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The analysis of systemic risk often revolves around examining various measures utilized by practitioners and
policymakers. These measures typically focus on assessing the extent to which external events can impact a
financial system, without delving into the nature of the initial shock. In contrast, our approach takes a sym-
metrical standpoint and introduces a set of measures centered on the quantity of external shock that the system
can absorb before experiencing deterioration. To achieve this, we employ a linearized version of DebtRank,
which facilitates a clear depiction of the onset of financial distress, thereby enabling accurate estimation of
systemic risk. Through the utilization of spectral graph theory, we explicitly compute localized and uniform
exogenous shocks, elucidating their behavior. Additionally, we expand the analysis to encompass heterogeneous
shocks, necessitating computation via Monte Carlo simulations. We firmly believe that our approach is both
comprehensive and intuitive, enabling a standardized assessment of failure risk in financial systems.
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I. INTRODUCTION

The investigation of networks in natural and social systems
has yielded numerous intriguing models that aim to elucidate
both their topology and the dynamics occurring within them
[1]. Among these dynamic models, a significant and wide-
ranging focus lies in understanding the systemic breakdown
of such systems. Particularly, a notable area of interest within
this category of models is the examination of systemic risk in
economics, specifically within financial systems [2–5].

Systemic risk, which pertains to the risk of widespread
collapse within a complex system, has become a substantial
concern for scholars and a vital issue for policymakers and
regulators. One approach to analyzing and comprehending
systemic risk involves the utilization of complexity theory and
network analysis [6]. These methodologies enable the explo-
ration of interconnections and dependencies among financial
institutions [7]. Research has demonstrated that the network
structure of the financial system plays a significant role in
the transmission of shocks and the likelihood of contagion.
For instance, a recent study [8] has illustrated how a network
model can be employed to quantify and manage systemic
risk in the interbank market, also known as the “interbank
network.” Likewise, it has been reported [9] that a densely in-
terconnected financial system is associated with a heightened
level of systemic risk.

This intuition resulted in more quantitative analysis on
specific cases of interest [10–13]. Recent research on systemic
risk extends the financial network to multilayer networks, in-
cluding different assets and types of loans, etc. [14–16]. These

studies have provided some of the first evidence about the
importance of network analysis in understanding and mitigat-
ing systemic risk and have been applied to inform regulators
[10], in order to individually assess a systemic risk [17], to
simulate different policies, such as bank taxation [18,19], or to
understand which network architectures are more and which
are less risky [20].

Another important aspect of analyzing systemic risk is the
use of debt ranking [10]. Debt ranking is a technique used
to assign a relative importance or “rank” to various finan-
cial institutions, taking into account their level of debt and
their position within the network. Similar to other centrality
measures, debt ranking enables the identification of the most
systemically significant institutions, commonly known as
“too-big-to-fail” or “too-connected-to-fail” institutions. These
institutions are regarded as crucial for maintaining the sta-
bility of the financial system and consequently face more
stringent regulations and oversight.

The significance of the networked structure of the financial
system in comprehending systemic risk has garnered substan-
tial attention in economic literature. One of the pioneering
works addressing this subject [21] examines the influence of
factors such as capitalization levels, bank connectivity, inter-
bank exposures, system concentration, liquidity, and the tier
structure of the financial system on systemic risk. A recent
notable review of the economic literature on systemic risk
in financial networks can be found in [22]. In their work,
the authors classify systemic risks in financial networks into
two categories: “contagion through direct externalities” and
“various feedback effects that permit multiple equilibria and
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self-fulfilling prophecies.” The approach taken in this paper is
appropriate to study the first type of systemic risks and builds
on a number of papers introduced in economic literature, such
as [23–25], to name a few.

The aforementioned measures of systemic risk in net-
worked systems are all derived from the impact on the
financial system following a systemic event and the subse-
quent propagation of default cascades throughout the financial
network [26].

In this paper, we introduce an approach to quantifying
systemic risk, focusing on the “amount of external shock the
system can withstand before experiencing a systemic event.”
We define a systemic event as the default of a financial insti-
tution resulting from the propagation of shocks through the
network. From a technical perspective, the measurement of
systemic risk involves solving an inverse problem and esti-
mating the initial conditions leading to systemic events in the
models. While this approach may appear more complex com-
pared to conventional methods, we demonstrate its efficacy
through a networked systemic risk model, i.e., the DebtRank
[27]. By adopting this approach, we can gain valuable insights
into the phenomenon and develop quantitative measures that
extend risk analysis to encompass all potential scenarios of
exogenous shocks. This broader perspective allows for a more
comprehensive understanding of systemic risk and facilitates
the provision of generalized quantitative measures.

Section II of our paper introduces the version of DebtRank
utilized in our analysis and elucidates its suitability for ad-
dressing the inverse problem. We provide a comprehensive
explanation of why this model is well suited for our research
objectives. Moving on to Sec. III, we outline and describe
three distinct types of shocks: Uniform, localized, and het-
erogeneous shocks. We demonstrate how each of these shocks
can be evaluated using our proposed method and subsequently
develop three measures of systemic risk based on these shock
scenarios. In Sec. IV, we present the results obtained from
our analysis. Initially, we present analytical findings based
on very small networks, providing valuable insights at a mi-
crolevel. Subsequently, we present simulated results for larger
networks, offering a macrolevel perspective on systemic risk
dynamics. Finally, in the conclusion, we summarize our find-
ings and discuss the implications. We also outline potential
directions for further research, highlighting areas that warrant
deeper exploration in the context of systemic risk analysis.

