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Finite-temperature effects in electromagnetic transitions in nuclei contribute to many aspects of nuclear
structure and astrophysically relevant nuclear reactions. While electric dipole transitions have already been
extensively studied, the temperature sensitivity of magnetic transitions remains largely unknown. This work
comprises the study of isovector magnetic dipole excitations (M1) occurring between spin-orbit (SO) partner
states using the recently developed self-consistent finite-temperature relativistic quasiparticle random-phase
approximation (FT-RQRPA) in the temperature range from T = 0 to 2 MeV. The M1 strength distributions
of 40−60Ca and 100−140Sn isotopic chains exhibit a considerable temperature dependence. The M1 strength peaks
shift significantly towards the lower energies due to the decrease in SO splitting energies and weakening of
the residual interaction, especially above the critical temperatures where the pairing correlations vanish. By
exploring the relevant two-quasiparticle configurations contributing to the M1 strength of closed- and open-shell
nuclei, new proton and neutron excitation channels between SO partners are observed in low- and high-energy
regions due to the thermal unblocking effects around the Fermi level. At higher temperatures, we have noticed
an interesting result in 40,60Ca nuclei, the appearance of M1 excitations, which are forbidden at zero temperature
due to fully occupied (or fully vacant) spin-orbit partner states.

DOI: 10.1103/PhysRevC.109.024305

I. INTRODUCTION

A comprehensive understanding of the magnetic dipole
(M1) nuclear response is essential to various aspects of
nuclear structure phenomena, such as isospin-mixing, isospin-
splitting, and ground-state correlations [1–3]. It also aids in
the study of radiative neutron capture, which has a key role
in the production of neutron-rich elements in hot stellar envi-
ronments [4–7]. Several experimental and theoretical studies
have revealed intriguing behavior in γ -ray strength functions
(γ SFs), and a notable enhancement is observed in the strength
function toward lower transition energies [8–15]. The fine
structure of strength functions in the Eγ = 5–8 MeV region is
generally determined using the low-energy part of the electric
dipole (E1) response; however, some studies also suggest
an anomalous increase below 4 MeV in the γ SF, which is
attributed to the M1 strength [16–19]. Thus, more research is
required to explore the role of M1 excitations in the γ SF. The
M1 spin-flip excitations are obtained at higher excitation ener-
gies around 8 MeV, which has so far been difficult to measure
experimentally [1]. Furthermore, the so-called scissors mode
of M1 excitations in deformed nuclei was initially proposed in
Ref. [20] and later observed at energies around 3 MeV. This
observation is attributed to the scissorlike motion of neutrons
and protons relative to each other [21–23].
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M1 excitations exhibit a wide range of characteristics
related to their energies, transition strengths, and decay prop-
erties, which are expected to be sensitive to the extreme
conditions of temperature (T ), isospin (N/Z), and defor-
mation (β) of nuclei. Recently, the relativistic quasiparticle
random-phase approximation (RQRPA) has been utilized to
investigate the role of residual interaction, spin-orbit (SO)
splitting, pairing correlations, and neutron excess in the M1
response [24–28]. Temperature can also significantly im-
pact the electromagnetic nuclear response, which in turn
modifies astrophysically relevant quantities such as neutron
capture cross section, nuclear reaction rates, and element
abundances. However, the measurement of M1 transitions in
highly excited nuclei poses a substantial challenge from an
experimental standpoint. Previous studies of excitations in
hot nuclei have considered mainly electric giant dipole res-
onance [29,30], primarily based on measurements of γ decay
following fusion reactions induced by heavy-ion collisions
[31], or alternatively by inelastic scattering of α particles
[32,33] or α-induced fusion reactions [34]. From the decay
of the compound nucleus, one could, at least in principle,
also investigate M1 emissions at finite temperature. How-
ever, to detect typically low-yield and complex M1 emissions,
highly efficient γ detector arrays with high-energy resolution
would be required. The Oslo method could also be useful
to extract γ rays associated with M1 emissions from nuclei
at high-excitation energies produced in transfer and inelastic
scattering reactions with light ions, up to the neutron (pro-
ton) threshold [35,36]. Given the challenges associated with
experimental studies, theoretical calculations become a more
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feasible and practical approach to study these excitations in
hot nuclei.

