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This letter reports measurements which characterize the underlying event associated with hard 
scatterings at mid-pseudorapidity (|η| < 0.8) in pp, p–Pb and Pb–Pb collisions at centre-of-mass energy 
per nucleon pair, √sNN = 5.02 TeV. The measurements are performed with ALICE at the LHC. Different 
multiplicity classes are defined based on the event activity measured at forward rapidities. The hard 
scatterings are identified by the leading particle defined as the charged particle with the largest 
transverse momentum (pT) in the collision and having 8 < pT < 15 GeV/c. The pT spectra of associated 
particles (0.5 ≤ pT < 6 GeV/c) are measured in different azimuthal regions defined with respect to the 
leading particle direction: toward, transverse, and away. The associated charged particle yields in the 
transverse region are subtracted from those of the away and toward regions. The remaining jet-like 
yields are reported as a function of the multiplicity measured in the transverse region. The measurements 
show a suppression of the jet-like yield in the away region and an enhancement of high-pT associated 
particles in the toward region in central Pb–Pb collisions, as compared to minimum-bias pp collisions. 
These observations are consistent with previous measurements that used two-particle correlations, and 
with an interpretation in terms of parton energy loss in a high-density quark gluon plasma. These yield 
modifications vanish in peripheral Pb–Pb collisions and are not observed in either high-multiplicity pp 
or p–Pb collisions.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

In proton-proton (pp) collisions, jets, originating from partonic 
scatterings with large momentum transfer, are accompanied by 
particles produced by initial- and final-state radiation (ISR and 
FSR, respectively), as well as, by a plethora of other mechanisms. 
These include proton break-up, and, in a scenario incorporating 
multi-parton interactions (MPI) [1,2], several semi-hard parton-
parton scatterings in a single pp collision. These jet-accompanying 
particles experimentally make up the underlying event (UE) and 
are commonly studied via azimuthal separations from the jets 
to minimise the influence of hard scatterings. The present study 
follows the strategy originally introduced by the CDF collabora-
tion [3]. First, the leading charged particle in the event is found, 
i.e., the charged particle with the highest transverse momentum in 
the collision (ptrig

T ). Secondly, the associated particles (pT < ptrig
T ) 

are measured in three topological regions depending on their az-
imuthal angle relative to the leading particle, |�ϕ| = |ϕassoc −
ϕtrig|, see Fig. 1.

� E-mail address: alice -publications @cern .ch.

The toward region contains the primary jet within the accep-
tance of the detector, while the away region contains the back-
scattered particles of the recoil jet [4]. In contrast, the transverse 
region is dominated by the underlying-event dynamics, but it also 
includes contributions from ISR and FSR [5].

The measurements performed at RHIC and LHC in small sys-
tems (pp, p–A, and d–A collisions) have shown for high particle 
multiplicities similar phenomena as were originally observed only 
in A–A collisions and have been attributed there to the formation 
of the strongly interacting quark gluon plasma [6,7], namely, long 
range angular correlations and collectivity [8]. The origin of these 
effects in small systems is still an open question; on one hand, hy-
drodynamical calculations describe some aspects of the data [9]; 
on the other hand, mechanisms like colour reconnection [10], rope 
hadronisation [11], and string shoving [12] can produce collective-
like effects in Monte Carlo event generators such as PYTHIA 8 [13]. 
Thus, investigating pp collisions as a function of the charged parti-
cle multiplicity has become ever more pertinent [9,14–18]. The in-
terpretation of the results from the analysis of high-multiplicity pp 
collisions is challenging due to the selection biases of the sample 
towards events in which partonic scatterings with large momen-
tum transfer (hard scatterings) occurred. To mitigate this inher-
ent bias, Martin et al. [19] suggested to use the charged-particle 

https://doi.org/10.1016/j.physletb.2022.137649
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Fig. 1. Illustration of toward, away and transverse regions with respect to the leading 
particle in a collision.

multiplicity in the transverse region (NT
ch) as a classifier of the 

activity in the collisions, since the correlation between NT
ch and 

the hardest scattering in the collision is small. The ALICE collab-
oration has reported the first NT

ch spectra measured in pp colli-
sions at centre-of-mass energy, 

√
s = 13 TeV [20]. Event generators, 

such as PYTHIA 8 [13] and EPOS-LHC [21], do not provide a good 
description of the measured distribution of the ratio NT

ch/〈NT
ch〉, 

where 〈NT
ch〉 is the event-averaged charged-particle multiplicity in 

the transverse region, underestimating in particular the number 
of collisions with large NT

ch

(
> 3 × 〈NT

ch〉). In the framework of 
MPI-based models, like those implemented in PYTHIA 8 and HER-

WIG 7 [22], the probability for a hard scattering in the collision 
increases with decreasing impact parameterI between the colliding 
protons. Thus, requiring a high-pT particle (e.g., ptrig

T > 8 GeV/c) in 
a given pp collision biases the selection of collisions towards those 
with a smaller impact parameter [23], which in turn biases the se-
lection towards pp collisions with more MPI [20]. This feature of 
the NT

ch-based analysis is important for the isolation of potential 
MPI and colour reconnection effects, which according to PYTHIA 8, 
produce effects resembling collective behaviour [10]. By construc-
tion, MPI and colour reconnection effects are expected to be more 
relevant in the transverse region than in the away and toward re-
gions [24]. It is worth mentioning that the MPI picture has been 
used to explain the pT spectra in p–Pb collisions and peripheral 
Pb–Pb collisions [25–27]. Studies, as a function of NT

ch, are there-
fore important to the understanding of the effects observed in 
high-multiplicity pp collisions. Last but not least, measurements 
of UE observables are also important to tune event generators [28]
that include hard partonic scatterings and MPI.