II. DEBTRANK MEASURE OF SYSTEMIC RISK

To initiate this analysis, we will begin by assuming com-
plete knowledge of bank balances and interbank loans. The
bank balance is comprised of assets (A), liabilities (L), and
equity (E ), and their relationship is defined by a standard
balance sheet equation:

A = L + E . (1)

The systemic risk in this analysis will be modeled using the
DebtRank algorithm [10], specifically the version described in
[27]. In this version, the financial system consists of n banks,
represented as vertices in the network. The primary mode of
interaction between banks is through interbank loans, which
are represented as weighted edges Ai j in the network. The

weights of these edges indicate the sum of loans that Bank
i has lent to Bank j.

The total network assets of Bank i, which represents the
amount of lending to other banks, is denoted as Ai and com-
puted as Ai = ∑

j Ai j . The remaining assets of Bank i not
involved in the interbank system are denoted as AE

i . Each loan
Ai j extended by Bank i is matched by a corresponding liability
Li j of Bank j, which must be repaid in the future. Liabilities
of Bank i not related to the interbank financial system are
denoted as LE

i . The equity of Bank i is calculated using the
above defined balance sheet equation (1): Ei = Ai − Li

In this paper, we define a bank i as bankrupt if its liabilities
exceed its assets, i.e., when Ei � 0. To analyze the evolution
of the system, we consider the set of nonbankrupted banks at
time t

A(t ) = { j : Ej (t ) > 0}. (2)

A further assumption is that when the bank j goes
bankrupt, its assets are taken from the system, i.e., Ai j = 0,
but liabilities remain Li j constant. This leads to the temporal
balance equation

Ei(t ) = AE
i (t ) − LE

i (t ) +
∑

j∈A(t−1)

Ai j (t ) −
n∑

j=1

Li j (t ), (3)

in which the sum of assets includes only the banks that were
“healthy” at time t − 1, i.e., we assume that the information
of bankruptcy takes one unit of time.

This leads to the following mechanism of the propagation
of financial shock, under the assumption that the assets of
the lender are changed proportionally to the equity of the
borrower in the previous time stamp, i.e.,

Ai j (t + 1) =
{

Ai j (t ) Ej (t )
Ej (t−1) , j ∈ A(t − 1),

Ai j (t ) = 0, j �∈ A(t − 1).
(4)

Time evolution of assets can be computed using Eqs. (3) and
(4) to get

Ei(t + 1) − Ei(t ) =
∑

j∈A(t−1)

Ai j (0)

Ej (0)
(Ej (t ) − Ej (t − 1)), (5)

where Eq. (3) was used recursively, and Ai j (1) = Ai j (0).
The evolution of equity can be written as

Ei(t + 1) = max

[
0, Ei(t ) +

n∑
j=1

�̃i j (t )(Ej (t ) − Ej (t − 1))

]
,

(6)

in which

�̃i j (t ) =
{

Ai j (0)
Ej (0) , j ∈ A(t − 1),

0, j �∈ A(t − 1).
(7)

Here the maximum ensures that the equity after the
bankruptcy cannot become negative. Now we define financial
shock on bank i as

hi(t ) = Ei(0) − Ei(t )

Ei(0)
(8)
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and using also (7) the evolution of financial shock is

hi(t + 1) = min

[
0, hi(t ) +

n∑
j=1

�i j (t )(h j (t ) − h j (t − 1))

]
.

(9)

A key component of DebtRank dynamics is the fact that the
system stability is completely determined by the properties of
matrix �(t ).

We consider the time period between two bankruptcies,
i.e., a period in which the matrix �(t ) = � is constant. Defin-
ing the change of financial shock as �h(t ) = h(t ) − h(t − 1)
and using the fact that h(0) = 0, Eq. (9) can be written in a
matrix form

�h(t + 1) = ��h(t )

= �t�h(1) = �t h(1). (10)

The financial shock at t + 1 is a sum of previous shocks

h(t + 1) =
t+1∑
t ′=1

�h(t ′) =
t∑

t ′=0

�t ′
h(1). (11)

The asymptotic value of shocks h∞ = limt→∞ h(t ) is finite
if ‖�‖ < 1. Gelfand theorem states that the spectral radius
ρ(�) = max1�i�n(λi ) can for a square matrix always be writ-
ten as

ρ(�) = lim
k→∞

‖�k‖ 1
k . (12)

If the spectral radius is smaller than 1, i.e., |λmax| < 1, the
asymptotic value of financial shock converges towards

h∞ = (I − �)−1h(1) . (13)

In the opposite case |λmax| � 1, the initial financial shock
consumes the whole system.

It is, in principle, possible to simulate the propagation of
shocks such that when an institution goes bankrupt the matrix
� reduces its rank, but in the following we will focus our
attention only on constant matrices �.