In previous studies, temperature effects in electric multi-
pole excitations have been investigated using several exten-
sions of the random-phase approximation (RPA) [37–42]. The
finite-temperature quasiparticle RPA based on the Skyrme
functional has been used in studies of the electric multipole
responses of hot nuclei in Refs. [38–40]. A self-consistent
finite-temperature relativistic RPA (FT-RRPA), based on
meson-exchange interaction, has been successfully employed
to study the evolution of isoscalar and isovector electric
multipole modes with temperature; however, the pairing
correlations were not implemented in this approach [41].
Furthermore, finite-temperature relativistic time-blocking ap-
proximation (FT-RTBA) approach, based on Matsubara
Green’s function formalism, has been developed to investigate
the electric nuclear response in excited nuclei [43,44]. Lately,
electromagnetic strength distributions in both closed-shell and
open-shell nuclei have been obtained from first principles
at zero and finite temperatures, taking into account pairing
and deformation effects [15]. Additionally, a self-consistent
finite-temperature relativistic quasiparticle RPA (FT-RQRPA)
has been introduced for non-charge-exchange excitations at
finite temperatures, which also includes pairing correlations to
address open-shell nuclei [45]. It has been employed to study
the thermal effects on isovector E1 excitations, demonstrat-
ing how the isovector giant dipole resonance and low-energy
dipole excitations evolve with increasing temperature. It has
been shown that new low-energy states appear due to the
thermal unblocking effects. Consequently, the FT-RQRPA
provides new perspectives for the microscopic calculation
of γ SFs at finite temperatures associated with nuclear phe-
nomena in stellar environments. Therefore, it is of particular
interest to analyze the thermal effects on M1 excitations as
well as their contributions to γ SFs relevant for nucleosynthe-
sis. In this work, we focus on M1 excitations, characterized
by unnatural parity transitions, for which additional modifica-
tions of the residual FT-RQRPA interaction are required. More
details about the RQRPA formalism for magnetic transitions
and their properties in the zero-temperature limit can be found
in Refs. [24–28,46].

The novelty of the present study lies in its exploration of
the temperature dependence of isovector (IV) M1 (Jπ = 1+)
excitations using the newly developed FT-RQRPA frame-
work for nuclei in the 40−60Ca and 100−140Sn isotopic chains.
To study the unnatural parity excitations of M1 type, the
FT-RQRPA residual interaction is further extended by intro-
ducing the relativistic isovector-pseudovector (IV-PV) contact
interaction [26]. The primary goals of this work are (i) to
investigate the evolution of M1 strength distributions with
increasing temperature and isospin of nuclei, (ii) to study
the impact of temperature on the SO splitting energies and
their relation with the M1 nuclear response, (iii) to examine
the isovector M1 non-energy-weighted and energy-weighted
summations as a function of temperature and mass number,
and (iv) to identify the new M1 proton and neutron excitations
in the low-energy as well as the high-energy region.

The paper is organized as follows: a brief description of
the FT-RQRPA framework used in this study is given in

Sec. II. The extension of the residual interaction for unnatural
parity M1 excitations is explained. Section III presents the
FT-RQRPA results and discussions of M1 excitations in Ca
and Sn isotopic chains in the temperature range T = 0–2
MeV. Finally, a summary of the results and conclusions are
outlined in Sec. IV.