This letter reports the inclusive charged-particle transverse mo-
mentum spectra in pp, p–Pb and Pb–Pb collisions at centre-
of-mass energy per nucleon pair 

√
sNN = 5.02 TeV containing a 

high-pT leading particle within the kinematic intervals 8 ≤ ptrig
T <

15 GeV/c and |η| < 0.8. This guarantees the selection of collisions 
in which the average activity in the transverse region is roughly 
flat as a function of ptrig

T [20], and therefore, any additional se-
lection on the charged particle multiplicity will only modulate the 
UE activity. The measurements are performed considering different 
event classes defined in terms of the multiplicity registered in the 
forward detectors. The pT spectra of associated charged particles 
(0.5 ≤ pT < 6 GeV/c and |η| < 0.8) are measured in the toward, 

I In event generators like PYTHIA 8 the impact parameter profile is described by 
an overlap matter distribution of the two incoming hadrons.

away, and transverse regions as a function of the average charged 
particle multiplicity in the transverse region. To further investigate 
the possible modification of the particles produced in the hard 
scattering in pp, p–Pb, and Pb–Pb collisions, the pT distributions 
in the toward (dNt

ch/dpT) and away (dNa
ch/dpT) regions obtained 

after the subtraction of the pT spectra in the transverse region 
(dNT

ch/dpT) are also reported. The subtracted yields (dNst,sa
ch /dpT) 

are further normalised to those measured in minimum-bias (MB) 
pp collisions,

I t,a
X ≡ (dNt,a

ch /dpT − dNT
ch/dpT)|X

(dNt,a
ch /dpT − dNT

ch/dpT)|pp,MB
= (dNst,sa

ch /dpT)|X

(dNst,sa
ch /dpT)|pp,MB

,

(1)

where X indicates the collision system and the event multiplicity 
class. In this way, the hard process pT spectra in the toward and 
away regions are isolated, and thus allowing us to study possi-
ble modifications to the produced particles due to medium effects 
in high-multiplicity pp, p–Pb, and Pb–Pb collisions. In heavy-ion 
collisions, this ratio is sensitive to the same effects which were 
studied using the IAA quantity [29–31], where jets produced in the 
early stage of the collision propagate through the hot and dense 
quark–gluon plasma. Their interaction with the coloured medium 
lead to parton-energy loss (jet quenching) [32] which, for exam-
ple, results in the suppression of the charged-particle yield at high 
pT [33], and the suppression of the high-pT yield in the away re-
gion [29,30]. It is worth mentioning that jet quenching effects have 
not been observed so far in small systems [33,34].

2. Experiment and data analysis

This analysis is based on the data recorded by the ALICE appa-
ratus during the pp and Pb–Pb runs at 

√
sNN = 5.02 TeV in 2015, 

and the p–Pb run at 
√

sNN = 5.02 TeV in 2016. The present study 
uses the V0 detector, and the Silicon Pixel Detector (SPD) for trig-
gering and background rejection. The V0 consists of two arrays 
of scintillating tiles placed on each side of the interaction point 
covering the full azimuthal acceptance and the pseudorapidity in-
tervals of 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C). The 
SPD is the innermost part of the Inner Tracking System (ITS) and 
it is the closest detector to the interaction point. It consists of two 
cylindrical silicon pixel layers at radial distances of 3.9 and 7.6 cm 
from the beam line and the pseudorapidity coverages of the two 
layers are |η| < 2 and |η| < 1.4, respectively. The data were col-
lected using a minimum-bias trigger, which required a signal in 
both V0A and V0C detectors. The offline event selection was opti-
mised to reject beam-induced background in all collision systems 
by utilising the timing signals in the two V0 detectors. In Pb–Pb
collisions, the beam-induced background is further suppressed by 
correlating the timing signals of the neutron zero degree calorime-
ters, which are positioned on both sides of the interaction point 
at 112.5 m distance along the beam axis [35]. The signals from 
the zero degree calorimeters are also used to suppress the con-
tamination from electromagnetic interactions. This is performed by 
requesting the coincidence of the signals coming from both side 
zero degree calorimeters by which the background due to single 
nucleus electromagnetic dissociation processes is excluded. A cri-
terion based on the offline reconstruction of multiple primary ver-
tices in the SPD is applied to reduce the pileup caused by multiple 
interactions in the same bunch crossing [36]. The results presented 
in this letter are for minimum-bias triggered pp collisions having 
at least one charged particle in the pseudorapidity interval |η| < 1
(INEL>0). The INEL>0 event class corresponds to about 75% of 
the total inelastic cross section [37]. For pp and Pb–Pb collisions, 
the sample is subdivided into different multiplicity classes based 
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on the total charge deposited in both V0 sub-detectors, which is 
termed as V0M amplitude [38]. For p–Pb collisions, the sample 
is subdivided based on the total charge deposited in V0A sub-
detector (V0A amplitude) [39], which is located in the Pb-going 
direction. The V0A estimator has been implemented in previous 
measurements that used p–Pb data (see e.g. [40]). This allows for 
comparisons with other observables for similar V0A multiplicity 
classes. To ensure that a hard scattering took place in the collision, 
events are required to have a trigger particle within 8 ≤ ptrig

T < 15

GeV/c. In this ptrig
T interval, the momentum resolution effects are 

negligible on the extracted yields, and therefore, no ptrig
T resolu-

tion correction is applied. The total number of analysed collisions 
before the trigger particle selection are about 108, 108, and 107 for 
pp, p–Pb, and Pb–Pb collisions, respectively.

