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Abstract

In this thesis, a microscopic model, based on the nuclear energy density functional, which can
be used to analyse hexadecapole correlations in nuclei, is constructed and presented. Using
the model, axial hexadecapole deformations were explored in the rare-earth region, as well as
the effects those deformations have on the low-lying energy spectra and transition strengths of
even-even rare-earth nuclei. A self-consistent mean-field calculation with a relativistic energy
density functional DD-PC1 was performed on even-even isotopes of Nd, Sm, Gd, Dy and Er
(Z = 60− 68) in the N ≈ 90 region, with constraints on axial quadrupole and hexadecapole
deformation parameters β20 and β40. The low-lying excitation energies and transition strengths
were calculated by constructing the mapped sdg interacting boson model, whose parameters
were derived by fitting them to the potential energy surface from the mean-field calculation.
The results show that the mapped sdg interacting boson model can be successfully constructed
and applied to even-even rare-earth nuclei, and that including the hexadecapole deformations
in the model is necessary in order to successfully reproduce the energies of the (Jπ ≥ 6+) yrast
states for nuclei with the neutron number near the magic number N = 82. The description of
B(E2) transitions between the higher-lying yrast states, is improved by this model, compared
to the simpler model which does not include g bosons. It is also shown that the inclusion of the
g boson in the interacting boson model is necessary if one wants to reproduce large B(E4) tran-
sition strengths from higher-lying 4+ states to the 0+ ground state, however, the experimental
data on such transitions in rare-earth nuclei is limited.

Keywords: axial hexadecapole deformations, rare-earth nuclei, relativistic energy density func-
tional, sdg interacting boson model, low-lying spectra, yrast states, transition strengths
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U ovom radu predstavljen je mikroskopski model, temeljen na nuklearnom energijskom funk-
cionalu gustoće, koji se može koristiti za analizu heksadekapolnih korelacija u atomskim jez-
grama. Koristeći ovaj model, analizirane su aksijalne heksadekapolne deformacije u području
rijetkih zemnih metala, kao i učinci navedenih deformacija na niskoležeći spektar pobud̄enih
stanja i na snage prijelaza med̄u pobud̄enim stanjima u parno-parnim jezgrama iz skupine rijet-
kih zemnih metala. Izračuni u okviru samokonzistentnog modela srednjeg polja, s relativistič-
kim energijskim funkcionalom gustoće DD-PC1, provedeni su na parno-parnim izotopima Nd,
Sm, Gd, Dy i Er (Z = 60−68) u području oko N = 90, s ograničenjima postavljenima na aksi-
jalne kvadrupolne i heksadekapolne deformacijske parametere β20 i β40. Energije niskoležećih
pobud̄enih stanja i snage prijelaza izračunate su pomoću sdg modela interagirajućih bozona,
pri čemu su vrijednosti parametara Hamiltonijana danog modela odred̄ene mapiranjem povr-
šine potencijalne energije, izračunate pomoću modela srednjeg polja, na Hamiltonijan modela
interagirajućih bozona. Dobiveni rezultati pokazuju da se mapirani sdg model interagirajućih
bozona može uspješno konstruirati i primijeniti na parno-parne jezgre rijetkih zemnih metala,
te da je uključivanje heksadekapolnih korelacija u model interagirajućih bozona nužno da bi se
uspješno reproducirale izmjerene vrijednosti energija viših stanja Jπ ≥ 6+ iz vrpce osnovnog
stanja, u jezgrama s neutronskim brojem blizu N = 82 magičnog broja. Takod̄er, sdg model
može uspješnije predvidjeti B(E2) snage prijelaza izmed̄u viših stanja u vrpci osnovnog stanja,
u usporedbi s jednostavnijim sd modelom. Pokazano je i da je uključivanje g bozona u model
interagirajućih bozona nužno za izračun velikih vrijednosti B(E4) snaga prijelaza izmed̄u viših
4+ stanja i osnovnog stanja, med̄utim, veoma je malo eksperimentalnih podataka vezanih uz te
prijelaze u jezgrama rijetkih zemnih metala.

Ključne riječi: aksijalne heksadekapolne deformacije, jezgre rijetkih zemnih metala, relativis-
tički energijski funkcional gustoće, sdg model interagirajućih bozona, niskoležeći spektar po-
bud̄enih stanja, vrpca osnovnog stanja, snage prijelaza
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Uvod

Atomska jezgra je kompleksni kvantni višečestični sustav sastavljen od protona i neutrona koji
primarno med̄udjeluju putem jake sile, pri čemu nezanemariv utjecaj na procese u jezgri imaju
i elektroslaba te Coulombova sila. S obzirom na kompleksnost navedenog sustava, često se
koriste teorijski modeli koji izbjegavaju direktno modeliranje sila. Jedan od najpopularnijih
takvih modela je model ljusaka [1, 2], koji aproksimira jezgru kao sustav nukleona kvantiziranih
energija, pri čemu se svaki od nukleona nalazi u odred̄enoj "ljusci". Jezgre kojima su sve ljuske
potpuno popunjene, nazivaju se dvostruko-magičnim jezgrama i karakterizira ih to da su jače
vezane u odnosu na susjedne jezgre i da su sferičnog oblika u osnovnom stanju. Model ljusaka
je jednočestični model u kojem se pobud̄ena stanja opisuju preko pomicanja nukleona u više
ljuske.

Osim jednočestičnih pobud̄enja, kolektivna pobud̄enja, opisana preko deformacija oblika
jezgre u odnosu na sferični oblik, takod̄er igraju važnu ulogu u stvaranju pobud̄enih stanja [3, 4].
Deformacije jezgara tema su brojnih eksperimentalnih istraživanja [5–8], te predstavljaju izn-
imno važnu temu u nuklearnoj fizici. Najčešći oblik deformacija koje se javljaju u jezgrama su
kvadrupolne deformacije, aksijalne prolatne, aksijalne oblatne te triaksijalne, koje utječu na en-
ergije pobud̄enih stanja pozitivnog pariteta [9]. Drugi red deformacija koje utječu na stanja poz-
itivnog pariteta su heksadekapolne deformacije, čiji su efekti često zasjenjeni jakim kvadrupol-
nim efektima, no njihova prisutnost je ipak opažena u mnogim jezgrama, od rasponu od lakih
do teških [10–19]. Glavni efekti heksadekapolnih korelacija u parno-parnim jezgrama su pojava
Kπ = 4+ vrpce u niskoležećem spektru pobud̄enih stanja, te jake B(E4) snage prijelaza iz nave-
denih 4+ stanja u osnovno stanje. Osim toga, heksadekapolne deformacije bi, prema teorijskim
predvid̄anjima, trebale igrati važnu ulogu u brojnim reakcijama koje su predmet proučavanja
u nuklearnoj fizici [19–21]. S obzirom na navedeno, teorijsko proučavanje heksadekapolnih
korelacija u jezgrama vrlo je važno, posebice u okviru tzv. mikroskopskih modela, koji svojstva
jezgre proučavaju na temelju nekih fundamentalnih med̄unukleonskih interakcija ili putem nuk-
leonskih gustoća [22]. Posebna vrsta mikroskopskih modela su samokonzistentni modeli sred-
njeg polja (SCMF modeli) koji koriste energijske funkcionale gustoće (EDF) [23]. Posebna
vrsta SCMF modela su relativistički modeli srednjeg polja (RMF) koji koriste relativističke
EDF-ove (REDF) [24, 25], kombinirane s relativističkom Hartree-Bogoliubovljevom teorijom
kojom se opisuju korelacije sparivanja u jezgrama [26]. Ono što takav model omogućuje je
izračun površine potencijalne energije (PES), gdje je energija jezgre prikazana kao funkcija
odabranih deformacijskih parametara.

S obzirom da SCMF izračuni nužno vode do slamanja odred̄enih simetrija, ne mogu se
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samostalno koristiti za izračun energija pobud̄enih stanja i snaga prijelaza, već se moraju kom-
binirati s drugim modelima, npr. metodom generirajućih koordinata (GCM) [27] ili kolek-
tivnim Hamiltonijanom [28–30]. Model kojim se bavi ovaj rad je model interagirajućih bozona
(IBM) [31], u kojem je jezgra aproksimirana kao sustav koji se sastoji od dvostruko magične
sredice i valentnih nukleona uparenih u bozone. U standardnom IBM-u nukleoni se uparuju u s,
(Jπ = 0+) i d (Jπ = 2+) bozone, te se ovakav model može uspješno koristiti za opise kvadrupol-
nih korelacija u jezgrama [32–35]. Za uključivanje heksadekapolnih korelacija u IBM potrebno
je uvesti g bozon (Jπ = 4+). Ovakvo proširenje modela pokazalo se nužnim za opisivanje nekih
svojstava niskoležećeg spektra u odred̄enim jezgrama [35–40].

Premda je sdg-IBM detaljno proučavan kao fenomenološki model, dosada još nije pokušano
izvesti parametre sdg-IBM Hamiltonijana iz mikroskopskog modela. Koristeći nedavno osmišl-
jenu metodu mapiranja [41–47], parametri sdg-IBM Hamiltonijana izvedeni su mapiranjem
PES, izračunatih u okviru RMF modela s DD-PC1 funkcionalom gustoće [24, 48] s ograničen-
jima postavljenima na aksijalne kvadrupolne i heksadekapolne deformacijske parametre, na
sdg-IBM Hamiltonijan. Model je primijenjen na parno-parne jezgre 144−156Nd, 146−158Sm,
148−160Gd, 150−162Dy i 152−164Er, koje su odabrane zbog činjenice da nema značajne prisutnosti
triaksijalnih kvadrupolnih korelacija u danim jezgrama [42, 49]. Izračunate energije i snage pri-
jelaza uspored̄ene su s rezultatima jednostavnijeg modela sd-IBM, kao i sa eksperimentalnim
podacima s NNDC stranice [50].

Teorijski okvir

Deformacije se mogu uvesti putem parametrizacije radijusa, zadane u jednadžbi (2.1). Ako se
uzmu u obzir samo aksijalne (µ = 0) deformacije, tada kvadrupolnim deformacijama odgovara
λ = 2, oktupolnim deformacijama [51] odgovara λ = 3, a heksadekapolnim λ = 4. Navedene
deformacije prikazane su na Slici 2.1.

RMF model

Teoriju funkcionala gustoće (DFT) utemeljili su Hohenberg i Kohn za potrebe opisivanja svojs-
tava nehomogenog elektronskog plina [52]. Kohn i Sham proširili su DFT na općeniti kvantni
sustav više čestica [53]. SCMF predstavlja analog Kohn-Shamovoj teoriji za jezgre. U RMF
modelima, energijski funkcional zadan je preko Lagranžijana [24, 54, 55] iz jednadžbe (2.8),
iz kojeg se variranjem po spinoru ψ̄ može dobiti jednonukleonska Diracova jednadžba (2.9).
Funkcional DD-PC1 konstruiran je tako da su 3 parametra αS,V,TV izražena preko 9 parametara
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čije su vrijednosti namještene tako da se mogu uspješno reproducirati eksperimentalni podaci
o masama jezgara [56]. Korelacije sparivanja uključuju se u izračune putem RHB modela, u
kojem se osnovno stanje jezgre aproksimira kvazičestičnim vakuumom. Energije sparivanja
izvode se iz Dirac-Hartree-Bogoliubovljeve jednadžbe (2.21) [54], pri čemu se polje sparivanja,
definirano u jednadžbi (2.22), konstruira preko tenzora sparivanja κ i efektivne interakcije V pp,
definiranima u jednadžbama (2.23) i (2.25). Konačno, ograničenja na deformacijske parametre
se postavljaju preko jednadžbi (2.33 - 2.36) [54, 55], koje se rješevaju iterativno, dok ne dod̄e
do konvergencije. Nedavno su razvijeni modeli s višedimenzionalnim ograničenjima (MDC-
RMF modeli) [54, 55, 57, 58], koji omogućuju provod̄enje RMF izračuna s ograničenjima
postavljenima na veliki broj deformacijskih parametara, uključujući aksijalne kvadrupolne i ak-
sijalne heksadekapolne parametre. U ovom radu, RMF izračuni provedeni su s ograničenjima na
prethodno spomenute parametre, te su kao konačan rezultat dobivene PES u prostoru aksijalnih
kvadrupolnih i heksadekapolnih deformacijskih parametara.

IBM

U IBM-u, bozonske interakcije izražene su preko tenzorskih produkata [59], prikazanih u jed-
nadžbama (2.39, 2.40). U sd-IBM-u, 36 tenzorskih produkata čini generatore grupe U(6) [31].
Ukoliko se pretpostave odred̄eni simetrijski limiti, Hamiltonijan IBM-a može se prikazati preko
Casimirovih operatora grupa i podgrupa u odred̄enom simetrijskom lancu [60]. U sd-IBM-u,
simetrijski lanci su U(5), SU(3) i O(6) [31, 45], prikazani u jednadžbama (2.43 - 2.48). Uz
pretpostavku spomenutih simetrijskih lanaca, za sd-IBM Hamiltonijan može se odabrati onaj
definiran jedbnadžbama (2.49, 2.50). U sdg-IBM-u, 225 tenzorskih produkata generira grupu
U(15) [31]. Simetrijski limiti koji se najčešće razmatraju u sdg-IBM-u su [U(6) ⊃ U(5)]⊗U(9),
SU(3) i O(15) [61–64], predstavljeni u jednadžbama (2.52-2.57). Odabrani sdg-IBM Hamil-
tonijan definiran je u jednadžbama (2.61-2.63) i sličan je Hamiltonijanu iz [65].

Kvadrupolne, heksadekapolne i monopolne [66] snage prijelaza u IBM-u, definirane su jed-
nadžbama (2.64-2.70). Pri izračunu kvadrupolnih i heksadekapolnih snaga prijelaza, vrijednosti
efektivnih naboja se namještaju tako da se mogu uspješno reproducirati snage prijelaza iz 2+1 i
4+1 stanja u vrpci osnovnog stanja, u 0+1 osnovno stanje. Vrijednosti parametara u monopolnim
prijelazima fiksirane su za sve jezgre po uzoru na [66].