II. METHODOLOGY

In this work, we extend the FT-RQRPA from Ref. [45]
for the study of unnatural parity excitation of M1 type. The
nuclear properties are described within the finite-temperature
Hartree-Bardeen-Cooper-Schrieffer (FT-HBCS) framework
[47,48]. In both the FT-HBCS and FT-RQRPA frameworks,
the relativistic energy density functional (REDF) with point
coupling DD-PCX interaction is implemented [49]. The point-
coupling REDF is determined from the Lagrangian density,

L = LPC + LIV-PV, (1)

where LPC includes fermion contact interaction terms as
isoscalar-scalar, isoscalar-vector, and isovector-vector chan-
nels (for detailed information, see Refs. [49,50]). The
Lagrangian density (1) also includes the relativistic isovector-
pseudovector (IV-PV) contact interaction, which is necessary
for the FT-RQRPA residual interaction for the unnatural parity
excitations of the M1 type [26],

LIV-PV = −1

2
αIV-PV[�̄Nγ 5γ μ�τ�N ] · [�̄Nγ 5γμ�τ�N ]. (2)

The coupling strength parameter αIV-PV = 0.63 MeV fm3 for
DD-PCX [49] parametrization is obtained by minimizing the
relative error � � 1 MeV between the experimentally deter-
mined M1 peak position and theoretically calculated centroid
energies for magic nuclei 48Ca and 208Pb [26,46]. Note that
the pseudovector type of interaction has been modeled as
a scalar product of two pseudovectors, which leads to the
parity-violating mean field at the Hartree level. Thus, it does
not make a contribution to the solution of natural-parity states,
including the 0+ nuclear ground state. However, LIV-PV has a
finite contribution in the FT-RQRPA residual interactions for
M1 excitations.

At finite temperature, the occupation probabilities of
single-particle states are given as

ni = v2
i (1 − fi ) + u2

i fi, (3)

where ui and vi are the BCS amplitudes. The temperature-
dependent Fermi-Dirac distribution function is given by

fi = [1 + exp(Ei/kBT )]−1, (4)

wherekB is the Boltzmann constant and T is the temperature.
The quasiparticle energy of a state is given by

Ei =
√

(εi − λq)2 + �2
i , (5)

where εi denotes the single-particle energies and λq represents
the chemical potentials for either proton or neutron states. �i

refers to the pairing gap of the given state. A separable form
of pairing interaction is introduced in both the FT-HBCS and
FT-RQRPA approaches, also including the same relativistic
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point-coupling interaction, DD-PCX [51]. The values of crit-
ical temperatures (Tc), where the pairing correlations vanish,
are calculated using the FT-HBCS with DD-PCX interaction.
For instance, the Tc values of open-shell 44Ca, 52Ca, 56Ca,
64Ca, 108Sn, 116Sn, 124Sn, and 140Sn nuclei are obtained as
0.862, 0.528, 0.743, 0.700, 0.872, 0.834, 0.764, and 0.644
MeV, respectively.

The non-charge-exchange FT-RQRPA matrix is given by

⎛
⎜⎜⎝

C̃ ã b̃ D̃
ã+ Ã B̃ b̃T

−b̃+ −B̃∗ −Ã∗ −ãT

−D̃∗ −b̃∗ −ã∗ −C̃∗

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P̃
X̃
Ỹ
Q̃

⎞
⎟⎟⎠ = Ew

⎛
⎜⎜⎝

P̃
X̃
Ỹ
Q̃

⎞
⎟⎟⎠, (6)

where Ew denotes the excitation energies, and P̃, X̃ , Ỹ , and Q̃
represent the corresponding eigenvectors, which are given by

X̃ab = Xab

√
1 − fa − fb, (7)

Ỹab = Yab

√
1 − fa − fb, (8)

P̃ab = Pab

√
fb − fa, (9)

Q̃ab = Qab

√
fb − fa. (10)

The T -dependent matrix elements are given as

Ãabcd =
√

1 − fa − fbA′
abcd

√
1 − fc − fd

+ (Ea + Eb)δacδbd , (11)

B̃abcd =
√

1 − fa − fbBabcd

√
1 − fc − fd , (12)

C̃abcd =
√

fb − faC
′
abcd

√
fd − fc

+ (Ea − Eb)δacδbd , (13)

D̃abcd =
√

fb − faDabcd

√
fd − fc, (14)

ãabcd =
√

fb − faaabcd

√
1 − fc − fd , (15)

b̃abcd =
√

fb − fababcd

√
1 − fc − fd , (16)

