):

(i) Given s, s′ ∈ S, find g ∈ G such that g∗ s = s′.

(ii) Given s, s′ and v ∈ S such that s′ = g∗ s, find v′ = g∗ v.

To build a Diffie-Hellman protocol in this setting, first, publish a fixed element s0 ∈ S.

Alice and Bob can take random elements a and b from G for private keys. Then, their

public keys are a ∗ s0 and b ∗ s0 and the shared secret is b ∗ (a ∗ s0) = a ∗ (b ∗ s0). The

security of private keys is based on the difficulty of the hard problem (i), while the security

of the shared secret is protected by the hard problem (ii) itself.

Endomorphism ring

Definition 2.3.7. Let E be an elliptic curve over a field k. The set of all endomorphisms

of the curve E, including the multiplication by 0 map, forms a ring, with addition and

composition as operations, denoted by End(E).

The k-rational endomorphism ring is the subring Endk(E). When k is a finite field Fp,

the subring is denoted by Endp(E).

Remark. For any integer N, the multiplication by N map is an endomorphism, so Z ¢
End(E). The Frobenius map π , introduced in Definition 1.2.31, is an endomorphism, thus

Z[π]¢ End(E).
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Definition 2.3.8. Let K be a finitely generated Q-algebra. A subring O of K that is a

finitely generated Z-module4 of maximal dimension is called an order.

Definition 2.3.9. A quaternion algebra is an algebra5 of the form

K =Q+αQ+βQ+αβQ,

where

α2β 2 ∈Q, α2 < 0, β 2 < 0, βα =−αβ .

An excellent reference for all things related to quaternions algebras is [68]. Quater-

nion algebras are an important part of the Deuring theorem (correspondence). This the-

orem provides a way to translate hard problems for elliptic curves to problems regarding

maximal orders in quaternion algebras, which gives us another angle and more ”tools” to

work on elliptic curve problems.

Theorem 2.3.10 (Deuring). Let E be an elliptic curve defined over a field k of charac-

teristic p. The ring End(E) is isomorphic to one of the following:

(i) Z, only if p = 0.

(ii) A maximal order in the quaternion algebra ramified at p and 1, only if p > 0. In

this case, we say that E is supersingular.

(iii) An order O in a quadratic imaginary field6, for p g 0. In this case, we say that E

has complex multiplication by O .

Proof. See [64, Chapter III, Corollary 9.4.]. ■

The following theorem gives us an interesting property of the Frobenius endomor-

phism for an elliptic curve over a finite field.

Theorem 2.3.11. Let E be an elliptic curve defined over a finite field Fq. The Frobenius

endomorphism π : E −→ E satisfies a quadratic (characteristic) equation,

π2 − tπ +q = 0, (2.1)

for some |t| f 2
√

q.

4A module can be viewed as a generalization of a vector space, where the field is replaced by a ring.
5Module together with a bilinear map.
6A number field of the form Q(

√
−D) for some D > 0.
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Proof. See [64, Chapter V, Theorem 2.3.1.]. ■

The coefficient t in (2.1) is called the trace of Frobenius. In a finite field with q

elements, as we noted in Section 1.2.3, group E(Fq) is equal to ker(π − 1), from which

#E(Fq) = #ker(π −1) = q−1+ t.

Let O be an order in a quadratic number field k. The norm of an O-ideal a ¦ O is

defined as N(a) = |O/a|. A fractional ideal of O is an O-submodule of k of the form

αa, where α ∈ k∗ and a is an O-ideal. The set of invertible fractional ideals I(O) forms

an abelian group under ideal multiplication. This group contains the principal fractional

ideals P(O) as a subgroup. The ideal-class group of O is the quotient

cl(O) = I(O)/P(O).

Let π ∈ O . The set of elliptic curves E defined over Fp with Endp(E) ∼= O such that

π corresponds to the Fp-Frobenius endomorphism of E is denoted with Ellp(O,π). Let

E ∈ Ellp(O,π) and let a be an integral ideal of O . The a-torsion subgroup E[a] of E is

defined by

E[a] := {P ∈ E : [ψ]P = O, for all ψ ∈ a}.

This is a finite subgroup, since E[a]¦ E[N(a)]. There exist a unique elliptic curve E/E[a]

and an isogeny ϕa : E −→ E/E[a] with kernel E[a]. We denote the elliptic curve E/E[a] by

a ∗E. This correspondence induces an action, i.e. the ideal-class group of an imaginary

quadratic order O acts freely via isogenies on the set of elliptic curves with Fp-rational

endomorphism ring isomorphic to O . This is shown in the following theorem.

Theorem 2.3.12. Let O be an order in an imaginary quadratic field and π ∈ O such that

Ellp(O,π) is nonempty. The ideal-class group cl(O) acts freely and transitively on the

set Ellp(O,π) via the map

cl(O)×Ellp(O,π)−→ Ellp(O,π)

([a],E) 7→ a∗E,

in which a is chosen as an integral representative.

Proof. See [18, Theorem 7.] and [55, Section 2.3.]. ■
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A set that is acted upon freely and transitively by a group is called a principal homo-

geneous space for that group. For the Couveignes-Rostovtsev-Stolbunov key exchange,

the space of public keys is equal to the set of Fq-isomorphism classes of ordinary elliptic

curves over Fq whose endomorphism ring is a given order O in an imaginary quadratic

field and whose trace of Frobenius has a prescribed value.

CSIDH

Informally, CSIDH is the adaptation of the CRS scheme to supersingular elliptic curves

defined over a field Fp, where p is prime. The following is a description of a non-

interactive7 key exchange CSIDH:

• Public parameters of the system are a large prime

p = 4 · l1 · · · ln −1,

where the li are small distinct odd primes, and the supersingular elliptic curve

E0 : y2 = x3 + x

over Fp with endomorphism ring O = Z[π].

• Key creation:

The private key is an integer n-tuple (e1, . . . ,en), where each integer is randomly

sampled from a range {−m, . . . ,m}. These integers represent the ideal class

[a] = [le1

1 · · · len
n ] ∈ cl(O),

where li = (l1,π −1).

The public key is the coefficient A ∈ Fp of the elliptic curve

[a]E0 : y2 = x3 +Ax2 + x

obtained by applying the action of [a] to the curve E0.

• Key exchange:

Let (a,A) and (b,B), B ∈ Fp\{±2} denote Alice and Bob’s key pairs respectively.

7Two parties can exchange a symmetric key without any interaction.
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Using Bob’s public key B, Alice verifies that the elliptic curve EB : y2 = x3+Bx2+x

is indeed in Ellp(O,π). Alice then applies the action of her secret key [a] to EB to

compute the curve

[a]EB = [a][b]E0.

Analogously, Bob proceeds to compute the curve [b]EA = [b][a]E0.

The shared secret is the coefficient S of the common secret curve [a][b]E0 = [b][a]E0

written in the form y2 = x3+Sx2+x. This is the same for Alice and Bob since cl(O)

is commutative.

Small primes li in the public parameter p = 4 · l1 · · · ln−1, are chosen as Elkies primes, i.e.

every ideal liO splits as liO = lili, where li = (li,π −1) and li = (li,π +1) is a conjugate.

More about design choices can be found in [18, Section 4].

Exponents ei are, for efficiency, chosen from the small interval {−m, . . . ,m}, where m

is selected such that 2m+1 g n
√

#cl(O), see [18, Section 7.1.].

Remark. The security of the CSIDH scheme is an analogue to the security of the discrete-

logarithm problem defined in Section 2.1.1. Let E,E ′ be two supersingular elliptic curves

defined over Fp with the same Fp-rational endomorphism ring O . The DLP in this setting

is to find an ideal a of O such that [a]E = E ′. If found, this ideal must be represented in

such a way that the action of [a] on a curve can be evaluated efficiently.

Remark. This thesis will not delve into details of the other well-known isogeny-based

scheme SIDH. We are just going to briefly mention that since SIDH was first introduced,

one of the most questionable parts of the scheme has been that publishing images of

known points under secret isogenies could be a way to break the scheme. In 2022, this

became evident in several attacks [15, 47, 60]. Both CRS and CSIDH are not publishing

such additional points or images and are not affected by these attacks.

53



3. RADICAL ISOGENIES

This chapter provides the background on radical isogenies; formulas designed for calcu-

lating isogenies between elliptic curves. We will mostly follow [17] and [54].

3.1. DEFINITION OF RADICAL ISOGENIES

Let k be a field, and N g 4 an integer such that char(k) ∤ N. Consider an elliptic curve E

over k and a point P ∈ E(k) of order N. Using Lemma 1.2.8, the curve-point pair (E,P)

is isomorphic to a unique pair of a curve

y2 +(1− c)xy−by = x3 −bx2,

where b,c ∈ k, and a point (0,0) of order N.

Remark. In [17] elliptic curve E is defined over field

QN(b,c) := Frac
Q[b,c]

(FN(b,c))
,

where ”Frac” is a field of fractions1, and FN is a polynomial defined by (1.4). The field

QN(b,c) is the function field of X1(N) over Q.

According to Theorem 1.2.18, there exists an isogeny

ϕ : E −→ E/ïPð

with ïPð, a cyclic subgroup generated by the point P, as a kernel. We denote the curve

E/ïPð over k by E ′. We are interested in the points P′ ∈ E ′ for which the composition

E
ϕ−→ E ′ −→ E ′/ïP′ð

1A field of fractions of an integral domain R (nonzero commutative ring in which the product of any two

nonzero elements is nonzero) is the smallest field containing R.
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is cyclic N2-isogeny, satisfying the condition

ϕ̂(P′) = [λ ]P, for some λ ∈ (Z/NZ)×,

where ϕ̂ is a dual isogeny of ϕ . This condition is valid for Nφ(N) points2. A nonunique

point P′ corresponding to λ = 1 is called P-distinguished. Radical isogenies are formulas

for the coordinates of the point P′.

Let fN,P be the normalized Miller function and define

ρ := fN,P(−P).

From Section 1.2.2, when the Miller function is normalized, Tate pairing tN(P,−P) can

be calculated as fN,P(−P). The following theorem describes the field of definition of the

point P′.

Theorem 3.1.1. Let E be an elliptic curve defined over the field QN(b,c) and P a point of

order N on that curve. Let ϕ : E −→ E ′ := E/ïPð be an isogeny with a kernel equal to ïPð,
and P′ ∈ E ′ a point of order N satisfying ϕ̂(P′) = [λ ]P. The field extension QN(b,c) ¢
QN(b,c)(P

′), obtained by adjoining the coordinates of P′, is a simple radical extension of

degree N. More precisely, for an appropriately chosen N
√

ρ of ρ = fN,P(−P), where fN,P

is a normalized Miller function,

QN(b,c)(P
′) =QN(b,c)( N

√
ρ).

Proof. See [17, Theorem 5.]. ■

According to Theorem 3.1.1, the coordinates of the point P′ can be calculated using

a rational expression that depends on b,c and N
√

ρ, where ρ is a representative of Tate

pairing tN(P,−P). Hence, the point P′ is defined over k(b,c, N
√

ρ). Formulas for all other

points that are not P-distinguished can be calculated using multiplication by λ map and

(1.3). Furthermore, a P-distinguished point P′ is nonunique, but all other P-distinguished

points are found by varying the choice of N
√

ρ , i.e. by scaling it with ζ i
N , i = 0, . . . ,N −1,

where ζN is a primitive N-root of unity.

