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An implementation of the generalized time-dependent generator coordinated method (TD-GCM) is developed,
that can be applied to the dynamics of small- and large-amplitude collective motion of atomic nuclei. Both the
generator states and weight functions of the GCM correlated wave function depend on time. The initial generator
states are obtained as solutions of deformation-constrained self-consistent mean-field equations, and are evolved
in time by the standard mean-field equations of nuclear density functional theory (TD-DFT). The TD-DFT
trajectories are used as a generally nonorthogonal and overcomplete basis in which the TD-GCM wave function
is expanded. The weights, expressed in terms of a collective wave function, obey a TD-GCM (integral) equation.
In this explorative paper, the generalized TD-GCM is applied to the excitation energies and spreading width of
giant resonances, and to the dynamics of induced fission. The necessity of including pairing correlations in the
basis of TD-DFT trajectories is demonstrated in the latter example.

DOI: 10.1103/PhysRevC.108.014321

I. INTRODUCTION

Two basic microscopic frameworks have been used in the
last decade for a quantitative analysis of collective time-
dependent processes in atomic nuclei. The first one includes
a number of models based on nuclear time-dependent density
functional theory (TD-DFT) [1–10]. Given a nuclear energy
density functional (EDF) and pairing interaction, TD-DFT
can be used to model a variety of complex phenomena, from
small-amplitude collective oscillations of the nuclear density,
to large-amplitude processes such as fission and heavy-ion
reactions. However, since the TD-DFT-based model describes
the classical evolution of independent nucleons in mean-field
potentials, that is, the propagation of the one-body den-
sity, it cannot describe the spreading widths of one-body
observables [11]. In the case of nuclear fission, in particu-
lar, TD-DFT automatically includes the one-body dissipation
mechanism, but can only simulate a single fission event
by propagating the nucleons independently. Therefore, even
though this approach has been very successful when calcu-
lating the total kinetic energy in the fission process, it cannot
be used for a quantitative estimate of the widths of charge or
mass fragment distributions.

In the time-dependent generator coordinate method
(TD-GCM) [12–16], the nuclear wave function is expressed
in terms of a superposition of generator states that are
functions of collective coordinates. GCM presents a fully
quantum mechanical approach but only takes into account
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collective degrees of freedom, such as shape variables and
pairing degrees of freedom. For time-dependent phenomena,
it has mostly been applied in the adiabatic Gaussian overlap
approximation, in which a Schrödinger-like equation governs
the time evolution of the nuclear wave function in the space
of collective coordinates. The dissipation of the energy of
collective motion into intrinsic degrees of freedom plays
an important role in the description of collective dynamics,
and, therefore, for a quantitative modeling of time-dependent
processes, it is necessary to expand the TD-GCM beyond the
adiabatic approximation. Several microscopic extensions
of TD-GCM that include diabatic effects have been
considered [14,17,18], but they are rather complex and
have yet to be implemented in a model that is realistic from a
computational point of view. In two recent studies [19,20], the
TD-GCM has been extended to allow for dissipation effects in
the description of induced fission dynamics. The framework
is based on the quantum theory of dissipation for nuclear
collective motion [21], and introduces a generalization of the
GCM generating functions that includes excited states, and
the resulting equation of motion in the collective coordinates
and excitation energy. In the case of induced fission, and
with a single phenomenological strength parameter of the
dissipation term, the model provides a quantitative description
of both the fission yields and total kinetic energy distributions.

Another possibility is to directly combine the TD-GCM
and TD-DFT, in an approach that preserves the quantum
mechanical description of collective dynamics intrinsic to
the GCM, and at the same time extends the GCM beyond
the adiabatic approximation. Here we adopt a method that
was originally introduced in Ref. [11], but fully developed
only more recently and applied to particle number restoration
in a description of transfer of particles between two finite
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superfluid systems [22], and to collective multiphonon states
in nuclei [23]. In this method, both the generator states and
weight functions of the GCM correlated wave function depend
on time. The initial generator states are obtained as solutions
of deformation-constrained self-consistent mean-field equa-
tions, and are evolved in time by the standard mean-field
equations of nuclear density functional theory (TD-DFT). The
TD-DFT trajectories are used as a generally nonorthogonal
and overcomplete basis in which the TD-GCM wave function
is expanded. The weights, expressed in terms of a collec-
tive wave function, obey a time-dependent GCM (integral)
equation.

In Sec. II we develop the theoretical framework, and spe-
cialize to the particular model that will be used in the present
and future calculations. Section III presents an illustrative
study of small-amplitude collective vibrations in 208Pb. The
response to the monopole, quadrupole, octupole, and hexade-
capole operators is analyzed, and it is shown that the inclusion
of mode coupling in the generalized TD-GCM is necessary
for the description of the spreading widths of resonances. As
a simple example of large-amplitude motion, in Sec. IV a
schematic TD-GCM description of induced fission dynamics
of 240Pu is discussed. Section V summarizes the results and
presents a brief outlook for future studies. In the Appendix we
include (a) an example of monopole oscillations of 16O for
which, in the case of a nonorthogonal and overcomplete basis
of TD-DFT trajectories, it is necessary to project, at each time
step, the eigenvectors of the overlap kernel with negligible
(close to zero) eigenvalues and (b) the details of the calcu-
lation of strength functions.