III. CONDITIONS ON INITIAL SHOCKS FOR
BANKRUPTCY-FREE RISK PROPAGATION

The primary scientific inquiry addressed in this paper is
the following: Which initial shocks result in systemic effects
within the financial system? Considering the vast number of
potential configurations of initial shocks capable of desta-
bilizing the financial system, which increases exponentially
with the system’s size, we strive to ensure the coherency of
our analysis by focusing on three distinct types of shocks.
The first type of shock we examine is the uniform shock,
representing a significant exogenous event that impacts all
institutions within the system equally, resulting in a uniform
fraction of asset loss for each institution. The second type is
a localized shock, which involves a shock solely affecting a
single institution within the system, while the others remain
unaffected. Lastly, we investigate a more comprehensive sce-
nario by combining the previous two types of shocks. This
multiparametric shock affects all institutions, but with varying
intensities. We quantify the intensity of this mixed shock using

the associated hypervolume, as we will elaborate upon in
subsequent discussions.

A. Uniform shock

Uniform shock represents one of the most common
macroeconomic shocks that can arise from various causes.
It can be associated with demand and supply fluctuations,
changes in legislation affecting financial markets, inflation,
and other factors. Financial systems are vulnerable to exter-
nal conditions and are influenced by global events that often
uniformly impact similar firms. While financial systems are
designed to be relatively resilient to such events, significant
uniform shocks can lead to substantial problems for these
systems.

To model the uniform shock, we employ Eq. (13). In this
case, we set the same initial value, denoted as h(1), for all
components of the vector. Specifically, for each component i,
we have hi(1) = ψu. This allows us to express the uniform
shock as follows:

h(1) = ψu

⎛⎜⎜⎝
1
1
...

1

⎞⎟⎟⎠ = ψuh̃(1). (14)

If the uniform shock is used in Eq. (13)

h∞ = ψu(I − �)−1h̃(1). (15)

We denote as �u the maximal uniform shock that the sys-
tem can absorb. To compute it, we need to maximize Eq. (15):

�u = 1

max j[((I − �)−1h̃(1)) j]
. (16)

The �u depends only on the details of the network, i.e.,
on the amounts of interbank assets and leverage of the banks.
Larger values of �u are associated with larger shocks the
system can tolerate and therefore to a larger resilience of the
system. Conversely, smaller values of �u indicate systems
more susceptible to the exogenous uniform risks.

B. Localized shock

In contrast to the uniform shock, the localized shock rep-
resents the extreme end of the spectrum of potential shocks.
It specifically models financial difficulties that arise within a
single financial institution. However, what sets the localized
shock apart is that the affected institution is systemically im-
portant, meaning that its default has the potential to trigger
instability within the entire financial system.

Localized shocks have historically exerted a significant
impact on modern financial systems. A notable example is
the default of Lehman Brothers in 2008, which acted as a
triggering event for the global financial crisis. At the time,
Lehman Brothers was the fourth-largest investment bank in
the United States. Its default resulted in the propagation of fi-
nancial shocks to its counterparties, contributing significantly
to the largest decline in the Dow Jones index in recorded
history [28].

The measure of systemic risk from uniform shock is devel-
oped in a similar way as measures of uniform shock by using
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Eq. (13). The vector of initial shock hi(1) is the ith unitary
vector ei multiplied by ψl

i

h(1)i = ψl
i

⎛⎜⎜⎜⎜⎜⎝
0
...

1
...

0

⎞⎟⎟⎟⎟⎟⎠ = ψl
iei. (17)

Considering a network of n banks, there are n different ini-
tial conditions for localized shock, each of them representing
the problem in the bank it represents. We are interested in
maximal ψl

i for which some element of (h∞)i becomes 1,

(h∞)i
j = ψl

i((I − �)−1ei ) j

= ψl
i

n∑
k=1

((I − �)−1) jkδki = ψl
i((I − �)−1) ji, (18)

where δki is the Kronecker delta. We define maximal allowed
localized shock (MALS) as a value of local shock that maxi-
mizes Eq. (18)

�l
i = 1

max j[((I − �)−1) ji]
. (19)

The value of �l
i is solely determined by the reduced ad-

jacency matrix �, specifically relying on a single element of
the inverse matrix (I − �)−1. This measure can be interpreted
as an assessment of the resilience of individual institutions
in initiating a financial bankruptcy cascade. Rather than con-
sidering a single numerical value, we can shift our attention
to the individual components of the vector �l . This approach
provides a comprehensive overview of the maximum absolute
localized shock (MALS) for different elements within the
network.

Within this context, an important measure that we intro-
duce is the minimal component of the maximally defined
localized shock,

�m
l = min

i
� i

l , (20)

which signifies the largest allowed localized shock to any in-
stitution that can be sustained by the least resilient constituent
of the system.

C. Heterogenous financial shock

Uniform and localized financial shocks represent two ex-
treme scenarios that can result in systemic risk within the
considered financial system. Both cases can be characterized
by a single parameter ψ , which serves as a metric to evaluate
the risk level of the system. Scalar measures like this are
valuable to both researchers and practitioners as they simplify
the assessment of the system to a single quantifiable value.