Nukleon-bozon mapiranje

IBM se može povezati s geometrijskim modelom, u kojem je energija predstavljena kao funkcija
deformacijskih parametara, putem tzv. bozonskih koherentnih stanja [67–70]. Očekivana vri-
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jednost sd-IBM Hamiltonijana u koherentnom stanju dana je u jednadžbi (2.75) [71, 72], koja
se, ukoliko se pretpostavi da nema triaksijalnih deformacija, svodi na jednadžbu (2.76).

U sdg-IBM-u, bozonsko koherentno stanje definirano je jednadžbom (2.77). Za razliku od
sd-IBM koherentnog stanja, ovdje se javljaju i aksijalni heksadekapolni parametar te dva triak-
sijalna heksadekapolna parametra [73]. Da bi se pojednostavnio izraz za osnovno stanje, triaksi-
jalni heksadekapolni deformacijski parametri mogu se izraziti preko triaksijalnog kvadrupolnog
deformacijskog parametra [74]. Koherentno stanje u tom slučaju poprima oblik prikazan u jed-
nadžbi (2.78) [65]. Očekivana vrijednost Hamiltonijana iz jednadžbe (2.61), u koherentnom
stanju, dana je u jednadžbi (2.80).

U metodi nukleon-bozon mapiranja, vrijednosti parametara IBM Hamiltonijana namještaju
se tako da PES dobiven iz IBM-a aproksimira PES dobiven iz RMF modela što je bolje moguće.
Pri tome je pokazano da se bozonski i fermionski deformacijski parametri mogu povezati lin-
earno, kao što je prikazano u jednadžbi (2.82) [41, 42, 45, 47]. Ilustrativni prikaz metode
mapiranja nalazi se na Slici 2.2.

Rezultati

U ovom poglavlju predstavljeni su rezultati dobiveni putem mapiranog sdg-IBM-a, koji su us-
pored̄eni s rezultatima dobivenima pomoću jednostavnijeg sd-IBM-a te s eksperimentalnim po-
dacima [50]. SCMF izračuni provedeni su uz pomoć koda MDCRHB [54], dok je za IBM
izračune korišten kod ARBMODEL [75].

SCMF izračuni i metoda mapiranja

PES izotopa 144−154Nd, 146−156Sm, 148−158Gd, 150−160Dy i 152−162Er, dobiveni preko SCMF
izračuna, prikazani su na Slikama 3.1-3.5. Slike se mogu pronaći i u radu [76]. Dobiveni SCMF
rezultati konzistentni su s prijašnjim SCMF izračunima u području rijetkih zemnih elemenata
[74, 77, 78]. Izračuni za Gd izotope mogu se pronaći i u radu [79]. IBM aproksimacije SCMF
izračuna mogu se pronaći na Slikama 3.6-3.10. Iz navedenih slika vidljivo je da sdg-IBM
zadovoljavajuće aproksimira SCMF izračune te uspješno reproducira neka od svojstava, kao
što su položaj apsolutnog minimuma, položaj sedlene točke u području oblatnih kvadrupolnih
deformacija β2 < 0, te općeniti izgled PES za pojedinu jezgru. Vrijednosti parametara sdg-IBM
Hamiltonijana prikazane su kao funkcije broja valentnih bozona NB na Slici 3.11. Parametar σ

nije prikazan jer on iznosi σ = 3.5 u 144,146Nd i 146,148Sm, te σ = 2.8 u preostalim Nd i Sm
izotopima. Što se tiče težih jezgara, vrijednost parametra iznosi σ = 1.0 u svim Gd, Dy i Er
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izotopima.
Rezultati mapiranja SCMF izračuna po β4 = 0 liniji na sd-IBM Hamiltonijan prikazani su na

slikama 3.12-3.16. Iz priloženih slika vidljivo je da sd-IBM dobro aproksimira SCMF izračune,
te su uspješno reproducirani položaj apsolutnog minimuma, položaj i energija sedlene točke u
području oblatnih deformacija, i energija maksimuma u položaju β2 = 0. Parametri sd-IBM
Hamiltonijana prikazani su kao funkcija broja valentnih bozona na Slici 3.17.

Rezultati spektroskopskih izračuna

Na Slici 3.18 prikazane su energije stanja 2+−14+ iz vrpce osnovnog stanja kao funkcija broja
neutrona N. Iz slike je vidljivo da sdg-IBM značajno poboljšava opis energija Jπ ≥ 6+ stanja
u odnosu na sd-IBM u N = 84,86 jezgrama. U izotopima Nd i Sm, poboljšanja su vidljiva i u
težim jezgrama s neutronskim brojevima N ≥ 90. Tablica 3.1 prikazuje R4/2 omjere energija 4+

i 2+ stanja u N = 84,86 jezgrama. Iz tablice je vidljivo da sdg-IBM može uspješno predvidjeti
omjere R4/2 < 2 u N = 84 jezgrama, za razliku od sd-IBM-a. U N = 86 jezgrama, omjeri
postaju veći od 2, te sdg-IBM samo donekle bolje predvid̄a vrijednosti omjera u odnosu na
sd-IBM u tim jezgrama. Činjenica da sdg-IBM poboljšava izračune energija odred̄enih stanja i
R4/2 omjera može se objasniti time da je prisutnost g bozona predvid̄ena u valnim funkcijama
tih stanja, kao što se može vidjeti na Slici 3.19. Takod̄er, činjenica da kolektivni model, kao
što je sdg-IBM, može dobro opisati energije u vrpci osnovnog stanja u sferično-vibracijskim
jezgrama, pokazuje da ovakav kolektivni model može uzeti u obzir i jednočestična pobud̄enja
koja su očekivana u takvim jezgrama. Treba napomenuti i da su, prema drugim teorijskim
izračunima, stanja 2+1 i 4+1 u nekim N = 84 jezgrama, poput 144Nd i 146Sm, predvid̄ena kao
stanja kolektivne prirode [80].

Slika 3.20 prikazuje stanja 0+2 , 2+3 i 4+3 , koja čine 0+ vrpcu u deformiranim jezgrama, kao
funkcije neutronskog broja N. Kao što se može vidjeti iz slike, sdg-IBM ne daje značajno
različite rezultate od sd-IBM-a za ovu vrpcu. Energije stanja 2+3 i 4+3 su bliže eksperimentalnim
vrijednostima u N = 84,86 jezgrama, no činjenica da sdg-IBM predvid̄a da su te energije gotovo
jednake u navedenim jezgrama nije u skladu s eksperimentalnim podacima.

Slika 3.21 prikazuje stanja 2+2 , 3+1 i 4+2 , koja čine γ-vibracijsku vrpcu u deformiranim jez-
grama, kao funkcije neutronskog broja N. Ono što se može vidjeti sa slike je da sdg-IBM ne
poboljšava opis energija navedenih stanja, te u jezgrama blizu N = 82 zatvorene neutronske
ljuske, predvid̄a vrlo niska 4+2 stanja, energetski vrlo bliska 2+2 stanjima, što nije u skladu s
izmjerenim podacima.

Slika 3.22 prikazuje vrijednosti esdg,sd
2 i esdg,sd

4 efektivnih naboja za kvadrupolne i hek-
sadekapolne prijelaze kao funkcije broja valentnih bozona NB. Vrijednosti kvadrupolnih efek-

vi



Prošireni sažetak

tivnih naboja namještene su da bi se uspješno reproducirala B(E2;2+ → 0+) snaga prijelaza u
vrpci osnovnog stanja, dok su vrijednosti heksadekapolnih efektivnih naboja namještene tako
da se uspješno reproducira B(E4;4+ → 0+) snaga prijelaza u istoj vrpci. Vrijednosti esdg

2 i
esd

2 ne razlikuju se značajno, što se može objasniti činjenicom da u 2+ stanju nije predvid̄ena
značajna prisutnost g bozona. S druge strane, esdg

4 i esd
4 se značajno razlikuju, posebice u N ≤ 88

jezgrama gdje sd-IBM predvid̄a iznimno velike i nefizikalne vrijednosti esd
4 efektivnih naboja.

Ovo potvrd̄uje nužnost uključivanja g bozona u izračune B(E4) snaga prijelaza.
Na Slici 3.23 prikazane su B(E2) snage prijelaza u vrpci osnovnog stanja u N = 90,92 jez-

grama. U jezgrama Nd i Sm, sdg-IBM bolje opisuje prijelaze izmed̄u Jπ ≥ 6+ stanja u odnosu
na sd-IBM, što se može ponovno objasniti gledajući prisutnost g bozona u tim stanjima na Slici
3.19, kao i činjenicom da su vrijednosti parametra σ prilično velike u tim izotopima, zbog čega
(d†× g̃+g†× d̃)(2) član u operatoru Q̂(2) iz jednadžbe (2.62) ima značajan doprinos u izračunu
B(E2) snaga prijelaza. U jezgrama Gd, Dy i Er nema značajnijih razlika izmed̄u dva modela,
te su takod̄er velike vrijednosti pogrešaka u eksperimentalnim podacima, što onemogućava da
se precizno odredi koji od dva modela bolje predvid̄a snage prijelaza u navedenim jezgrama.

Slika 3.24 prikazuje B(E4;4+n → 0+) snage prijelaza iz 4+n=1,2,3,4 stanja u osnovno stanje
0+, kao funkcije broja nukleona A. Značajna razlika izmed̄u sdg- i sd-modela je u tome što
sdg-IBM može predvidjeti jake snage prijelaza iz 4+n≥2 stanja u 0+ osnovno stanje. To odgovara
činjenici da heksadekapolne korelacije u jezgri uzrokuju nastajanje Kπ = 4+ vrpce s jakim
B(E4) snagama prijelaza u osnovno stanje, što model koji razmatra isključivo kvadrupolne
korelacije ne može predvidjeti.

Na Slici 3.25 prikazane su kvadrirane monopolne snage prijelaza ρ2(E0;0+i → 0+j ) kao
funkcije broja neutrona N, pri čemu vrijedi i = 2,3 te j = 1,2. Izračuni su prikazani za izotope
Sm i Gd. Eksperimentalni podaci preuzeti su iz [50, 81]. Iz navedene slike može se vidjeti da
sdg-IBM donekle poboljšava snagu 0+3 → 0+2 prijelaza u 152Sm, kao i snagu 0+3 → 0+1 prijelaza
u 158Gd, te da dalje od toga nema značajnijih razlika izmed̄u 2 modela.

Zaključak

Ovaj rad predstavlja prvi pokušaj da se sistematski proučavaju efekti aksijalnih kvadrupolnih i
heksadekapolnih efekata u jezgrama, u okviru mikroskopskog modela. Pokazano je da se g bo-
zon može uključiti mikroskopski u IBM, pomoću metode nukleon-bozon mapiranja. Model je
primijenjen na parno-parne jezgre Nd, Sm, Gd, Dy i Er, te je pokazano da sdg-IBM pruža neka
značajna poboljšanja u odnosu na jednostavniji sd-IBM. Kao prvo, izračunate energije Jπ ≥ 6+,
iz vrpce osnovnog stanja, se značajno bolje slažu s izmjerenim podacima u N ≤ 88 jezgrama
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u odnosu na one dobivene pomoću sd-IBM-a, te je takod̄er pokazano da sdg-IBM poboljšava
izračunate omjere energija R4/2 izmed̄u prvih dvaju stanja iz osnovne vrpce u N = 84 jezgrama.
Demonstrirano je i da navedeni model poboljšava opis B(E2) snaga prijelaza u vrpci osnovnog
stanja izmed̄u Jπ ≥ 6+ stanja u N = 90,92 jezgrama, te da model može u jezgrama predvid-
jeti postojanje Kπ = 4+ vrpci s izraženim B(E4) snagama prijelaza u osnovno stanje. S druge
strane, model ne daje značajna poboljšanja u odnosu na jednostavniji sd-IBM u opisu stanja
0+ vrpce i γ-vibracijske vrpce. To je i očekivano s obzirom da su heksadekapolni efekti često
zasjenjeni jakim kvadrupolnim efektima. Unatoč tome, ovaj rad pokazuje da je uključivanje
heksadekapolnih korelacija nužno za precizno opisivanje mnogih svojstava atomske jezgre, te
da bi njihovo uključivanje trebalo predstavljati integralni dio bilo kojeg teorijskog proučavanja
kojem je cilj postići precizan opis energija i snaga prijelaza u rijetkim zemnim elementima.

U budućnosti, ovaj model može se proširiti tako da se omogući opisivanje svojstava neparno-
parnih i neparno-neparnih jezgara. To bi moglo omogućiti i proučavanje utjecaja heksadekapol-
nih korelacija na β-raspade u području rijetkih zemnih jezgara. Model se takod̄er može proširiti
tako da se u korelacije uključe i triaksijalne kvadrupolne korelacije. Takav model mogao bi biti
primijenjen na izotope Pt i Os te na aktinide. Konačno, navedeni model može biti proširen u
sdg-IBM-2, u kojem su protonski i neutronski bozoni promatrani kao različite čestice. Takav
model mogao bi se koristiti za proučavanje fenomena koji su nedostupni modelima kao što je
IBM-1, primjerice, tzv. "modovi škara" (scissor modes).
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Chapter 1

Introduction

The atomic nucleus represents a complex quantum many-body system, composed of protons
and neutrons, which interact via a strong nuclear force that has a very complex form. Aside from
the strong force, the weak and the electromagnetic force also play an important role in nuclear
interactions. Due to such complexity of the system, describing various nuclear properties, e.g.
excitation energy spectra and transitions, becomes a complicated task. In order to avoid the
explicit modelling of forces inside the nucleus, various models are developed. One of the most
important models of nuclear structure, developed in the last century, is the shell model [1, 2].
In the shell model, a nucleus is approximated as a system of independent nucleons moving
in an average potential, with the energies being quantized, such that each nucleon occupies a
particular nuclear orbital, called a shell. The nuclei with nucleon numbers corresponding to the
so-called "magic numbers" 2, 8, 20, 28, 50, 82 and 126, have completely filled shells, making
them more stable and harder to excite compared to their neighbouring nuclei. These nuclei are
called magic nuclei, or double-magic nuclei, if both proton and neutron numbers are magic, and
are characterized by a spherical shape in the ground state. The shell model is a single-particle
model, which means that the excited states are described by nucleons moving up from the shells
they occupied in the ground state, to the shells above.