The transverse momentum of particles is determined from 
measurements in the central barrel with the ITS and the Time Pro-
jection Chamber (TPC). The ITS is a tracking detector which con-
sists of six cylindrical layers of silicon detectors. The TPC is a cylin-
drical drift detector which covers a radial distance of 85-247 cm 
from the beam axis and it has longitudinal dimension extending 
from about -250 cm to +250 cm around the nominal interaction 
point. Primary charged particles are measured in the pseudora-
pidity range of |η| < 0.8 and with pT > 0.5 GeV/c, where η is 
measured in the laboratory frame for the three collision systems. 
The configuration for p–Pb collisions with protons at 4 TeV energy 
colliding with Pb ions that have per-nucleon energies of (Z/A) ×
4 TeV ∼ 1.58 TeV results in a shift in the rapidity of the nucleon–
nucleon centre-of-mass system by 0.465 in the direction of the 
proton beam (negative z-direction). Here Z and A are the atomic 
and mass numbers of the Pb ion, respectively. Therefore, the detec-
tor coverage |η| < 0.8 corresponds to roughly −0.3 < |ηcms| < 1.3
for p–Pb collisions. The particles with mean proper lifetime larger 
than 1 cm/c, which are either produced directly in the interaction 
or from decays of particles with mean proper lifetime smaller than 
1 cm/c are termed as primary particles [41]. The track selection 
follows a procedure similar to the one described in Ref. [42] and 
only few specific details are reported here. Tracks (Ntracks) are re-
quired to have two hits in the ITS, out of which at least one should 
be in either of the two innermost layers. The geometrical track 
length L is calculated in the TPC readout plane, excluding the in-
formation from the pads at the sector boundaries (≈ 3 cm from the 
sector edges). The trajectory lengths built from radial segments, 
i.e. the crossed TPC pad rows, traversed in the TPC by a parti-
cle are required to be larger than 85% of the geometrical track 
length. The pad rows are made of at least 3 neighbouring indi-
vidual observations (clusters), and their height varies from 7.5 mm 
to 15 mm [43]. The trajectory lengths built from clusters (one clus-
ter per pad row) is required to be larger than 0.7 × L. The frac-
tion of TPC clusters shared with another track is required to be 
lower than 0.4. The fit quality for the ITS and TPC track points 
must satisfy χ2

ITS/Nhits < 36 and χ2
TPC/Nclusters < 4, respectively, 

where Nhits and Nclusters are the numbers of hits in the ITS and 
the number of clusters in the TPC, respectively. Only tracks with 
χ2

TPC−ITS < 36 are included in the analysis, where χ2
TPC−ITS is calcu-

lated comparing the track parameters from the combined ITS and 
TPC track reconstruction to that derived only from the TPC and 
constrained to the interaction point. The definition of χ2

TPC−ITS can 
be found in Ref. [44]. To reduce the contamination from secondary 
particles, tracks are accepted if their distance-of-closest-approach 
(DCA) to the reconstructed primary interaction vertex satisfies in 
the longitudinal (dz) and transverse (dxy) directions the conditions 
dz < 2 cm and dxy < 0.018 cm + 0.035 (cm×GeV/c)/pT.

The measurement of the transverse momentum spectra of 
charged particles follows the standard procedure of the ALICE 
collaboration [42,45]. The raw yields are corrected for efficiency 

and contamination from secondary particles. The efficiency correc-
tion is calculated from Monte Carlo simulations with GEANT3 [46]
transport code, which made use of PYTHIA 8 (Monash) [28], EPOS-
LHC [21] and HIJING [47] event generators for pp, p–Pb and Pb–Pb
collisions, respectively and incorporated a detailed description of 
the detector material, geometry and response. Since the event gen-
erators do not reproduce the relative abundances of different par-
ticle species in the real data, the efficiency obtained from the sim-
ulations is re-weighted considering the particle composition from 
data as outlined in [42]. A multi-component template fit based on 
the DCA distributions from the simulation is used for the estima-
tion of secondary contamination [42].