As P′ is of order N on the curve E ′, a Tate normal form for this pair can be defined

by unique coefficients b′ and c′. The iterative process of radical isogeny formulas can be

2φ(N) is the Euler function.
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repeated on the pair (E ′,P′). Moreover, the formulas for b′ and c′ are expressed directly as

elements of the field extension k(b,c, N
√

ρ), which is a simple radical extension of k(b,c).

Explicit radical isogeny formulas when N = 5, are given in the following example.

Example 3.1.2 ([17, Section 4.]). For N g 4, the point P = (0,0) on E is of order N if

and only if FN = 0. Let N = 5. From (1.4), polynomial F5(b,c) is equal to c− b, and in

that case, elliptic curve E has a modified Tate normal form

y2 +(1−b)xy−by = x3 −bx2.

Using Vélu’s formulas, the curve E ′ is equal to

y2 +(1−b)xy−by = x3 −bx2 −5b(b2 +2b−1)x−b(b4 +10b3 −5b2 +15b−1).

The x-coordinates of the point P′ are roots of 5-division polynomial ψ5 for the curve E ′.

This polynomial splits into factors as

ψE ′,5(x) = 5 · (x2 +(b2 −b+1)x+(b4 +3b3 −26b2 −8b+1)/5)

· (x5 +10bx4 −5b(b2 +b−11)x3 −5b(17b3 +24b2 +46b−7)x2

−5b(b5 +62b4 +154b3 −65b2 +19b−2)x

−b(b7 −19b6 +777b5 −757b4 +755b3 +2b2 +17b−1))

· (x5 −15bx4 −5b(11b2 −9b−1)x3 −5b2(7b3 +13b2 −13b+20)x2

−5b2(2b5 +5b4 +6b3 +196b2 −99b+1)x

−b2(b7 +7b6 −62b5 +605b4 −127b3 +1177b2 +14b+1)).

The quadratic polynomial factor of ψE ′,5 is the kernel polynomial of the dual isogeny.

The roots of the first quintic polynomial factor are the x-coordinates we are interested in,

and the roots of the second quintic polynomial factor are the x-coordinates of points P′′

satisfying ϕ̂(P′′) = 2P. If we let ρ = f5,P(−P) = b and denote α = 5
√

ρ , the coordinates

of point P′ are

x′0 = 5α4 +(b−3)α3 +(b+2)α2 +(2b−1)α −2b,

y′0 = 5α4 +(b−3)α3 +(b2 −10b+1)α2 +(13b−b2)α −b2 −11b.

After translating the point P′ to (0,0), the isomorphic curve in Tate normal form is

E ′ : y2 +(1−b′)xy−b′y = x3 −b′x2,

56



Radical isogenies Definition of radical isogenies

where

b′ = α
α4 +3α3 +4α2 +2α +1

α4 −2α3 +4α2 −3α +1

and the process can be repeated.

The standard method of calculating isogenies (Vélu’s formulas) would require a point

of particular order for each isogeny in the chain. With radical isogeny formulas, such a

point is only required for the initial step, i.e. the step that uses Vélu’s formulas. Subse-

quent steps can be calculated without any knowledge of torsion points. The list of formu-

las for radicand ρ for N f 13 can be found in [17, Section 5.]. The link to a repository

containing formulas for prime powers 16 < N f 37 can be found in [16, Section 4.3.].

In Chapter 2 we mentioned the protocol CSIDH, one of the isogeny-based key ex-

change protocols. Computing a composition of a large number of isogenies is an impor-

tant step in CSIDH. Radical isogenies have a direct application in this protocol and using

them can lead to a speed-up of about 35% for CSIDH-512. See [16, Section 7.2.] for more

details.
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3.2. RADICAL ISOGENIES ON MONTGOMERY

CURVES

Radical isogenies formulas are not restricted to curves in Tate normal form, and they

can be defined for other curve models. This section is dedicated to radical isogenies on

Montgomery curves and it mostly follows [54]. First, some background on Montgomery

curves.

3.2.1. Montgomery curves

This section mostly follows [38, Part II, Section 9.12.] and [24]. Montgomery curves were

first introduced in [52] by Peter Montgomery (hence the name) as a tool to accelerate

some previously known factorization methods. We will start with the definition of the

Montgomery curve.

Definition 3.2.1. Let k be a field such that char(k) ∤ 2. A Montgomery curve over a field

k is an elliptic curve of the form

E : By2 = x3 +Ax2 + x, (3.1)

where A,B ∈ k and B(A2 −4) ̸= 0.

Remark. The condition B(A2 −4) ̸= 0 ensures that the curve is nonsingular.

There is a group law on the points of E. Let P1 = (x1,y1) and P2 = (x2,y2) be points

on the elliptic curve

E : By2 = x3 +Ax2 + x,

such that x1 ̸= x2 and x1x2 ̸= 0. Then P1 +P2 = (x3,y3), where

x3 = B
(x2y1 − x1y2)

2

x1x2(x2 − x1)2
.

For the case P2 = P1 we have [2](x1,y1) = (x3,y3), where

x3 =
(x2

1 −1)2

4x1(x
2
1 +Ax1 +1)

.

There is a connection between curves given in the Weierestrass form and curves in the

Montgomery form.
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Lemma 3.2.2. Let k be a field such that char(k) ̸= 2. Let

E : y2 = x3 +a2x2 +a4x+a6

be an elliptic curve over k in the Weierstrass form. There is an isomorphism over k from

E to a Montgomery model if and only if

F(x) = x3 +a2x2 +a4x+a6

has a root xP ∈ k such that (3x2
P + 2a2xP + a4) is a square in k. This isomorphism maps

OE to the point at infinity on the Montgomery model and it is a group homomorphism.

Proof. See [38, Part II, Lemma 9.12.4.]. ■

In Section 2.1.1, we discussed the elliptic curve Diffie-Helman key exchange and

mentioned that one of the earliest proposals for using elliptic curves in cryptography was

made by Miller in [51]. In the same paper, Miller presented a method for performing

the Diffie-Helman key exchange using only the x-coordinate of a public point P. If we

denote by x(P) the x-coordinate of a point P, then it can be shown that Alice can calculate

the shared secret x([nA]([nB]P)) = x([nB]([nA]P)) from x([nB]P) and Bob can do the same

from x([nA]P). Working only with the x-coordinate can offer time and space optimization

in the implementation, providing that we use a class of curves with efficient algorithms

for computing point multiplication x(P) 7→ x([k]P), for some integer k. This is where

Montgomery curves are considered to be the optimal choice, particularly due to the effec-

tiveness of the Montgomery ladder algorithm. The Montgomery ladder offers improved

security and efficiency compared to the other standard algorithms with the same purpose

(the double-and-add algorithm). For a detailed description of the Montgomery ladder, we

refer to [24, Chapter 4.].

3.2.2. Definition of radical isogenies on Montgomery curves

In this section, we will follow [54] to explain radical isogenies on Montgomery curves of

degrees 3 and 4. Montgomery curves are used in an effort to reduce the computation cost

of radical isogenies. Throughout this section, we let E to be a Montgomery curve over a
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field k, where char(k) ̸= 2, and the coefficient B is equal to 1, i.e. an elliptic curve of the

form

E : y2 = x3 +Ax2 + x,

where A∈ k, and A2 ̸= 4. Commonly used notation for a point P= (x,y) on a Montgomery

curve E is (x,−), where the y-coordinate is in most cases implied or reconstructed. The

j-invariant of a curve E is equal to

j(E) =
256(A2 −3)3

A2 −4
.

The formula for the j-invariant implies that there are six isomorphic Montgomery curves

over k (remember that the curves are isomorphic over k if they have the same j-invariant).

Even more, the coefficient A determines a class of the enhanced elliptic curve (E,(0,0))

in the set S0(4), as given in the following proposition.

Proposition 3.2.3. Let E and E ′ be two Montgomery curves over k with A and A′ as

their Montgomery coefficients, respectively. Let C
(4)
E denote the cyclic subgroup of E

generated by (1,−)∈E(k). Then (E,C
(4)
E )∼ (E ′,C(4)

E ′ ) if and only if A=A′. Furthermore,

(E,ï(0,0)ð)∼ (E ′,ï(0,0)ð) if and only if A2 = A
′2.

Proof. See [54, Proposition 1.]. ■

Let (E,C) be an enhanced elliptic curve for Γ0(4) over k. One can show that there

exists a Montgomery curve E ′ and an isomorphism E −→E ′ that takes C to C
(4)
E ′ . Therefore,

we can define a bijection from the set S0(4) to k\{±2} by sending a class [E,C] to the

Montgomery coefficient of a Montgomery curve in the class [E,C].

Applying radical isogeny formulas on elements of set S1(N), i.e. on an enhanced

elliptic curve (E,P), results in a curve-point pair that is also an element of S1(N). When

N = 3 or 4, the modular curves X0(N) and X1(N) are isomorphic, i.e. there is a bijection

between sets S0(N) and S1(N), so the existence of radical isogeny formulas on S1(3) and

S1(4) implies a radical isogeny formula on S0(3) and S0(4), respectively. This means that

there is a formula between the Montgomery coefficients of curves. For N = 4 we have the

following theorem (for N = 3, see [54, Section 3.1.]).

Theorem 3.2.4. Let E be a Montgomery curve with coefficient A ∈ k, E ′ a Montgomery

curve, map ϕ : E −→ E ′ an isogeny with kernel C
(4)
E , and ψ an isogeny from E ′ with kernel

60



Radical isogenies Radical isogenies on Montgomery curves

ï(0,0)ð. If the kernel of the composition ψ ◦ϕ is cyclic, the Montgomery coefficient A′

of E ′ is

(β +2)4

4β (β 2 +4)
−2,

where β is a fourth root of 4(A+2).

Proof. See [54, Theorem 8.]. ■

The methods used in [54] for cases N = 3 or 4 cannot be directly applied to the case

N g 5, partly because sets S0(N) and S1(N) are not bijective. Moreover, developing

radical isogeny formulas on S0(N) when N g 5 might not be possible, as illustrated by

the following example.

Example 3.2.5 ([54, Section 4.]). Let N = 5. Let k be a field with char(k) ∤ N, and let E

and E ′ be two elliptic curves over the field k given in Tate normal form:

E : y2 +(1−b)xy−by = x3 −bx,

E ′ : y2 +(1−b′)xy−b′y = x3 −b′x.

The points (0,0) are of order 5 on these curves. The cyclic subgroup of E generated by

point (0,0) is

{OE ,(0,0),(b,b
2),(b,0),(0,b)}.