ã+
abcd = ãT

abcd =
√

fd − fca+
abcd

√
1 − fa − fb, (17)

b̃T
abcd = b̃+

abcd =
√

fd − fcbT
abcd

√
1 − fa − fb, (18)

where Ea(b) is the quasiparticle energy of the states obtained
from the FT-HBCS results. The FT-QRPA equations were
initially derived by Sommermann in Ref. [37], however, they
were only applied to a schematic model. In the present work,
we extend the FT-QRPA formalism from Ref. [37] by im-
plementing the REDF with density-dependent point-coupling
interactions for the study of the M1 response at finite tem-
perature. The detailed description of the FT-QRPA matrices is
given in Refs. [37,39,40]. The FT-RQRPA matrix in Eq. (6) is
diagonalized in a self-consistent way, allowing for a detailed
analysis of each excitation on a state-by-state basis. We note
that the A and B matrices contribute at T = 0 and at T �= 0 as
well; however, other matrix elements begin to contribute only
at finite temperature due to the changes in occupation factors
as well as the temperature factors. The reduced transition
probability is given by

B(MJ ) = ∣∣〈w||F̂J ||̃0〉∣∣2 =
∣∣∣∣∑

c�d

{[
X̃ w

cd + (−1) jc− jd +JỸ w
cd

]
[ucvd + (−1)Jvcud ]

√
1 − fc − fd

+ [
P̃w

cd + (−1) jc− jd +J Q̃w
cd

]
[ucud − (−1)Jvcvd ]

√
fd − fc

}〈c||F̂J ||d〉
∣∣∣∣2

, (19)

where |w〉 is the excited state and |̃0〉 is the correlated FT-
RQRPA vacuum state, and F̂J is the transition operator of the
relevant excitation. To evaluate the magnetic dipole strength,
we use the IV-M1 operator for the kth nucleon as

μ̂M1,IV
w = μN

√
3

4π

∑
k∈A

[
gIV

s ŝw(k) + gIV
l l̂w(k)

]
τ̂0(k), (20)

including the spin ŝw and the orbital angular momentum l̂w.
The isospin convention is used as τ̂0(k) = 1(−1) for protons
(neutrons). μN = eh̄/(2mN ) denotes the nuclear magneton,
and the nuclear spin and orbital g factors for the IV-M1 mode
are gs = 4.706 and gl = 0.5 (see Refs. [26,52] for more de-
tails). The total M1 transition strength can also be written in
a compact form to identify the role of particular proton or
neutron configurations,

B(M1, Ew ) =
∣∣∣∣∑

c�d

[
bπ

cd (Ew ) + bν
cd (Ew )

]∣∣∣∣2

. (21)

Here, Ew is excitation energy obtained from the FT-RQRPA
discrete M1 spectra. The bπ

cd (Ew) and bν
cd (Ew ) represent the

proton (π ) and neutron (ν) partial contributions for a specific
configuration. The two-quasiparticle (2qp) cutoff energy for
the configuration space Ecut is selected as 100 MeV, to provide
a sufficient convergence in the M1 excitation strength. For the
presentation of the results, the discrete FT-RQRPA spectrum
of M1 response is smoothed with a Lorentzian function of
 = 1.0 MeV width [52].

III. RESULTS

A. Calcium isotopes

The M1 excitation at the leading one-body operator level
would take place between the spin-orbit (SO) partner orbits,
provided the independent single-particle picture is a good ap-
proximation [25]. Thus, the M1 response provides important
information on the underlying SO splittings. However, in the
REDF framework, the M1 properties depend not only on the
SO splittings but also on the effects of the residual interaction
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FIG. 1. The spin-orbit splitting energies �εLS of neutron (a) and
proton (b) configurations as a function of temperature for the 52Ca
nucleus.

in the RQRPA [25]. The SO splitting energies are calculated
as

�εLS = εnl j< − εnl j>, (22)

where (nl j) are the quantum numbers of major SO-partner
single-particle states, and j< = l − 1/2 and j> = l + 1/2. In
Figs. 1(a) and 1(b), the SO splitting energies are displayed
both for neutrons and protons as a function of temperature for
52Ca. We note that the single-particle energies can easily be
affected by the inclusion of temperature in the calculations,
which, in turn, modifies the SO splitting. It is clearly seen
from Fig. 1 that the SO splitting energy is temperature depen-
dent. While the SO splitting energy remains almost constant
up to the critical temperature Tc = 0.528 MeV, it gradually
starts decreasing at higher temperatures. This reduction of the
SO splitting energies above Tc will modify the M1 response
in both the low-energy and high-energy regions, as we will
discuss below.