The pT spectra for the toward and away regions include con-
tributions from the jet fragmentation, ISR, and FSR, as well as, 
the contribution from the underlying event. In order to increase 
the sensitivity to the hardest process of the event, the parti-
cle yields measured in the transverse region are subtracted from 
the corresponding yields in both the toward and away regions: 
dNt,a

ch /dpT −dNT
ch/dpT. This approach assumes that the background 

(UE, ISR, and FSR) in the toward and away regions is similar to 
the activity in the transverse region. However, one has to keep in 
mind that in Pb–Pb collisions two-particle correlations are affected 
by anisotropic transverse flow. In particular, the main contribution 
is due to the elliptic flow, v2, which is the second order coefficient 
in the Fourier expansion of the azimuthal distribution of the parti-
cle momenta [48]. This elliptic azimuthal anisotropy modulates the 
background according to:

B(�ϕ) = B0
(
1 + 2V 2 cos (2�ϕ)

)
, (2)

where V 2 is approximately given by the product of anisotropic 
flow coefficients for trigger and associated particles at their respec-
tive momenta i.e. V 2 ≈ vtrig

2 vassoc
2 . The existing v2 measurements 

over a broad transverse momentum range [49] suggest that the 
effect of the v2 modulation of background should be more rel-
evant in semi-central Pb–Pb collisions. The effect is expected to 
be important at low and intermediate transverse momenta and 
decreases for high transverse momentum particles [30]. In the 
high-pT region of interest for the jet quenching studies, namely 
pT > 4 GeV/c, the effect of the v2 modulation is estimated to be 
small (about 5%) for Pb–Pb collisions. Given that the v2 effect is 
larger in Pb–Pb collisions than in pp and p–Pb collisions, no cor-
rection for the v2 modulation is applied for pp and p–Pb collisions 
since its effect is smaller than the other sources of systematic un-
certainty.

The results are shown as a function of the average number 
of charged particles in the transverse region 〈NT

ch〉. The values of 
〈NT

ch〉 are extracted in each multiplicity class from the Ntracks dis-
tributions in the transverse region that are corrected for detector 
effects using a Bayesian unfolding [50]. The Bayesian unfolding re-
quires the multiplicity response matrix, which is built from the 
correlation between the measured multiplicity and the multiplic-
ity at generator level (without detector effects) in the transverse 
region. This has been obtained from MC simulations which include 
the propagation of particles through the detector using GEANT 3. 
As a crosscheck, the 〈NT

ch〉 values are also calculated by integrating 
the transverse momentum distributions in the interval 0.5 ≤ pT <

8 GeV/c. The difference between the results from the two strate-
gies is assigned as the systematic uncertainty on 〈NT

ch〉, where the 
effects related to the discrepancy between data and MC in the 
particle composition and secondary contamination are considered. 
This uncertainty amounts up to 3.5%, 4% and 6.5% for pp, p–Pb and 
Pb–Pb collisions, respectively.

The systematic uncertainties related to the track selection cri-
teria were studied by repeating the analysis varying one-by-one 
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Table 1
Contributions to the relative (%) systematic uncertainty on the pT

spectra of primary charged particles in pp, p–Pb, and Pb–Pb col-
lisions at √sNN = 5.02 TeV. Just for illustration, the range in the 
table corresponds to the lowest and highest relative systematic un-
certainty in the considered pT range. The individual contributions 
are summed in quadrature to obtain the total uncertainty.

Source of uncertainty pp p–Pb Pb–Pb

Track selection 2.1–8.2 2.4–5.8 3.0–9.9

Particle composition 0.3–1.8 0.5–1.9 0.3–2.4

Secondary particles 0.0–0.4 0.0–2.4 0.0–1.9

Matching efficiency 2.0–4.2 0.7–3.7 0.6–3.7

Total 3.2–8.8 3.6–6.3 3.5–10.0

Total (Nch-dependent) 2.0–4.5 1.7–4.0 1.1–3.7

the track selection criteria [42,45]. In particular, the upper limits 
of the track fit quality parameters in the ITS (χ2

ITS/Nhits) and in the 
TPC (χ2

TPC/Nclusters) were varied in the ranges of 25–49 and 3–5, 
respectively. The maximum fraction of shared TPC clusters was var-
ied between 0.2 to 1 and the maximum dz was varied between 1 
and 5 cm [42]. We have also quantified the impact of not includ-
ing the ITS hit requirement in the track selection. The systematic 
uncertainty on the primary particle composition was estimated us-
ing a procedure similar to the one described in [42]. To quantify 
the uncertainty due to the imperfect simulation of the detector re-
sponse, the track matching between the TPC and the ITS informa-
tion in the data and in the simulation were compared. To achieve 
this, the fraction of secondary particles was rescaled according to 
fits to the measured DCA distributions. After this rescaling, the 
agreement between data and model was found to be within 3% 
for all collision systems. This value was assigned as an additional 
systematic uncertainty [42]. The systematic uncertainty on the sec-
ondary particle contamination considers the imperfection of the 
method (multi-component template fit) used to extract the cor-
rection. The fit ranges were varied and the fit was repeated using 
templates with two (primaries, secondaries) or three (primaries, 
secondaries from material, secondaries from weak decays) compo-
nents. The maximum spread among these variations was assigned 
as the systematic uncertainty on the secondary contamination. This 
contribution dominates at low pT. The density of materials used in 
simulations of the experimental setup was varied by ± 4.5% [35], 
resulting in a negligible systematic uncertainty in the considered 
pT range of 0.5 to 6.0 GeV/c. For the estimation of total system-
atic uncertainty, all the above listed contributions were summed 
in quadrature. The systematic uncertainties are independent of the 
difference between the azimuthal angle of the associated particle 
and that of the trigger particle. The estimated systematic uncer-
tainties on the pT spectra significantly depend on pT, while the 
dependence on the multiplicity classes is mild. The ranges of sys-
tematic uncertainties in the three considered collision systems are 
reported in Table 1 for the various sources described above.