The pairs (E,(0,0)) and (E ′,(0,0)) are equivalent if and only if b = b′, while the pairs

(E,ï(0,0)ð) and (E ′,ï(0,0)ð) are equivalent if and only if b = b′ or b = − 1
b′ . From this

we have b2−1
b

= b′2−1
b′ , thus b2−1

b
is a parametrization of S0(5). If the curves E and E ′

are isogenous, from the radical isogeny formula we know that b′ is a rational expression

in the fifth root of b, i.e. Q(b′) = Q( 5
√

b). Let β = b2−1
b

and β ′ = b′2−1
b′ . Field extension

Q(b)/Q(β ) is of degree 2. If we adjoin to the field extension Q(b′)/Q(β ) a primitive fifth

root of unity ζ5 ∈C, we obtain a Galois extension Q(ζ5)(b
′)/Q(ζ5)(β ) of degree 10. The

Galois group of this extension Gal(Q(ζ5)(b
′)/Q(ζ5)(β )) is generated by automorphisms

σ : b′ 7→− 1
b′ and τ : b′ 7→ ζ5b′. The fixed field of σ is Q(ζ5)(β

′), and the fixed field of τ is

Q(ζ5)(b). Because τ−1στ ̸= σ , the group ïσð is not a normal subgroup of Galois group

Gal(Q(ζ5)(b
′)/Q(ζ5)(β )), thus the extension Q(ζ5)(β

′)/Q(ζ5)(β ) cannot be a Galois

extension.
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If the parameter β ′ from Example 3.2.5 could be expressed as a rational expression

depending on the parameter β , we would have a way to calculate b′ (quadratic equa-

tion) that is simpler and more direct than radical isogeny formulas. However, this is not

possible, because the field extension Q(ζ5)(β
′)/Q(ζ5)(β ) is not a Galois extension. Nev-

ertheless, it may be possible to find a different β ′, i.e. a different parametrization of S0(5)

which will make the field extension Q(ζ5)(β
′)/Q(ζ5)(β ) Galois. We discuss this further

in Chapter 5.
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4. RADICAL ISOGENIES IN THE

LANGUAGE OF MODULAR CURVES -

THE CASE X1(N)

The goal of this chapter is to show that radical isogenies can be generalized using modular

curves. To this end, we will be using enhanced elliptic curves for different congruence

subgroups and maps between them. The notation used in this (and the following) chapter

is the same as the one introduced in Chapter 3. Additionally, we will assume that ζN is

an element of the field k. This assumption will be explained in Section 4.2 at the end of

this chapter. The elliptic curve E will be the starting elliptic curve over a field k, N g 4

such that char(k) ∤ N, P ∈ E(k) a point of order N, E ′ a curve over k isomorphic to E/ïPð,
ϕ : E −→ E ′ an isogeny with kernel equal to ïPð and P′ a point of order N on E ′ such that

ϕ̂(P′) = P.

4.1. GENERALIZATION OF RADICAL ISOGENIES

For any elliptic curve Ẽ and point P̃ of order N g 4, let its unique Tate normal form be

defined with parameters b̃ and c̃. Let b denote a mapping

b : (Ẽ, P̃) 7→ b̃,

i.e. b is a function on the set of enhanced elliptic curves for Γ1(N), such that for a curve

(Ẽ, P̃) it returns the parameter b̃ from the corresponding Tate normal form. This is a well-

defined function because the Tate normal form is unique. Analogously, for a parameter c̃,

the function c : (Ẽ, P̃) 7→ c̃ is a well-defined function. The definition of modular functions
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on enhanced elliptic curves implies that b and c are elements of k(X1(N)). For curves E

and E ′ we have four such mappings

(E,P)
b7−→ b and (E,P)

c7−→ c for E,

(E ′,P′)
b7−→ b′ and (E ′,P′)

c7−→ c′ for E ′.

We would like to connect parameters b,c with b′,c′ using modular curves and maps be-

tween them. The following sequence of maps will be considered:

(E,P)−→ (E ′,P′)
b7−→ b′,

(E,P)−→ (E ′,P′)
c7−→ c′.

(4.1)

Since the point P′ is not unique, the map (E,P) −→ (E ′,P′) is not uniquely defined, and

therefore no obvious connection on X1(N) exists. For a point P of order N, let R be a

point on the curve E of order N2 such that [N]R = P. This point R is not unique. The pair

(E,R) is an enhanced elliptic curve for Γ1(N
2). Let P′ be an image of a point R under the

isogeny ϕ, i.e.

P′ := ϕ(R) = R+ ïPð.

This is a point of order N on the curve E ′.

Remark. The point P′ is of order N on curve E ′ since

[N]P′ = [N]R+ ïPð= P+ ïPð= O
E
′ ,

where the last equality is valid because we have

P+ ïPð= O
E
′ ô P ∈ ïPð, ∀P ∈ E

′
(k).

Additionally,

ϕ̂(P′) = ϕ̂(ϕ(R)) = [deg(ϕ)]R = [N]R = P,

so point P′ is also P-distinguished. We can modify the sequence of maps in (4.1) and

continue to work with the parameter b and associated functions, as the approach for c is

the same. Beginning with the enhanced elliptic curve (E,R), we have the following maps:

(E,R)−→ (E, [N]R) = (E,P)
b7−→ b, (4.2)

(E,R)−→ (E/ï[N]Rð,R+ ï[N]Rð) = (E/ïPð,R+ ïPð) = (E ′,P′)
b7−→ b′. (4.3)
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Using the mappings described in (4.3), we can, similar to b, define a function

b′ : (E,R) 7→ b′,

which is a function on the set of enhanced elliptic curves for Γ1(N
2). Maps and functions

are visualized in Figure 4.1.

X1(N
2),Γ1(N

2) (E,R)

(E, [N]R) (E/ï[N]Rð,R+ ï[N]Rð)

X1(N),Γ1(N) (E,P) (E ′,P′)

b b′

N·
ϕ

b b

Figure 4.1: Maps between enhanced elliptic curves

The connection between parameters b and b′ can now be extended to an enhanced

elliptic curve (E,R), i.e. to functions on X1(N
2). For every N, let π∗

1,N and π∗
2,N define a

pair of pullback operators:

π∗
1,N : k(X1(N))−→ k(X1(N

2)), of the map π1,N((E,R)) = (E, [N]R) and

π∗
2,N : k(X1(N))−→ k(X1(N

2)), of the map π2,N((E,R)) = (E/ï[N]Rð,R+ ï[N]Rð).

(4.4)

From

(π∗
1,Nb)(E,R) = b(π1,N((E,R))) = b(E, [N]R) = b(E,P)

and

(π∗
2,Nb)(E,R) = b(π2,N((E,R))) = b(E/ï[N]Rð,R+ ï[N]Rð) = b(E ′,P′) = b′(E,R),

we can identify b and b′ with their respective pullbacks by π1,N and π2,N and define

b := π∗
1,Nb and b′ := π∗

2,Nb

as functions on X1(N
2).
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The function b′ is an element of the field π∗
2,N(k(X1(N))). In order to generalize

radical isogenies using modular curves, as b is an element of the field π∗
1,N(k(X1(N))), the

function b′ needs to be an element of some extension field of π∗
1,N(k(X1(N))). For this to

be true, we need to find a function g in k(X1(N
2)) such that

π∗
1,N(k(X1(N)))(g) = π∗

2,N(k(X1(N))). (4.5)

Let P be a point of order N as before, and let fN,P be a normalized Miller function. With

the value of fN,P at point −P, we can define a modular function f on the set of enhanced

elliptic curves for Γ1(N) as:

f : (E,P) 7→ fN,P(−P) ∈ k(X1(N)).

For the function fN,P and the point P, from equation (1.5), there exists a function gN,P ∈
k(E) such that

fN,P ◦ [N] = gN
N,P.

Furthermore, from the discussion after the equation (1.5), we can choose functions fN,P

and gN,P to be in k(E). Using so chosen functions and the equality between them, for an

enhanced elliptic curve (E,R), where, as before P = [N]R, we have a function on X1(N
2)

given by

(E,R) 7→ fN,[N]R(−[N]R) = fN,[N]R([N](−R))

= gN,[N]R(−R)N = gN,P(−R)N .

The function g defined as

g := (E,R) 7→ gN,P(−R)

is an element of the field k(X1(N
2)) and it is satisfying the property

gN = f ,

which means that the N-th root of f is a function on X1(N
2). Both functions b,b′, as well

as function g are elements of k(X1(N
2)). However, due to the large size of this field, it is

currently impossible to prove the equality (4.5). Thus, it is necessary to identify a smaller

quotient of X1(N
2) where b, b′, and g are well-defined.
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4.1.1. Finding the quotient

To gain a better understanding of the function b′, we will investigate the preimages of

(E,P) under the pullback operator π2,N . Specifically, we will investigate pairs (E,R) and

(E,R′) that are mapped by π2,N to the same point (E/ï[N]Rð,R+ï[N]Rð). For the equality

(E/ï[N]R′ð,R′+ ï[N]R′ð) = (E/ï[N]Rð,R+ ï[N]Rð)

to hold, we require ï[N]R′ð= ï[N]Rð and R′+ï[N]R′ð=R+ï[N]Rð. Combining these con-

ditions, we get R′+ ï[N]Rð= R+ ï[N]Rð, which implies that there exists some l ∈ Z/NZ

such that

R′ = R+[l] · ([N]R) and [N]R′ = [N](R+[l]P).

Therefore, we have

ï[N](R+[l]P)ð= ï[N]Rð.

Since the point R has order N2, the points (E,R),(E,R+[1 ·N]R), . . . ,(E,R+[(N − 1) ·
N]R) are all mapped to the same final point. From the definition of b′, it is apparent that

it is a function on X1(N
2) that maps points of this form to the same final point.

Let m be an integer that is relatively prime with N. Let tm be an operator on S1(N
2)

defined as tm : (E,P) 7→ (E, [m]P). When m = N + 1, define t := tN+1. On an enhanced

elliptic curve (E,R) ∈ S1(N
2), this operator acts as:

(E,R)
t7−→ (E, [N +1]R)

t7−→ (E, [(N +1)2]R)
t7−→ ·· · t7−→ (E, [(N +1)N−1]R).

The order of the operator t is equal to N since we have

tN(E,R) = (E, [(N +1)N ]R) = (E,R).

Remark. In [31, Chapter 5, Section 5.2.], the moduli space diamond operator ïdð is

defined by

ïdð : S1(N)−→ S1(N), (E,P) 7→ (E, [d]P), (d,N) = 1.

The operator t is the diamond operator

ïN +1ð : S1(N
2)−→ S1(N

2), (E,R) 7→ (E, [N +1]R).

67



The case X1(N) Generalization of radical isogenies

Composing t with π1,N on the enhanced elliptic curve (E,R), we have:

π1,N(t(E,R)) = π1,N((E, [N +1]R))

= (E, [N(N +1)]R) (since order of R is N2)

= (E, [N]R)

= π1,N(E,R),

and for π2,N :

π2,N(t(E,R)) = π2,N((E, [N +1]R))

= (E/ï[N(N +1)]Rð, [N +1]R+ ï[N(N +1)]Rð)

= (E/ï[N]Rð, [N]R+R+ ï[N]Rð) (since order of R is N2)

= (E/ï[N]Rð,R+ ï[N]Rð) (since [N]R ∈ ï[N]Rð)

= π2,N(E,R),

thus, every pullback by π1,N or by π2,N will be invariant under the operator t.

The modular function (E,R)
g7−→ gN,P(−R), with property gN = f , is also invariant

under t. From Section 1.2, we know that the function gN,[N]R can be used to define the

Weil pairing. To see that the function g : (E,R) 7→ gN,[N]R(−R) is invariant under t, let

(E,R) ∈ S1(N
2). Then

t(E,R) = (E, [N +1]R)
g7−→ gN,[N(N+1)]R(−[N +1]R)

= gN,[N]R(−[N]R−R)

= gN,[N]R(−R−P).