However, the applicability of these scalar measures can be
questioned in real-world situations where multiple different
shocks may occur simultaneously within the financial system.
In such cases, the system consists of n financial institutions,
each potentially experiencing a distinct parameter of financial
shock. It becomes relevant to explore various combinations of
initial shocks that still maintain system stability. To address
this, we propose a measure associated with such a shock,

which is also represented by a scalar quantity. This measure
is derived from the iterative evolution of cumulative capital
loss, as depicted in Eq. (13), while observing this equation as
a linear transformation within the allowed subspace h∞:

h(1) = (I − �)h∞. (21)

Considering that the default of financial institution i occurs
when h∞

i = 1, the entire subspace where no defaults occur
in the system (0 � h∞

i < 1) corresponds to an n hypercube.
This hypercube is situated at the origin of a coordinate space
defined by the axes h∞

i . Consequently, all the admissible
scenarios in which no financial institution suffers damage are
confined within this hypercube.

In order to determine the values of the subspace of
initial shock parameters h(1) that correspond to a default-
free system, we perform a transformation from the space
of asymptotic shock to the subspace of initial shock using
Eq. (21).

The matrix � contains non-negative elements, with the
diagonal elements always equal to zero, indicating that insti-
tutions do not invest in themselves. As a result, the general
form of the matrix I − � has 1’s on the diagonal and all other
elements are nonpositive:

I − � =

⎛⎜⎜⎜⎝
1 −�12 . . . −�1n

−�21 1
...

...
. . .

−�n1 . . . 1

⎞⎟⎟⎟⎠. (22)

Regarding the linear transformation of the hypercube, it
implies that the subspace of initial shock parameters, denoted
as h(1), will necessarily encompass values outside the strictly
positive 2n-tant. In other words, the values of h(1)i that corre-
spond to a default-free system may include values outside the
realistic interval of [0, 1〉. These values should be disregarded
as they represent positive initial shocks, indicating an increase
in institutional assets. Consequently, the relevant subspace
of interest, denoted as V , is the intersection of the allowed
subspace of h(1) and the positive 2n-tant.

Depending on the matrix � the subspace of allowed initial
shocks can be larger or smaller. In other words, if the network
structure is such that the subspace of initial shocks V is small,
and we know that all the other combinations of initial shock
lead to the default of at least one institution, then this network
structure is of low resiliency. On the other hand, if V is of a
size similar to the size of the subspace h∞, the probability that
the initial combination of shocks will lead to default is small.

Therefore, it makes sense to measure the risk of the system
in terms of hypervolume �V of allowed subspace V . If the
intersection with 2n-tant were not important, the computation
of this measure would trivially be det(I − �). Unfortunately,
depending on the sum of interbanks investments, the geometry
of the problem can be extremely complex even for a small
number of vertices.

In order to demonstrate the complexity and provide some
intuition of analytical analysis we perform exact computations
on a few small networks.

044303-4



SYSTEMIC RISK MEASURED BY THE RESILIENCY OF … PHYSICAL REVIEW E 108, 044303 (2023)

FIG. 1. Network of n = 2 vertices with mutual exposures.

IV. RESULTS

A. Network of n = 2 vertices

The simplest possible network of interest is the network of
two institutions, creating the n = 2 network as represented in
Fig. 1.

In that case the matrix of transformation is

I − � =
(

1 −�12

−�21 1

)
, (23)

while its inverse is

(I − �)−1 = 1

1 − �12�21

(
1 �12

�21 1

)
. (24)

We can easily compute measures of uniform and localized
shock as

�u = 1 − �12�21

1 + max[�12, �21]
, (25)

�l = (1 − �12�21)

(
min

[
1, 1

�21

]
min

[
1, 1

�12

]). (26)

Hypervolume in this case corresponds to the surface of the
parallelogram, which is computed through transformation and
is confined in the first quadrant. The measure of heteroge-
neous shock is then

�V = 1 − 1
2

[
�12

(
1 − �2

21

) + �21
(
1 − �2

12

)]
. (27)

Allowed intervals of initial shock that do not produce default
in the system can be computed using relations 0 � h∞

i < 1,

i ∈ {1, 2}, which leads to

0 � h(1)1 + �21h(1)2

1 − �12�21
< 1,

0 � �12h(1)1 + h(1)2

1 − �12�21
< 1. (28)

B. Network of n = 3 vertices

In the case of n = 3 there are two independent cases for
which one can obtain all the other configurations through a
cyclical change of indices of �i j . We omit the cases with two
edges as they are not that interesting. Two possible configura-
tions of three vertices and three edges are presented in Fig. 2.

The set of parameters that given the evolution of finan-
cial shocks is represented by matrix I − � and configuration
with n = 3 will according to its matrix type be called upper

FIG. 2. In the upper panel is upper triangular and in the lower
panel is a cyclical configuration of network with n = 3 vertices.

triangular (index UT) and cyclical (index cyc). Matrices of
evolution for both cases are given by

I − �UT =
⎛⎝1 −�12 −�13

0 1 −�23

0 0 1

⎞⎠, (29)

I − �cyc =
⎛⎝ 1 −�12 0

0 1 −�23

−�31 0 1

⎞⎠. (30)

Inverses of I − � matrices are needed for computation of
measures of risk and are given by

(I − �UT )−1 =
⎛⎝1 �12 �12�23 + �13

0 1 �23

0 0 1

⎞⎠, (31)

(I − �cyc)−1 =

⎛⎝ 1 �12 �12�23

�23�31 1 �23

�31 �31�12 1

⎞⎠
1 − �12�23�31

. (32)
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Similar to the n = 2 case, maximal uniform and localized
shocks are for the upper-triangular case