3. Results and discussion

The pT spectra measured in the transverse region for pp, p–Pb, 
and Pb–Pb collisions are shown in Fig. 2 (top panel). Results are 
presented for different multiplicity classes. The ratios between the 
spectra in the individual multiplicity classes and the MB (0−100%) 
one are shown in the bottom panel. In the pT range 0.5 − 6 GeV/c, 
the ratios for the highest multiplicity class (0−5%) are larger than 
unity and show an increasing trend with increasing pT at low pT
(< 2 − 3 GeV/c) followed at higher pT by a slow decrease. Instead, 
for the lowest multiplicity classes (40−60% and 60−90%) the ratios 
are lower than unity and follow an opposite trend with pT, de-
creasing at low pT and increasing for pT > 3 GeV/c. The behaviour 

of the ratios as a function of the event activity is reminiscent of 
analogous ratios as a function of the number of MPI in pp colli-
sions simulated with PYTHIA 8, including colour reconnection [51]. 
In particular, at pT ≈ 2 − 3 GeV/c the pT spectrum of pp collisions 
with large MPI activity exhibits an enhancement with respect to 
the pT spectrum of MB pp collisions. The effect was not observed 
before in data because, in contrast to the present analysis, the jet 
contribution was included in the pT spectra [45].

The top (bottom) panel of Fig. 3 shows the charged particle 
yields for the toward (away) region after the subtraction of the 
yields measured in the transverse region in pp, p–Pb and Pb–Pb
collisions. Results are compared with the pT spectra measured for 
MB pp collisions (0−100% V0M pp event class) quantified with 
the ratio I t,a

X , as defined in Eq. (1). At low transverse momenta, 
pT < 4 GeV/c, I t,a

X is close to unity in pp and p–Pb collisions. In 
contrast, I t,a

X in Pb–Pb collisions exhibits a strong multiplicity de-
pendence over the whole measured pT interval. The I t,a

X magnitude 
is larger for semi-peripheral Pb–Pb collisions, the maximum is ob-
served for 20−40% Pb–Pb collisions, and is smaller for the most 
central and most peripheral classes. Given that the v2 contribu-
tion is not subtracted from the jet-like yields reported in Fig. 3, 
the centrality dependence of I t,a

X follows the behaviour of v2 as a 
function of collision centrality and particle pT in Pb–Pb collisions 
at LHC energies [52].

Fig. 4 shows the measured values of I t,a
X in the transverse mo-

mentum interval 4 < pT < 6 GeV/c as a function of the average 
multiplicity in the transverse region for all the multiplicity classes 
considered in pp, p–Pb and Pb–Pb collisions. The figure shows that, 
within uncertainties, the I t,a

X values are close to unity for all the 
multiplicity classes measured in pp and p–Pb collisions. This indi-
cates that effects induced by possible energy loss in these systems 
are not observed within uncertainties. This result is consistent with 
previous studies of nuclear modification factor [33] and hadron-
jet recoil measurements [34]. By contrast, for Pb–Pb collisions the 
I t,a
X values are compatible to unity for peripheral collisions, and 

show a gradual enhancement (reduction) with the increase in mul-
tiplicity for the toward (away) region. The behaviour is the same 
for the I t,a

X values measured either assuming a flat background or 
a v2-modulated background. The v2-modulated background was 
estimated following the approach depicted in Eq. (2) and using 
the v2 data reported in [49]. This behaviour is qualitatively sim-
ilar to the di-hadron correlation results reported by the STAR and 
ALICE collaborations [29,30]. In Pb–Pb collisions, I t

X provides infor-
mation about the fragmenting jet leaving the medium, while on 
the away side, Ia

X reflects the survival probability of the recoiling 
parton during passage through the medium. Thus a suppression of 
Ia
X would indicate that fewer partons survive the passage through 

the medium and is expected from the strong in-medium energy 
loss. On the other hand, the enhancement observed in the toward 
region is also subject to medium effects. The ratio is sensitive to 
a) a possible change of the fragmentation functions, b) a possible 
modification of the quark to gluon jet ratio in the final state due 
to different coupling with medium, and c) a possible bias on the 
parton spectrum due to trigger particle selection. Moreover, given 
that I t,a

X is sensitive to the same effects as IAA, the interpretation 
of the results is similar to that reported in [30]. It is likely that all 
three effects play a role [30]. A detailed quantification of the con-
tribution of each effect is beyond the scope of the present paper.