Aside from single-particle excitations, collective modes are known to play an important role
in describing nuclear properties, particularly in nuclei with non-magic nucleon numbers and
exotic nuclei [3, 4]. As was mentioned before, the magic nuclei are characterized by a spherical
shape in the ground state. If more nucleons are added or subtracted, or if enough energy is added
to the system, deformations from the spherical shape can occur. These deformations represent
the collective modes of motion in the nucleus, and are among the most important topics of
research in nuclear physics today. Experiments researching deformations in various nuclei,
from light to superheavy are performed at some of the world-leading laboratory facilities for
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nuclear and particle physics, such as ISOLDE CERN in Switzerland [5], RIKEN RIBF in Japan
[6, 7] and TRIUMF in Canada [8]. This provides a good reason to develop theoretical models
that examine deformations in nuclei and predict their effects on various nuclear properties.

The most common type of nuclear deformation present in the nucleus is the quadrupole
deformation. The quadrupole deformations can be divided into axial quadrupole and triaxial
quadrupole shapes, with axial shapes further divided into prolate (rugby ball shape) and oblate
(discus shape). The quadrupole correlations have been extensively studied, and their effects on
the positive parity states and electromagnetic transitions between them in the low-lying excita-
tion energy spectrum of nuclei is well known [9]. The next leading order of deformations that
affect positive parity states, the hexadecapole deformations, have been much less studied, due
to the fact that their effects on the low-lying excitation spectra of a nucleus are often overshad-
owed by large quadrupole effects. Nevertheless, the presence of hexadecapole deformations
has been observed in a wide range of nuclei, including light nuclei [10, 11], rare-earth nuclei
[12–16], and actinides [17–19]. The most pronounced effect of hexadecapole deformations in
nuclei is the appearance of the low-lying Kπ = 4+ band in even-even nuclei, with an enhanced
B(E4;4+ → 0+) transition strength from the 4+ state to the ground state. Another important
effect of hexadecapole deformations can be observed in even-even rare-earth nuclei with the
neutron number being near N = 82 shell closure. In these nuclei, the ratio between the energies
of the ground state band states 4+ and 2+, R4/2 = Ex(4+)/Ex(2+) is less than 2 in value. Be-
sides the two main effects, hexadecapole deformations were observed to play a role in heavy ion
collisions at the Relativistic Heavy Ion Collider [19], and are predicted to play a role in fission
[20] and in the predicted neutrinoless double beta decay [21].

The fact that hexadecapole correlations have some significant effects on properties of the
nucleus provides a good reason for a theoretical study of such correlations, particularly in the
framework of a microscopic model, which starts from some fundamental nucleon-nucleon (NN)
interaction and builds the properties of a nucleus in a self-consistent way [22]. A special class of
microscopic models are the self-consistent mean-field (SCMF) models, which avoid explicitly
modelling the NN interaction by approximating the nucleus as a system of independent nucleons
moving in a self-consistent potential which corresponds to the actual density distribution of a
given nucleus [23]. SCMF models use an energy density functional (EDF), approximated with
powers and gradients of the ground state nucleon densities [24]. A special class of SCMF
models are the relativistic mean-field (RMF) models, which use a relativistic energy density
functional (REDF) based on the framework of quantum hadrodynamics (QHD) [24]. The RMF
models have been successfully applied in describing various nuclear properties, e.g. charge
radii, binding energies, neutron separation energies etc., in a wide spectrum of nuclei, ranging
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from those in the valley of β-stability to exotic nuclei [25]. In description of open shell nuclei,
the RMF models have been improved by the development of the relativistic Hartree-Bogliubov
(RHB) model, that takes into account the pairing correlations in those nuclei [26]. The important
feature of the RMF models with REDFs to this work is their ability to describe the energy of
a nucleus as a function of deformation parameters, by calculating the potential energy surface
(PES) in the plane of deformation parameter values. Details of this model will be described in
Chapter 2.

Since SCMF models necessarily break several symmetries, e.g. translational and rotational,
they alone cannot be used to calculate properties such as the low-lying excitation energy spectra
and transition strengths. To restore broken symmetries and enable the calculation of aforemen-
tioned properties, the most effective symmetry restoring method to use is the generator coor-
dinate method (GCM), which generates intrinsic wave functions from the calculated multipole
moments [27]. However, due to the complexity of the GCM, the calculations can be extremely
time-consuming, which presents a problem when the calculation of the complete low-lying
spectra is required. To solve this problem, the GCM calculations are often replaced with simpler
models, such as the collective Hamiltonian models, which make use of deformation parameter
values, derived from the SCMF calculations, to calculate energies and transition strengths [28–
30]. Another very successful model in describing excitation energies and transition strengths in
nuclei is the interacting boson model [31], developed by Iachello and Arima.

In the IBM, a nucleus is viewed as a system composed of a double-magic core nucleus
and valence nucleons. The main assumptions of the IBM are that the valence nucleons are
coupled into bosons, and that the main contribution to the low-lying excitation energy spectra
and transitions comes from the pairing correlations between the bosons. The two main versions
of the IBM are the IBM-1 and IBM-2, the main difference being that the IBM-1 treats neutron
and proton bosons as being identical, while the IBM-2 does not [31]. Different versions of
the IBM can also be constructed based on the types of bosons nucleons couple into. The most
commonly employed version of the IBM, called sd-IBM, takes into account s bosons (Jπ = 0+)
and d bosons (Jπ = 2+). The sd-IBM (both -1 and -2) has been successfully applied to a wide
range of nuclei [32–34], and has been shown to be able to accurately describe the effects of
quadrupole deformations in nuclei [35]. In order to incorporate hexadecapole correlations in
IBM, it is necessary to introduce a new degree of freedom via the g boson (Jπ = 4+). The
need for including the g boson in the IBM, for the purpose of describing excitation energies and
transitions in certain nuclei, has been recognized for decades [35, 36], and the calculations with
the sdg-IBM have been successfully performed and were shown to provide an improvement
over the simpler sd-IBM in describing the low-lying spectra in certain nuclei [37–40]. Since
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hexadecapole correlations are the topic of interest in this work, the sdg-IBM-1 model is used in
calculations. It should be noted that, while a more complex sdg-IBM-2 model could have been
used, the calculations would have become significantly more time-consuming due to the large
increase in dimension of the Hamiltonian matrix, and the IBM-1 and -2 are expected to yield
similar results for most of the low-lying excited energy states, the most significant difference
being the neutron-proton mixed symmetry states. The sdg-IBM-2 is therefore left for a different
study.

While successful, the IBM was constructed as a phenomenological model, with parameters
of the Hamiltonian being determined by fitting them to the experimental data on low-lying ex-
citation spectra. This presents a problem if the goal is to describe the properties of a nucleus in
a purely microscopic framework. Recently, a method has been developed that derives the pa-
rameters of the IBM Hamiltonian by fitting them to the PES calculated with the SCMF model
[41]. This way, the IBM is derived from a microscopic model. The method has been success-
fully applied to study the effects of quadrupole axial and triaxial deformations [41–45], as well
as axial octupole deformations [46, 47]. It should also be noted that the method was found to
be successful in the framework of both non-relativistic [41] and relativistic EDFs [47]. While
quadrupole and octupole collectivity in nuclei have been investigated with the aforementioned
method, the hexadecapole collectivity has yet to be explored. Due to the fact that hexadecapole
correlations have significant effects on the low-lying spectra in certain nuclei, and due to the
fact that the sdg-IBM has been shown to be an important model, applying the aforementioned
method to the sdg-IBM presents itself as a timely and interesting study, which could bring us
closer to a better understanding of the microscopic origin of the hexadecapole collectivity in
nuclei. For those reasons, the topic of this thesis is the construction of the mapped sdg-IBM
model, derived from the RMF calculations, with the REDF of choice being the density de-
pendent point coupling functional DD-PC1 [24, 48]. The constructed mapped sdg-IBM was
applied to even-even rare-earth isotopes of Nd, Sm, Gd, Dy and Er (Z = 60−68) with neutron
number in range N = 84−96, so that both spherical vibrational, transitional and well deformed
nuclei could be studied. The choice of studying even-even rare-earth nuclei was made due to
the fact that hexadecapole correlations have been observed in them, as well as due to the fact
that previous SCMF calculations showed that triaxiality does not have a significant presence
in them [42, 49], making these nuclei the perfect candidates for SCMF calculations with con-
straints set on axial quadrupole and axial hexadecapole deformation parameters. The mapped
sdg-IBM was used to calculate the low-lying excitation energy spectra, as well as quadrupole,
hexadecapole and monopole transition strengths. The results were compared with the experi-
mental data, mostly taken from the Brookhaven National Nuclear Data Center (NNDC) [50],
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Chapter 1. Introduction

as well as with the results obtained with a simpler sd-IBM, in order to see the effects of the g

boson on the excitation energies and transitions.
The thesis is organized in the following way. In Chapter 2, a detailed description of the the-

oretical framework is given. A theory is provided on how nuclear deformations are described.
The RMF models with and the DD-PC1 REDF are also described in detail. A detailed descrip-
tion of both the sd- and sdg-IBM is given, with the latter being presented as an extension of
the former. Finally, a mapping method for both models is given. In Chapter 3, the results of
the mapped sdg-IBM are presented and discussed. The importance of the constructed model
is explained by comparing the results to both the sd-IBM results and the experimental data.
Lastly, in Chapter 4, a summary of the thesis and the outlook are given.
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Chapter 2

Theoretical framework

2.1 Quadrupole and hexadecapole deformations

Nuclear deformations can be introduced in the framework of the liquid drop model through the
parametrization of the nuclear radius [4]:

R(θ,φ) = R0

(
1+a00 +

∞

∑
λ=1

λ

∑
µ=−λ

a∗
λµYλµ(θ,φ)

)
, (2.1)

where R0 represents a radius of a sphere of the same volume. The term a00 is a constant, which
can be determined by demanding that the volume of a nucleus should be constant:

V =
4
3

R3
0π. (2.2)

The dipole terms a1µ can also be fixed by fixing the origin of the coordinate system to the centre
of mass [4]:

∫
rd3r = 0. (2.3)

If only axial deformations (µ = 0) are considered, the parameters of Eq. (2.1) can be redefined
as aλ0 ≡ βλ, with parameters βλ being called the deformation parameters. The most commonly
considered deformations are quadrupole (λ = 2), which can be prolate (β2 > 0) or oblate (β2 <

0), octupole (λ = 3) and hexadecapole (λ = 4), which can, just like quadrupole deformations,
also be positive or negative. These shapes can be seen in Fig. 2.1.

Both quadrupole and hexadecapole deformations affect the low-lying positive parity states
and transitions between those states, while the most pronounced effect of the octupole defor-
mations is on the low-lying negative parity states [51]. This means that, for a complete and
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2.2. Relativistic mean field models Chapter 2. Theoretical framework

Figure 2.1: The most common axial nuclear deformations. From left to right, first row: quadrupole
deformation, octupole deformation. Second row: positive hexadecapole deformation, negative hexade-
capole deformation. Figure is taken from Ref. [4].

accurate description of the low-lying excitation energy spectra, all the mentioned deformations
would have to be included, as well as the triaxial (µ = 2) ones, however, this would signifi-
cantly complicate the model used in this thesis, and such calculations are beyond the scope of
this study. As was previously mentioned in Chapter 1, hexadecapole correlations are expected
to play a role in the description of low-lying yrast states in rare-earth nuclei with N being near
N = 82 shell closure (spherical vibrational nuclei), and are expected to play a role in the de-
scription of E2 and E4 transition systematics in well deformed isotopes.

2.2 Relativistic mean field models

The SCMF models can be understood as analogues of the Kohn-Sham density functional theory
(DFT) [24]. The DFT was established by Hohenberg and Kohn, for the purpose of describing an
inhomogeneous electron gas, with the Hohenberg-Kohn theorem stating that, for a given system,
there exists a unique energy functional of the density, such that the variational equation yields
the exact ground state density of a given system [52]. The Hohenberg-Kohn theorem was later

7
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expanded by Kohn and Sham [53] to quantum many-body systems in general, by stating that
for any interacting quantum many-body system, there exists a unique single-particle potential
vs(r), such that the exact ground state density of the interacting system equals the ground state
density of the auxiliary non-interacting system [24, 53]:

ρ(r) = ρs(r) =
N

∑
i
|φi(r)|2 , (2.4)

with the number N representing the number of lowest occupied single-particle orbitals. These
single-particle wave functions are the solutions of Kohn-Sham equations [24, 53]:[

− 1
2m

∇
2 + vs(r)

]
φi(r) = εiφi(r), (2.5)

and are unique functionals of the density φi(r) = φi([ρ];r). In an atomic nucleus, the EDF can
be expressed in the following way [24]:

F(ρ) = Ts(ρ)+EH(ρ)+Exc(ρ), (2.6)

with Ts(ρ) corresponding to the kinetic energy of the non-interacting system of nucleons, EH(ρ)

representing the Hartree energy, and Exc(ρ) being the exchange correlation energy, which con-
tains all the remaining many-body effects.

A special class of the SCMF models are the RMF models. These models employ REDFs,
which are built with nucleon densities and currents that are bilinear in the Dirac spinor field ψ

of the nucleon [24]:

ψ̄OτΓψ, Oτ ∈ {1,τi} , Γ ∈
{

1,γµ,γ5,γ5γµ,σµν

}
, (2.7)

with τi representing the isospin Pauli matrices and Γ representing the Dirac matrices. In order
to derive the relativistic Kohn-Sham equations, a Lagrangian needs to be constructed. The
Lagrangian is usually constructed with four-fermion interaction terms in isoscalar-scalar (ψ̄ψ)2,
isoscalar-vector (ψ̄γµψ)(ψ̄γµψ) and isovector-vector (ψ̄⃗τγµψ)(ψ̄⃗τγµψ) channels [24]. A typical
RMF Lagrangian can be written in the following way [24, 54]:

L =ψ̄(iγ ·∂−m)ψ

− 1
2

αS(ρ̂)(ψ̄ψ)(ψ̄ψ)− 1
2

αV (ρ̂)(ψ̄γ
µ
ψ)(ψ̄γµψ)− 1

2
αTV (ρ̂)(ψ̄⃗τγ

µ
ψ)(ψ̄⃗τγµψ)

− 1
2

δS(∂νψ̄ψ)(∂ν
ψ̄ψ)− eψ̄γ ·A(1− τ3)

2
ψ.