�UT
u = 1

1 + max[�13 + �12(1 + �23), �23]
, (33)

�UT
l =

⎛⎜⎜⎝
1

min
[
1, 1

�12

]
min

[
1, 1

�23
, 1

�13+�12�23

]
⎞⎟⎟⎠, (34)

and for the cyclical configuration

�cyc
u = 1 − �12�23�31

1 + max[�i j (1 + � jk )]
, (35)

�
cyc
l = (1 − �12�23�31)

⎛⎜⎜⎝
min

[
1, 1

�31
, 1

�23�31

]
min

[
1, 1

�12
, 1

�31�12

]
min

[
1, 1

�23
, 1

�12�23

]
⎞⎟⎟⎠, (36)

where in the first equation one substitutes corresponding in-
dices i, j, k with those for the maximal value in the square
bracket.

For studied configurations of the n = 3 network, we can
again obtain intervals of allowed initial shocks using condi-
tions 0 � h∞

i < 1, i ∈ {1, 2, 3}. As in the previous case the
solution is a system of equations for upper-triangular config-
uration

0 � h(1)1 + �12h(1)2 + (�13 + �12�23)h(1)3 < 1,

0 � h(1)2 + �23h(1)3 < 1, (37)

and for the cyclical configuration

0 � h(1)1 + �12h(1)2 + �12�23h(1)3

1 − �12�23�31
< 1,

0 � �23�31h(1)1 + h(1)2 + �23h(1)3

1 − �12�23�31
< 1,

0 � �31h(1)1 + �31�12h(1)2 + h(1)3

1 − �12�23�31
< 1. (38)

Hypervolume measure of heterogeneous shock �V on the
network of n = 3 vertices corresponds to the volume of the
parallelepiped in h(1) space obtained through I − � trans-
form, that is, inside the first octant. Volume �V can be
computed geometrically, by cutting the parallelepiped into
prisms and pyramids of known volume, but already in 3D
the number of such elements becomes large, as well as the
number of different geometries depending on elements �i j .
For example, the equation for hypervolume associated with
upper-triangular configuration is

�UT
V = 1

2�12(1 − �23)2 + 1
2 (�13 + �12�23)

(
1 − 2

3�23
)

+ 1
6�13�23 + (

1 − �23 + 1
2�23

)
(1 − �12 − �13),

�23 < 1, �12 + �13 < 1. (39)

C. Multiple vertices

Clearly, as the size of the financial system increases, the
analytical methods to compute measures such as the heteroge-
neous shock �V become increasingly complex. To overcome
this challenge, we employ Monte Carlo simulations to esti-
mate �V .

In the h∞ space, we generate M random vectors with
components 0 � h∞

i < 1 from a uniform distribution. These
vectors represent the allowed subspace in h∞ where no de-
faults occur in the system. It is important to note that the
hypervolume of the allowed h∞ subspace is always equal
to one.

Next, we transform these vectors from the h∞ space to the
h(1) space using Eq. (21). This transformation allows us to
evaluate the initial shock conditions that lead to the absence
of defaults in the system.

Within the h(1) space, we determine the number of points,
denoted as M ′, that fall within the intersection of the polytope
(representing the allowed shock conditions) and the positive
2n-tant. The 2n-tant refers to the region where all components
h(1)i are positive, representing realistic initial shock values.

Since the number of generated points is proportional to
the hypervolume det(I − �) of the polytope, we estimate the
volume �V of the allowed initial conditions by calculating
the ratio M ′/M. This provides an approximation of the hy-
pervolume of the allowed parameter space that leads to stable
financial conditions without defaults.

By employing Monte Carlo simulations and estimating �V

in this manner, we can overcome the analytical complexi-
ties associated with computing measures for larger financial
systems. This approach allows us to effectively assess the
riskiness of different initial shock conditions and provides
valuable insights into the stability of the financial system

�V = M ′

M
det(I − �). (40)

To estimate risk measures in more complex architectures,
we will utilize a complete asymmetric simple digraph (CASD)
and our variant of the random network model. The choice of
using a CASD is motivated by the fact that many financial
networks exhibit dense connections and a complete network
represents the limit of high density. Additionally, complete
networks reflect a highly diversified investment pattern, which
is generally believed to reduce individual risk but potentially
increase systemic risk.

By employing a CASD, we can capture the intricacies
and interdependencies of financial institutions in a densely
connected network. This allows us to analyze and evaluate the
systemic risk within such complex architectures. Furthermore,
our random network model variant provides an additional
perspective by introducing stochastic elements that mimic
real-world network structures.

Through the combination of CASD and our random
network model, we aim to gain insights into the risk charac-
teristics of financial systems operating under diverse network
architectures. This analysis will help us understand how
network structure and connectivity impact systemic risk, pro-
viding valuable information for risk management and policy
decisions [11].

The CASD is produced by generating the matrix �. The al-
gorithm used to generate CASD is explained in the following
steps.

(1) We choose n vertices.
(2) We assume that the equity of all constituents is equal,

i.e., Ei = E , and investments among the banks Ai j are chosen
randomly from the uniform distribution on interval [0, A].
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FIG. 3. On the y axis is maximal allowed uniform shock on
CASD network �u; on the x axis is the size of the system n, n ∈
[5, 100]. Investigated parameters A/E are listed in the legend.