In order to get further insight into the effect, the measured I t,a
X

values are compared in Fig. 5 with model predictions. Following 
the similar treatment of the experimental data, for the models, the 
total sample is subdivided into different V0M classes and the 〈NT

ch〉
is calculated for each class. For high-multiplicity pp collisions, al-
though I t,a

X is close to unity, a small trend with multiplicity is 
visible, which is not seen at similar multiplicities (20−90% V0A) 
in p–Pb data. To understand the source of these slight deviations 
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Fig. 2. Top panels: transverse momentum spectra of charged particles in the transverse region for different multiplicity classes in pp (left), p–Pb (middle) and Pb–Pb (right) 
collisions at √sNN = 5.02 TeV. The pT spectra are measured at mid pseudorapidity (|η| < 0.8). Lower panels: Ratio of pT spectra in different multiplicity classes to the pT

spectrum in the 0−100% multiplicity class for the corresponding collision systems. The statistical and systematic uncertainties are shown by bars and boxes, respectively.

from unity, the data are compared with the predictions from the
PYTHIA 8 (Monash tune [28]) and EPOS-LHC [21] event generators. 
In PYTHIA, the hadronization of quarks is simulated using the Lund 
string fragmentation model [53]. Various PYTHIA tunes have been 
developed through extensive comparison of Monte Carlo distribu-
tions with the minimum-bias data from different experiments. The 
Monash tune of PYTHIA 8 is tuned to LHC data and uses an up-
dated set of hadronization parameters compared to the previous 
tunes [28]. EPOS-LHC is built on the Parton-Based Gribov Regge 
Theory. Utilising the colour exchange mechanism of string excita-
tion, the model is tuned to LHC data [21]. In this model, a part 
of the collision system which has high parton densities becomes 
a “core” region that evolves hydrodynamically as a quark–gluon 
plasma and it is surrounded by a more dilute “corona” for which 
fragmentation occurs in the vacuum. The upper panel of Fig. 5
shows I t,a

X for different multiplicity classes. The observed devia-
tions from unity are reproduced by PYTHIA 8 for both the toward 
and away regions. Given that PYTHIA 8 does not incorporate any 
jet quenching mechanism, the origin of the effect in high 〈NT

ch〉 col-
lisions is related to a remaining bias towards harder fragmentation 
and more activity from initial and final state radiation [54]. These 
effects enhance the high-pT yield in the toward region, and pro-
duce a broadening in the away region [55]. The EPOS-LHC results 
in the away region are similar to both data and PYTHIA 8. However, 
for I t

X EPOS-LHC exhibits a trend with a maximum at intermedi-
ate multiplicity and a reduction toward low and high multiplicities, 
which is not consistent with the measurements.

The middle and bottom panels of Fig. 5 show I t,a
X measured for 

p–Pb and Pb–Pb collisions, respectively. The data are compared to
PYTHIA 8/Angantyr [56] and EPOS-LHC predictions. The Angantyr 
model in PYTHIA 8 extrapolates the dynamics from pp collisions 
to p–Pb and Pb–Pb collisions, generalising the formalism adopted 
for pp collisions by including a description of the nucleon posi-
tions within the colliding nuclei and utilising the Glauber model to 
calculate the number of interacting nucleons and binary nucleon–
nucleon collisions. PYTHIA 8/Angantyr, which does not include jet 
quenching effects, predicts I t,a

X values consistent with unity for all 
the multiplicity classes in Pb–Pb collisions. Whereas for p–Pb col-
lisions Ia

X is consistent with unity, and I t
X is slightly below unity. 

In EPOS-LHC, a certain pT cutoff is defined in such a way that, 
above this cutoff, a particle loses part of its momentum in the 
core but survives as an independent particle produced by a flux 

tube. Soft particles, which are below the pT cutoff, get completely 
absorbed and form the core. This sort of energy loss mechanism 
implemented in EPOS-LHC depends on the system size [21,57,58]. 
Fig. 5 (middle) shows that for p–Pb collisions, EPOS-LHC does not 
describe either the magnitude or the trend of the multiplicity de-
pendence of the measured ratio in the toward region, I t

X . How-
ever, the model is in reasonable agreement with data in the away 
region. For Pb–Pb collisions, EPOS-LHC predicts a significant en-
hancement of I t,a

X for low 〈NT
ch〉 ranges and deviates significantly 

from the experimental results.
In summary, while the data from Pb–Pb collisions are in quali-

tative agreement with expectations from parton energy loss due to 
the presence of a hot and dense medium, pp and p–Pb data do not 
show any hint of medium effects in the multiplicity range which 
is reported.

4. Summary

The transverse momentum spectra (0.5 ≤ pT < 6 GeV/c) of pri-
mary charged particles in three azimuthal regions (toward, away 
and transverse) defined with respect to the direction of the par-
ticle with the highest transverse momentum in the event (8 ≤
ptrig

T < 15 GeV/c) are reported. The spectra are studied in intervals 
of the multiplicity measured at forward pseudorapidities for pp, 
p–Pb, and Pb–Pb collisions at 

√
sNN = 5.02 TeV. The pT spectra in 

the transverse region are subtracted from those of the away and 
toward regions. This is based on the assumption that the trans-
verse side provides a good estimation of the underlying event 
contribution in both the toward and away regions. However, for 
the interpretation of the results one has to keep in mind that v2
modulates the background and this effect is important for semi-
central Pb–Pb collisions and for pT > 4 GeV/c the effect is less 
than 5% in central and peripheral Pb–Pb collisions. Ratios to MB 
pp (I t,a

X ), i.e., the multiplicity dependent yields normalised to the 
yield measured in MB pp collisions, are reported. At low transverse 
momentum (pT < 2 GeV/c), within 20%, the I t,a

X values are multi-
plicity independent for both the toward and away regions in pp 
and p–Pb collisions. In contrast, in Pb–Pb collisions for both toward 
and away regions the I t,a

X values exhibit a centrality dependence 
which is expected given the residual presence of elliptic flow. In 
the highest transverse momentum interval (4 < pT < 6 GeV/c), the 
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Fig. 3. Transverse momentum spectra of charged particles in Toward-Transverse, dNst
ch/dpT (top plot) and Away-Transverse, dNsa

ch/dpT (bottom plot) regions for different 
multiplicity classes in pp (left), p–Pb (middle) and Pb–Pb (right) collisions at √sNN = 5.02 TeV. The pT spectra are measured at mid pseudorapidity (|η| < 0.8). The lower 
panels of both plots show the ratio to minimum bias pp collisions. The statistical and systematic uncertainties are shown by bars and boxes, respectively.