II. THEORETICAL FRAMEWORK: GENERALIZED
TIME-DEPENDENT GCM

In the framework of the generalized TD-GCM, the Griffin-
Hill-Wheeler (GHW) ansatz for the correlated nuclear wave
function reads [11,16,22]

|�(t )〉 =
∫

q
dq fq(t )|�q(t )〉, (1)

where the vector q denotes the continuous real generator
coordinates that parametrize, for instance, the shape of the
nucleus. The nuclear wave function is a linear superposi-
tion of, generally nonorthogonal, many-body generator states
|�q(t )〉, and fq(t ) are the corresponding complex-valued
weight functions. In the static case, in which the GCM is used
to calculate excitation spectra or restore broken symmetries,
neither the weight functions nor the generator states depend on
time. In most time-dependent applications, only the weights
fq(t ) are functions of time, while the generator states |�q〉
are usually solutions of constrained Hartree-Fock-Bogoliubov
(HFB) calculations, with constraints on the mass multipole
moments. This choice of generator states corresponds to the
adiabatic approximation, because their energy is minimized
under certain constraints, and remains such during the time
evolution of the system. The equation of motion of the TD-
GCM yields only the probability that the system will occupy
these predefined states [16], and does not include any dissipa-
tion mechanism.

In the generalized TD-GCM the generator states |�q(t )〉
are determined dynamically, starting from some initial con-
ditions. If specific constrained-HFB solutions are selected as
initial conditions, |�q(t )〉 are Slater determinants that obey
the TD-DFT (TD-HFB) equations, that is, they describe the
classical evolution of independent nucleons in self-consistent
mean-field potentials and correspond to trajectories in the
space of collective coordinates. The TD-DFT automatically
includes the one-body dissipation mechanism and, there-
fore, by combining the Slater determinants |�q(t )〉 with the
variationally determined equation of motion for the weight
functions fq(t ), one obtains a fully quantum mechanical
description of collective dynamics that goes beyond the adi-
abatic approximation and includes quantum fluctuations.

The model we employ in this explorative paper par-
allels the method developed in Ref. [22]. For simplicity,
pairing correlations are not taken into account, and the
discretized generator coordinates are the mass multipole mo-
ments (monopole, quadrupole, octupole, and hexadecapole)
of the nucleon density distribution. Thus, the nuclear wave
function

|�(t )〉 =
∑

q

fq(t )|�q(t )〉 (2)

is the solution of the time-dependent equation

ih̄∂t |�(t )〉 = Ĥ |�(t )〉, (3)

where Ĥ is the Hamiltonian of the nuclear system. From
a time-dependent variational principle [22], one obtains the
equation of motion for the weight functions

ih̄N ḟ = (H − HMF) f , (4)

which, in the discretized collective space, reads∑
q

ih̄Nq′q(t )∂t fq(t ) +
∑

q

HMF
q′q (t ) fq(t ) =

∑
q

Hq′q(t ) fq(t ).

(5)
The time-dependent kernels

Nq′q(t ) = 〈�q′ (t )|�q(t )〉, (6a)

Hq′q(t ) = 〈�q′ (t )|Ĥ |�q(t )〉, (6b)

HMF
q′q (t ) = 〈�q′ (t )|ih̄∂t |�q(t )〉 (6c)

include the overlap, the Hamiltonian, and the time deriva-
tive of the generator states, respectively.

A. Time-dependent Slater determinant |�q(t )〉
The time evolution of a Slater determinant characterized by

a generator coordinate q, for a nucleus with A nucleons

|�q(t )〉 =
A∏

k=1

c+
q,k (t )|−〉, (7)

is modeled by the time-dependent covariant density functional
theory [24,25]. The initial Slater determinant |�q(t = 0)〉 is
a solution of self-consistent mean-field equations, with con-
straints on the mass multipole moments of the nucleon density
distribution. The corresponding single-particle states φ

q
k (r, t )
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are solutions of the time-dependent Dirac equation

i
∂

∂t
φ

q
k (r, t ) = ĥq(r, t )φq

k (r, t ), (8)

where the single-particle Hamiltonian ĥq(r, t ) is given by

ĥq(r, t ) = α · ( p̂ − V q) + V 0
q + β(mN + Sq). (9)

Here, mN is the nucleon mass, and the scalar Sq(r, t )
and four-vector V μ

q (r, t ) potentials are determined by the
time-dependent densities and currents in the isoscalar-scalar,
isoscalar-vector, and isovector-vector channels. In this pa-
per we employ the point-coupling relativistic energy density
functional PC-PK1 [26], and the explicit expressions for the
potentials read

Sq(r) = αSρ
q
S + βS

(
ρ

q
S

)2 + γS
(
ρ

q
S

)3 + δS�ρ
q
S , (10a)

V μ
q (r) = αV jq,μ + γV

(
jq,μ jq

μ

)
jq,μ + δV � jq,μ + τ3αTV jq,μ

TV

+ τ3δTV � jq,μ
TV + e

1 − τ3

2
Aq,μ, (10b)

where τ3 is the isospin Pauli matrix, and Aq,μ is the elec-
tromagnetic vector potential. The densities and currents are
defined in terms of occupied single-particle wave functions
φ

q
k (r, t ):

ρ
q
S (r, t ) =

A∑
k

φ̄
q
k (r, t )φq

k (r, t ), (11a)

jq,μ(r, t ) =
A∑
k

φ̄
q
k (r, t )γ μφ

q
k (r, t ), (11b)

jq,μ
TV (r, t ) =

A∑
k

φ̄
q
k (r, t )γ μτ3φ

q
k (r, t ). (11c)

B. Overlap kernel Nq′q(t )

According to Eq. (7), the expression for the overlap kernel
Eq. (6a) can be written in the following form:

Nq′q(t ) = 〈�q′ (t )|�q(t )〉
= (−1)A(A−1)/2 〈−|cq′,1(t ) . . . cq′,A(t )c†

q,1(t )

× . . . c†
q,A(t )|−〉. (12)

The overlap between two Slater determinants can be calcu-
lated by the Pfaffian algorithms proposed in Refs. [27,28].