In Fig. 2, we display the M1-transition strength distribu-
tions of 40−60Ca nuclei with increasing temperature. First,
we consider the results at T = 0 MeV for 40Ca (Z, N = 20),
showing the absence of any M1 response, as (1p3/2, 1p1/2)
and (1d5/2, 1d3/2) states are fully occupied for protons and
neutrons; therefore, no SO partners are available for the M1
transition. Similarly, for 60Ca with N = 40 neutrons, states
up to 1 f5/2 and 2p1/2 are fully occupied, and hence the M1
transition is forbidden. Thus, no M1 response is obtained for
these two nuclei at zero temperature. For 44−56Ca, one can
see a strong peak in each isotope that attributes to the M1
excitation of valence neutron transitions ν(1 f7/2 → 1 f5/2),
whereas M1 transitions are not present for protons due to
the shell closure at Z = 20. A low-energy M1 peak is also
observed in 52,56Ca nuclei due to the ν(2p3/2 → 2p1/2)
transition. More details about the evolution of M1 strength
along the 40−60Ca isotopic chain at zero temperature are given
in Ref. [25].

Further, it is clearly evident from Fig. 2 that M1-transition
strength distributions are sensitive to changes in temperature.
At T = 0.5 MeV, the results do not change much in Ca

FIG. 2. The isovector M1-transition strength distributions of
40−60Ca isotopes, calculated using the FT-RQRPA at temperatures of
T = 0, 0.5, 1, and 2 MeV.

isotopes. By increasing temperature further, at T = 1 and 2
MeV, an interesting outcome is observed for the case of 40Ca
and 60Ca. The M1-transition strength suddenly appears for
these isotopes due to the emergence of new transitions in
the ν, π (1d5/2, 1d3/2) and ν, π (1 f7/2, 1 f5/2) configurations.
This occurs because particles are promoted to higher-energy
orbits as a result of temperature effects, leading to the thermal
unblocking of forbidden M1 transitions. It is also noticed in
Fig. 2 that the M1 response shifts up to ≈2 MeV to the lower
energies for 44,48,52,56Ca with increasing temperature. In addi-
tion to the decrease in the pairing correlations for open-shell
nuclei and softening in the repulsive residual interaction, the
changes in the M1 response are also linked to the SO splitting
energies, which reduce with increasing temperature, as shown
in Fig. 1. Due to the thermal unblocking of states, new proton
and neutron transitions also become possible in both high-
energy (E > 5 MeV) and low-energy (E < 5 MeV) regions
of open-shell nuclei 44,48,52,56Ca. In the high-energy region
of these nuclei, proton and neutron (1 f7/2 → 1 f5/2) transi-
tions are the major contributors to the M1 strength at T = 1
and 2 MeV. A finite contribution from the π (1d5/2 → 1d3/2)
transition is also observed at T = 2 MeV in 40−60Ca nuclei.
Also, new smaller peaks arise in the low-energy region (E < 5
MeV) of neutron-rich 48−60Ca isotopes as a result of neutron
transitions, e.g., ν(2p3/2 → 2p1/2) and ν(1 f7/2 → 1 f5/2).

Tables I and II display the proton and neutron isovector
partial contributions (bπ (ν)

2qp ) to the M1 transition strength, as

defined in Eq. (21), for the 52Ca nucleus. Table I pertains to the
high-energy region, whereas Table II is provided for the low-
energy region. It is evident from the tables that the number of
excitation energies and related contributing transitions in the
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TABLE I. The isovector partial contributions bπ (ν )
2qp (μN ) of protons (π ) and neutrons (ν) to the dominant high-energy M1 excitations in

52Ca nuclei at T = 0, 1, and 2 MeV are listed at corresponding excitation energies (E ). The total B(M1, E ) values are obtained using Eq. (21),
by summing over all proton and neutron configurations, also including those not listed in the table. The major contributions are highlighted in
bold.