(2.8)

8
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The first term is a free nucleon term, with m being the nucleon mass, while the next three
terms represent the isoscalar-scalar, isoscalar-vector and isovector-vector point-coupling terms,
respectively. The final two terms are the derivative coupling term, which accounts for the finite
range effects [24, 54], and the coupling of the proton to the electromagnetic field. In principle, it
is possible to expand the Lagrangian by including the isovector-scalar term, as well as non-linear
coupling terms [55], however, the Lagrangian from Eq. (2.8) has been shown to be adequate in
describing the ground state properties of a nucleus. By varying the Lagrangian with respect to
ψ̄, a relativistic single-nucleon Dirac equation is obtained [24]:

[
γµ(i∂µ −Σ

µ −Σ
µ
R)− (m+ΣS)

]
ψ = 0, (2.9)

with nucleon self-energies being defined as:

Σ
µ = αV (ρv) jµ + e

1− τ3

2
Aµ, (2.10)

Σ
µ
R =

1
2

jµ

ρv

{
∂αS

∂ρ
ρ

2
s +

∂αV

∂ρ
jµ jµ +

∂αTV

∂ρ
j⃗µ j⃗µ
}
, (2.11)

ΣS = αS(ρv)ρs −δS□ρs (2.12)

Σ
µ
TV = αTV (ρv) j⃗µ. (2.13)

In the ground state of a nucleus |φ0⟩, the isoscalar 4-current, the isovector 4-current and the
scalar density are respectively defined as:

jµ = ⟨φ0| ψ̄γµψ |φ0⟩=
N

∑
k=1

v2
kψ̄kγµψk, (2.14)

j⃗µ = ⟨φ0| ψ̄γµ⃗τψ |φ0⟩=
N

∑
k=1

v2
kψ̄kγµ⃗τψk, (2.15)

ρs = ⟨φ0| ψ̄ψ |φ0⟩=
N

∑
k=1

v2
kψ̄kψk, (2.16)

with v2
k corresponding to occupation factors.

The three parameters αS, αV and αTV in the DD-PC1 functional, are constructed with 9
parameters [24]:

αS(ρ) = aS +(bS + xcS)e−dSx, (2.17)

αV (ρ) = aV +bV e−dV x, (2.18)

9
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αTV (ρ) = bTV e−dTV x, (2.19)

where x = ρ/ρsat . The parameter ρsat represents the saturation density of symmetric nuclear
matter. These 9 parameters are determined by fitting them to the experimental data on masses
of 64 axially deformed nuclei in the regions A ≈ 150−180 and A ≈ 230−250 [56].

In order to account for pairing effects in open shell nuclei, the RMF model is extended to
include the RHB model of pairing. In the RHB model, the ground state of a nucleus is approxi-
mated by a quasiparticle vacuum |Φ⟩ [26], and the quasiparticle operators are constructed with
creation and annihilation operators:

α
†
k = ∑

l
Ulkc†

l +Vlkcl, (2.20)

with U and V corresponding to Hartree-Bogoliubov wave functions. Using the Green function
technique, a relativistic Dirac-Hartree-Bogoliubov equation can be derived [54]:

∫
d3r′

(
h−λ ∆

−∆∗ −h+λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (2.21)

where Ek is the quasiparticle energy, λ is the chemical potential, determined from the condition
that the expectation value of the particle number operator in the ground state equals the nucleon
number, and h is the single-particle Hamiltonian from Eq. (2.9). The pairing field ∆ is, in the
case of a general two-body interaction, defined as [54]:

∆p1 p2(r1σ1,r2σ2) =
∫

d3r′1d3r′2
p′1,p

′
2

∑
σ′

1,σ
′
2

V pp
p1,p2,p′1,p

′
2
(r1σ1,r2σ2,r′1σ

′
1,r

′
2σ

′
2)×κp′1,p

′
2
(r′1σ

′
1,r

′
2σ

′
2),

(2.22)
with V pp being the effective pairing interaction, and

κα′α(r1σ1,r2σ2) = ∑
k>0

V ∗
αk(r1σ1)Uα′k(r2σ2) (2.23)

being the pairing tensor. The p = f ,g represent the large and small components of quasiparticle
Dirac spinors [24]:

U(r,s, t) =
(

fU(r,s, t)
igU(r,s, t)

)
, V (r,s, t) =

(
fV (r,s, t)

igV (r,s, t)

)
. (2.24)

Usually, only f f components are considered [54].

10
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In the pp channel, the pairing interaction reads [24, 54]:

V (r1σ1,r2σ2,r′1σ
′
1,r

′
2σ

′
2) =−Gδ(R−R′)P(r)P(r′)

1
2
(1−Pσ), (2.25)

where G is the pairing strength, R = (r1 + r2)/2 and r = r1 − r2 are the centre of mass and
relative coordinates, respectively, and

P(r) = (4πa2)−3/2e−r2/4a2
(2.26)

is the Gaussian function, with a being the effective range of the pairing force. Both G and a

are fixed in order to reproduce the neutron pairing gaps and pairing energies calculated with the
Gogny D1S force. The RHB equation (2.21) is solved by expanding the components of Dirac
spinors in the basis of the axially deformed harmonic oscillator (ADHO) [54]:

Uk(rσ) =

(
∑α f kα

U Φα(rσ)

∑α gkα
U Φα(rσ)

)
, Vk(rσ) =

(
∑α f kα

V Φα(rσ)

∑α gkα
V Φα(rσ)

)
, (2.27)

with
Φα(rσ) =Cαφnz(z)φ

ml
nr
(ρ)

1√
2π

eimlϕχms(ρ), (2.28)

being the eigensolutions of the Schrödinger equation in the ADHO potential

VB(ρ,z) =
1
2

M(ω2
ρρ

2 +ω
2
z z2). (2.29)

Here, α = {nz,nr,ml,ms} are the quantum numbers and ωz and ωρ are oscillator frequencies
along and perpendicular to the z- axis [54]. The pairing energy is calculated by the following
expression [54]:

Epair =
1
2 ∑

12,1′2′
V12,1′2′κ

∗
12κ1′2′. (2.30)

Along with the pairing energy, another form of energy added to Eq. (2.9) is the centre of mass
correction in the quasiparticle vacuum [54]:

Ec.m. =− ⟨P2⟩
2MA

, (2.31)

where P is the total linear momentum and A is the nucleon number. The expression for the Ec.m

11
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can also be given phenomenologically as [54]:

Ec.m ≈−3
4
×41A1/3 MeV. (2.32)

In order to calculate the PES as a function of desired deformation parameters, a quadratic
constraint method is applied. In this method, the energy of the nucleus is calculated in the
following way [55]:

E ′ = ERMF +∑
λµ

Cλµ(⟨Q̂λµ⟩−mλµ)
2, (2.33)

with ERMF representing the calculated energy in the RMF model, with pairing and centre of
mass correction energy added, ⟨Q̂λµ⟩ representing the expectation value of the multipole mo-
ment operator and mλµ representing the desired value of the multipole moment operator. If the
parametrization

βλµ =
4π

3ARλ
⟨Q̂λµ⟩ (2.34)

is used, with R = 1.2×A1/3 fm being the nuclear radius, the constrained calculation can be
written in a modified form as [55]:

E ′ = ERMF +
1
2 ∑

λµ
CλµQλµ, (2.35)

where the values of Cλµ change during the iteration in the following way:

C(n+1)
λµ =C(n)

λµ + kλµ(β
(n)
λµ −βλµ). (2.36)

Here, kλµ is the spring constant, whose value needs to be set in order to ensure that the con-
vergence will happen, and the βλµ represents the desired value of the deformation parameter.
Recently, multidimensionally constrained (MDC-RMF) models have been developed [54, 55,
57, 58], that allow for the quadratic constraint calculations to be performed for a wide range
of desired deformation parameters, including the axial quadrupole β20 and hexadecapole β40

parameters, which were used in this work.

2.3 The interacting boson model, sd and sdg

The IBM was developed by Iachello and Arima [31], in order to describe various properties
of the nucleus, e.g. excitation energies and transition strengths. Since its development, it has
been one of the most successful and widely used models in nuclear structure. As was men-
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tioned in Chapter 1, the main assumption of the model is that the nucleus is composed of an
inert doubly-magic core and valence nucleons, which could be represented by both particles
and holes, depending on the closest magic number. For example, in even-even isotopes of
144−156Nd, 146−158Sm, 148−160Gd and 150−162Dy (Z = 60−66, N = 84−96), the core nucleus
corresponds to the doubly magic nucleus 132Sn (Z = 50,N = 82), while for even-even 152−164Er
(Z = 68, N = 84−96) isotopes, the core nucleus corresponds to the (Z = 82, N = 82) nucleus,
and the valence nucleons are treated as being hole-like. The coupling of valence nucleus into
bosons and the interaction between the bosons is what generates the low-lying excitation spec-
tra and its properties. In the IBM-1 version of the model, which is the one used in this work, the
proton and neutron bosons are treated as identical particles. The choice of bosons the nucleons
couple to represents the building blocks of the IBM [31].

2.3.1 sd-IBM

In the simplest version of the model, sd-IBM, valence nucleons are grouped into s (Jπ = 0+)
and d (Jπ = 2+) bosons. This makes for a total of 6 bosonic operators [31]:

s,dµ;µ = {−2,−1,0,1,2} . (2.37)

These bosonic operators satisfy the commutation relations:[
blm,b

†
l′m′

]
= δll′δmm′, l = 0,2, m ∈ [−l, l] . (2.38)

It is useful to look at the conditions, under which the solutions to the eigenenergies of the
Hamiltonian are analytical, the so-called dynamical symmetries. The sd-IBM Hamiltonian is
defined by up to 36 bilinear tensor products of bosonic operators:

G(k)
κ (l, l′) =

[
b†

l × b̃l′
](k)

κ

, (2.39)

with b̃lm = (−1)l+mbl,−m. The tensor product is defined as [59]:

[
T̂ (k1)× T̂ (k2)

](k)
κ

= ∑
κ1,κ2

(k1k2κ1κ2|kκ)T̂ (k1)
κ1 T̂ (k2)

κ2 , (2.40)

with (k1k2κ1κ2|kκ) being the Clebsch-Gordan coefficients. The scalar product corresponds to
the tensor product with k = 0. The 36 operators G(k)

κ (l, l′) represent the 36 generators of the U(6)
group. When the operators of the Hamiltonian are generators of a group G, and its subgroups
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G′,G′′, ..., the Hamiltonian can be expressed through Casimir operators ĈG,ĈG′,ĈG′′, ..., which
are the operators that commute with all the generators of a particular group or subgroup G [60]:

Ĥ = aĈG +bĈG′ + cĈG′′ + ..., (2.41)

with
G ⊃ G′ ⊃ G′′ ⊃ ... (2.42)

representing a chain of group G and its subgroups. These chains are called dynamical sym-
metries, and each chain is characterized by specific quantum numbers. Since the rotational
invariance of the nucleus implies the O(3) symmetry, the three possible symmetry limits of the
sd-IBM are the U(5), SU(3) and O(6) symmetries [31, 45].

In the U(5) chain:
U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) ⊃ O(2), (2.43)

the quantum numbers are the d boson number nd , the d boson seniority ν, the number of triple
bosons n∆ coupled to Jπ = 0+, the total angular momentum L and the z-component of the
angular momentum M, in the laboratory frame [45]. The Casimir operator of the U(5) group

is the d boson number operator n̂d =
√

5
[
d† × d̃

](0)
. The energy eigenvalues are expressed as

[31]:

E(nd,ν,n∆,L,M) = εnd +α
1
2

nd(nd −1)+β(nd −ν)(nd +ν+3)+ γ[L(L+1)−6nd]. (2.44)

These eigenvalues give rise to a level structure which resembles a phonon [31, 45]. The param-
eters ε,α,β and γ are fitted to the experimentally observed low-lying spectra.

In the SU(3) chain:
U(6) ⊃ SU(3) ⊃ O(3) ⊃ O(2), (2.45)

the quantum numbers are L and M, as well as λ, µ and K, which represents the z-component of
the angular momentum in the intrinsic frame [31]. The energy eigenvalues are:

E(λ,µ,L,M) = αL(L+1)−β[λ2 +µ2 +λµ+3(λ+µ)]. (2.46)

Once again, α and β are fitted to the measured energy levels. The SU(3) chain eigenvalues give
rise to rotational bands of axially deformed nuclei [31, 45].

Finally, the O(6) chain:

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) ⊃ O(2), (2.47)
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is defined by the quantum numbers σ, which characterizes the irreducible representation of the
O(6) group, the d boson seniority τ of the O(5) group, ν∆, which is the same as n∆ in the U(5)
chain, L and M [31]. The energy eigenvalues:

E(σ,τ,ν∆,L,M) = A
1
4
(N −σ)(N +σ+4)+B

1
6

τ(τ+1)+CL(L+1), (2.48)

give rise to the spectra which corresponds to γ unstable nuclei [31, 45]. The parameters A,B,C

are fitted in order to reproduce the measured energies.
A simple form of the sd-IBM Hamiltonian, the one used in this work, can be written in the

following way:
Ĥsd = εd n̂d +κQ̂(2) · Q̂(2), (2.49)

with n̂d representing the d boson number operator, which was discussed earlier and

Q̂(2) =
[
d† × s+ s† × d̃

](2)
+χ

[
d† × d̃

](2)
, (2.50)

representing the quadrupole interaction operator. While it is possible to expand the aforemen-
tioned Hamiltonian by adding more interactions, this Hamiltonian has been shown to be useful
in describing the properties of the low-lying excitation spectra in many nuclei. The Hamilto-
nian is also constructed so that the previously discussed symmetry limits are achievable. For
instance, if κ = 0, the U(5) symmetry limit is achieved. The SU(3) symmetry limit occurs
for χ = ±

√
7/2, while the O(6) symmetry limit is achieved for χ = 0. The three independent

parameters, εd,κ,χ are usually fitted to the experimental data on low-lying energies. The condi-
tions κ < 0 and −

√
7/2 ≤ χ ≤+

√
7/2 are set in order to ensure that the calculated spectra are

physically possible. Since the symmetry limit conditions are rarely met, the problem of finding
the eigenvalues of the Hamiltonian has to be solved numerically.