C. Energy kernel Hq′q(t )

For the point-coupling relativistic energy density func-
tional PC-PK1 [26], one obtains the expression for the energy
kernel H(t ), under the assumption [3] that it only depends on
the transition densities at time t :

Hq′q(t ) = 〈�q′ (t )|Ĥ |�q(t )〉

= 〈�q′ (t )|�q(t )〉 ·
∫

d3r {ρkin(r, t )

+ αS

2
ρS (r, t )2 + βS

3
ρS (r, t )3

+ γS

4
ρS (r, t )4 + δS

2
ρS (r, t )�ρS (r, t )

+ αV

2
jμ(r, t ) jμ(r, t ) + γV

4
( jμ(r, t ) jμ(r, t ))2

+ δV

2
jμ(r, t )� jμ(r, t )+ αTV

2
jμTV (r, t ) · [ jTV (r, t )]μ

+ δTV

2
jμTV (r, t ) · �[ jTV (r, t )]μ

+ e2

2
jμp (r, t )Aμ(r, t )}, (13)

where the densities and currents ρkin, ρS , jμ, jμTV , and jμp read

ρkin(r, t ) =
A∑
l1

A∑
l2

φ̄
q′
l1

(r, t )(−iγ · ∇ + mN )φq
l2

(r, t )ρ tran
l1l2 (t ),

(14a)

ρS (r, t ) =
A∑
l1

A∑
l2

φ̄
q′
l1

(r, t )φq
l2

(r, t )ρ tran
l1l2 (t ), (14b)

jμ(r, t ) =
A∑
l1

A∑
l2

φ̄
q′
l1

(r, t )γ μφ
q
l2

(r, t )ρ tran
l1l2 (t ), (14c)

jμTV (r, t ) =
A∑
l1

A∑
l2

φ̄
q′
l1

(r, t )τ3γ
μφ

q
l2

(r, t )ρ tran
l1l2 (t ), (14d)

jμp (r, t ) = 1 − τ3

2

A∑
l1

A∑
l2

φ̄
q′
l1

(r, t )γ μφ
q
l2

(r, t )ρ tran
l1l2 (t ). (14e)

The transition density matrix ρ tran(t ) is defined by the
following relation:

ρ tran
l1l2 (t ) = 〈�q′ (t )|c†

q′,l1 (t )cq,l2 (t )|�q(t )〉
〈�q′ (t )|�q(t )〉 . (15)

The numerator of the transition density matrix ρ tran
l1l2

(t ) is the
overlap between two Slater determinants with A − 1 particles.
It can be calculated using the Pfaffian algorithms [27,28].

D. Mean-field kernel HMF
q′q (t )

From the expression for the time evolution of
|�q(t )〉 [24,25],

ih̄∂t |�q(t )〉 =
A∑
l2

ĥq(r, t )c†
q,l2

(t )cq,l2 (t )|�q(t )〉, (16)

Eq. (6c) can be written in the form

HMF
q′q (t ) = 〈�q′ (t )|ih̄∂t |�q(t )〉

= 〈�q′ (t )|
A∑
l2

ĥq(r, t )c†
q,l2

(t )cq,l2 (t )|�q(t )〉. (17)

By expanding ĥq(r, t )c†
q,l2

(t ) in a complete basis c†
q′,l1 (t ),

ĥq(r, t )c†
q,l2

(t ) =
∑

l1

〈
φ

q′
l1

(r, t )|ĥq(r, t )|φq
l2

(r, t )
〉
c†

q′,l1 (t ), (18)
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one obtains for HMF
q′q (t ) the expression

HMF
q′q (t ) = 〈�q′ (t )|�q(t )〉 ·

A∑
l1

A∑
l2

〈
φ

q′
l1

(r, t )|ĥq(r, t )|φq
l2

(r, t )
〉

× ρ tran
l1l2 (t ). (19)

E. Projection of spurious solutions (symmetric
orthogonalization)

Because the basis of generator states �q(t ) is generally
nonorthogonal and overcomplete, it is necessary to remove
the eigenvectors of the overlap kernel with negligible (close
to zero) eigenvalues that preclude the inversion of the matrix
N 1/2 [22]. This is performed by diagonalizing the overlap
kernel N :

N = UDU† → Nqq′ =
∑

l

nlUqlU†
lq′ (20)

where D is the diagonal matrix of eigenvalues nl of the overlap
kernel, and the columns of U form an orthonormal eigenbasis.