Configuration T = 0 MeV T = 1 MeV T = 2 MeV

E = 9.09 MeV E = 8.84 MeV E = 6.85 MeV E = 8.71 MeV E = 8.24 MeV E = 6.68 MeV

ν(1 f7/2 → 1 f5/2) −3.363 −3.207 0.216 −2.397 −1.694 0.382
ν(2p3/2 → 2p1/2) −0.029 −0.012 −0.003 −0.005 −0.003
ν(1 f5/2 → 2 f7/2) −0.006 0.012 0.021 −0.003
ν(1g9/2 → 2g7/2) −0.002 −0.082 0.039 0.004
π (1 f7/2 → 1 f5/2) −0.117 0.005 −0.615 1.009 0.060
π (1d5/2 → 1d3/2) −0.027 −0.557 −0.115 −0.028 −1.189

Total B(M1, E ) (μ2
N ) 11.262 11.032 0.115 10.045 0.416 0.565

M1 response increases as one moves from T = 0 to 2 MeV,
signifying the thermal unblocking of transitions. The reduced
transition probability for a specific excited state, denoted as
B(M1, E ), is determined by summing up the contributions of
each configuration while considering their relative signs. First,
we observe that temperature leads to the fragmentation of the
excited states, impacts the contribution of the main config-
urations, and causes a decrease in the total B(M1, E ) value
for a particular state with increasing temperature. Second,
we find that new states appear; however, the contributions of
these new configurations either are too small or they interfere
destructively, which, in turn, results in low strength. While
temperature leads to the scattering of nucleons into the con-
tinuum, this effect is less pronounced for protons due to the
Coulomb barrier. Hence, neutron transitions dominate in the
low-energy region of M1 strength for neutron-rich Ca nuclei.

For further illustration, Figure 3 displays the temperature
dependence of the major high-energy EHigh

peak and low-energy

ELow
peak peaks in the M1 strength distribution for 52Ca. In this

case, ν(1 f7/2, 1 f5/2) and ν(2p3/2, 2p1/2) transitions are the pri-
mary contributors to the high-energy and low-energy peaks,
respectively. Therefore, in Fig. 3, the SO splitting energies
�εLS of these two respective configurations are shown for
comparison relative to the M1 excitation energies. For the
EHigh

peak , we observe a decrease around the critical temperature
Tc = 0.528 MeV, which then continues to decrease gradually
with increasing temperature. The SO splitting energy also
decreases slightly. Although the impact of pairing is subtle

in this region, its effect can be seen in the comparably rapid
decrease in energy around the critical temperature. At higher
temperatures, the slight decrease in EHigh

peak is mainly related to
the decrease in the SO splitting energy and weakening of the
repulsive residual interaction. On the other hand, we observe
a rapid decrease in ELow

peak near the critical temperature, which
is similar to the pairing phase transition, demonstrating the
subtle interplay between the temperature effects and pairing
correlations. Although the SO splitting energies are obtained
as almost constant up to Tc, the decrease in the pairing correla-
tions with increasing temperature leads to a sharp reduction of
the energy. In other words, the pairing plays a significant role
in the low-energy region of the M1 response of open-shell
nuclei below Tc. At higher temperatures, ELow

peak continues to

gradually decrease, but at a faster rate compared to EHigh
peak since

the SO splitting energy of the relevant transition decreases
more rapidly.

Next, we study the non-energy-weighted m0 and energy-
weighted m1 moments of the M1 transition strength, calcu-
lated using the FT-RQRPA method. In Fig. 4, we can see
the behavior of m0 [panel (a)] and m1 [panel (b)] as a func-
tion of the mass number A for Ca isotopes at temperatures
ranging from T = 0 to 2 MeV. The M1 response does not
appear when the SO partner states are either fully occupied
or completely empty, a characteristic stemming from the use
of the one-body operator in Eq. (20). Consequently, the M1
response is absent at T = 0 MeV in 40,60Ca and appears pre-
dominantly in other Ca isotopes through neutron transitions,

TABLE II. Same as Table I, but for the low-energy M1 excitations in the 52Ca nucleus for E < 5 MeV.