2.3.2 sdg-IBM

One possible extension of the sd-IBM is the inclusion of the g boson, defined by the total
angular momentum Jπ = 4+. Along with the 6 bosonic operator of the sd-IBM, defined in Eq.
(2.37), the 9 bosonic operators:

gµ;µ = {−4,−3,−2,−1,0,1,2,3,4} , (2.51)

make up a total of 15 bosonic operators. This leads to a total of 225 tensor products G(k)
κ (l, l′) of

Eq. (2.39), which represent the generators of the U(15) group [31]. The dynamical symmetry
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chains typically considered in the sdg-IBM are the [U(6) ⊃ U(5)]⊗ U(9), SU(3) and O(15)
limits [61–63].

In the [U(6) ⊃ U(5)]⊗ U(9) symmetry limit, the s,d and g bosons are decoupled. The
[U(6) ⊃ U(5)] limit represents the U(5) limit of the sd-IBM from Eq. (2.43), defined by the
same quantum numbers nd,ν,n∆,L,M. The chain:

U(9) ⊃ O(9) ⊃ O(3), (2.52)

is defined by the quantum numbers ng, being the g boson number, the g boson seniority νg and
g boson angular momentum Lg [61]. The energy eigenvalues can be expressed as:

E(nd,νd,Ld,ng,νg,Lg,L) =εdnd +αdnd(nd +5)+βdνd(νd +3)+ γdLd(Ld +1)

+ εgng +αgng(ng +9)+βgνg(νg +7)

+ γgLg(Lg +1)+ γL(L+1).

(2.53)

One can notice that the number of independent parameters to fit has increased from 4 sd-
parameters in Eq. (2.44) to 9 parameters in total. The spectrum of the nucleus generated by
the aforementioned symmetry limit corresponds to that of a double phonon [62].

The SU(3) chain is the shortest possible chain:

U(15) ⊃ SU(3) ⊃ O(3), (2.54)

with the quantum numbers being the SU(3) representation numbers (λ,µ), angular momentum
L and the SU(3)-seniority quantum number W = 1

2(N − ν), first introduced by Akiyama [64].
The energy eigenvalues are:

E(λ,µ,W,L) = α(λ2 +µ2 +λµ+3(λ+µ))+
β√
375

W (2N −W +3)+ γL(L+1), (2.55)

with α,β and γ being the parameters which need to be determined from the fit [62, 64]. This
symmetry limit, just like in the sd-IBM case, gives rise to rotational bands of axially deformed
nuclei [62].

Finally, the O(15) chain:

U(15) ⊃ O(15) ⊃ O(14) ⊃ O(5) ⊃ O(3), (2.56)

is described with the quantum numbers σsdg, characterizing the irreducible representation of the
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O(15) group, the seniority number νdg of the O(14) group, seniority numbers τ1,τ2 of the O(5)
group, and the angular momentum number L [61, 62]. The energy eigenvalues can be written
in the following form:

E(σsdg,νdg,τ1,τ2,L) =A
1
4
(N −σsdg)(N +σsdg +13)+Bνdg(νdg +12)

+C[τ1(τ1 +1)+ τ2(τ2 +1)]+DL(L+1).
(2.57)

This represents the extension of Eq. (2.48), and the parameters A,B,C,D have to be determined
from the fit to the experimental data. The O(15) symmetry gives rise to spectra of γ unstable
nuclei, just like the O(6) symmetry limit in the sd-IBM [62].

A typical sdg-IBM Hamiltonian can be written in the following way, similar to [40]:

Ĥ = εd n̂d + εgn̂g +κ2Q̂(2) · Q̂(2)+κ4Q̂(4) · Q̂(4), (2.58)

with n̂d being the d boson number operator from Eq. (2.49), n̂g =
√

9
[
d† × d̃

](0)
being the g

boson number operator, while

Q̂(2) =
[
d† × s+ s† × d̃

](2)
+χ

(2)
dd

[
d† × d̃

](2)
+χ

(2)
dg

[
d† × g̃+g† × d̃

](2)
+χ

(2)
gg

[
g† × g̃

](2)
,

(2.59)
and

Q̂(4) =
[
g† × s+ s† × g̃

](4)
+χ

(4)
dd

[
d† × d̃

](4)
+χ

(4)
dg

[
d† × g̃+g† × d̃

](4)
+χ

(4)
gg

[
g† × g̃

](4)
,

(2.60)
represent the quadrupole and hexadecapole interaction operators, respectively. As can be seen
from Eqs. (2.58, 2.59, 2.60), this Hamiltonian contains 10 independent parameters that need
to be determined. This significantly complicates the IBM calculations. In order to avoid this
problem, one can make use of the [U(6 ⊃ U(5)]⊗U(9), SU(3) and O(15) symmetry limits to
construct the Hamiltonian in the following way, similar to the Hamiltonian from Ref. [65]:

Ĥsdg = εd n̂d + εgn̂g +κQ̂(2) · Q̂(2)+κ(1−χ
2)Q̂(4) · Q̂(4), (2.61)

with

Q̂(2)=
[
d† × s+ s† × d̃

](2)
+χ

(
11

√
10

28

[
d† × d̃

](2)
− 9

7
σ

[
d† × g̃+g† × d̃

](2)
+

3
√

55
14

[
g† × g̃

](2))
(2.62)
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and
Q̂(4) =

[
g† × s+ s† × g̃

](4)
(2.63)

representing the quadrupole and hexadecapole interaction operators, respectively. If the con-
dition σ = 1 is met, the Hamiltonian and its operators become equivalent to the Hamiltonian
from Ref. [65]. The [U(6 ⊃ U(5)]⊗U(9) symmetry limit is realised for κ = 0, while the SU(3)
and O(15) limits are realised for (χ,σ) = (±1,±1) and χ = 0, respectively [65]. The fac-
tors that appear in the quadrupole operator in Eq. (2.62) are set in order to ensure that for
(χ,σ) = (±1,±1) condition, the Q̂(2) becomes an SU(3) generator, and the factor (1−χ2) in
front of the hexadecapole interactions ensures that the SU(3) and O(15) symmetry limits will be
achieved for χ =±1 and χ = 0, respectively [61, 62, 65]. Other conditions that need to be im-
posed on the system to ensure that the solution will be physical are εd ≤ εg, κ < 0, −1 ≤ χ ≤+1
[65] and −1 ≤ χσ ≤ +1. All of this reduces the number of Hamiltonian parameters from 10
to 5, which significantly simplifies the calculations in the sdg-IBM framework. Due to the in-
crease in the number of bosonic parameters in the sdg-IBM, compared to the simpler sd-IBM,
the Hamiltonian matrices that need to be diagonalized, become larger, making the calculations
significantly more difficult and time-consuming. In order to avoid this problem, the maximum
number of g bosons in the configuration can be reduced to NGmax=3. This can be done, since the
hexadecapole collectivity in nuclei is often overshadowed by the dominant quadrupole effects
in the low-lying excitation spectra, so the configurations containing 4 or more g bosons are not
expected to have any significant contributions in the generated spectra.

2.3.3 Electric transitions in the IBM

Electric transition strengths B(Eλ;J → J′) are defined as [47]:

B(Eλ;J → J′) =
1

2J+1

∣∣∣⟨J′| |T̂ (Eλ)| |J⟩
∣∣∣2 , (2.64)

where T̂ (Eλ) represents the Eλ transition operator of rank λ and |J⟩ and ⟨J′| represent the
wave functions of the initial and final states in the transition, respectively. The electric tran-
sitions, which are relevant for this work, are the quadrupole (λ = 2), hexadecapole (λ = 4) and
monopole (λ = 0) transitions.

The quadrupole electric transition operator is defined both in the sd- and sdg-IBM as:

T̂ (E2) = esd,sdg
2 Q̂(2), (2.65)
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where esd,sdg
2 represent the quadrupole effective charges of the sd- and sdg-IBM, respectively,

and Q̂(2) corresponds to the quadrupole operator of Eq. (2.50) in the sd-IBM, as well as to the
quadrupole operator of Eq. (2.62) in the sdg-IBM. The quadrupole effective charges are fitted in
order to reproduce the strength of the first B(E2;2+ → 0+) transition in the ground state band.

The hexadecapole transition operator is defined in the sd-IBM in the following way:

T̂ (E4) = esd
4

[
d† × d̃

](4)
. (2.66)

In the sdg-IBM, the hexadecapole transition operator can be defined as:

T̂ (E4) = esdg
4

([
g† × s+ s† × g̃

](4)
+
[
d† × d̃

](4))
. (2.67)

Given the definition of the Q̂(4) operator in the Eq. (2.60), it is possible to expand the sdg-IBM
hexadecapole transition operator with more terms, however, the two terms in the Eq. (2.67) are
expected to be dominant in the calculations of E4 transitions. Furthermore, by constructing the
operator this way, it is possible to directly examine the impact of g bosons on E4 transitions
by comparing the obtained results to the ones obtained with a simpler sd-IBM hexadecapole
transition operator. The e4 effective charges are fitted in order to reproduce the strength of the
first B(E4;4+ → 0+) transition in the ground state band.

In the case of monopole transitions, the sd-IBM operator is defined as [66]:

T̂ (E0) = (enN + epZ)η
n̂d

NB
, (2.68)

while the equivalent sdg-IBM operator is defined as:

T̂ (E0) = (enN + epZ)
(

η
n̂d

NB
+ γ

n̂g

NB

)
. (2.69)

Here, en and ep represent the effective neutron and proton charges, respectively. It should be
noted that if bare nucleon charges are considered, then en = 0 and ep = e, however, by assigning
an effective charge to neutrons, the polarization of protons in the nucleus due to neutrons is taken
into consideration [66]. The parameter NB corresponds to the number of valence bosons in a
particular nucleus. Instead of calculating B(E0) monopole transition strengths, the so-called
squared monopole strengths ρ2(E0) are usually considered. They are defined as [66]:

ρ(E0) =
⟨J′| T̂ (E0) |J⟩

eR2 , (2.70)
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with R = 1.2A1/3 fm being the nuclear radius. The parameters en,ep,η and γ can, in principle,
be fitted to the measured monopole strengths for each nucleus, however, following Ref. [66],
they were fixed for all nuclei. More on that in Chapter 3.

2.4 Nucleon-to-boson mapping

Given the fact that the IBM is a collective model, and the collective modes of motion are de-
scribed with deformations of the nuclear surface, it is natural to connect the IBM to the geomet-
ric models of the nucleus, where the energy is expressed as a function of nuclear deformation
parameters, defined in Eq. (2.1) [67, 68]. In fact, it has been shown that any quantum system
described by a Hamiltonian that can be expressed via generators of a compact Lie algebra, can
be interpreted in the framework of a geometric model [69]. In the case of the IBM, this can be
done by constructing the boson coherent state wave function, which is the intrinsic wave func-
tion of the boson system [70], and calculating the expectation value of the IBM Hamiltonian in
that state. In order to describe this process, it is useful to start from the simple sd-IBM and then
extend it to include the g boson.

2.4.1 Geometric interpretation of the sd-IBM

In the sd-IBM, the coherent state can be written as [67]:

|Φ(NB,
{

aµ
}
)⟩= 1√

NB!
(
1+∑µ a2

µ
)NB

(
s† +∑

µ
aµd†

µ

)NB

|0⟩ , (2.71)

where NB is the number of valence bosons, and |0⟩ corresponds to the boson vacuum. The set
of parameters

{
aµ
}

is defined with axial and triaxial quadrupole deformations as [45]:

a0 = βcosγ, a±1 = 0, a±2 =
1√
2

βsinγ. (2.72)

Here the parameters can take values in the range 0 ≤ β < +∞ and 0◦ ≤ γ ≤ 60◦, with γ = 0◦

corresponding to axial prolate and γ = 60◦ corresponding to axial oblate shapes. By inserting
the parameter values into Eq. (2.71), a following relation for the boson coherent state is obtained
[45]:

|Φ(NB,β,γ)⟩=
1√

NB!(1+β2)
NB

[
s† +βcosγd†

0 +
1√
2

βsinγ

(
d†
+2 +d†

−2

)]NB

|0⟩ . (2.73)
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For any operator Ô, the expectation value of that operator in the boson coherent state is defined
as [45]:

⟨Ô⟩= ⟨Φ(NB,β,γ)| Ô |Φ(NB,β,γ)⟩ . (2.74)

In order to calculate the bosonic energy surface, the bosonic analogue of the PES of mean-field
models, the expectation value of the Hamiltonian Ĥ needs to be calculated in the boson coherent
state. If a Hamiltonian from Eq. (2.49) is taken, by applying methods from Refs. [71, 72], the
IBM surface is obtained:

⟨Ĥ⟩= εdNBβ2
B

1+β2
B
+NB (NB −1)κ

β2
B

1+β2
B

[
4−4

√
2
7

χβB cos3γB +
2
7

χ
2
β

2
B

]
, (2.75)

with (βB,γB) representing the bosonic deformation parameters, which are different from the
fermionic deformation parameters in the mean-field models. If only axial quadrupole deforma-
tions are considered, then γB = 0 and the parameter βB ≡ β2B can now take on the values in the
range −∞ < β2B < +∞, with β2B < 0 corresponding to oblate and β2B > 0 corresponding to
prolate shapes. The expectation value of the Hamiltonian can then be written as:

⟨Ĥ⟩=
εdNBβ2

2B

1+β2
2B

+NB (NB −1)κ
β2

2B

1+β2
2B

[
4−4

√
2
7

χβ2B +
2
7

χ
2
β

2
2B

]
. (2.76)

This way, the energy of the sd-IBM is expressed as a function of the bosonic quadrupole defor-
mation, so the IBM is directly connected to the geometric model.