Next, a projection operator P is defined that maps the
overlap kernel onto the subspace L of eigenvectors with eigen-
values different from zero (larger than some predefined cutoff
value nσ ):

Pqq′ =
∑

nl >nσ

UqlU†
lq′ . (21)

Note that both the overlap kernel and the projection operator
generally depend on time. The overlap kernel N and its in-
verse in the subspace L read

Nik = (PN )ik =
∑

nl >nσ

nl UilU†
lk, (22)

(N−1)ik =
∑

nl >nσ

(1/nl ) Uil U†
lk . (23)

Similarly, the energy kernel H and the mean-field kernel HMF

are projected onto the subspace L:

H = PH, HMF = PHMF. (24)

With these definitions, the time evolution of the weight func-
tions f in the subspace L is determined by the generalized
GHW equation [22]

ih̄ ḟ = N−1(H − HMF) f + ih̄Ṗ f . (25)

F. Collective wave function g(t )

Equation (25) is not a collective Schrödinger equation, and
the weight function fq(t ) is not a probability amplitude of
finding the system at the collective coordinate q. The cor-
responding collective wave function gq(t ) is defined by the
transformation [29]

g = N1/2 f , (26)

where the explicit expression for the square root of the overlap
kernel N reads

(N1/2)ik =
∑

nl >nσ

√
nl UilU†

lk . (27)

Inserting Eq. (26) into Eq. (25), one finally obtains for the
time evolution of the collective wave function [22]

ih̄ġ = N−1/2(H − HMF)N−1/2g + ih̄Ṅ1/2N−1/2g. (28)

This equation will be used in the following sections to model
small- and large-amplitude collective motion starting from
a variety of initial conditions, and with a fully quantum
mechanical configuration mixing of TD-DFT trajectories as
time-dependent basis states.

G. Observables Ô

The kernel of any observable Ô

Oq′q = 〈�q′ (t )|Ô|�q(t )〉 (29)

can be mapped to the corresponding collective operator Oc:

Oc = N−1/2ON−1/2. (30)

The expectation value of the observable Ô in the correlated
GHW state is

〈�(t )|Ô|�(t )〉 = f †O f = g†Ocg. (31)

This expression will be used, for instance, to evaluate the
time-dependent multipole moments of the one-body density
distribution.

III. COLLECTIVE VIBRATIONS OF 208Pb

As a first application, we perform an illustrative study of
small-amplitude oscillations of the spherical nucleus 208Pb.
All calculations are carried out on a lattice in coordinate
space [31–33], with the mesh spacing of 1 fm for all di-
rections, and the lattice size is Lx × Ly × Lz = 24 × 24 ×
24 fm3. The dynamics is determined by the point-coupling
relativistic energy density functional PC-PK1 [26]. The time-
dependent single-particle Dirac equation (8), which provides
the TD-DFT Slater determinants as basis states for the GHW
equation (28), is solved using the predictor-corrector method,
with the time step 0.2 fm/c (6.67 × 10−4 zs). The initial
states for the time evolution are obtained by self-consistent
constrained relativistic mean-field (RMF) calculations. The
calculated equilibrium binding energy of this spherical nu-
cleus is 1637.97 MeV and the corresponding matter radius is
5.617 fm, in excellent agreement with data.

We consider a basis of TD-DFT trajectories that describe
oscillations of different multipolarities and, by using the TD-
GCM, form a coherent superposition of these trajectories.
Specifically, we combine TD-DFT trajectories that correspond
to monopole, quadrupole, octupole, and hexadecapole oscil-
lations. The initial states represent deformation-constrained
mean-field solutions. For simplicity, axial symmetry is as-
sumed, and the initially constrained deformations Rinit =
5.737 fm, β20,init = 0.074, β30,init = 0.145, and β40,init = 0.1
all correspond to an energy approximately 6 MeV above the
spherical equilibrium minimum.

In Fig. 1 we analyze the response to the monopole op-
erator in 208Pb. The TD-DFT result is already in excellent
agreement with the experimental excitation energy of the
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FIG. 1. Monopole response of 208Pb, modeled with the TD-
GCM. Results obtained with three TD-DFT basis trajecto-
ries of initial moments Rinit = 5.737 fm, β20,init = 0.074, and
β30,init = 0.145 are shown in the left column. A hexadecapole TD-
DFT trajectory with β40,init = 0.1 is included in the time evolution
shown in the column on the right. The first row displays the eigen-
values of the overlap kernel, while the square moduli of components
of the collective wave function are shown in the second row. In the
third row the TD-DFT and TD-GCM radii are shown, and the corre-
sponding strength functions, in units of 103 fm4/MeV, are plotted in
the fourth row.

isoscalar giant monopole resonance (ISGMR). The corre-
sponding strength function of the monopole moment exhibits
a single pronounced peak that coincides with the experimental
ISGMR at 13.7 MeV. In the left column we compare the
TD-DFT result for monopole oscillations with the TD-GCM
calculation that combines three TD-DFT basis trajectories
(monopole, quadrupole, and octupole) of initial deformations
Rinit = 5.737 fm, β20,init = 0.074, and β30,init = 0.145. All
three eigenvalues of the overlap kernel are large and there is no
need for projection of spurious solutions. The collective wave
function is initially dominated by the monopole component,
but after about 500 fm/c the octupole mode becomes more
prominent. The dominant contributions of the monopole and
octupole components oscillate with a period of about 1500
fm/c, while the contribution of the quadrupole mode gener-
ally remains small for the entire interval of 2000 fm/c. This
result is consistent with the fact that the lowest excited level
in 208Pb is the state 3− at 2.61 MeV.