(3) For each pair of indices i, j < n, i < j a random num-
ber drawn from uniform distribution p′ ∈ [0, 1] is generated.
If p′ < 0.5 to the element Ai j we assign a random value, and
in the opposite case the same value is assigned to the element
Aji.

(4) Matrix elements Ai j are divided with the constant equity
E leading to reduced adjacency matrix �.

(5) We check if the spectral radius of matrix � is smaller
than 1; if not, we go back to step (1).

Except by parameters A and E , the incomplete random
network is also described by additional parameter p giving
the probability that the two randomly chosen vertices are
connected with a directional edge. In order to produce this net-
work in the above algorithm after the second step we introduce
an intermediate step in which a parameter p ∈ [0, 1] is chosen
and for each pair of vertices i, j < n, i < j we generate a
random number p′′ ∈ [0, 1]. If p′′ < p, the vertices will be
connected and otherwise they will not be connected. After this
step, steps (3)–(5) are repeated.

1. Uniform shock �u

The measure of uniform shock, �u, is computed for the
case of the CASD network. The main focus is to understand
the dependence of �u on different network parameters. The
simulation is performed on an ensemble of N = 100 net-
works.

First, we investigate how �u depends on the size of the
network. The results are presented in Fig. 3, where error bars
represent the standard deviation of simulation results, denoted
as σ�̄u

. An interesting observation is that the size of the system
systematically reduces �u for all choices of other parameters.
This indicates that larger systems are generally more risky
than smaller ones with respect to uniform shocks. Parameter
A/E is related to the speed at which �u tends to zero.

Next, we continue the computation of �u on the ensemble
of incomplete random networks characterized by parame-
ters n, p, and A/E . We first examine the dependence of �u

on the parameter p. Since, for values of parameters smaller
than pc ≈ 1

n , networks do not possess giant components, we
present results only for p > pc. The dependence of �u on p is
shown in Fig. 4. It is evident that increasing both parameters
p and n systematically reduces the allowed maximal uniform
shock for all observed parameter values. This implies that
both diversification and the size of the system have a negative
effect on the maximum uniform shocks that institutions can
withstand before defaults occur in the system.

FIG. 4. Maximal allowed uniform shock on the incomplete ran-
dom network. On the y axis is �u and on the x axis is the parameter
of connectivity p. Sizes of networks are in the legend and are n ∈
{25, 50, 75, 100, 125}, while vertical lines correspond to pc for dif-
ferent values of n. The top, middle, and bottom subfigures correspond
to parameters A/E equal to 0.05, 0.2, and 0.5, respectively. Values
of pc are indicated by vertical colored lines.

Furthermore, in Fig. 5 for completeness, we show how the
value of �u depends on A/E , although it is intuitively clear
that it will get smaller with the increase of A/E .

2. Measure of localized shock �l

In the analysis related to localized financial shock, we
repeat all the previous analyses but focus on the minimal
component �m

l of the maximally allowed vector of localized
shock �l .

Compared to the case of uniform shock, we observe a more
pronounced influence of the parameter A/E on the decline of
�m

l , depending on the number of vertices n. The correspond-
ing curves now exhibit a concave shape, in contrast to the
convex curves observed in the case of uniform shock. Initially,
there is a period of relatively stable behavior, which becomes
shorter as A/E increases. However, there is a sudden drop in
the minimal value of the maximally allowed local shock. Sub-
sequently, the measure �m

l continues to decline until it reaches
a value beyond which the generated matrices � have a spectral
radius larger than one. This signifies a critical point at which
the system becomes highly susceptible to localized shocks,
potentially leading to the instability of individual institutions
and the overall financial system.

We again study the risk on random network varying pa-
rameters p and A/E . In this case, we used ensembles of
N = 100 networks to have satisfactory stability of the results.
Simulations are depicted in Figs. 6, 7, and 8.

044303-7
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FIG. 5. Maximally allowed uniform shock of the incomplete ran-
dom network depending on the parameter A/E . On the y axis is a
measure �u and on the x axis is A/E ∈ 〈0, 1.5]. Sizes of networks
are in the legend and they take values n ∈ {25, 50, 75, 100, 125}. The
top, middle, and bottom subfigures correspond to parameters p equal
to 0.05, 0.1, and 0.3, respectively.

In both cases as n, p, and A/E increase the �m
l decreases

monotonically. Compared to an incomplete random network
this decrease is steeper for �m

l than for uniform shock �u,
indicating that these parameters more strongly influence lo-
calized shocks compared to uniform ones.

An important addition to this analysis came from graph
theory [29], which gives an upper bound of spectral radius =
max{√siso}, where si and so are strengths of vertices. In our
case, these values are approximately of the order A/E and are
a leading contribution to this sudden collapse of the �m

l .
Up to now, we have considered the measure of localized

shock �m
l , but if we want to understand more details of the

distribution of risks in the network, we can take into consid-
eration all the components of vector �l , i.e., a maximal shock
with origin in any of the vertices in the network.