Configuration T = 0 MeV T = 1 MeV T = 2 MeV

E = 2.98 MeV E = 2.14 MeV E = 4.36 MeV E = 1.86 MeV

ν(2p3/2 → 2p1/2) −1.726 1.520 −0.002 1.057
ν(1 f7/2 → 1 f5/2) 0.192 −0.123 0.028 −0.067
ν(1g9/2 → 1g7/2) −0.364 −0.002
π (1d5/2 → 1d3/2) −0.006 0.005 −0.018
π (1 f7/2 → 1 f5/2) −0.004 0.004 −0.013
π (2p3/2 → 2p1/2) −0.012

Total B(M1, E ) (μ2
N ) 2.336 1.923 0.108 0.892
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FIG. 3. Major high-energy (EHigh
peak ) and low-energy (ELow

peak ) M1
peak excitation energies, along with the SO splitting energies (�εLS)
of the respective primary contributing neutron configurations in 52Ca.
The results are shown as a function of temperature in the range from
T = 0 to 2 MeV.

e.g., ν(1 f7/2 → 1 f5/2). It can be seen from Figs. 4(a) and 4(b)
that the moments m0 and m1 have the highest magnitudes for
48Ca and 52Ca, since the ν(1 f7/2) [and ν(2p3/2) for 52Ca] state
is nearly filled, and the corresponding M1 excitation strength
is higher. For heavier isotopes of 56,60Ca, as the ν(1 f5/2) state
begins to fill, the transition strength decreases due to the
blocking of the ν(1 f7/2 → 1 f5/2) transition, as can be seen
in Figs. 2 and 4 at zero temperature. Similar results are also
obtained in Ref. [25].

With the increase in temperature, the m0 and m1 moments
of 40,60Ca nuclei show a rapid increase above T = 0.8 MeV
due to the opening of new proton and neutron excitation chan-
nels. Although it is less pronounced compared to 40Ca and
60Ca, we also obtain an increase in the moments of 44Ca and
56Ca at higher temperatures. These results are also consistent
with the results obtained in observation of Fig. 2 and illustrate
substantial contributions of new transitions which become
allowed at higher temperatures. On the other hand, we obtain
a moderate decrease in the moments for 48Ca and 52Ca at
high temperatures. The main reason for the decrease in the m0

and m1 moments in 48Ca and 52Ca is the impact of the tem-
perature on the ν(1 f7/2) and ν(2p3/2) states. As can be seen
from Tables I and II, the contribution of the ν(1 f7/2, 1 f5/2)
and ν(2p3/2, 2p1/2) transitions to the M1 strength decreases
substantially with increasing temperature, and the contribu-
tion of the new states is found to be subtle since their partial
magnitudes are small and interfere destructively, resulting in
a decrease in the M1 strength.

B. Tin isotopes

The temperature dependence of isovector M1 strength
distributions is also systematically studied in even-even
100−140Sn isotopes, as shown in Fig. 5. First, we consider the

FIG. 4. (a) Non-energy-weighted m0 and (b) energy-weighted m1

moments of M1 response in 40−60Ca between T = 0–2 MeV.

T = 0 MeV case. The M1 excitations are expected due to the
proton π (1g9/2 → 1g7/2) and the neutron ν(1g9/2 → 1g7/2),
ν(2d5/2 → 2d3/2), and/or ν(1h11/2 → 1h9/2) transitions until
the higher state in the SO configuration becomes fully occu-
pied to block the M1 transitions. In closed-shell nuclei 100Sn
and 132Sn, the pairing correlations do not contribute; hence,
the M1 excitation energy is determined mainly by the SO
splitting energy as well as the residual interaction. For 100Sn
at zero temperature, the M1 strength is obtained as a single
peak at 9.47 MeV, which is mainly formed with the proton
and neutron (1g9/2 and 1g7/2) transitions. As the number of
neutrons increases along the Sn isotope chain, the M1 re-
sponse exhibits two peaks in the high-energy region. The first
peak at lower energy is primarily due to proton transitions,
while the second, at higher energy, is dominated by neutron
transitions. Similar results are obtained for the T = 0.5 MeV
case, where the M1 strength distribution shifts slightly to the
lower energies, as shown in Fig. 5. A thorough study of M1
transitions in 100−136Sn isotopes has been carried out at T = 0
MeV using the RQRPA framework, and a detailed description
is given in Ref. [27].