In the TD-GCM calculation illustrated in the column on
the right of Fig. 1 we have also included, in addition to the
monopole, quadrupole, and octupole, the hexadecapole TD-
DFT trajectory with β40,init = 0.1. One observes an oscillatory
behavior out of phase with the quadrupole component, but
both these components are generally much smaller than the

FIG. 2. The experimental ISGMR strength function in
208Pb [30], in units of 103 fm4/MeV, compared with the results of
the TD-DFT and TD-GCM (four basis trajectories) calculations. See
text for description.

monopole and octupole ones. As a consequence, the inclusion
of the hexadecapole trajectory produces only a minor effect
on the time evolution of the radius, as shown by comparing
the two panels in the third row. Generally, the TD-GCM radii
exhibit more damping compared to the TD-DFT result, and
this is also clearly demonstrated by the corresponding strength
functions shown in the fourth row of Fig. 1. In fact, when com-
pared with the experimental ISGMR strength function [30]
in Fig. 2, one notices the excellent agreement between the
data and the TD-GCM monopole strength function calculated
with four basis trajectories. This is not surprising. It is well
known that a simple time-dependent mean-field calculation
(TD-DFT here) is equivalent to the random phase approx-
imation (RPA) and, therefore, it generally reproduces the
excitation energies but not the widths of giant resonances.
By allowing for mode coupling, the TD-GCM goes beyond
the RPA level and, in principle, should be able to describe
the spreading width of resonances. The TD-GCM is, in fact,
equivalent to various second-RPA approaches that, in addition
to particle-hole (p-h) excitations, include also two-particle
two-hole states, etc., either directly or through coupling p-h
states to selected (multi) phonon states. In particular, it ap-
pears that our TD-GCM monopole strength function of 208Pb
is almost identical to the one calculated in a recent study of
the nuclear breathing mode of Ref. [34], in which, based on a
microscopic theory of nuclear response, it has been shown that
a parameter-free inclusion of beyond-mean-field correlations
of the quasiparticle-vibration coupling type in the leading ap-
proximation allows for a simultaneous realistic description of
the ISGMR in different mass regions (see Fig. 1 of Ref. [34]).
We have also verified the results by performing a longer TD-
GCM calculation, up to 3000 fm/c. While the TD-DFT radius
continues to oscillate with only slightly reduced amplitudes,
the TD-GCM radius that takes into account the coupling of
the monopole, quadrupole, octupole, and hexadecapole modes
is strongly damped after ≈2000 fm/c and the corresponding
strength function is very similar to the one shown in Fig. 2.

In Figs. 3–5, we display the corresponding TD-DFT and
TD-GCM results for the response to the quadrupole, oc-
tupole, and hexadecapole operators, respectively. In all three
cases the eigenvalues of the overlap kernels are large over
the entire interval of time evolution and there is no need to
perform projections onto a physical subspace. Generally, the
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FIG. 3. Quadrupole response in 208Pb, modeled using the TD-
GCM with four TD-DFT basis trajectories of initial moments
Rinit = 5.737 fm, β20,init = 0.074, β30,init = 0.145, and β40,init = 0.1.
The top panel displays the eigenvalues of the overlap kernel, and
the square moduli of components of the collective wave function
are shown in the second panel. In the third panel the time evolution
of the mean-field and GCM quadrupole moments is shown, with
the corresponding strength functions [MeV−1] plotted in the bottom
panel.

TD-GCM multipole moments exhibit a much more pro-
nounced damping compared to the TD-DFT results, as seen
by the time evolution of the quadrupole, octupole, and hex-
adecapole deformations, and by the corresponding strength
functions. In the case of quadrupole oscillations (Fig. 3), two
peaks are clearly identified. The higher lying peak at 12.3
MeV corresponds to the isoscalar giant quadrupole resonance,
while the one at 4.9 MeV is the low-energy, predominantly
0h̄ω quadrupole mode. From the time evolution of the com-
ponents of the collective wave function, one notices that the
strong damping of quadrupole oscillations dominantly arises
from the coupling with the hexadecapole and, to a lesser
extent, octupole mode. The octupole response is displayed in
Fig. 4, and here we also note a strong effect of mode coupling
in TD-GCM. The TD-DFT peak of the strength function at 3.1
MeV is not far from the position of the lowest experimental
3− state in 208Pb at 2.61 MeV. Mixing with the other com-
ponents in the TD-GCM collective wave function, initially in
particular with the monopole and hexadecapole modes, leads
to a pronounced damping of octupole oscillations. Finally,
the hexadecapole case is illustrated in Fig. 5. Already the
strength function of the TD-DFT hexadecapole deformation
parameter exhibits pronounced fragmentation, with the main

FIG. 4. Same as in the caption to Fig. 3, but for the octupole
response in 208Pb.

peak at 4.9 MeV (the lowest experimental 4+ state is found
at 4.32 MeV). From the time evolution of the components of
the collective wave function, we note that this mode strongly
mixes with the octupole and quadrupole ones. In fact, af-
ter about 500 fm/c the hexadecapole component is almost
completely suppressed. The oscillation is strongly damped, as
also shown by the corresponding strength function, and this
means that hexadecapole oscillations in 208Pb do not represent
a collective mode.