Using the properties of the Weil pairing from Proposition 1.2.27, we have the following

sequence of equalities:

gN,[N]R(−R−P) = gN,[N]R(−R)eN(−P,P) (definition of the Weil pairing with S =−P)

= gN,[N]R(−R)eN(−P,P)eN(P,P)eN(P,P) (alternating property)

= gN,[N]R(−R)eN(−P+P+P,P) (bilinearity)

= gN,[N]R(−R)eN(P,P)

= gN,P(−R).
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Let ïtð denote the group of automorphisms of X1(N
2) generated by t. A function on

X1(N
2) that is invariant under the operator t can be viewed as a function on the quo-

tient X1(N
2)/ïtð. As discussed above, b′ is an example of such a function. The quotient

X1(N
2)/ïtð, i.e. the quotient of a modular curve by the operator t, is again a modular

curve. To see this, following [30] and [42] we can assume, for a field k defined at the

beginning of this chapter, that k =C. Then, we have the following proposition, which ex-

plicitly calculates the congruence subgroup defining this quotient, i.e. the corresponding

modular curve.

Proposition 4.1.1. Let t be an operator defined on the set of enhanced elliptic curves for

Γ1(N
2) with t(E,R) = (E, [N + 1]R). Let ïtð denote the subgroup of automorphisms of

X1(N
2) generated by t. The quotient of the extended upper half-plane H ∗=H ∪Q∪{∞}

and the congruence subgroup

Γ̃(N) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N2), a,d ≡ 1 (mod N)

}
,

i.e. Γ̃(N)/H ∗, is a modular curve whose function field consists of all the functions on

X1(N
2) invariant under t.

Proof. As shown in [31, Chapter 1, Section 1.5.], the sets of equivalence classes of en-

hanced elliptic curves can be used to describe quotients of the upper half-plane by con-

gruence subgroups. In other words, for a function f on X1(N
2)/ïtð, there is a correspond-

ing meromorphic function f on the upper half-plane that is invariant under the action of

Γ1(N
2) and a matrix t ∈ SL2(Z) corresponding to the operator t. To see this, note that

Theorem 1.3.9 shows that S1(N
2) is a moduli space of isomorphism classes of complex

elliptic curves and N2-torsion data, i.e.

S1(N
2) = {[Eτ ,

1

N2
+Λτ ]},

where τ,Λτ and Eτ are defined as in Section 1.3. Describing what the operator t does in

the sense of congruence subgroup implies working with the pair (E,R) after applying the

operator t, i.e. with

t(Eτ ,
1

N2
+Λτ) = (Eτ ,

N +1

N2
+Λτ).

We need to find τ ′ ∈ H , such that (Eτ ,
N+1
N2 +Λτ) is isomorphic to (Eτ ′ ,

1
N2 +Λτ ′). In

other words, we need to find an λ ∈ C such that the lattices Λτ and Λτ ′ are homothetic,
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i.e. λΛτ ′ = Λτ . Let

τ ′ =
(1−N)τ −1

N2τ +1+N
and Λτ ′ = ï1,τ ′ð.

Let λ = N2τ +N +1. Elements 1 and τ are linear combinations (over Z) of vectors λ ·1
and λ · τ ′, which is obvious for 1, and for τ we have:

(1+N) ·λ · τ ′+λ ·1 = τ.

This implies Λτ ¢ λΛτ ′ . As τ ′ is, by definition, a linear combination (over Z) of τ
λ

and

1
λ

, we have Λτ ′ ¢ λΛτ . Therefore, Λτ and Λτ ′ are indeed homothetic.

Moreover, for the matrix

t =
(

1−N −1

N2 1+N

)
∈ Γ1(N)\Γ1(N

2),

using the usual fractional linear transformation on H , we have t(τ) = τ ′. The desired

congruence subgroup Γ̃(N) is generated by Γ1(N
2) and matrix t, thus

Γ̃(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N2), a,d ≡ 1 (mod N)

}
.

It is clear from the construction of the congruence subgroup Γ̃(N) that the quotient Γ̃(N)/H ∗

defines a modular curve whose function field consists of all the functions on X1(N
2) in-

variant under t. ■

Remark. The congruence subgroup Γ̃(N) defined in Proposition 4.1.1 is the intersection

of two other standard congruence subgroups Γ1(N) and Γ0(N
2).

As a direct consequence of Proposition 4.1.1, X1(N
2)/ïtð is a well-defined modular

curve with a function field equal to

k(X1(N
2)/ïtð) = { f ∈ k(X1(N

2)) : f (t(E,R)) = f (E,R),∀(E,R) ∈ S1(N
2)}.

The following proposition shows the relationship between congruence subgroups Γ̃(N)

and Γ1(N
2).

Proposition 4.1.2. Let Γ̃(N) be a congruence subgroup defined as

Γ̃(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N2), a,d ≡ 1 (mod N)

}
.

The congruence subgroup

Γ1(N
2) = {

(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N2)}

is a normal subgroup of Γ̃(N) with index N.
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Proof. The congruence subgroup Γ̃(N) is generated with the congruence subgroup Γ1(N
2)

and matrix t =
(

1−N −1

N2 1+N

)
∈ Γ1(N)\Γ1(N

2). To prove that Γ1(N
2) is a normal subgroup

of Γ̃(N) it is enough to see that t−1
(

a b
c d

)
t ∈ Γ1(N

2), for every matrix
(

a b
c d

)
∈ Γ1(N

2).

This is true because

(
1−N −1

N2 1+N

)(
a b
c d

)(
1+N 1

−N2 1−N

)
=

=
(

a(1−N)(1+N)−c(1+N)−N2(b(1−N)−d) a(1−N)+b(1−N)2−c+d(1−N)

aN2(1+N)+c(1+N)2−N2(bN2+d(1+N)) aN2+bN2(1−N)+c(1+N)+d(1−N)(1+N)

)

≡
(

a(1−N)(1+N) a(1−N)+b−2bN+d(1−N)
0 d(1−N)(1+N)

)
(mod N2) (because c ≡ 0 (mod N2))

≡
(

1−N2 2−2N+b−2bN

0 1−N2

)
(mod N2) (because a,d ≡ 1 (mod N2))

≡
(

1 b−2bN−2N+2
0 1

)
(mod N2).

To calculate the index of Γ1(N
2) in Γ̃(N) we will use the homomorphism πN : SL2(Z)−→

SL2(Z/NZ), induced by reduction modulo N for N g 1. The kernel of πN is the principal

congruence subgroup Γ(N), which is a normal subgroup of finite index in SL2(Z). Any

other congruence subgroup Γ(N)¢ Γ̃ is of finite index in SL2(Z) and it is a preimage of

πN , i.e. Γ̃ = π−1
N (Γ̂) where Γ̂ is some subgroup of SL2(Z/NZ). The index [Γ̃ : Γ(N)] is

equal to #Γ̂.

For Γ̃(N), after reducing elements of Γ̃(N) modulo N2, the element c is equal to zero,

for elements a and d we have a,d ≡ 1 (mod N) and a,b,c,d ∈ Z/N2Z. There are no

additional conditions on b, but a and d must satisfy a condition for determinant: ad ≡
1 (mod N2). Writing a = 1+ kN and d = 1+ lN, where k, l ∈ {0,1, . . . ,N −1}, we get

(1+ kN)(1+ lN) = 1+N(k+ l)+ klN2 ≡ 1 (mod N2),

which implies k+ l ≡ 0 (mod N), so l depends completely on k. Therefore, d depends

completely on a. Altogether, #
̂̃
Γ(N) = N3. The index [Γ̃(N) : Γ(N2)] is equal to

[Γ̃(N) : Γ1(N
2)][Γ1(N

2) : Γ(N2)],

thus

[Γ̃(N) : Γ1(N
2)] =

#
̂̃
Γ(N)

[Γ1(N2) : Γ(N2)]
=

#
̂̃
Γ(N)

N2
=

N3

N2
= N.

■
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Remark. Some results regarding the modular curve X(Γ̃(N)) can be directly derived

from the properties of the diamond operator t, i.e. of the operator ïN + 1ð, and the rela-

tion of the congruence subgroup Γ̃(N) in regard to other standard congruence subgroups.

Namely, congruence subgroups Γ1(N
2), Γ̃(N), and Γ0(N

2) are related by the subgroup

relation Γ1(N
2) ¢ Γ̃(N) ¢ Γ0(N

2), i.e. X1(N
2) −→ X(Γ̃(N)) −→ X1(N

2). Furthermore,

the modular curve X0(N
2) is the quotient of the modular curve X1(N

2) with the operator

ïN +1ð (as it is X(Γ̃(N))). Then, the result of Proposition 4.1.2 is the consequence of the

fact that the field extension k(X1(N
2))/k(X0(N

2)) is Galois and the order of the operator

ïN +1ð is equal to N.

Remark. For the index [Γ1(N) : Γ1(N
2)], first note that

[SL2(Z) : Γ1(N
2)] = [SL2(Z) : Γ1(N)][Γ1(N) : Γ1(N

2)],

so

[Γ1(N) : Γ1(N
2)] =

[SL2(Z) : Γ1(N
2)]

[SL2(Z) : Γ1(N)]
.

Using the known indices between congruence subgroups, indicated in Section 1.3, and

the definition of the Euler totient function, we have the following equalities:

[Γ1(N) : Γ1(N
2)] =

[SL2(Z) : Γ1(N
2)]

[SL2(Z) : Γ1(N)]

=
[SL2(Z) : Γ0(N

2)][Γ0(N
2) : Γ1(N

2)]

[SL2(Z) : Γ0(N)][Γ0(N) : Γ1(N)]

=

N2 ∏
p|N2

(
1+

1

p

)
φ(N2)

N ∏
p|N

(
1+

1

p

)
φ(N)

=

N2 ∏
p|N2

(
1+

1

p

)
N2

∏
p|N2

(
1− 1

p

)

N ∏
p|N

(
1+

1

p

)
N ∏

p|N

(
1− 1

p

)

= N2,

where we can cancel the products because if p|N2 it also divides N.

Let k(X1(N
2)) denote the function field corresponding to the modular curve X1(N

2).
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Using the result of Proposition 4.1.2, the quotient Γ̃(N)/Γ1(N
2) acts as a group of auto-

morphism of k(X1(N
2)) with fixed field k(X(Γ̃(N))), i.e.

k(X(Γ̃(N))) = k(X1(N
2))Γ̃(N)/Γ1(N

2).

From this, we have an equality of function fields:

k(X(Γ̃(N))) = k(X1(N
2))t,

thus

k(X(Γ̃(N))) = k(X1(N
2)/ïtð).

We have shown that the function b ∈ π∗
1,N(k(X1(N))) is invariant under the operator t.

Therefore,

π∗
1,N(k(X1(N))) N

¢ k(X(Γ̃(N))) = k(X1(N
2)/ïtð),

where the degree of the extension is equal to the index of the subgroup. Returning to

the equality (4.5), the modular function g : (E,R) 7→ gN,P(−R) is an element of the field

k(X1(N
2)/ïtð) with property gN = f . The polynomial xN − f is a polynomial of degree N

in π∗
1,N(k(X1(N)))[x] having g as a root. The equality (4.5) depends on the irreducibility

of the polynomial xN − f .

Lemma 4.1.3. Let f be a function defined on the set S1(N) with (E,P) 7→ fN,P(−P),

where fN,P is a normalized Miller function. Let g be a function defined on the set S1(N
2)

with (E,R) 7→ gN,P(−R), where P = [N]R and fN,P ◦ [N] = gN
N,P. Let t∗ ∈ Aut(k(X1(N

2)/

X1(N)) be a pullback operator of the map

t(E,R) = (E, [N +1]R), (E,R) ∈ S1(N
2).

Let π∗
1,N : k(X1(N))−→ k(X1(N

2) be a pullback operator of the map

π1,N((E,R)) = (E, [N]R).