Fig. 4. The I t
X (left) and Ia

X (right) as a function of 〈NT
ch〉 in 4 < pT < 6 GeV/c for different multiplicity classes in pp, p–Pb and Pb–Pb collisions at √sNN = 5.02 TeV. Pb–Pb

results are shown assuming a flat background (filled markers), and assuming a v2-modulated background (empty markers). The statistical and systematic uncertainties are 
shown by bars and boxes, respectively.
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Fig. 5. Comparison of the measured the I t
X (left) and Ia

X (right) in 4 < pT < 6 GeV/c with model predictions. The results are shown as a function of 〈NT
ch〉 for different multi-

plicity classes in pp (top panel), p–Pb (middle panel) and Pb–Pb (bottom panel) collisions at √sNN = 5.02 TeV. The red and magenta lines show the PYTHIA 8 (Monash) [28]
and PYTHIA 8/Angantyr [28] predictions, respectively. The blue lines show the EPOS-LHC [21] results. The statistical and systematic uncertainties are shown by bars and 
boxes, respectively.

I t,a
X values in pp collisions are closer to unity but they exhibit a 

small reduction (increase) towards high V0 activity in pp colli-
sions. This trend is well reproduced by PYTHIA 8. In the model, 
it is due to a selection bias towards pp collisions with harder frag-
mentation and larger activity from initial and final state radiation. 
For p–Pb collisions, within uncertainties, the I t,a

X values are con-
sistent with unity and do not show a multiplicity dependence.
PYTHIA 8/Angantyr fairly describes Ia

X , but it underestimates by 
about 10% the I t

X values in the low multiplicity classes (40−90% 
V0A event class). For Pb–Pb collisions, the I t,a

X values are close to 
unity for peripheral collisions, and show a gradual increase (re-
duction) in the toward (away) region with increasing multiplicity. 
A similar observable, IAA, based on the per-trigger yield of associ-
ated particles in di-hadron correlation has been studied for central 
and peripheral Pb–Pb collisions at 

√
sNN = 2.76 TeV. The behaviour 

of I t,a
X exhibits the same features as IAA: in central collisions, on 

the away-side, a suppression is observed as expected from strong 
in-medium energy loss. In the toward region, an enhancement is 
observed. PYTHIA 8/Angantyr predicts I t,a

X ≈ 1 for all multiplicity 
intervals, and it does not reproduce the observed away-side sup-
pression or toward-side enhancement. Generally, EPOS-LHC does 
not describe the measured I t,a

X ratios.
In summary, within the multiplicity reach reported in this pa-

per, no jet quenching effects are observed in pp and p–Pb collisions 
within uncertainties. Further studies are required to extend the 
present analysis to higher multiplicities, which are currently lim-
ited by the event selection based on the forward V0 detector. The 
analysis of future pp and p–Pb collisions with much larger inte-
grated luminosity may remove this limitation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

This manuscript has associated data in a HEPData repository at 
https://www.hepdata .net/.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the out-
standing performance of the LHC complex. The ALICE Collaboration 
gratefully acknowledges the resources and support provided by 
all Grid centres and the Worldwide LHC Computing Grid (WLCG) 
collaboration. The ALICE Collaboration acknowledges the follow-
ing funding agencies for their support in building and running the 
ALICE detector: A.I. Alikhanyan National Science Laboratory (Yere-
van Physics Institute) Foundation (ANSL), State Committee of Sci-
ence and World Federation of Scientists (WFS), Armenia; Austrian 
Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] 
and Nationalstiftung für Forschung, Technologie und Entwicklung, 
Austria; Ministry of Communications and High Technologies, Na-
tional Nuclear Research Center, Azerbaijan; Conselho Nacional de 
Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de 
Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do 
Estado de São Paulo (FAPESP) and Universidade Federal do Rio 
Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of Education 
and Science, within the National Roadmap for Research Infras-
tructures 2020–2027 (object CERN), Bulgaria; Ministry of Educa-
tion of China (MOEC), Ministry of Science & Technology of China 
(MSTC) and National Natural Science Foundation of China (NSFC), 
China; Ministry of Science and Education and Croatian Science 
Foundation, Croatia; Centro de Aplicaciones Tecnológicas y De-
sarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Educa-
tion, Youth and Sports of the Czech Republic, Czech Republic; The 
Danish Council for Independent Research | Natural Sciences, the 