IV. LARGE-AMPLITUDE MOTION

As emphasized in the introduction, the principal motive
to develop the generalized TD-GCM is a description of
large-amplitude dynamics, such as the process of induced
fission. The idea is to use a basis of, generally nonorthogonal
and overcomplete, TD-DFT fission trajectories to build the
correlated TD-GCM wave function. TD-DFT automatically
includes the one-body dissipation mechanism, but can only
simulate a single fission event by propagating the nucleons
independently. With the coherent superposition of TD-DFT
trajectories in the generalized TD-GCM, fission dynamics is
described fully quantum mechanically in an approach that
extends beyond the adiabatic approximation of the standard
GCM and, at the same time, includes quantum fluctuations.
Here we only illustrate the idea with a simple example of two
TD-DFT trajectories, while a full analysis will be performed
in a forthcoming publication using an implementation of the
model that includes pairing correlations, that are essential for
a realistic modeling of fission observables.
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FIG. 5. Same as in the caption to Fig. 3, but for the hexadecapole
response in 208Pb.

The example we consider here are fission trajectories of
240Pu, that were also analyzed in the direct comparison of
TD-DFT and TD-GCM of Ref. [35]. To be able to follow fis-
sion trajectories, the lattice size is Lx × Ly × Lz = 20 × 20 ×
60 fm3, with the mesh spacing of 1 fm for all directions, and
the time step 0.2 fm/c. Given the initial single-nucleon wave
functions, determined in a mean-field approach with con-
straints on the collective coordinates in the three-dimensional
lattice space, TD-DFT propagates the nucleons independently
toward scission. Like in Ref. [35], an axially symmetric two-
dimensional collective space of quadrupole β20 and octupole
β30 deformation parameters of the nuclear density distribution
is considered. Since TD-DFT describes the classical evolution
of independent nucleons in mean-field potentials, it cannot be
applied in the classically forbidden region of the collective
space. The starting point of a fission trajectory is usually taken
below the outer barrier.

In the first case we examine a superposition of two close-
lying fission trajectories on the deformation energy surface of
240Pu, as shown in Fig. 6. The initial points are β20 = 1.05
and β30 = 2.37 for the first trajectory, and β20 = 1.05 and
β30 = 2.39 for the second. Both trajectories lead to scission
and remain very close during the time evolution of the fis-
sioning system. In the inset we also show the density profile
at the instant of scission. When these trajectories are used as
generator states of the generalized TD-GCM, their overlap
is large and, therefore, one of the eigenvalues of the overlap
kernel is close to 2, while the other vanishes. This is illustrated
in the top panel of Fig. 7, where one also notices that after scis-
sion both eigenvalues approach 1 asymptotically with time,

FIG. 6. TD-DFT fission trajectories from the initial points
β20 = 2.37 and β30 = 1.05, and β20 = 2.39 and β30 = 1.05, on the
deformation energy surface of 240Pu. The density profile at the instant
of scission is shown in the inset.

which means that the two trajectories become orthogonal.
This is because after scission they correspond to distinct pairs
of fragments with different particle numbers and, without
pairing correlations, automatically become orthogonal. The
evolution of the two components of the collective TD-GCM
wave function is plotted in the second panel, while the growth
of the quadrupole and octupole deformations on the way to
scission and beyond is compared to the TD-DFT trajectory in

FIG. 7. Fission of 240Pu with two TD-DFT trajectories with
initial points β20 = 2.37 and β30 = 1.05, and β20 = 2.39 and
β30 = 1.05, on the deformation energy surface. The top panel dis-
plays the eigenvalues of the overlap kernel, and the square moduli of
components of the TD-GCM collective wave function are shown in
the second panel. The time evolution of the quadrupole and octupole
deformations on the way to scission and beyond is compared to
the TD-DFT trajectory in the two lower panels. The vertical dashed
line denotes the instant of scission.
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FIG. 8. Same as in the caption to Fig. 6, but for the initial points
β20 = 2.36 and β30 = 1.06, and β20 = 2.37 and β30 = 1.05.

the two lower panels. In this simple example with only two
very similar TD-DFT generator states, the evolution of the
correlated collective wave function produces a fission event
that does not differ from the mean-field result.

The next case illustrates the importance of including pair-
ing correlations and/or finite temperature in the TD-GCM
description of fission dynamics. The two TD-DFT trajecto-
ries shown in Fig. 8 are not very different from the ones
that we have just discussed. They start from almost identical
initial points, and also remain very close during the entire
time evolution. However, because the trajectories are initially
orthogonal and correspond to pure mean-field Slater determi-
nants (the single-particle states are either fully occupied or
empty), in the absence of additional correlations they remain
orthogonal during the time evolution (top panel of Fig. 9).
Since the trajectories contain essentially the same physical

FIG. 9. Same as in the caption to Fig. 7, but for the initial points
β20 = 2.36 and β30 = 1.06, and β20 = 2.37 and β30 = 1.05.

information, the amplitudes of the corresponding components
of the collective wave function exhibit very fast unphysical os-
cillations before scission, and completely separate afterwards
(second panel). It appears that the evolution of the deforma-
tion parameters is hardly affected (lower two panels) but, of
course, no fission observables can be calculated with such a
collective wave function. It is thus important to include pairing
correlations or finite-temperature occupation factors, to ensure
that neighboring trajectories have nonvanishing overlaps.

V. SUMMARY AND OUTLOOK

Nuclear time-dependent density functional theory and the
generator coordinated method have been combined in a gen-
eralized framework, in which both the generator states and
weight functions of the GCM correlated wave function de-
pend on time. This approach goes beyond the usual adiabatic
approximation of the time-dependent GCM, and includes the
intrinsic one-body dissipation mechanism of TD-DFT. At the
same time, it extends the semiclassical TD-DFT to a fully
quantum mechanical description of collective dynamics.