The polynomial xN − f is an irreducible polynomial in π∗
1,N(k(X1(N)))[x].

Proof. The proof is given in Section 4.2.2. ■
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The irreducibility of the polynomial xN − f , as stated in Lemma 4.1.3, implies

π∗
1,N(k(X1(N)))(g) = k(X1(N

2)/ïtð),

which implies that b′ is an element of π∗
1,N(k(X1(N)))(g). Therefore, the equality (4.5)

holds, and it is possible to generalize radical isogenies using modular functions.

Example 4.1.4. Let N = 5 and E be an elliptic curve over the field

Q5(b,c) = Frac
Q[b,c]

(F5(b,c))
.

The Tate normal form for E, together with the point P of order 5 is

E : y2 +(1−b)xy−by = x3 −bx2, P = (0,0). (4.6)

In the case of N = 5 we have F5(b,c) = b− c = 0, which implies a simpler Tate normal

form (4.6). Having only a parameter b results in only one modular function b in k(X1(5)).

On the other side, the curve E ′ and the point P′ of order 5 are given by

E ′ = E/ïPð : y2 +(1−b′)xy−b′y = x3 −b′x2, P′ = (0,0).

For a point P, let R be a point of order 25 such that [5]R = P. The pair (E,R) is an

enhanced elliptic curve for Γ1(25). The pullbacks π∗
1,5,π

∗
2,5 and maps b,b′ are defined as

before.

From the example in [17, Section 4.], when N = 5, f5,P(−P) = b ∈ Q5(b). The fifth

root of b is a function on X1(25), as (E,R)
g7−→ g5,[5]R(−R) is a well-defined map with the

property g5 = b.

Observing the preimages of π2,5, points (E,R),(E,R+[1 ·5]R),(E,R+[2 ·5]R),(E,R+

[3 ·5]R) and (E,R+[4 ·5]R) are all mapped to the same final point. The operator t defined

as t(E,R) 7→ (E, [5+ 1]R) = (E, [6]R) is of order 5 and ïtð is isomorphic to Z/5Z. The

congruence subgroup generated by Γ1(25) and matrix t =
(−4 −1

25 6

)
is

Γ̃(5) =
{(

ã b̃
c̃ d̃

)
∈ SL2(Z) :

(
ã b̃
c̃ d̃

)
≡
(

1 ∗
0 1

)
(mod 25)

}
.

The functions b,b′,g and every pullback by π1,5 or π2,5 are invariant under t, so they

are also defined on the quotient X1(25)/ïtð. For the number of elements in the group

#
̂̃
Γ(5), after reducing elements of Γ̃(5) modulo 25, the conditions on elements are c̃ =

74



The case X1(N) Generalization of radical isogenies

0, ã, d̃ ≡ 1 (mod 5) and ã, b̃, c̃, d̃ ∈ Z/25Z. The value for ã and d̃ each can only be from

the set {1,6,11,16,21}. Since the determinant of the matrix has to be 1 in SL(Z/25Z),

there are 25 possibilities for b̃. Therefore, there are 125 elements in this group, and the

index [Γ̃(5) : Γ1(25)] is equal to 5. The field extension π∗
1,5(k(X1(5))) ¢ k(X1(25)/ïtð)

has degree 5, the polynomial X5−b is irreducible in π∗
1,5(k(X1(5)))[x], has a well-defined

root, thus

π∗
1,5(k(X1(5)))(

5
√

b) = k(X1(25)/ïtð),

meaning b′ ∈ π∗
1,5(k(X1(5)))(

5
√

b) and b′ is a rational expression of
5
√

b.
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4.2. FIELD OF DEFINITION OF AUTOMORPHISMS

OF THE MODULAR CURVE X(Γ̃(N))

At the start of this chapter, we assumed that ζN , a primitive N-th root of unity for a positive

integer N, is an element of our underlying field k. This was implicitly used throughout

the chapter, especially in the discussion regarding the field equality (4.5). In this section,

we give a justification for that assumption. The necessary background was introduced in

Section 1.3.2.

We will show that the automorphisms of the modular curve X(Γ̃(N)) are defined over

the field Q(ζN), and consequently over the field k, where k is a field satisfying char(k) ∤ N

and ζN ∈ k. To accomplish this, we will utilize the proposition [34, Section 5, Propo-

sition 5.14.] outlined in Section 4.2.2. This proposition gives a field of definition of

automorphisms of modular curves using the subgroups of GL2(Z/NZ) and a matrix in

SL2(Z) that normalizes those subgroups.

4.2.1. Automorphisms of a modular curve

Let k be a field, and let k denote its algebraic closure. We first give a short introduction to

the automorphisms of modular curves.

Let Γ1 and Γ2 be two congruence subgroups such that Γ1 is a normal subgroup of

Γ2. Let X(Γ1) and X(Γ2) be the associated modular curves. The congruence subgroup

Γ2 acts on the modular curve X(Γ1). First, using the fractional linear transformation,

Γ2 acts on the upper half-plane: for a matrix γ2 ∈ Γ2 and an element z ∈ H we have

z 7→ γ2z. This is also a definition of an automorphism of the upper half-plane. Second, if

we extend that action, the congruence subgroup Γ2 will act on the modular curve X(Γ1)

by the following: Γ1z 7→ γ2(Γ1z), where Γ1z is an element of the modular curve X(Γ1).

The congruence subgroup Γ1 will also (trivially) act on the modular curve X(Γ1), and

therefore, we have the action of the quotient group Γ2/Γ1 on the same modular curve.

The quotient group Γ2/Γ1 consists of all the left cosets of Γ1 in Γ2, i.e. for a matrix

γ2 ∈ Γ2, we have the set

γ2Γ1 = {γ2γ1 : γ1 ∈ Γ1}.
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Each coset in the quotient group Γ2/Γ1 corresponds to an automorphism of the modu-

lar curve X(Γ1). Let g2 be a matrix from the coset γ2Γ1. There exist g1 ∈ Γ1 such that

g2 = γ2g1. Now, g2Γ1g−1
2 = γ2g1Γ1g−1

1 γ−1
2 , and because g1Γ1g−1

1 is a subset of Γ1, and

γ2Γ1γ−1
2 ∈ Γ1 because Γ1 is normal subgroup of Γ2, we have g2Γ1g−1

2 = Γ1, so the au-

tomorphism is well-defined as it does not depend on the coset representative. Automor-

phisms constructed in this way induce automorphisms of the field k(X(Γ1))/k(X(Γ2)).

Furthermore, this is a Galois extension and Gal(k(X(Γ1))/k(X(Γ2))) ≃ Γ2/Γ1. In other

words, the quotient Γ2/Γ1 acts as a group of automorphisms of k(X(Γ1)) with fixed field

k(X(Γ2)) .

The modular curve X(Γ̃(N)) is defined as a quotient X1(N
2)/ïtð, where t (or more

precisely tN+1, see Section 4.1.1) is a restriction of an automorphism of the modular curve

X1(N
2). Because of this, in order to describe automorphisms of X(Γ̃(N)), the first idea is

to look at the automorphisms of modular curve X1(N
2). Because of the relation Γ1(N

2)¢
Γ̃(N)¢ Γ1(N), the obvious candidate for the automorphism group is Γ1(N)/Γ1(N

2), but

this is not a good path because Γ1(N
2) is not a normal subgroup of Γ1(N). So, we need to

go a step further, i.e. find a congruence subgroup Γ such that Γ¢Γ1(N
2)¢ Γ̃(N)¢Γ1(N)

and Γ is a normal subgroup of Γ1(N). Then, the quotient Γ1(N)/Γ will act as a group of

automorphisms of k(X(Γ)) with fixed field k(X1(N)), and the field extension k(X(Γ))/

k(X1(N)) will be a Galois extension. The automorphism tN+1 should be a restriction of

some automorphism of X(Γ) 7→ X(Γ1(N)).

Let m,n be positive integers such that m|n, and let Γ(m,n) denote the congruence

subgroup

Γ(m,n) =
{(

a b
c d

)
∈ SL2(Z) : a,d ≡ 1 (mod n), c ≡ 0 (mod n), b ≡ 0 (mod m)

}
.

This is indeed a congruence subgroup because Γ(n) ¢ Γ(m,n). The associated modular

curve is a quotient Γ(m,n)/H , denoted by Y (m,n) that parametrizes triples (E,Pm,Pn)

where E is an elliptic curve, Pm is a point of order m and Pn is a point of order n. Ad-

ditionally, Pm and Pn are independent points (so they generate a subgroup isomorphic to

Z/mZ·Z/nZ), and there is a condition on Weil pairing such that em(Pm, [
n
m
]Pn) = ζm,

where ζm is fixed m-th root of unity. Let X(m,n) be the compactification of Y (m,n).
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If we let m = N and n = N2, the congruence subgroup is:

Γ(N,N2) =
{(

a b
c d

)
∈ SL2(Z) : a,d ≡ 1 (mod N2), c ≡ 0 (mod N2), b ≡ 0 (mod N)

}
.

(4.7)

The subgroup Γ(N,N2) is a normal subgroup of Γ1(N). The verification is straightfor-

ward, let
(

a b
c d

)
∈ Γ1(N) and let ( x y

w z ) ∈ Γ(N,N2). The product is equal to:

(
a b
c d

)
( x y

w z )
(

d −b
−c a

)
=
(

d(ax+bw)−c(ay+bz) a(ay+bz)−b(ax+bw)
d(cx+dw)−c(cy+dz) a(cy+dz)−b(cx+dw)

)
,

and it should be an element of Γ(N,N2). For example, the element d(ax+bw)−c(ay+bz)

should be congruent to one modulo N2. We have the following:

d(ax+bw)− c(ay+bz)≡ da+dbw− cay− cb (mod N2) (because x,z ≡ 1 (mod N2))

≡ da− cay− cb (mod N2) (because w ≡ 0 (mod N2))

≡ 1− cay (mod N2) (because ad − cb is the determinant).

This implies that we should have 1− cay ≡ 1 (mod N2), i.e. cay ≡ 0 (mod N2). The

elements c and y are both divisible with N, so there exists an integer k such that c = k ·N
and an integer l such that y = l ·N. Therefore the product cay is equal to klaN2 which

is congruent to zero modulo N2 as required. The modular condition of other elements is

checked in a similar way.

We can define the quotient Γ1(N)/Γ(N,N2), and it will act as a group of automor-

phisms on k(X(N,N2)) with fixed field k(X1(N)). The field extension k(X1(N))¢ k(X(N,N2))

is a Galois extension with a degree equal to N3. Figure 4.2 shows the relation between

function fields.

k(X(N,N2)) k(X1(N
2)) k(X(Γ̃(N))) k(X1(N))N

§

Galois

N
§

not Galois

N
§

Figure 4.2: Function fields related to congruence subgroup (4.7)

The Galois group of the field extension k(X(N,N2))/k(X1(N)) is generated by the
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following three automorphisms:

α : (E,P,Q) 7→ (E,P+[N]Q,Q), (4.8a)

t : (E,P,Q) 7→ (E,P, [N +1]Q), (4.8b)

ω : (E,P,Q) 7→ (E,P,P+Q), (4.8c)

where P is a point of order N, Q is a point of order N2, they are independent and such that

eN(P, [N]Q) = ζN .