7

https://www.hepdata.net/


ALICE Collaboration Physics Letters B 843 (2023) 137649

Villum Fonden and Danish National Research Foundation (DNRF), 
Denmark; Helsinki Institute of Physics (HIP), Finland; Commis-
sariat à l’Energie Atomique (CEA) and Institut National de Physique 
Nucléaire et de Physique des Particules (IN2P3) and Centre Na-
tional de la Recherche Scientifique (CNRS), France; Bundesminis-
terium für Bildung und Forschung (BMBF) and GSI Helmholtzzen-
trum für Schwerionenforschung GmbH, Germany; General Secre-
tariat for Research and Technology, Ministry of Education, Re-
search and Religions, Greece; National Research, Development and 
Innovation Office, Hungary; Department of Atomic Energy Gov-
ernment of India (DAE), Department of Science and Technology, 
Government of India (DST), University Grants Commission, Gov-
ernment of India (UGC) and Council of Scientific and Industrial 
Research (CSIR), India; National Research and Innovation Agency -
BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; 
Japanese Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT) and Japan Society for the Promotion of Science 
(JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y 
Tecnología, through Fondo de Cooperación Internacional en Cien-
cia y Tecnología (FONCICYT) and Dirección General de Asuntos 
del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie 
voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Re-
search Council of Norway, Norway; Commission on Science and 
Technology for Sustainable Development in the South (COMSATS), 
Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry 
of Education and Science, National Science Centre and WUT ID-
UB, Poland; Korea Institute of Science and Technology Informa-
tion and National Research Foundation of Korea (NRF), Republic 
of Korea; Ministry of Education and Scientific Research, Institute 
of Atomic Physics, Ministry of Research and Innovation and In-
stitute of Atomic Physics and University Politehnica of Bucharest, 
Romania; Ministry of Education, Science, Research and Sport of the 
Slovak Republic, Slovakia; National Research Foundation of South 
Africa, South Africa; Swedish Research Council (VR) and Knut & 
Alice Wallenberg Foundation (KAW), Sweden; European Organi-
zation for Nuclear Research, Switzerland; Suranaree University of 
Technology (SUT), National Science and Technology Development 
Agency (NSTDA), Thailand Science Research and Innovation (TSRI) 
and National Science, Research and Innovation Fund (NSRF), Thai-
land; Turkish Energy, Nuclear and Mineral Research Agency (TEN-
MAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; 
Science and Technology Facilities Council (STFC), United Kingdom; 
National Science Foundation of the United States of America (NSF) 
and United States Department of Energy, Office of Nuclear Physics 
(DOE NP), United States of America. In addition, individual groups 
or members have received support from: Marie Skłodowska Curie, 
Strong 2020 - Horizon 2020, European Research Council (grant 
nos. 824093, 896850, 950692), European Union; Academy of Fin-
land (Center of Excellence in Quark Matter) (grant nos. 346327, 
346328), Finland; Programa de Apoyos para la Superación del Per-
sonal Académico, UNAM, Mexico.

References

[1] T. Sjöstrand, M. van Zijl, A multiple interaction model for the event structure 
in hadron collisions, Phys. Rev. D 36 (1987) 2019.

[2] P. Bartalini, J.R. Gaunt (Eds.), Multiple Parton Interactions at the LHC, vol. 29, 
WSP, 2019.

[3] CDF Collaboration, T. Affolder, et al., Charged jet evolution and the underlying 
event in pp̄ collisions at 1.8 TeV, Phys. Rev. D 65 (2002) 092002.

[4] STAR Collaboration, J. Adam, et al., Underlying event measurements in p + p
collisions at √s = 200 GeV at RHIC, Phys. Rev. D 101 (5) (2020) 052004, arXiv:
1912 .08187 [nucl -ex].

[5] C.M. Buttar, et al., The underlying event, in: HERA and the LHC: A Workshop on 
the Implications of HERA for LHC Physics: CERN - DESY Workshop 2004/2005, 
Midterm Meeting, CERN, 11–13 October 2004; Final Meeting, DESY, 17–21 Jan-
uary 2005, CERN, Geneva, 2005.

[6] STAR Collaboration, J. Adams, et al., Experimental and theoretical challenges in 
the search for the quark gluon plasma: the STAR Collaboration’s critical assess-

ment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102–183, 
arXiv:nucl -ex /0501009.

[7] PHENIX Collaboration, K. Adcox, et al., Formation of dense partonic matter 
in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by 
the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184–283, arXiv:nucl -ex /
0410003.

[8] Wit Busza, Krishna Rajagopal, Wilke van der Schee, Heavy ion collisions: 
the big picture, and the big questions, Annu. Rev. Nucl. Part. Sci. 68 (2018) 
339–376, arXiv:1802 .04801 [hep -ph].

[9] J.L. Nagle, W.A. Zajc, Small system collectivity in relativistic hadronic and nu-
clear collisions, Annu. Rev. Nucl. Part. Sci. 68 (2018) 211–235, arXiv:1801.03477
[nucl -ex].

[10] A. Ortiz, P. Christiansen, E. Cuautle Flores, I. Maldonado Cervantes, G. Paić, Color 
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D. Pagano 130,54, G. Paić 64, A. Palasciano 49, S. Panebianco 127, J. Park 57, J.E. Parkkila 32,114, S.P. Pathak 113, 
R.N. Patra 91, B. Paul 22, H. Pei 6, T. Peitzmann 58, X. Peng 6, L.G. Pereira 65, H. Pereira Da Costa 127, 
D. Peresunko 139, G.M. Perez 7, S. Perrin 127, Y. Pestov 139, V. Petráček 35, V. Petrov 139, M. Petrovici 45, 
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