For the time-dependent problem, the initial states are ob-
tained as solutions of deformation constrained self-consistent
mean-field equations. These states are evolved in time by the
standard mean-field equations of nuclear DFT. The resulting
trajectories form a generally nonorthogonal and overcomplete
basis in which the TD-GCM wave function is expanded. The
weights, expressed in terms of a collective wave function,
obey a time-dependent GCM (integral) equation. In its current
implementation, the generalized TD-GCM does not include
pairing correlations or finite temperature effects and, there-
fore, has only limited applicability. In this preliminary paper,
the model has been applied to few representative cases of
small- and large-amplitude collective motion in nuclei. All
calculations have been performed using the relativistic energy
density functional PC-PK1.

In the first example we have considered small-amplitude
collective oscillations of 208Pb. The response to the monopole,
quadrupole, octupole, and hexadecapole operators has been
analyzed. The TD-DFT basis trajectories are initiated using
the self-consistent mean-field solutions with constraints on the
corresponding deformation parameters, and evolved in time
over many periods of oscillations. The Fourier transform of
the time-dependent monopole moment determines the cor-
responding strength function that can directly be compared
to data. Even though already the TD-DFT strength functions
yield excitation energies that are in qualitative agreement with
data, it is only with the inclusion of mode coupling in the
TD-GCM that the spreading widths of resonances can be
described. This has been illustrated, in particular, for the IS-
GMR of 208Pb, for which both the empirical excitation energy
and width are reproduced by the TD-GCM calculation. An
interesting feature is also the possibility to follow in time the
contribution of the various multipoles in the correlated collec-
tive wave functions and, therefore, the method is equivalent to
the particle-vibration coupling beyond-mean-field approach.

As an example of large-amplitude motion, we have ana-
lyzed the TD-GCM description of induced fission dynamics
of 240Pu. In the simplest case just two fission trajectories can
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form the TD-DFT basis of the GCM wave function. They can
be selected in such a way that their initial overlap is large or
small, and the resulting TD-GCM fission dynamics examined.
Although schematic, this example indicates the necessity of
including pairing correlations and/or finite temperature ef-
fects in the basis of TD-DFT fission trajectories.

The implementation developed and applied in the present
paper has clearly shown the potential of the generalized TD-
GCM framework for a quantitative description of small- and
large-amplitude collective motion in nuclei, based on uni-
versal EDFs. For a given EDF and pairing interaction, the
GCM can be used to simultaneously describe low-energy
spectroscopy for various intrinsic deformations, excitation
energies and spreading widths of giant resonances, and fis-
sion dynamics that includes both dissipation and quantum
fluctuations. In the second part of this paper, we will ap-
ply an implementation of the generalized TD-GCM that
includes pairing correlations and finite temperature effects to
a quantitative study of induced fission dynamics. Then, more
illustrative examples including different fission systems, such
as more neutron-rich Pu isotopes and/or U isotopes [36,37],
could be studied.
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APPENDIX

1. Monopole oscillations of 16O

In this example, small-amplitude monopole oscillations of
16O are analyzed. The mesh spacing is 0.8 fm for all direc-
tions, and the lattice size is Lx × Ly × Lz = 19.2 × 19.2 ×
19.2 fm3. The energy density functional is again PC-PK1, and
the time-dependent single-particle Dirac equation is solved
using the predictor-corrector method, with the time step 0.2
fm/c. As in the case of 208Pb in Sec. III, the initial states
for the time evolution are obtained by constrained mean-field
calculations.

The calculated equilibrium binding energy of 16O is 127.29
MeV and the corresponding matter radius is 2.64 fm. To
illustrate the role of projection, we have performed a TD-
GCM calculation of monopole oscillations with two, four, and
six TD-DFT basis trajectories. The results obtained without
projecting the kernels on the space of eigenvectors of the
overlap kernel with nonzero eigenvalues are shown in Fig. 10.

The monopole operator is simply r2, and we follow the time
evolution of the system up to 2000 fm/c. The three columns
compare results obtained with two TD-DFT trajectories of
initial radii 2.5 and 2.8 fm; four trajectories of initial radii
2.5, 2.6, 2.7, and 2.8 fm; and six trajectories of initial radii
2.5, 2.55, 2.6, 2.7, 2.75, and 2.8 fm, respectively. In each
case, the choice of initial radii corresponds to constrained
RMF calculations in which the equilibrium mean-field state
is either compressed or expanded. In the first row the eigen-
values of the overlap kernel are displayed on a logarithmic
scale, while the square moduli of components of the collective
wave function are shown in the second row. The third row
displays the evolution of the TD-DFT and TD-GCM radii, and
the corresponding strength functions are plotted in the fourth
row. In all three examples the TD-DFT radii correspond to a
single trajectory with the initial radius of 2.5 fm. Even though
one expects that, in a light nucleus such as 16O, monopole
oscillations will exhibit pronounced fragmentation, the TD-
DFT strength function displays a peak structure concentrated
in the energy interval between 20 and 25 MeV.