The notation for the automorphism t coincides with the notation for the automorphism

t, i.e. tN+1 from Section 4.1.1. We recall that the subgroup generated by tN+1 was used

to define the modular curve X(Γ̃(N)) = X1(N
2)/ïtN+1ð. Keeping the same notation is the

consequence of the fact that the automorphism tN+1 is a restriction of the automorphism

(4.8b) on X(N,N2) 7→ X1(N
2). This is represented by Figure 4.3.

X(N,N2) ∋ (E,P,Q) (E,P, [N +1]Q)

X1(N
2) ∋ (E,Q) (E, [N +1]Q)

t

tN+1

Figure 4.3: Automorphism t

Furthermore, the quotient of the modular curve X(N,N2) and the group generated by

the automorphism α is the modular curve X1(N
2). This is obvious because α identifies the

points of order N2, and those points are the only ones considered in the map (E,P,Q) 7→
(E,Q). We can conclude that the quotient of the modular curve X(N,N2) and of the group

generated by the automorphisms t and α is precisely X(Γ̃(N)), i.e.

k(X(Γ̃(N))) = (k(X(N,N2))ïαð)ïtð.

We still need to discuss the automorphism (4.8c). We are interested in the restriction of

this automorphism to the modular curve X(Γ̃(N)). This restriction will generate the Ga-

lois group of the extension k(X(Γ̃(N)))/k(X1(N)), where we note that Γ̃(N) is a normal

subgroup of Γ1(N). The definition of the operator tN+1 from the Section 4.1.1 was in-

fluenced by preimages of the pullback operators, i.e. we have seen that, for a point R of

order N2, points (E,R),(E,R+[1 ·N]R), . . . ,(E,R+[(N −1) ·N]R) are all mapped to the

same point. The orbit of the point R is the set {R+[k]([N]R), k = 1, . . . ,N −1}.
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X(N,N2) ∋ (E,P,Q) (E,P,P+Q)

X1(N
2) ∋ (E,Q) (E,P+Q)

X(Γ̃(N)) ∋ (E,Q+ ïtð) (E,P+Q+ ïtð)

ω

ω

Figure 4.4: Automorphism ω

We need to check that the restriction of ω on X(Γ̃(N)) (we are keeping the same nota-

tion for the restriction) is a well-defined map. It is enough to check that for a fixed point Q,

points (E,P+Q+ ïtð) and (E,P′+Q+ ïtð) represent the same element in X(Γ̃(N)), for

(E,P,Q),(E,P′,Q) ∈ X(N,N2). To put it another way, points (E,P+Q) and (E,P′+Q)

in X1(N
2) should be elements of the same ïtð orbit. Elements of the orbit of the point

P+Q can be written as P+Q+ [k]([N]Q), for k = 1, . . . ,N − 1. The point P′+Q will

be an element of that orbit if P′ +Q = P+Q+ [k]([N]Q), i.e. if P′ = P+ [k]([N]Q).

This follows from the definition of the modular curve X(N,N2), since eN(P
′, [N]Q) =

eN(P, [N]Q) = ζN , the bilinearity of Weil pairing implies eN(P−P′, [N]Q) = 1, and be-

cause eN([N]Q, [N]Q) = 1, the point P−P′ is an element of a group ï[N]Qð.

4.2.2. Field of definition of automorphisms

In Section 1.3.2, we introduced the modular curve XH for a subgroup H ∈GL2(Z/NZ). In

the preceding section we introduced the modular curve X(N,N2) along with the automor-

phisms α, t and ω . The goal of this section is to determine the field over which these au-

tomorphisms are defined. To achieve this, we will utilize the subgroups of GL2(Z/N2Z)

associated with (concerning the reduction modulo N2 map) the modular curve X(N,N2).

We denote the quotient XH/H
∗ by XH(C). Furthermore, we denote the regular

2 × 2 matrices with elements from Q and with positive determinant by GL+
2 (Q), and

by PGL+
2 (Q) = GL+

2 (Q)/{±I} the projective linear group. The map P : GL+
2 (Q) −→

PGL+
2 (Q) is the natural map. The following is the definition of a modular automorphism

of XH , see [34, Definition 5.1.].

Definition 4.2.1. Let H be a subgroup of GL2(Z/NZ) such that det(H) = (Z/NZ)×.
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An automorphism of XH defined over C is modular if its action on XH(C) is described

by a fractional linear transformation associated with a matrix in PGL+
2 (Q) normalizing

P(ΓH).

How to find an automorphism and its field of definition is covered in the following

proposition.

Proposition 4.2.2. Let N be a positive integer, let H be a subgroup of GL2(Z/NZ) such

that det(H) = (Z/NZ)×, and let H ′ = H∩SL2(Z/NZ). Let M ∈ SL2(Z) be a matrix such

that its reduction (M mod N) normalizes H ′. Then M defines a modular automorphism

of XH which is defined over the cyclotomic field Q(ζN). Moreover, this automorphism is

defined over Q if and only if (M mod N) normalizes H.

Proof. See Proposition [34, Section 5, Proposition 5.14.]. ■

Using this proposition, our goal is to determine the field over which the automor-

phisms of the modular curve X(N,N2) are defined. This field will also be the field of

definition of automorphisms of the modular curve X(Γ̃(N)), as every automorphism there

can be regarded as a restriction of an automorphism of X(N,N2). First, we need to identify

subgroups of GL2(Z/N2Z) corresponding to the congruence subgroup Γ(N,N2) defined

by (4.7). These subgroups should be related to Γ(N,N2) in the sense that their preimage

under the reduction modulo N2 map is exactly that subgroup.

We start with the subgroup H. From Proposition 4.2.2, we know that the matrices

from this subgroup have the determinant equal to det(H) = (Z/NZ)×. So, the subgroup

H is equal to:

H :=
{(

a b
c d

)
∈ GL2(Z/N2Z) : c ≡ 0 (mod N2), d ≡ 1 (mod N2), b ≡ 0 (mod N)

}
,

i.e. we have eliminated the condition on the first element. Furthermore, again according to

Proposition 4.2.2, the second subgroup H ′ is defined as the intersection H ′ := H∩SL2(Z/

N2Z). Additionally, we let H ′′ be the subgroup between them, i.e.

H ′′ :=
{(

a b
c d

)
∈ GL2(Z/N2Z) : c ≡ 0 (mod N2), d ≡ 1 (mod N2), a ≡ 1 (mod N), b ≡ 0 (mod N)

}
.

The relation between the subgroups is H ′ ¢ H ′′ ¢ H.
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Similar to the matrix t from Proposition 4.1.1, we let ω =
(

1−N −N
N 1+N

)
∈ Γ1(N) \

Γ1(N
2) be a matrix representation of the automorphism ω . If ω normalizes H ′, it will

define a modular automorphism of XH over a cyclotomic field Q(ζN2).

Let h′ =
(

a b
c d

)
be a matrix from the subgroup H ′. Multiplying h′ with ω gives us:

ω ·h′ ·ω−1 =
(

1−N −N
N 1+N

)(
a b
c d

)(
1+N N
−N 1−N

)

=
(
(1+N)(a(1−N)−cN)−N(b(1−N)−dN) N(a(1−N)−cN)+(1−N)(b(1−N)−dN)
(1+N)(aN+c(N+1))−N(bN+d(1+N)) N(aN+c(1+N))+(1−N)(bN+d(1+N))

)
,

which is an element of H ′ because:

• For the determinant we have det(ω · h′ · ω−1) = det(ω)det(h′)det(ω−1) = 1 in

Z/N2Z, since h′ is an element of SL2(Z/N2Z). Furthermore, as det(h′)= ad−cb=

1 in Z/N2Z, conditions on the elements b,c and d imply a ≡ 1 (mod N2).

• The condition on the second element is satisfied because:

N(a(1−N)− cN)+(1−N)(b(1−N)+dN) =

=−aN2 +bN2 − cN2 +dN2 +aN −bN −bN −dN +b

= b ≡ 0 (mod N).

• The condition on the third element is satisfied because:

(1+N)(aN + c(N +1))−N(bN +d(1+N)) =

= aN2 −bN2 + cN2 −dN2 +aN + cN + cN −dN + c

= (a−d)N ≡ 0 (mod N2),

as a,d ≡ 1 (mod N2) implies a−d ≡ 0 (mod N2).

• And the condition on the fourth element is satisfied because:

N(aN + c(1+N))+(1−N)(bN +d(1+N)) =

= aN2 −bN2 + cN2 −dN2 +bN + cN +dN −dN +d

≡ bN +1 (mod N2),

so we need to have bN + 1 ≡ 1 (mod N2) ô bN ≡ 0 (mod N2), which is true be-

cause b ≡ 0 (mod N).
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According to Proposition 4.2.2, the matrix ω defines a modular automorphism of XH over

the field Q(ζN2). Additionally, as ω does not normalize the subgroup H, this automor-

phism is not defined over Q.

We can go a step further. Since the matrix ω also normalizes the congruence subgroup

H ′′ (the verification is similar to that of the subgroup H ′), this implies a possibility of a

different field of definition. We can gain more insights by examining the determinants of

the matrices H ′, H ′′, and H. For H, as there is no condition on its element a, determinant

det(H) is equal to (Z/N2Z)×. Regarding H ′′, from the conditions on elements a and d,

we find (1+ kN)(1+ lN2)≡ 1+ kN (mod N2), so the determinant is equal to det(H ′′) =

{1+ kN ∈ Z/N2Z, k ∈ Z}, i.e. the determinant is the set of all elements whose modulo

N is equal to 1. For the subgroup H ′, as it is an intersection with SL2(Z/N2Z), the

determinant is equal to {1}.

Using the action of the determinant of the subgroup H ′′, we will show the equality

Q(ζN2)det(H ′′) =Q(ζN), i.e. we will show that the field of definition of the automorphisms

is the field QN(ζN).

Let ζN2 be N2-th primitive root of unity:

• ζ N2

N2 = 1, and

• ζ x
N2 ̸= 1, for positive integer x < N2.

Consider an element 1+ kN ∈ Z/N2Z, where k is a positive integer. Let m be an integer

such that ζ m
N2 is fixed by 1+ kN, for every k. Put differently, element ζ m

N2 is fixed by the

determinant det(H ′′). We have the following equalities:

(
ζ m

N2

)1+kN
= ζ m

N2 ,

ζ m+mkN
N2 = ζ m

N2 ,

ζ mkN
N2 = 1.

The property of a primitive root, where for a n-th primitive root z, we have

za = zb ô a ≡ b (mod n),

implies:

mkN ≡ 0 (mod N2)⇒ mk ≡ 0 (mod N),
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therefore N|mk for every k, implying N|m. Let l be an integer such that Nl = m. Then,

ζ m
N2 = ζ Nl

N2 = ζ l
N ,

where the last equality follows from another property of primitive root: if z is n-th primi-

tive root, the power zx is an a-th primitive root for a = n
gcd(n,x) . Altogether,

(
ζ m

N2

)1+kN
= ζ m

N2 = ζ l
N .

Remark. A similar approach can be applied directly to the congruence subgroup

Γ̃(N) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N2), a,d ≡ 1 (mod N)

}
.

In this case the three subgroups are:

H :=
{(

a b
c d

)
∈ GL2(Z/N2Z) : c ≡ 0 (mod N2), d ≡ 1 (mod N)

}
,

H ′′ :=
{(

a b
c d

)
∈ GL2(Z/N2Z) : c ≡ 0 (mod N2), a,d ≡ 1 (mod N)

}
,

and the third is defined as the intersection H ′ := H ∩SL2(Z/N2Z).