2.4.2 Geometric interpretation of the sdg-IBM

In the case of the sdg-IBM, the boson coherent state can be expanded with 9 more aµ parameters
[65]:

|Φ(NB,
{

aµ
}
)⟩= 1√

NB!
(
1+∑µ a2

µ
)NB

[
s† +∑

µ
aµd†

µ +∑
ν

aνg†
ν

]NB

|0⟩ . (2.77)

The boson coherent state is now defined with two quadrupole deformation parameters β2 and γ2

and three hexadecapole parameters β4,γ4 and δ4, with γ4 appearing in the aν=±2 parameter and
δ4 appearing in the aν=±4 parameter [73]. Here, the deformation parameters are also bosonic
parameters (β2 ≡ β2B,β4 ≡ β4B, ..., but are written without the index B for simplicity. In order
to reduce the number of deformation parameters, the triaxial hexadecapole parameters γ4,δ4

can be parametrized in terms of the quadrupole triaxial parameter γ2 [74]. The bosonic state
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can then be written in the following way [65]:

|Φ(NB,β2,β4)⟩=
1√

NB!
(
1+β2

2 +β2
4
)NB

[
s† +β2

(
cosγ2d†

0 +

√
1
2

sinγ2

[
d†
−2 +d†

+2

])

+
1
6

β4

([
5cos2

γ2 +1
]

g†
0 +

√
15
2

sin2γ2

[
g†
−2 +g†

+2

]
+

√
35
2

sin2
γ2

[
g†
−4 +g†

+4

])]NB

|0⟩ .

(2.78)
Here, quadrupole parameters β2 and γ2 can take on the same value as β and γ from Eq. (2.72),
while β4 can take on values in the range −∞ < β4 < +∞. If only axial deformations are taken
into consideration, then γ2 = 0, and β2 can take on any values in the range ⟨−∞,+∞⟩, just like
β4. The coherent state then becomes:

|Φ(NB,β2,β4)⟩=
1√

NB!
(
1+β2

2 +β2
4
)NB

(
s† +β2d†

0 +β4g†
0

)NB
|0⟩ . (2.79)

The expectation value of the Hamiltonian from Eq. (2.61) is given by the following relation:

⟨Ĥsdg⟩=
NBεdβ2

2

1+β2
2 +β2

4
+

NBεgβ2
4

1+β2
2 +β2

4
+

NB(NB −1)κ(
1+β2

2 +β2
4
)2

[
4β

2
2 −χ

(
72
7

√
2
7

σβ
2
2β4

+
2
7

√
5
7
[
11β

3
2 +10β2β

2
4
])

+χ
2

(
605

1372
β

4
2 +

[
648
343

σ
2 +

550
588

]
β

2
2β

2
4 +

3125
6174

β
4
4

+
18

√
10

343
σ
[
11β

3
2β4 +10β2β

3
4
]
− 25

6174
[
33β

2
2β

2
4 +35β

4
4
])]

+
4NB(NB −1)κ(1−χ2)β2

4(
1+β2

2 +β2
4
) .

(2.80)
Using this equation, the IBM PES of the sdg-IBM model can be created. If σ = 1, the expecta-
tion value becomes equivalent to that of the Ref. [65].
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2.4.3 The mapping method

In the mapping method [41, 42, 45, 47], the parameters of the IBM Hamiltonian are fitted so
that the IBM PES approximates the SCMF PES in the vicinity of the minimum:

ESCMF(β2F ,β4F)≈ EIBM(β2B,β4B). (2.81)

Since the deformation parameters of the SCMF model are fermionic, and those of the IBM
are bosonic, the question is how to relate them. In the case of the axial quadrupole - octupole
mapping [47], it has been shown that a successful approximation can be created by assuming
that the relationship between the parameters is linear:

βλB =CλβλF . (2.82)

In this work, the same assumption was made for the axial quadrupole-hexadecapole mapping,
β2B = C2β2F , β4B = C4β4F . This leads, in the case of the sdg-IBM, to 7 independent param-
eters εd,εg,κ,χ,σ,C2 and C4 that are determined by fitting the IBM PES of Eq. (2.80) to the
SCMF PES. The IBM PES should reproduce some of the basic properties of the SCMF PES,
such as the position of the minimum and the saddle point, as well as the overall shape of the
SCMF PES. Due to the restricted boson space of the IBM, the IBM PES will almost always
be somewhat larger and softer around the minimum than the SCMF PES, which is to be ex-
pected, since the SCMF calculations of the PES are significantly more complex. An illustration
of the mapping method with axial quadrupole and axial hexadecapole deformation coordinates
is shown in Figure 2.2. This way, a complete microscopic model, consisting of the RMF and
sdg-IBM calculations, is constructed, and can be utilised to study and predict the effects of axial
quadrupole and hexadecapole collectivity in nuclei.

In the case of the mapped sd-IBM, which was used in order to compare the results with
the sdg-IBM results and examine the effects of hexadecapole correlations via the g boson,
the mapping is simplified, since the only deformation parameter is the quadrupole one, and
the relation between the bosonic and the fermionic parameter is β2B = C2β2F . This leads to
a total of 4 independent parameters εd,κ,χ,C2 that need to be determined by fitting the one-
dimensional sd-IBM PES of Eq. (2.76) to the SCMF PES along the β4 = 0 line in the vicinity
of the minimum. Some of the properties that need to be reproduced are the positions of the
minimum and the saddle point, as well as the energy of the spherical β2 = 0 maximum. With
this, a microscopic model, designed for describing axial quadrupole collectivity in nuclei, is
constructed, and is used for a comparison with the more complex sdg-IBM, in order to study
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Figure 2.2: An illustration of the mapping method in the axial quadrupole-hexadecapole plane. The
SCMF PES is shown on the left, and the IBM approximation of the SCMF PES is shown on the right.
The energy is shown up to 3 MeV.

the effects of axial hexadecapole collectivity in nuclei.
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Chapter 3

Results

In this chapter, results of the mapped sdg-IBM are presented, as well as the results of the mapped
sd-IBM for comparison. In the first part, results of the RMF calculations are presented, as well
as the IBM reproductions of the RMF PESs. Parameter values of the sdg- and sd-IBM, obtained
from the fit, are also presented. In the second part, the energies of the yrast band, as well as those
of the 0+ and γ-vibrational band, are calculated by both sdg- and sd-IBM and compared, and the
necessity of including the g boson in the IBM is discussed. Finally, in the last part, the calculated
quadrupole, hexadecapole and monopole transition strengths are shown and discussed. All the
calculated energies and transition strengths are compared with the available experimental data.
For SCMF calculations, the code MDCRHB [54] was used. For IBM calculations of energies
and transition strengths, both sdg- and sd-IBM, the code ARBMODEL [75] was used, which
lets the user construct its own Hamiltonian. The experimental data are taken from the NNDC
website [50], unless indicated otherwise.

3.1 SCMF calculations and the mapping method

3.1.1 SCMF calcualtions

The axially symmetric quadrupole β2 and hexadecapole β4 PESs of 144−154Nd, 146−156Sm,
148−158Gd, 150−160Dy and 152−162Er, obtained from the SCMF calculations with the DD-PC1
functional, are shown in Figures 3.1–3.5. Figures are taken from Ref. [76]. The energy dif-
ference between the neighbouring contours is 0.1 MeV, and the PESs are shown in the energy
range up to 2.7 MeV. The positions of the energy minima are indicated by the open downward
triangle. The N = 96 nuclei are left out due to their PESs being similar to the N = 94 nu-
clei. The results are consistent with previous constrained mean-field calculations in the β2 −β4
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Figure 3.1: Axially-symmetric quadrupole (β20) and hexadecapole (β40) constrained energy surfaces for
the 144−154Nd isotopes calculated within the relativistic Hartree-Bogoliubov method using the DD-PC1
energy density functional and the pairing force of finite range. Energy difference between neighbouring
contours is 0.1 MeV, and the absolute minimum is indicated by an open triangle. Figure is taken from
Ref. [76]

plane, which have been performed using the axially-deformed Woods-Saxon potential [74, 77]
and the Gogny force [78].

The energy evolution, with respect to the neutron number N, in the β2 direction is similar
for all nuclei. In near-spherical N = 84 nuclei, the PES shows a considerable softness in the
β2 direction, which is more pronounced in lighter 144Nd and 146Sm isotopes, compared to the
heavier 148Gd, 150Dy and 152Er isotopes. The minimum in N = 84 isotones is located at β2min =

0.1, except for 148Gd, which has an oblate quadrupole minimum at β2min = −0.05 MeV. This
is not surprising given that the energy differences between energies in the oblate and prolate
region near β2 = 0 are very small, so the SCMF calculations could yield an oblate minimum
instead of the prolate one. The softness in energy disappears in N = 86 nuclei, and the saddle
point in the oblate region becomes higher in energy as the N increases, and disappears from the
PES in N > 90 nuclei. The quadrupole deformation in the minimum increases with N, with the
maximum quadrupole deformation in the minimum being β2min = 0.35. In Nd and Sm isotopes,
this β2min value appears for N ≥ 92, while in Gd, Dy and Er, it is achieved for neutron numbers
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Figure 3.2: Same as the caption for Fig. 3.1, but for 146−156Sm

Figure 3.3: Same as the caption for Fig. 3.1, but for 148−158Gd. SCMF calculations for Gd can also be
found in Ref. [79].

27



3.1. SCMF calculations and the mapping method Chapter 3. Results

Figure 3.4: Same as the caption for Fig. 3.1, but for 150−160Dy

Figure 3.5: Same as the caption for Fig. 3.1, but for 152−162Er

28



3.1. SCMF calculations and the mapping method Chapter 3. Results

N = 94,96.
In the β4 direction, the evolution is also similar for all nuclei. In N = 84 nuclei, the energy

surface is also characterized by a considerable softness, especially pronounced in the 144Nd
and 146Sm. The softness disappears in N = 86 nuclei, and the energy in the region of negative
hexadecapole deformations becomes larger than 2.7 MeV in N > 86 nuclei, so the energy sur-
face is not visible in that region. In N = 84 isotones, the hexadecapole minimum is located at
β4min = 0.05, except for 148Gd, which is predicted to have no presence of hexadecapole defor-
mation in the ground state. Due to the softness of the PES, the hexadecapole correlations are
still expected to play a role in 148Gd. As N increases, the hexadecapole minima also increase in
value, just like quadrupole deformation minima. The difference is that, the hexadecapole min-
ima remain the same (β4min = 0.1) when moving from the spherical vibrational N = 86 region
into the transitional N = 88 region. The value of β4min continues to increase in the deformed
region. The larger β4min values are calculated in deformed Nd and Sm isotopes, with the largest
value of β4min = 0.25 obtained for 152,154Nd and 154Sm, while the β4min = 0.2 value is calcu-
lated in 150Nd and 152,156Sm. On the other hand, the largest hexadecapole minimum value in
Gd, Dy and Er isotopes is β4min = 0.15, which indicates a smaller presence of hexadecapole
collectivity in those isotopes.

3.1.2 Mapping the SCMF calculations onto the sdg-IBM space

The sdg-IBM approximations of SCMF PESs from Subsection 3.1.1 are shown in Figures 3.6-
3.10. The IBM PESs were calculated using the expectation value of the Hamiltonian from Eq.
(2.80). Figures can also be found in Ref. [76]. What can be seen from the figures is that the sdg-
IBM successfully reproduces some of the basic properties of SCMF PESs such as the position
of the absolute minimum, the saddle point, and the reproduction of the shape of the PES is satis-
fying. The PESs are significantly enlarged compared to the SCMF ones. This is not surprising,
since, as was discussed in Chapter 2, the SCMF calculations are significantly more complex
and can account for more interaction effects between the nucleons, and the boson model space
is very restricted. This problem appears both in the case of the axial - triaxial quadrupole map-
ping, performed on Sm isotopes [42], and especially in the case of axial quadrupole - octupole
mapping, performed on a wide range of nuclei, from medium-heavy to actinides [47]. The
characteristic "tail-like" shape in N = 88 transitional nuclei, predicted by the SCMF calcula-
tions, is not predicted in the IBM, which can again be attributed to the simplicity of the IBM
PES calculations compared to the SCMF calculations. One can also notice that the shape of
the N = 84,86 nuclei is better reproduced in Nd and Sm isotopes, compared to the heavier iso-
topes. This can be attributed to the fact that the fit in those nuclei yielded larger values of the σ
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Figure 3.6: The sdg-IBM axially-symmetric quadrupole (β20) and hexadecapole (β40) PESs of 144−154Nd
isotopes. The energies are shown up to 2.7 MeV, and the energy difference between the neighbouring
contours is 0.1 MeV. Figure is taken from Ref. [76].

parameter of the quadrupole operator from Eq. (2.62). Larger values of σ cause the shapes to
"bend" and become less symmetrical in both β2 and β4 directions. It should be noted that the
inclusion of more two-body interactions in the sdg-IBM could lead to a better reproduction of
the PES, however, this would also lead to more independent parameters and the symmetry limit
conditions would become significantly more complicated, so such an extension to the model
is left for a different study. The inclusion of three-body terms could also potentially improve
the IBM PES calculations, as was shown in the case of the quadrupole axial-triaxial mapping
[44], however, such terms are rarely included in the Hamiltonian, and the inclusion of g bosons
would significantly complicate those terms, so this is also left for a separate study.