FIG. 6. Maximally allowed localized shock on CASD depending
on the number of vertices. On the y axis is �m

l , while on the x axis
is the size of the network n = ∈ [5, 100]. Parameter A/E is shown in
the legend and it takes values A/E ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.3}.

FIG. 7. �m
l on a random directed network depending on parame-

ter p. On the y axis is �m
l , while on the x axis is p ∈ 〈0, 1]. Network

sizes n ∈ {25, 50, 75, 100} are presented in the legend, while vertical
lines correspond to critical values of pc. The top, middle, and bottom
subfigures correspond to parameters A/E equal to 0.1, 0.2, and 0.5,
respectively.

FIG. 8. �m
l on a random directed network depending on param-

eter A/E . On the y axis is �m
l , while on the x axis is A/E ∈ 〈0, 1].

Network sizes n ∈ {25, 50, 75, 100} are presented in the legend. The
top, middle, and bottom subfigures correspond to parameters p equal
to 0.05, 0.1, and 0.3, respectively.
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FIG. 9. Histograms of vector components of localized shock �l

on the ensemble of N = 1000 random networks. The x axis is binned
on 100 bins and the values are normalized to make the surface equal
to 1. The parameters used for the top panel are n = 75, p = 0.1,
and A/E = 0.5. The parameters used for the middle panel are n =
50, p = 0.2, and A/E = 0.4. The parameters used for the bottom
panel are n = 50, p = 0.4, and A/E = 0.23.

For example, we have chosen representative parameters
to represent three different states of the system. In the top
panel of Fig. 9 most of the values are located around value 1,
signifying the overall stability of the network. In the middle
panel of Fig. 9 the distribution of values exhibits moves to
the smaller values, indicating a more stressed system. In the
bottom panel of Fig. 9, values are starting to cluster around
�l ≈ 0, signifying the system is close to falling apart. Such
a figure can give important information about the risk of the
system at a glance.

FIG. 10. Hypervolume measure �V evaluated on the CASD net-
work depending on the number of vertices. Computation is obtained
through N = 50 realization for each of parameters n ∈ [2, 50] and
for parameters A/E ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.3}. We have used
M = 104 points to evaluate hypervolume.

3. Measure of multiparametric shock �V

In the end, we consider the behavior of hypervolume as-
sociated shock �V dependence on network parameters. For
the approximation of n-dimensional hypervolume, we use the
previously described Monte Carlo method.

When comparing the results from Fig. 10 with the pre-
vious figures, we can observe that the measure �V exhibits
the steepest decline with respect to n. This indicates that it
evaluates the system parameters as more risky compared to
the other measures.

The trend of a steeper decline in �V is also evident in
Fig. 10 for an incompletely connected network. This result
holds for increases in any parameter, such as n, p, or A/E ,
as further illustrated in Figs. 11 and 12. We believe that the
reason for this behavior lies in the nature of the measure
itself. The hypervolume measure �V encompasses a larger
combination of initial shocks that could lead to bankruptcy,
compared to the measures �u and �l . It is important to note
that the hypervolume measure is inherently different from the
other proposed measures, as it does not measure the allowed
shock directly, but rather the relative size of the parameter
space in which shocks are mitigated.

Since the hypervolume is of dimension D = n, equal to
the number of institutions in the network, while the first
two measures are 1D and represent measures along vectors
spanning this hypervolume (localized shocks) or along the
diagonal (uniform shocks), one might naively expect that the
region protected from heterogeneous shocks scales as ∼hn. As
a result, the ratio of this region to the complete hypervolume
becomes very small for large system size n. This could explain
the more rapid decline of the hypervolume measure compared
to the other measures.

It is also important to stress that the sampling of higher
dimensional polytopes is a computationally expensive task if
the goal is to minimize relative errors. In that sense M = 104

points would not be enough; however, (i) the goal of this
research was to demonstrate the principle and (ii) we do not
evaluate one polytope but we compute on an ensemble of
polytopes which should in principle reduce the relative error
of the algorithm.

The largest relative errors are in points where the exact
hypervolume is finite but very small and the Monte Carlo mea-
sure hypervolume is zero. On the other hand, the relative error
is much smaller for the more common parameter choices.
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FIG. 11. Measure of hypervolume �V on a random network de-
pending on parameter p. Computations are evaluated on the ensem-
ble of N = 50 realizations for p ∈ 〈0, 1] and n ∈ {25, 50, 75, 100}.
Vertical lines correspond to critical values of pc for percolation on
random networks. Figures (a), (b), and (c) correspond to parameters
A/E equal to 0.05, 0.1, and 0.2. The Monte Carlo algorithm used
M = 104 points.

This is important for practical reasons, since in the financial
system a shock of small value is a common daily occurrence,
while the Monte Carlo method gives better estimates for more
realistic values of shock. In real systems one can use more
advanced algorithms for approximation of hypervolume like
VolEsti [30]. Another possible extension is using the historic
measures of individual shocks to sample points proportionally
to the expected probability of occurrence, which would better
describe border cases.

4. Application to real data

To test the effectiveness of our proposed measure, as we
lack data on real financial institutions, we conducted experi-
ments using data on Croatian company defaults. The network
we analyzed comprises unpaid financial obligations that re-
sulted in court settlements. Although the data is publicly
available, it is unstructured. The data set was collected as
part of a project funded by the Croatian banking union and
the findings were published in [31] (available in Croatian).
The same network was previously utilized in [32] to assess
a method for distinguishing between endogenous and exoge-
nous default cascades in financial networks.