By comparing the three columns of Fig. 10, we note that,
without projecting out the spurious eigenvectors of the overlap
kernel, stable and realistic TD-GCM results are only obtained
in the case with just two TD-DFT trajectories. Both eigen-
values of the overlap kernel are large and constant in time,
the evolution of the two components of the collective wave
function can be nicely traced in time, and, as a result of this
mixing, the signal (TD-GCM radius) exhibits more damping
than in the mean-field case. This effect is also clearly reflected
in the corresponding strength function, with the main peaks
reduced in comparison to the TD-DFT ones. In the second
and third column, we note that two and four eigenvalues of
the overlap kernel, respectively, are very small. As a result,
the components of the collective wave function exhibit very
fast unphysical oscillations, and the radius immediately takes
unphysical values such that the corresponding strength func-
tions could not be determined.

In Fig. 11 we display the TD-GCM results obtained with
the same choice of TD-DFT trajectories and initial radii but, at
each time step, the kernels are projected onto the subspace of
eigenstates of the overlap kernel with eigenvalues larger than
nσ = 0.05. In both cases of four and six trajectories, only two
eigenstates are left after projection. Since these are expressed
in terms of the original TD-DFT trajectories, the collective
wave function has four and six components, respectively.
Compared to the calculation without projection, in all cases
we are able to follow the TD-GCM evolution of the radius
up to 2000 fm/c, and determine the corresponding strength
functions. Even though the collective wave function exhibits
more mixing in the cases with four and six basis trajectories,
in all three examples the signals are very similar, as are the
strength functions.

2. Strength function

Let us assume that a nucleus is initially in its ground state
|�0〉, with energy E0 = 0 at t = −∞, and that an external
field Vext (t ) is adiabatically switched on:

Vext (t ) → V ′
ext (t ) = lim

ε→0
Vext (t )eεt . (A1)
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FIG. 10. Small-amplitude monopole oscillations of 16O, modeled with the TD-GCM. Results obtained with two TD-DFT basis trajectories
of initial radii 2.5 and 2.8 fm; four trajectories of initial radii 2.5, 2.6, 2.7, and 2.8 fm; and six trajectories of initial radii 2.5, 2.55, 2.6, 2.7, 2.75,
and 2.8 fm are shown in the left, middle, and right column, respectively. The first row displays the eigenvalues of the overlap kernel, while the
square moduli of components of the collective wave function are shown in the second row. In the third row the TD-DFT and TD-GCM radii
are shown, and the corresponding strength functions, in units of 103 fm4/MeV, are plotted in the fourth row.

The external field can be expressed in terms of a Fourier
transform (ω � 0):

Vext (t ) =
∫ ∞

0
[Vext (ω)Fe−iωt + V ∗

ext (ω)F †eiωt ] dω, (A2)

where F is an arbitrary one-body operator. Accordingly,
V ′

ext (t ) reads

V ′
ext (t ) = lim

ε→0

∫ ∞

0
[Vext (ω)Fe−i(ω+iε)t + V ∗

ext (ω)F †ei(ω−iε)t ] dω.

(A3)

At time t the nucleus will be in the state

|�(t )〉 = |�0〉− i
∑

n

e−iEnt
∫ t

−∞
dt ′eiEnt ′ |�n〉〈�n|V ′

ext (t
′)|�0〉

(A4)
in a first-order approximation with respect to V ′

ext (t ). Here,
|�n〉 and En are the nth excited state and its excitation en-
ergy, respectively. From the expression of Eq. (A3) for V ′

ext (t ),
Eq. (A4) can be written in the form

|�(t )〉 = |�0〉 +
∑

n

|�n〉 × lim
ε→0

∫ ∞

0

[
Vext (ω)〈�n|F |�0〉

ω − En + iε

× e−i(ω+iε)t − V ∗
ext (ω)〈�n|F †|�0〉

ω + En − iε
ei(ω−iε)t

]
dω.

(A5)

The time-dependent expectation value of the operator is de-
fined

F (t ) = 〈�(t )|F †|�(t )〉 − 〈�0|F †|�0〉

= lim
ε→0

∫ ∞

0
Vext (ω)S(F ; ω)e−i(ω+iε)t dω + . . . , (A6)

where S(F ; ω) is the strength function:

S(F ; ω) =
∑

n

( |〈�n|F |�0〉|2
ω − En + iε

− |〈�n|F †|�0〉|2
ω + En − iε

)
. (A7)

The time evolution of F (t ) can also be expressed in terms of
a Fourier transform:

F (t ) =
∫ ∞

0
[F (ω)e−iωt + F ∗(ω)eiωt ] dω. (A8)

From Eqs. (A6) and (A8), one obtains the strength function
S(F ; ω):

S(F ; ω) = F (ω)

Vext (ω)
. (A9)

If initially the nucleus is constrained, as in the present paper,
by a mass multipole moment of the density distribution, the
external potential Vext (t ) takes the form

Vext (t ) ≡ Vconstr (t ) = λFθ (−t ), (A10)
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FIG. 11. Same as in the caption of Fig. 10, but the results with four and six TD-DFT trajectories are obtained after projecting the kernels
onto the subspace of eigenstates of the overlap kernel with eigenvalues larger than nσ = 0.05.

where θ (t ) denotes the Heaviside step function, λ is the con-
straint parameter, and F is the operator that corresponds to the
specific constraint. Therefore, the Fourier transform Vext (ω)
reads

Vext (ω) = lim
δ→0

1

2π

∫ ∞

−∞
[λθ (−t )e−i(ω+iδ)t ] dt = λ

2π iω
,

(A11)

and, finally, the strength function S(F ; ω) can be evaluated
using the expression

S(F ; ω) = 2π iωF (ω)

λ
. (A12)
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