Figure 3.11 shows the values of the sdg-IBM Hamiltonian parameters, and the values of
parameters C2 and C4, as a function of the valence boson number NB. The parameter not shown
in the figure is the σ parameter. The obtained σ values are σ = 3.5 for 144,146Nd and 146,148Sm,
and σ = 2.8 for the remaining Nd and Sm isotopes. In Gd, Dy and Er isotopes, the obtained
value from the fit is σ = 1.0. The reason for σ being equal to 1.0 in heavier isotopes is that these
isotopes are characterized by larger valence boson numbers NB, and the obtained hexadecapole
minima could not be reproduced with σ > 1.0 in those isotopes. It should also be mentioned
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Figure 3.7: Same as the caption for Fig. 3.6, but for 146−156Sm

Figure 3.8: Same as the caption for Fig. 3.6, but for 148−158Gd. The sdg-IBM PES calculations for Gd
can also be found in Ref. [79].
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Figure 3.9: Same as the caption for Fig. 3.6, but for 150−160Dy

Figure 3.10: Same as the caption for Fig. 3.6, but for 152−162Er
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Figure 3.11: Parameters of the sdg-IBM Hamiltonian of Eq. (2.61), and the C2,C4 parameters relating
fermionic and bosonic deformation parameters. The figure can be found in Ref. [76].

that the positive σ values correspond to positive, while negative σ values correspond to negative
hexadecapole deformations in the minimum. The d boson energy εd achieves its maximum
in spherical vibrational nuclei, and decreases as the number of valence bosons increases. The
smaller values of εd correspond to larger quadrupole deformations in the ground state. The g bo-
son energy, εg, fluctuates between 1.0 and 1.3 MeV. The εg parameter affects the hexadecapole
deformations in the minimum, with larger εg values corresponding to smaller β4min values. The
κ parameter tends to increase in absolute value when moving into the deformed region, and usu-
ally decrease at the end of the deformed region, where the deformation parameter values in the
minima stop increasing, or even start decreasing in certain isotopes, e.g. 162Dy. The χ parame-
ter is negative in value, which corresponds to prolate quadrupole deformations in the minimum,
except for 148Gd, where the χ = 0.04 positive value is required in order to reproduce the small
oblate β2min =−0.05 quadrupole deformation in the minimum. The χ parameter decreases with
the valence boson number NB, with the lowest value χ =−0.35 achieved in the well-deformed
region. Finally, parameters C2 and C4 decrease with the valence boson number, since smaller
values of C2 and C4 correspond to larger quadrupole and hexadecapole deformation values in
the minimum, respectively. In the C4 graph, one can see that there is a slight increase in the C4

value when moving from the N = 86 to the transitional N = 88 nuclei. This happens because
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the hexadecapole deformation does not increase with the neutron number, while the quadrupole
deformation does, so the larger C4 value in the N = 88 nucleus gives a better PES reproduction.
It should also be noted that the smaller C4 values tend to enlarge the energy surface, while also
increasing the β4min value.

3.1.3 Mapping the SCMF calculations onto the sd-IBM space

The sd-IBM approximations of SCMF PESs along the β4 = 0 line are shown in Figures 3.12–3.16.
The results of the SCMF calculations with the DD-PC1 functional are represented by a solid
black line, while the sd-IBM approximations of the SCMF calculations along the β4 = 0 line are
represented by a solid red line. The results for N = 96 nuclei are not shown due to their similar-
ity with the results for N = 94 nuclei. The β4 = 0 PES of the sd-IBM was calculated using the
expectation value of the sd-IBM Hamiltonian of Eq. (2.76). What can be seen from the figures
is that the energy line in near-spherical nuclei is symmetrical near β2 = 0, however, the symme-
try disappears for |β2| > 0.2, as the calculated energies in the oblate deformed region become
significantly larger from the energies in the prolate deformed region. The symmetry around
β2 = 0 disappears as N increases, with the maximum at β2 = 0 becoming more pronounced and
larger in energy, and with the saddle point in the oblate region becoming significantly larger
in energy from the absolute minimum. The calculated quadrupole minima are smaller in value
from the ones obtained in the β2 −β4 constrained calculations, which is expected, since hex-
adecapole deformation parameters are excluded from the calculations. The sd-IBM calculations
approximate the SCMF energies well. The minima and the energies around the minima are well
reproduced, as well as the energy maximum at β2 = 0 and the saddle point in the oblate region.
The energies calculated for large β2 values, particularly in the oblate region, are significantly
underestimated compared to the energies of the SCMF calculations. This is analogous to the
enlargement of the PES in the sdg-IBM surfaces, and is expected, since the sd-IBM is a signif-
icantly simpler model for calculating the energy as a function of the β2 deformation parameter,
and since the sd boson space is very restricted. A very small β2 = 0 maximum is predicted by
the SCMF calculations in 154Gd, as can be seen from Figure 3.14. This cannot be reproduced
with the sd-IBM calculations, which overestimate the energy of this maximum by almost 2
MeV. This does not occur in other N = 90 nuclei, and can probably be attributed to the choice
of the EDF for this particular nucleus.

Figure 3.17 shows the values of the sd-IBM Hamiltonian parameters, and the values of the
parameter C2, as functions of the boson number NB. It is useful to compare the values of the
εd,κ,χ and C2 parameters to their sdg-IBM analogues. The εd parameter, representing the d

boson energy, shows a similar behaviour in both models. In near spherical nuclei, the values
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Figure 3.12: The energies of the SCMF calculations (solid black line) and sd-IBM approximations
of those energies (solid red line), as functions of the axial quadrupole deformation parameter β2 for
144−154Nd isotopes. The energies are shown up to 14 MeV.

of the d boson energies are around εd ≈ 1.0 MeV, and the values decrease as the NB increases.
The predicted εd values near neutron shell closure are somewhat larger than the ones predicted
by the mapped sdg-IBM model, which are around εd ≈ 0.8 MeV. This can be attributed to
the fact that most of the minima of near-spherical nuclei in the SCMF β2 − β4 calculations
are predicted to be around β2 = 0.1,β4 = 0.05 for N = 84 nuclei, and β2 = 0.15,β4 = 0.1 for
N = 86 nuclei, while in the SCMF β2,β4 = 0 calculations, the predicted minima are in the oblate
region for N = 84 nuclei, and while the minimum is predicted to be around β2 = 0.15 in N = 86
nuclei, the energy difference from the β2 =−0.15 saddle point is very small. To reproduce this,
large εd values are required. In the well-deformed region, the values of εd are similar in both
models. The κ parameter behaves similarly in both models. It increases in absolute value as NB

increases, and starts increasing at the end of the well-deformed region. The exception to this are
the Gd isotopes, where κ starts increasing in absolute value after 154Gd. This can be attributed
to the very low β2 = 0 energy maximum predicted by the SCMF calculation in Figure 3.14.
The χ parameter follows a similar trend in both models, decreasing as NB increases. The main
difference is that, in the sd-IBM, the χ parameter starts from positive values in near-spherical
nuclei, which can be explained by the oblate deformations being predicted in the minima by
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Figure 3.13: Same as the caption for Fig. 3.12, but for 146−156Sm

Figure 3.14: Same as the caption for Fig. 3.12, but for 148−158Gd.
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Figure 3.15: Same as the caption for Fig. 3.12, but for 150−160Dy

Figure 3.16: Same as the caption for Fig. 3.12, but for 152−162Er
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Figure 3.17: Parameters of the sd-IBM Hamiltonian of Eq. (2.49), and the C2 parameter relating the
fermionic and bosonic β2 deformation parameter. The figure can be found in Ref. [76].

the β4 = 0 SCMF calculations, and decreases more sharply when moving into the deformed
region. The values of χ in the deformed region are significantly lower from those obtained by
the mapped sdg-IBM. The behaviour of the C2 parameter is similar to that of the εd . It also has
a tendency to decrease as NB increases, similarly to the C2 parameter in the sdg-IBM, however,
larger values are obtained by the sd-IBM for near-spherical nuclei.

3.2 Results of the spectroscopic calculations

In this section, the excitation energies and transition strengths, calculated by both the mapped
sdg-IBM and the mapped sd-IBM, are shown. The results are compared with the data from the
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NNDC website [50].

3.2.1 Excitation energies

Ground state band

The calculated excitation energies of the yrast band states with spin Jπ = 2+−14+ are plotted
as functions of the neutron number N, and are shown in Figure 3.18. The sdg-IBM provides a
significant improvement in the description of the Jπ ≥ 6+ energy states in N = 84,86 nuclei over
the simpler sd-IBM, which significantly overestimates the energies compared to the measured
values. As N increases, the differences between the energies calculated by the sdg- and sd-IBM
become less pronounced, and in the well-deformed region, there are no significant differences
between the results obtained with the two models. The exception to this are isotopes of Nd and
Sm, where the sdg-IBM provides an improvement of the Jπ = 12+,14+ states even in some
nuclei with N ≥ 88, albeit a less significant improvement than the one in near-spherical nuclei.
The lowering of the energy of the yrast states is associated with the presence of the g boson in
those states, which is shown in Figure 3.19. As can be seen from the Figure, the g boson is
present in Jπ ≥ 6+ states in near-spherical N = 84,86 nuclei. As N increases, the expectation
value of the n̂g decreases, and in the deformed regions of Gd, Dy and Er, none of the yrast band
states seem to have the presence of the g boson. This is different from the Nd and Sm isotopes,
in which the g boson is present in the Jπ = 12+,14+ states even in N = 94 deformed nuclei.
The presence of the g bosons lowers the energies of the yrast band states, and makes them
closer in value to the experimentally observed energies. This shows the necessity of including
the hexadecapole correlations in the description of the low-lying excitation energy spectra of
rare-earth nuclei.

Another aspect of the yrast band that can be examined is the R4/2 =
Ex(4+)
Ex(2+)

ratio between the
energies of the 4+ and 2+ states in near-spherical nuclei. The ratios are shown in Table 3.1. In
N = 84 nuclei, the sdg-IBM predicts the R4/2 to be less than 2, which is in agreement with the
experiment. The sd-IBM, on the other hand, cannot predict such values, which means that such
effects can be considered to be the products of hexadecapole collectivity. The values predicted
by the sd-IBM are all above 2.10. A significantly low R4/2 = 1.54 ratio is predicted by the sdg-
IBM in 152Er, compared to the experimental value R4/2 = 1.83. This is because the sdg-IBM
predicts a 4+1 state in 152Er to be somewhat lower in energy from the measured value. This could
potentially be improved by considering the values of σ parameter to be larger than 1.0, however,
the IBM PES would not approximate the SCMF PES as well as it does for σ = 1.0 parameter
value. Also, even though the predicted ratio is somewhat lower from the experimental value,
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Figure 3.18: Calculated excitation energies of the yrast band states up to spin Jπ = 14+ as functions of
the neutron number N within the mapped sdg-IBM (left column) and sd-IBM (right column), represented
by solid symbols connected by solid lines. Experimental data are taken from Ref. [50], and are depicted
as open symbols connected by dotted lines. The figure is taken from Ref. [76]. 40



3.2. Results of the spectroscopic calculations Chapter 3. Results

Figure 3.19: The expectation value of the g boson number operator n̂g in yrast band states up to Jπ = 14+,
plotted as a function of the neutron number N.

it nevertheless represents an improvement over the simpler sd-IBM, which predicts the R4/2

value in 152Er to be 2.14. In N = 86 all the measured ratios are larger than 2, however, most
of them are below 2.10 in value. The sdg-IBM does significantly improve the calculated ratio
146Nd, and only slightly improves the calculated ratios in 150Gd, 152Dy and 154Er. In the 148Sm
isotope, the sdg-IBM predicts the ratio to be lower than 2 in value, R4/2 = 1.98, which is not in
agreement with the experiment, since the experimental value R4/2 = 2.14 is significantly larger
than all other ratios in N = 86 nuclei. The lowering of the calculated ratios is associated with
the presence of the g boson in 4+1 states, which lowers the energy of those states to be closer to
2+1 states. From Figure 3.19, it can be seen that in the N = 84 nuclei, the 4+1 states are predicted
to contain one g boson in their configurations. In N = 86 nuclei, the expectation value of n̂g in
those states is below 1.0, so the R4/2 ratios are above 2 in value.

The lowering of energies in the yrast band as a consequence of the g boson presence in
near-spherical nuclei deserves a comment. While the IBM is a collective model, and while
single-particle modes are expected to play a role in describing the low-lying spectra of near-
spherical nuclei, the fact that the sdg-IBM significantly improves the description of the yrast
band in those nuclei, indicates that the inclusion of the g boson can also account for single-
particle modes in the yrast band. It should also be noted that the IBM has been successfully
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Table 3.1: Energy ratios R4/2 = Ex(4+1 )/Ex(2+1 ) for N=84 and 86 isotones calculated with the mapped
sd- and sdg-IBM, and compared to the experimental values [50]. The table is taken from Ref. [76].

Nucleus sd-IBM sdg-IBM Experiment
144Nd 2.11 1.78 1.89
146Nd 2.25 2.05 2.02
146Sm 2.12 1.83 1.85
148Sm 2.20 1.98 2.14
148Gd 2.13 1.86 1.81
150Gd 2.18 2.15 2.02
150Dy 2.15 1.71 1.81
152Dy 2.21 2.16 2.05
152Er 2.14 1.54 1.83
154Er 2.24 2.17 2.07

applied to many near-spherical nuclei and has been shown to be able to accurately describe
various properties of the low-lying excitation energy spectra. Also, other theoretical studies,
based on different microscopic models, have indicated that the 2+1 and 4+1 states in some near-
spherical nuclei, e.g. 144Nd and 146Sm, are collective in nature [80].