In conclusion, the fixed field under the action of the determinant det(H ′′) on ele-

ments from the field Q(ζN2) is equal to Q(ζN). Consequently, the matrix ω defines

(modular) automorphisms of XH over the cyclotomic field Q(ζN). All automorphisms

of X(N,N2) (α , ω and t), and thus their restrictions, are well-defined on a field k(ζN),

when char(k) ∤ N.

Let, as before, k be a field, N g 4 an integer such that char(k) ∤ N, and ζN ∈ k. The

field k is the field of definition of automorphisms of modular curve X(Γ̃(N)). To conclude

this section, we provide the proof of Lemma 4.1.3:

Proof. The function g is invariant under the operator t, so it is defined on the quotient

X(Γ̃(N)). We will show that the function g is modular only for that congruence subgroup,

so g cannot be an element of some other field k(X(Γ)) with Γ̃(N) ë Γ ¢ Γ1(N). This

implies that the field extension π∗
1,N(k(X1(N)))(g) has degree N over k(X1(N)).

Let P be a point of order N, and let R and R′ be points of order N2 such that [N]R = P

and [N]R′ = P. Additionally, we assume that the function g has the same values in those

points, i.e. g(E,R) = g(E,R′). Using the definition of the function g, we have

gN,[N]R(−R) = gN,[N]R′(−R′) = gN,[N]R(−R′).
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The previously defined Weil pairing implies:

1 =
gN,[N]R(−R′)

gN,[N]R(−R)
=

gN,P((R−R′)−R)

gN,P(−R)
= eN(P,R−R′).

The point R−R′ belongs to E[N] because, by assuming [N]R′= [N]R=P, we have [N](R−
R′) = P−P = OE . Therefore, eN(P,R−R′) is consistent with the definition of the Weil

pairing.

Let E be a fixed elliptic curve, P a point of order N on that curve, and R a point of order

N2 on that curve such that P = [N]R. From the discussion before, for every R, we have

eN(P,R−R′) = 1, and since the Weil pairing is nondegenerate, the point R−R′ belongs

to the subgroup ïPð. As a consequence, the point R′ can be written as R+[l]P for some

l ∈ Z, which depends on R.

In comparison to the operator t, since g is invariant under t, we have:

g(E,R) = g(t(E,R)) = g(E, [N +1]R) = g(E,R+P),

which implies g(E,R) = g(E,R+[k]P) for every k ∈ Z.

In conclusion, if the function g has the same values for any two different points of

order N2, then those two points are dependent on each other, and moreover, the relation

between them directly follows from the invariant property of the function g under the

operator t.

In the discussion before, we have seen that ω is a generator of the Galois group

Gal(k(X1(N))/k(X(Γ̃(N)))). If g is invariant under some other operator, i.e. if g is de-

fined on some quotient of X(Γ̃(N)), this would imply that g should be invariant under

ωk, for some positive integer k, such that ωk is not the identity. This would imply that

there are some points R and R′ such that R−R′ ̸= [l]P, for any integer l. But this is in

contradiction with the invariance property of g under the operator t.

In other words, g is modular only for the congruence subgroup Γ̃(N). This implies

that the function field π∗
1,N(k(X1(N)))(g) is an extension of the degree exactly N over

k(X1(N)). The roots of the polynomial xN − f are of the form ζ n
Ng, where ζN represents

the N-th root of unity and n is a positive integer. If we assume that this polynomial is not

irreducible, then we could find two nonconstant polynomials f1, f2 ∈ k(X1(N))[x], such

that xN − f = f1(x) f2(x). However, this would lead to a contradiction since g is a root for
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f1 and has a degree greater than or equal to N, which is the degree of g. Therefore, the

polynomial xN − f is irreducible. ■

86



5. RADICAL ISOGENIES IN THE

LANGUAGE OF MODULAR CURVES -

THE CASE X0(N)

The background set in the previous chapter, including the results on radical isogenies,

offer a way to address the open problem introduced in Example 3.2.5. In this chapter,

we will delve deeper into the concepts discussed previously, now extending our focus to

include the modular curve X0(N). Throughout this chapter, we will maintain a consistent

use of notations and assumptions introduced in Chapter 4.

5.1. EXTENDING TO X0(N)

Let k be a field, let N g 5 be a positive integer such that char(k) ∤ N, and let k denote

the algebraic closure of k. Let β be a function on enhanced elliptic curves for Γ0(N), i.e.

an element of k(X0(N)). For example, we can take β to be a Hauptmodul1 for k(X0(N)).

Such Hauptmodul will exist if the genus of the modular curve is zero. We let the pullback

operators π∗
1,N and π∗

2,N to be defined by (4.4), but now on the algebraic closure k, and ψ∗
N

is the pullback operator

ψ∗
N : k(X0(N))−→ k(X1(N)), of the map ψN((E,P)) = (E,ïPð),

where (E,P) is an enhanced elliptic curve for X1(N). Applying the compositions π∗
1,N ◦

ψ∗
N and π∗

2,N ◦ψ∗
N to the functions from k(X0(N)) results in elements of k(X1(N

2)). From

1A Hauptmodul for a congruence subgroup Γ is a function that generates the field of modular functions

for Γ.
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now on, we will identify the function β with β := π∗
1,N(ψ

∗
N(β )) and define β ′ := π∗

2,N(ψ
∗
N(β )).

Both β and β ′ are elements of k(X1(N
2)).

In the last chapter, we introduced the congruence subgroup Γ(N,N2) and its associated

modular curve X(N,N2) to find the field of definition of automorphism of the modular

curve X(Γ̃(N)). Furthermore, the choice to introduce the congruence subgroup Γ(N,N2)

was additionally motivated by the fact that the subgroup Γ1(N
2) was not a normal sub-

group of Γ1(N). Consequently, we could not build automorphisms from their quotient as

outlined in Section 4.2.1, and utilize parts of Galois theory on associated function fields.

Resolving the problem introduced in Example 3.2.5 involves determining the function

field to which the function β ′ belongs. Referring back to the previous chapter, the gen-

eralization of radical isogenies to modular curves became feasible due to the connection

between the functions b and b′ through the equality (4.5). Specifically, the function b′ was

an element of a field extension of the field π∗
1,N(k(X1(N))), which contains the function

b as an element. In this chapter’s extended setting, we aim to achieve a similar result. If

radical isogeny formulas exist on X0(N), it should be possible to express β ′ as an element

of a function field whose definition depends on the function β . Because the congruence

subgroup Γ1(N
2) is not a normal subgroup of Γ0(N), to achieve this we will introduce

another pullback that will enable us to realize the functions β and β ′ as elements of the

function field k(X(N,N2)). In this way we will be able to use the automorphisms α, t and

ω defined by (4.8), and the fact that they generate the Galois group of the field extension

k(X(N,N2))/k(X1(N)).

Let E be an elliptic curve over the field k. Let R be a point of order N2 on E. Let P and

P′ be points of order N such that P = [N]R and eN(P
′, [N]R) = ζN . Let ΦN be a pullback

operator

Φ∗
N : k(X1(N

2))−→ k(X(N,N2)), of the map ΦN((E,P
′,R)) = (E,R),

where (E,P′,R) is an enhanced elliptic curve for X(N,N2). Maps and functions are visu-

alized in Figure 5.1.

The subgroup Γ(N,N2) is a normal subgroup of Γ0(N). The verification is straight-

forward: let
(

a b
c d

)
∈ Γ0(N) and ( x y

w z ) ∈ Γ(N,N2). The condition for a normal subgroup

88



The case X0(N) Extending to X0(N)

X(N,N2),Γ(N,N2) (E,P′,R)

X1(N
2),Γ1(N

2) (E,R)

X1(N),Γ1(N) (E, [N]R) (E/ï[N]Rð,R+ ï[N]Rð)

(E,P) (E ′,P′)

X0(N),Γ0(N) (E,ïPð) (E ′,ïP′ð)

β (E,R) β ′(E,R)

ΦN

π1,N π2,N

ψN ψN

β β

Figure 5.1: Maps between enhanced elliptic curves, including X0(N)

implies that the product

(
a b
c d

)
( x y

w z )
(

d −b
−c a

)
=
(

d(ax+bw)−c(ay+bz) a(ay+bz)−b(ax+bw)
d(cx+dw)−c(cy+dz) a(cy+dz)−b(cx+dw)

)
,

should be an element of Γ(N,N2). Therefore, the element a(cy+dz)−b(cx+dw) should

be congruent to one modulo N2. We have the following:

a(cy+dz)−b(cx+dw)≡ acy+ad −bc−bdw (mod N2) (because x,z ≡ 1 (mod N2))

≡ acy+ad −bc (mod N2) (because w ≡ 0 (mod N2))

≡ 1+acy (mod N2) (because ad − cb is the determinant).

Similar to before, this implies that we should have 1+ acy ≡ 1 (mod N2), i.e. acy ≡
0 (mod N2). The elements c and y are both divisible with N, so there exists an integer

k such that c = k ·N and an integer l such that y = l ·N. Therefore the product acy is

equal to aklN2 which is congruent to zero modulo N2 as required. The modular condition

on the element d(ax+ bw)− c(ay+ bz) is checked similarly. Furthermore, the element
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a(ay+bz)−b(ax+bw) should be congruent to zero modulo N. We have the following:

a(ay+bz)−b(ax+bw)≡ abz−bax−bbw (mod N) (because y ≡ 0 (mod N))

≡ abz−bax (mod N) (because w ≡ 0 (mod N2))

≡ abz−bax (mod N) (because x,z ≡ 1 (mod N2))

≡ 0 (mod N).

Finally, for the element d(cx+dw)−c(cy+dz), which should be congruent to zero mod-

ulo N2, we have the following:

d(cx+dw)− c(cy+dz)≡ dcx− ccy− cdz (mod N2) (because w ≡ 0 (mod N2))

≡ dc− ccy− cd (mod N2) (because x,z ≡ 1 (mod N2))

≡−ccy ≡ 0 (mod N2),

because c,y ≡ 0 (mod N).

The Galois group of the field extension k(X(N,N2))/k(X1(N)) is generated by auto-

morphisms α, t and ω . Let λ be an automorphism on X(N,N2) defined by

λ : (E,P′,Q′) 7→ (E, [λ ]P′, [λ−1]Q′), for λ ∈ (Z/N2Z)×,

where P′ is a point of order N, point Q′ is a point of order N2, and eN(P
′, [N]Q′) = ζN .

The condition on the Weil pairing is also satisfied on the mapped points because, using

the properties of the Weil pairing, we have:

eN([λ ]P
′, [λ−1]([N]Q′)) = eN(P

′, [λ−1]([N]Q′))λ

= eN(P
′, [N]Q′)λλ−1

= (ζN)
1+kN2

, k ∈ Z (multiplication is in (Z/N2Z)×)

= ζN = eN(P
′, [N]Q′),

so the automorphism λ is well-defined. Keeping the same notation, the restriction of the

automorphism λ ∈ (Z/N2Z)× on X1(N) is the map:

λ : (E,P) 7→ (E, [λ ]P), for λ ∈ (Z/NZ)×,

where E and P are as before. Essentially, λ is reduced modulo N and then applied to the

point of order N.
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Let G be a group generated by all those automorphisms, i.e.

G = ïα, t,ω,λ ∈ (Z/N2Z)×ð,

and let H be a subgroup of G generated by the same automorphisms except ω , i.e.

H = ïα, t,λ ∈ (Z/N2Z)×ð.