For our analysis, we focused on a specific subsection of
the total network. In this subsection, each vertex represents a
company that defaulted and every vertex has outgoing links.
The network comprises 549 companies connected by 1198
edges, with a maximum degree of 60. By using this real-world

FIG. 12. Hypervolume measure �V on an incomplete random
network depending on parameter A/E . Computation is carried out
on an ensemble of N = 50 networks for A/E ∈ 〈0, 1] and n ∈
{25, 50, 75, 100}. The figures correspond to parameters p equal to
0.05, 0.1, and 0.2, respectively. The hypervolume is evaluated using
M = 104 points.

data set, we aimed to evaluate the performance of our measure
in a practical context.

In a study conducted in [32], it was demonstrated that fi-
nancial contagion endogenously spreads in the given network.
Therefore, we expect the presented measures of systemic risk
to indicate a highly risky situation. While we cannot alter the
structure of the network since it is predefined, we can vary
the equity of companies within the network to assess its level
of risk. The equity is determined by Ei = max(Ai, Li ) · F · ζi,
where ζi is a random variable drawn from a normal distribu-
tion with a mean of 1 and a standard deviation of 0.2. The
parameter F represents a multiplicative coefficient that can be
adjusted and is greater than 1.

To present the results on the same plot, we introduce a
scaled variant of �V , denoted as �SV , which is calculated
as �SV = �

1/N
V . This scaling ensures that �SV represents the

value of a 1D uniform shock that has the same volume as the
heterogenous shock. By using this scaling, we can compare
and visualize the results effectively.

In Fig. 13, the measured values of the shocks are reported
as a function of the multiplicative coefficient F . It is clear
that the smaller uniform shock was able to start the default
avalanche compared to localized shock; however, one has
to keep in mind that the financial value of uniform shock
spread over all the constituents was larger than any individual
shock needed to start the cascade. The heterogeneous shock
was hard to capture with our sampling method for values of
F < 20, due to the size of the system. Unsurprisingly, this
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FIG. 13. Different values of shock �U (circles), �l (squares),
and �SV (diamonds) as a function of the equity multiplication pa-
rameter F implemented on the network of Croatian defaults. �SV

cannot be reliably computed with an ordinary sampling scheme for
values of F < 20 due to system size.

network sample exhibits a large systemic risk for realistic
values of 1 < F < 5. Based on a historical analysis of this
systemic event in Croatia, the most likely culprit was a het-
erogeneous shock related to the change of laws, which forced
all companies to honor the maturities of their debts. This had
the effect that a portion of debts companies were avoiding
honoring had an immediate impact on the balance sheet of
these companies. The data set is available via the link provided
in [32].

V. CONCLUSIONS

This research has examined three proposed measures for
systemic risk in finance. We utilized the uniform shock mea-
sure (�u) to estimate the maximum simultaneous capital
decline in the system that can occur across all institutions
without any of them failing. The maximally localized shock
measure (�l ) represents the largest shocks that an indi-
vidual institution can withstand without leading to its own
bankruptcy or the bankruptcy of another institution in the
system. The hypervolume measure (�V ) is a generalized mea-
sure that considers all intervals of initial shocks and can be
approximately evaluated.

We analytically evaluated the measure equations for small
networks (n � 3) to gain insight into the significance of
different parameters. Additionally, we employed a large
ensemble of random networks to evaluate the proposed
measures on more realistic financial system models. Our ob-
servations yielded important findings.

First, among the presented measures, the measure of uni-
form shock decreases at the slowest rate with an increase in
system parameters, indicating that systems are more resilient
against broad, uniform external shocks. The functions for all
parameter ranges appear to be concave.

Second, the measure of localized shock decreases gradu-
ally with increasing parameters until reaching a region where
the system becomes highly susceptible to shocks from a single
institution. For all parameter ranges, we observed that the
functions seem to be convex.

Third, the hypervolume measure, which estimates het-
erogenous shocks, is the most conservative among the studied
measures. It decreases steeply, compared to the other mea-
sures, as parameters increase. Additionally, it exhibits a
combination of concave and convex regions depending on the
model parameters. Since this measure is strongly sensitive to
the size of the system, we also introduced a scaled measure
ψSV which is 1D and more practical to compare to other
measures.

The methodology explained here allows regulators to in-
tegrate conventional models for the probabilities of initial
shocks with systemic risk measures in order to calculate the
likelihood of systemic events within the system. An especially
crucial observation for regulators pertains to the behavior of
the maximum allowable localized shocks, which highlights
the system’s sudden vulnerability to small parameter changes.
Conversely, uniform shocks demonstrate lower sensitivity
to minor parameter adjustments, suggesting that regulators
need to exercise relatively less caution when simulating such
events.

We believe that this methodology can be of interest to
regulators as it provides information on how initial shocks
impact other components of the financial system, highlighting
institutions whose negative behavior can significantly affect
well-behaved institutions. In the future, we hope to evaluate
these measures using real financial data to gain a better under-
standing of their behavior in a more realistic setting.
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[20] S. M. Krause, H. Štefančić, G. Caldarelli, and V. Zlatić,
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