0+ and γ-vibrational band

Figure 3.20 shows the calculated energies of the 0+2 ,2
+
3 and 4+3 states, associated with the Kπ =

0+ band in deformed nuclei. It should be noted that the 0+2 level in 160Dy is taken to be the 0+

level at 1.28 MeV energy. However, there is also a possibility of the existence of two lower 0+

levels at 0.681 MeV and 0.703 MeV energies in this isotope [50]. Since the parity and spin of
those levels are not fully established, the 0+ state at 1.28 MeV is taken to be the bandhead of the
Kπ = 0+ band. The calculated 0+2 states are not improved by the sdg-IBM compared to the sd-
IBM. This is not unusual, since the expectation value of the g boson number operator in those
states is ⟨n̂g⟩ ≈ 0. On the other hand, a g boson is predicted to be present in the 2+3 and 4+3 states
in N ≤ 88 nuclei. As a result, the energies of these states are significantly lowered compared
to the sd-IBM results, and are closer to the experimental values. However, the predicted 2+3
and 4+3 energies are almost identical in energy, which is not in agreement with the experiment.
In the N ≥ 90 deformed region, there are no significant differences between the energies of
the aforementioned states calculated by the sdg- and sd-IBM. Overall, it can be said that the
sdg-IBM provides an improvement of the 2+3 and 4+3 energies in N ≤ 88 nuclei, however, the
band structure is not reproduced by the sdg-IBM. There are, on the other hand, no significant
differences between the energies of the 0+2 states calculated by the sdg- and sd-IBM.
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Figure 3.20: Same caption as Figure 3.18, but for the 0+2 ,2
+
3 and 4+3 states.
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Figure 3.21: Same caption as Figure 3.18, but for the 2+2 ,3
+
1 and 4+2 states.
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Figure 3.21 shows the calculated excitation energies of the 2+2 ,3
+
1 and 4+2 states, associated

with the γ-vibrational band in deformed nuclei. The sdg-IBM does provide some slight im-
provements in the description of 2+2 and 3+1 energy states in N ≤ 88 Nd and Sm isotopes. On
the other hand, the 4+2 state is significantly lower in energy compared to the sd-IBM results. In
fact, in N ≤ 86 nuclei, the 4+2 state is predicted by the sdg-IBM to be so low in energy as to be
near the 2+2 state. In the N ≥ 88 nuclei, there are no significant differences between the energies
calculated by the sdg- and sd-IBM, and the results in those nuclei are in a good agreement with
the experiment. The fact that the 4+2 state is predicted to be low in energy shows that the chosen
Hamiltonian may not be suitable for description of such states in near shell-closure nuclei. The
problem could potentially be solved by including more terms and independent parameters in
the Hamiltonian, however, such extensions of the sdg-IBM Hamiltonian would make the calcu-
lations significantly more involved. Also, since the parameters of the Hamiltonian were fitted
to a PES obtained from the SCMF calculation with a specific EDF and a specific choice of the
pairing interaction, which are not tailored for a particular nucleus, a different choice of the EDF
and the pairing interaction could lead to different results in certain bands. These two problems
are left for a separate study.

A comment deserves to be made on differences between the sdg- and sd-IBM energy re-
sults in the N ≥ 90 deformed region. The states of the ground state band, the 0+ band and
the γ-vibrational band are almost equally well described by both models, with some exceptions
being the 12+ and 14+ yrast band states in some deformed Nd and Sm isotopes. This is ex-
pected, since the sd-IBM has been shown to be adequate in describing the low-lying spectra
of deformed nuclei. The differences between the two models in this region are visible only in
higher-lying states, e.g. 2+n (n ≥ 6) and 3+n (n ≥ 3) states. The problem is that the experimental
data on those states is very limited. The g boson is predicted to be present in these states, and,
as a consequence, the energies of those states are lower and in a better agreement with the ex-
periment compared to the same states calculated with the sd-IBM. The differences between the
two models in this region can also be observed in the calculated B(E2) and B(E4) transition
strengths, which will be discussed in the following section.

3.3 Transition strengths

3.3.1 Effective charges

The quadrupole effective charges esd,sdg
2 of Eq. (2.65) were fitted in order to reproduce the

B(E2;2+1 → 0+) transition strengths from the first 2+ state to the 0+ ground state. The hex-
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adecapole effective charges esd,sdg
4 of Eqs. (2.66, 2.67), respectively, were fitted in order to

reproduce the B(E4;4+1 → 0+) transition strength from the first 4+ state to the ground state.
For isotopes with no available experimental data on such transitions, the hexadecapole effective
charges were fitted so that the transition strengths are lower in values in near shell-closure nu-
clei, peak in value around N = 92 nuclei, and then decrease again. On the other hand, following
Ref. [66], the monopole transition operator parameters en,ep,η and γ of Eqs. (2.68, 2.69), were
fixed for all isotopes. The chosen values are en = 0.50e,ep = e,η = γ = 0.75 fm2. While the
effective neutron and proton charge values are the same as in Ref. [66], the η and γ values were
increased to better reproduce the available experimental data on monopole strengths [50, 81].
This is not surprising, since the Hamiltonian used in this work is different from the one used in
Ref. [66].

The values of the quadrupole and hexadecapole effective charges esd,sdg
2 ,esd,sdg

4 are shown in
Figure 3.22. The reason for plotting them as a function of the valence boson number NB instead
of the neutron number N is to prevent the overlapping between the effective charge values of
different nuclei with the same N in the graph. The quadrupole effective charges of the sdg- and
sd-IBM do not differ significantly in value. This can be explained by the fact that these charges
were fitted in order to reproduce the transition strength from the first 2+ state, which does not
have a presence of the g boson, as can be seen from Fig. 3.19. The hexadecapole effective
charges, on the other hand, differ significantly in value between the sdg- and sd-IBM. While in
the deformed region, the esd

4 charges are somewhat larger in value than esdg
4 , in near-spherical

nuclei, the esd
4 charges must be set to extremely high values in order for the sd-IBM to reproduce

the same B(E4) transition strength as the sdg-IBM. These extremely high esd
4 values point to

the necessity of including the g boson in the calculations of B(E4) transition strengths.

3.3.2 Quadrupole transitions

Figure 3.23 shows the B(E2;J → J − 2) transition strengths between the ground state band
states in well deformed N = 90,92 nuclei. The reason for choosing these nuclei lies in the
fact that most of the available experimental data on E2 transitions in the ground state band can
be found in these nuclei, which makes them the ideal candidates for comparing the calculated
B(E2) transition strengths between sdg- and sd-IBM. One can notice a significant difference in
the B(E2) transition strengths, predicted by the sdg-IBM, between lighter isotopes of 150,152Nd
and 152,154Sm, and heavier isotopes. In Nd and Sm nuclei, the predicted transition strengths
between Jπ ≥ 6+ states are significantly larger in the sdg-IBM compared to the sd-IBM, which
is not the case in the isotopes of Gd, Dy and Er. This can be attributed to the fact that the (d† ×
g̃+g† × d̃)(2) term in the Q̂(2) operator of Eq. (2.62), contributes more to the B(E2) transition
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Figure 3.22: First row: The values of the quadrupole effective charges esdg
2 (left) and esd

2 (right). Second
row: The values of the hexadecapole effective charges esdg

4 (left) and esd
4 (right). All effective charges are

plotted as a function of the valence boson number NB

strengths in the Nd and Sm isotopes, due to the σ parameter being larger than 1.0 in those
nuclei. The obtained B(E2) transitions in Sm resemble the results of the axial rotor calculations
from Refs. [39, 40]. The sdg-IBM mostly improves the description of transition between the
yrast Jπ ≥ 6+ states, which is in agreement with the previously performed phenomenological
calculations [39, 40].

In the heavier isotopes of Gd, Dy and Er, the differences between the sdg- and sd-IBM
calculated transitions are significantly smaller, which can be attributed to the σ = 1.0 parameter
values in those nuclei. The transitions in N = 90 nuclei are underestimated by both models, with
the sdg-IBM providing only a small improvement to the results, while in the N = 92 nuclei, both
models predict the values of transition strengths to be in good agreement with the experiment.
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Figure 3.23: B(E2) transition strengths in the ground state band of the well-deformed N = 90 (left) and
N = 92 (right) isotopes as functions of spin J, calculated with the mapped sdg-IBM (solid curves) and
sd-IBM (dotted curves). The experimental data, represented by solid circles, are adopted from Ref. [50].
The figure is taken from Ref. [76].
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Due to the margins of error of the measured transition strengths being very large, it is not
possible to determine whether the sdg-IBM provides some improvements in the description of
quadrupole transition strengths in those nuclei.

3.3.3 Hexadecapole transitions

Figure 3.24 shows the calculated B(E4;4+n → 0+) (n = 1,2,3,4) transition strengths from the
4+n states to the 0+ ground states. The transition strengths are plotted as a function of the
nucleon number A, to avoid the overlapping of the calculated values between different nuclei
with the same neutron number N. Since the esd,sdg

4 effective charges were fitted to reproduce the
B(E4;4+1 → 0+) transition strengths, the more interesting E4 transitions to examine are those
from the 4+n≥2 states to the ground state. The sdg-IBM predicts several large B(E4) transition
strengths from those states to the ground state in deformed isotopes, which corresponds to
the sdg-IBM predicting the existence of the Kπ = 4+ hexadecapole band in deformed rare-
earth nuclei. On the other hand, these large B(E4) values are not predicted by the sd-IBM,
which points to the necessity of including the g boson in describing the E4 transitions. The
experimental data on such transitions is only available in 146Nd isotope. The measured B(E4)
transition strengths in this isotope are low in value, and the sdg-IBM does provide a slight
improvement over the sd-IBM in the description of the B(E4;4+2 → 0+) strength, while both
models underestimate the B(E4;4+4 → 0+) strength. The large B(E4) values from higher 4+

states have been observed in nuclei such as 194,196,198Pt [40, 50], however, these nuclei are
predicted to have a significant presence of quadrupole triaxial correlations [49], which would
have to be separately included, so the study of those nuclei in the framework of the mapped
sdg-IBM is left for a future study.

3.3.4 Monopole transitions

Figure 3.25 shows the squared values of monopole strengths ρ2(E0;0+i → 0+j ) with i = 2,3
and j = 1,2 for Sm and Gd isotopes. These results are shown only for Sm and Gd because
the experimental data on monopole strengths can only be found for these isotopes [50, 81]. As
can be seen from the figure, the sdg-IBM does not significantly improve the description of the
monopole strengths compared to the sd-IBM. Both models seem to overestimate the values of
the ρ2(E0;0+2 → 0+1 ) strength in 150,152Sm, and both models predict that the strengths of the
0+3 → 0+1 transitions become larger than the strengths of 0+3 → 0+2 transitions in the deformed
region, which contradicts the available experimental data in 152Sm and 156Gd. The sdg-IBM
slightly improves the description of the 0+3 → 0+2 transition in 152Sm and the 0+3 → 0+1 transi-

49



3.3. Transition strengths Chapter 3. Results

Figure 3.24: B(E4) transition strengths in W.u. for transitions between the first (panels (a) and (b)),
second (panels (c) and (d)), third (panels (e) and (f)) and the fourth (panels (g) and (h)) 4+ states and the
0+ ground state, plotted as functions of the nucleon number A. The sdg-IBM results are shown in the left
column, while the sd-IBM results are shown in the right column. The experimental data, represented by
solid circles, are adopted from Refs. [14–16, 50]. The figure is taken from Ref. [76].
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Figure 3.25: Squared values of the monopole strengths ρ2(E0;0+i → 0+j ) in Sm and Gd isotopes, plotted
as functions of the neutron number N. The experimental data, represented by solid circles, are taken
from Refs. [50, 81]. The figure is taken from Ref. [76].

tion in 158Gd. Overall, it cannot be said that the sdg-IBM provides an improved description of
monopole transition strengths. This is not surprising, since the 0+n states up to n = 3 are not pre-
dicted to contain a g boson in their configuration. For example, the first 0+ state in 154Sm, that
is predicted to be of one g boson content, is the 0+5 state, and there are no available experimental
data on monopole transitions between 0+n≥4 states.
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Chapter 4

Thesis summary and outlook

4.1 Summary of this Thesis

This thesis represents a first attempt to systematically study the effects of axial quadrupole and
hexadecapole correlations in the framework of a microscopic model. It is shown that the g boson
can be included in the IBM microscopically, by applying the mapping method to the sdg-IBM
Hamiltonian and fitting the Hamiltonian parameters to the PES calculated in the framework of
the RMF model with the DD-PC1 functional, with constraints set on the axial quadrupole and
hexadecapole deformation parameters. The obtained model was applied to even-even isotopes
of Nd, Sm, Gd, Dy and Er in the neutron number range N = 84−96 and was shown to provide
some significant improvements over the simpler sd-IBM. Firstly, the description of the Jπ ≥ 6+

states of the ground state band in N ≤ 88 nuclei is significantly improved by the mapped sdg-
IBM. It was shown that this model can account for the ratio R4/2 between energies of the yrast
states 4+ and 2+ being less than 2 in value in N = 84 nuclei. The description of E2 transitions
between higher-lying yrast band states in deformed N = 90,92 nuclei is also improved by the
aforementioned model. Finally, the mapped sdg-IBM is able to predict the existence of the
Kπ = 4+ bands in deformed nuclei with enhanced B(E4) transition strengths to the 0+ ground
state. These predicted transition strengths could be of interest to experimentalist who are doing
research on nuclear structure. Other properties of the low-lying spectra, e.g. the 0+ and the
γ-vibrational band, as well as the monopole transitions between 0+ states, are not significantly
improved by the mapped sdg-IBM, and can be accounted for by the simpler sd-IBM. This is
not surprising, since quadrupole correlations are expected to be dominant in describing most
of the properties of the low-lying excitation energy spectra. Nevertheless, this work shows that
the inclusion of hexadecapole correlations is necessary in describing various properties of the
nucleus, and should represent an integral part in any theoretical study which aims to achieve a
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precise description of the excitation energy spectra in rare-earth nuclei.

4.2 Outlook

This work could potentially be expanded in the future to study the spectra and transitions of
odd-A and odd-odd rare-earth nuclei. This could also lead to a systematic study of the effects of
hexadecapole correlations on β-decays in rare-earth nuclei. A systematic study of the sensitivity
of the results on the choice of the EDF and the pairing interactions could also be useful and
bring us to a better understanding of hexadecapole correlations in nuclei. The model could be
further expanded to include triaxial quadrupole deformations along with axial quadrupole and
hexadecapole deformations. That model could then be applied to various other nuclei, such as
Pt, Os, and actinides. Finally, this model could be expanded to the sdg-IBM-2 model, in which
proton and neutron bosons are separately considered, and be used to study phenomena beyond
the reach of the IBM-1, such as scissor modes.
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