We are interested in the connection between the groups G and H and functions from

X0(N). This connection is summarized in the following lemma.

Lemma 5.1.1. Let N g 5 be a positive integer. Let E be an elliptic curve over the field

k such that char(k) ∤ N. Let R be a point of order N2 on the same curve. Let P and P′ be

points of order N and such that P = [N]R and eN(P
′, [N]R) = ζN . Let G be a group defined

by

G = ïα, t,ω,λ ∈ (Z/N2Z)×ð,

and let H be a subgroup of G defined by

H = ïα, t,λ ∈ (Z/N2Z)×ð,

where

α : (E,P′,R) 7→ (E,P′+[N]R,R),

t : (E,P′,R) 7→ (E,P′, [N +1]R),

ω : (E,P′,R) 7→ (E,P′,P′+R),

λ : (E,P′,R) 7→ (E, [λ ]P′, [λ−1]R), λ ∈ (Z/N2Z)×.

Let Φ∗
N ,π

∗
1,N ,π

∗
2,N and ψ∗

N be pullback operators

Φ∗
N : k(X1(N

2))−→ k(X(N,N2)), of the map ΦN((E,P
′,R)) = (E,R),

π∗
1,N : k(X1(N))−→ k(X1(N

2)), of the map π1,N((E,R)) = (E, [N]R),

π∗
2,N : k(X1(N))−→ k(X1(N

2)), of the map π2,N((E,R)) = (E/ï[N]Rð,R+ ï[N]Rð), and

ψ∗
N : k(X0(N))−→ k(X1(N)), of the map ψN((E,P)) = (E,ïPð).

The function field Φ∗
N(π

∗
1,N(ψ

∗
N(k(X0(N))))), i.e. every pullback of a function from

k(X0(N) by the composition of those operators, is invariant under the group G. The func-

tion field Φ∗
N(π

∗
2,N(ψ

∗
N(k(X0(N))))) is invariant under the subgroup H.
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Proof. Let (E,P′,R) be an enhanced elliptic curve for X(N,N2). The pullback operators

are mapping this point as:

(E,P′,R)
ΦN7−−→ (E,R)

π1,N7−−→ (E, [N]R) = (E,P)
ψN7−−→ (E,ïPð) and

(E,P′,R)
ΦN7−−→ (E,R)

π2,N7−−→ (E/ï[N]Rð,R+ ï[N]Rð) = (E/ïPð,R+ ïPð) ψN7−−→ (E/ïPð,ïR+ ïPðð).

If the functions from k(X0(N)) are invariant under the group G, its generators should,

combined with the pullbacks, produce the same enhanced elliptic curve (E,ïPð) (or

(E/ïPð,R+ ïPð) for the generators of the subgroup H) for X0(N).

We start with the generators of the group G. For α we have:

(E,P′,R)
α7−→ (E,P′+[N]R,R)

ΦN7−−→ (E,R)
π1,N7−−→ (E, [N]R) = (E,P)

ψN7−−→ (E,ïPð).

For t we have:

(E,P′,R)
t7−→ (E,P′, [N +1]R)

ΦN7−−→ (E, [N +1]R)

π1,N7−−→ (E, [N(N +1)]R) = (E, [N]R) = (E,P) (because R is of order N2)

ψN7−−→ (E,ïPð).

For ω we have:

(E,P′,R)
ω7−→ (E,P′,P′+R)

ΦN7−−→ (E,P′+R)

π1,N7−−→ (E, [N](P′+R)) = (E, [N]R) = (E,P) (because P′ is of order N)

ψN7−−→ (E,ïPð).

And for λ ∈ (Z/N2Z)× we have:

(E,P′,R)
λ7−→ (E, [λ ]P′, [λ−1]R)

ΦN7−−→ (E, [λ−1]R)

π1,N7−−→ (E, [N]([λ−1]R)) = (E, [λ−1]P)

ψN7−−→ (E,ï[λ−1]Pð) = (E,ïPð) (because [λ−1]P ∈ ïPð).

Furthermore, for the generator α of the subgroup H we have:

(E,P′,R)
α7−→ (E,P′+[N]R,R)

ΦN7−−→ (E,R)

π2,N7−−→ (E/ï[N]Rð,R+ ï[N]Rð) = (E/ïPð,R+ ïPð)
ψN7−−→ (E/ïPð,ïR+ ïPðð).
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For the generator t we have:

(E,P′,R)
t7−→ (E,P′, [N +1]R)

ΦN7−−→ (E, [N +1]R)

π2,N7−−→ (E/ï[N(N +1)]Rð,R+ ï[N(N +1)]Rð) = (E/ïPð,R+ ïPð)
ψN7−−→ (E/ïPð,ïR+ ïPðð).

For the generator λ we have:

(E,P′,R)
λ7−→ (E, [λ ]P′, [λ−1]R)

ΦN7−−→ (E, [λ−1]R)

π2,N7−−→ (E/ï[N]([λ−1]R)ð,R+ ï[N]([λ−1]R)ð) = (E/ï[λ−1]Pð,R+ ï[λ−1]Pð)
ψN7−−→ (E/ï[λ−1]Pð,ïR+ ï[λ−1]Pðð) = (E/ïPð,ïR+ ïPðð).

■

Lemma 5.1.1 implies that the group G is isomorphic to the Galois group of the field

extension k(X(N,N2))/k(X0(N)) and thus the equality k(X0(N)) = k(X(N,N2))G holds.

The subgroup H from Lemma 5.1.1 can be used to define a function field k′ :=

k(X(N,N2))H , which is an intermediate field such that

k(X0(N))¢ k′ ¢ k(X(N,N2)),

and a function field for some modular curve. All the functions from the set ΦN(π
∗
2,N(ψ

∗
N(k(X0(N)))))

are well-defined on that modular curve, due to their invariant property under the subgroup

H.

Using the setup and the proof of Lemma 5.1.1, and the discussion above, we can prove

the following theorem.

Theorem 5.1.2. Let N g 5 be an integer. Let H be a group generated by the automor-

phisms α, t and λ ∈ (Z/N2Z)× i.e. a subgroup of G = ïα, t,ω,λ ∈ (Z/N2Z)×ð. The

subgroup H is not a normal subgroup of G.

Proof. The subgroup H will be a normal subgroup of G if for every g ∈ G we have

gHg−1 = H. To show that H is not a normal subgroup, it is enough to prove that the

automorphism ω does not normalize the subgroup H, that is ωHω−1 ̸= H, i.e. that there

exist λ ∈ (Z/N2Z)×, such that for an enhanced elliptic curve (E,P′,Q′) for X(N,N2),
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the composition ω ◦λ ◦ω−1(E,P′,Q′) is not an element of the subgroup H. If ω ◦λ ◦
ω−1(E,P′,Q′) is in H, then, because H is a subgroup, λ−1 ◦ω ◦λ ◦ω−1(E,P′,Q′) will

also be in H. Therefore,

λ−1 ◦ω ◦λ ◦ω−1(E,P′,Q′) = λ−1(ω(λ (E,P′,Q′−P′)))

= λ−1(ω(E, [λ ]P′, [λ−1](Q′−P′)))

= λ−1(E, [λ ]P′, [λ−1](Q′−P′)+ [λ ]P′)

= (E,P′,Q′−P′+[λ 2]P′) = (E,Q′+[λ 2 −1]P′)

= ωλ 2−1(E,P′,Q′).

From this equality, we can conclude that H will be a normal subgroup of the group G

only if ωλ 2−1 acts as an identity for every λ . Take λ = 2. Then ωλ 2−1(E,P′,Q′) =

(E,P′,3P′ +Q′) ̸= (E,P′,Q′), because P′ is of order N > 3. To conclude, H is not a

normal subgroup of G. ■

Let the group G and pullbacks Φ∗
N ,π

∗
1,N ,π

∗
2,N ,ψ

∗
N be defined as in Lemma 5.1.1, and

let k′ be an intermediate field k(X0(N))¢ k′ ¢ k(X(N,N2)) as discussed before. Working

with the function fields shown in Figure 5.2, to get radical isogeny formulas on X0(N),

we need to find an α ∈ k(X0(N)) such that

k(X0(N))( N
√

α) = k′.

Functions from k(X0(N)) are identified with the composition of pullbacks Φ∗
N ,π

∗
1,N and

ψ∗
N , which implies that α should be an element of the field Φ∗

N(π
∗
1,N(ψ

∗
N(k(X0(N))))).

If such α exists, the field extension k′/k(X0(N)) should be a cyclic extension, i.e. it

should be a Galois extension, meaning that H should be a normal subgroup of G. In

Theorem 5.1.2 we showed that this is not true, thus the extension k′/k(X0(N)) cannot be

a Galois extension. Similar to before, instead of the field k one could calculate the field of

definition of automorphism with added automorphism λ included, and in that case work

with a smaller field than k.
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k(X0(N)) k′ k(X1(N
2)) k(X(N,N2))¢

G

¢

H

Figure 5.2: Function fields related to groups G and H

Returning to Example 3.2.5, the existence of radical isogeny formulas on S0(5) de-

pends on finding a parametrization of S0(5) for which the extension Q(ζ5)(β
′)/Q(ζ5)(β )

is Galois. However, as we can see in the discussion above, such Galois extension is not

possible in a more generalized setting of modular curves, and as a consequence, we have

the following corollary.

Corollary 5.1.3. Let N g 5. Radical isogeny formulas on S0(N) are not possible.
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CONCLUSION

This thesis focused on exploring the relationship between radical isogenies and modular

curves. In this concluding section, we will give a brief overview of the main results,

presented previously in Chapters 4 and 5.

In Chapter 4, we developed a generalized approach to radical isogeny formulas using

the modular curve X1(N). To achieve this, we used enhanced elliptic curves for a congru-

ence subgroup Γ1(N) for different N and maps between them. As previously explained

in Chapter 3, radical isogenies are formulas used to calculate an isogeny, or a chain of

isogenies of the same degree, starting from the elliptic curve E over a field k and a point

on that curve. Given E in the Tate normal form with coefficients b and c, and a point P

of order N g 4 on E, using radical isogenies we can calculate the coordinates of a new

point P′ such that the composition E
ϕ−→ E ′ −→ E ′/ïP′ð is a cyclic isogeny of degree N2.

Formulas for the coordinates of the point P′, as well as the coefficients b′ and c′ of the Tate

normal form for elliptic curve E ′/ïP′ð, depend on b,c and some radicand ρ ∈ k(b,c), that

is a N-th root of a rational expression in the coefficients b and c. To generalize the con-

cept of radical isogenies, our first step was to demonstrate that b,c, and ρ can be regarded

as functions on the set of equivalence classes of enhanced elliptic curves. To complete

the generalization process, in Section 4.1.1, we identified the smallest field of definition

for these functions and established a field equality that implied the connection between

coefficients b,c and b′,c′ in terms of enhanced elliptic and modular curves.

In Chapter 5, we pursued further generalization by considering the modular curve

X0(N). This generalization could help find a better or more optimized radical isogeny

formula, as explained in Example 3.2.5. We again utilized the maps between enhanced

elliptic curves, now for a congruence subgroup Γ0(N), and explored the conditions under

which radical isogeny formulas could exist. The central question in this context was
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Conclusion

whether a particular field extension is Galois or not. Using the result from Theorem 5.1.2,

we showed that the field in question cannot be Galois, and this implied that the existence

of radical isogenies formulas on X0(N) for N g 5 is not possible.
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