Similar to the findings in Ca isotopes, the M1 strength
starts to shift downward, and new excited states appear in
both the low-energy and high-energy regions with increasing
temperature. Besides the downward shift in the M1 strength,
we also observe a change in the 108,124,140Sn nuclei from
a two-peak to a single-peak structure of M1 strength as
the temperature increases. Due to the vanishing of pairing
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FIG. 5. The same as in Fig. 2, but for 100−140Sn isotopes.

correlations at critical temperatures, the configuration ener-
gies between the proton and neutron components start to
approach one another, which results in the merging of two
peaks into a single peak at higher temperatures. To elucidate
further, the structure of M1 strength distributions at finite
temperatures is explored by analyzing all transitions that
contribute to these states for each considered Sn nucleus at
T = 1 and 2 MeV. This study has revealed that along with the
major ν, π (1g9/2 → 1g7/2) transitions, ν, π (1h11/2 → 1h9/2)
transitions also start contributing in the high-energy region of
100−140Sn nuclei at higher temperatures. Finite contributions
from ν(1i13/2 → 2i11/2) and ν(1h9/2 → 2h11/2) transitions are
also obtained in the neutron-rich Sn isotopes due to the ther-
mal unblocking. Moreover, a new low-energy M1 peak below
E = 5 MeV appears in all Sn isotopes at finite tempera-
tures. In the lower-mass Sn isotopes, the ν(2d5/2 → 2d3/2)

TABLE IV. Same as Table I but for the low-energy M1 excita-
tions in 140Sn nucleus.

Configuration T = 0 MeV T = 1 MeV T = 2 MeV
E = 3.57 MeV E = 2.26 MeV E = 2.17 MeV

ν(2 f7/2 → 2 f5/2) 2.078 −2.267 −1.434
ν(1h11/2 → 1h9/2) −0.138 0.102 0.079
ν(2d5/2 → 2d3/2) −0.166
π (2d5/2 → 2d3/2) −0.016 −0.131
π (1g9/2 → 1g7/2) −0.267 0.155 0.092

Total B(M1, E ) (μ2
N ) 2.815 4.088 2.403

transition is the major contributor to the low-energy peak,
and the ν(2 f7/2 → 2 f5/2) transition also begins contributing
in the neutron-rich nuclei. A thorough analysis of the par-
tial contributions of protons and neutrons in the high-energy
(E > 5 MeV) and low-energy (E < 5 MeV) regions is given
in Tables III and IV, respectively, for the neutron-rich 140Sn
nucleus at T = 0, 1, and 2 MeV.

This investigation extends further to the M1 non-energy-
weighted m0 and energy-weighted m1 summations, along
with the centroid energies (Ec = m1/m0), as functions of
temperature for 100−140Sn isotopes, as shown in Fig. 6.
Figures 6(a)–6(c) display moments for the low-energy region
(E < 5 MeV), while Figs. 6(d)–6(f) represent these summa-
tions for the high-energy region (E > 5 MeV). This energy
cutoff is selected because it clearly separates the low- and
high-energy regions in the M1 strength distributions for all
Sn isotopes, as shown in Fig. 5. We then elaborate on the
variation of moments in the low-energy region with increasing
temperature, as presented in Figs. 6(a)–6(c). For closed-shell
100,132Sn nuclei, the moments and centroid energy remain
nearly zero up to T = 0.8 MeV because the spin-orbit partner
states are unavailable for M1 transitions in the low-energy
region. Then, Ec values increase linearly with temperature due
to the thermal unblocking of these states. The rate of increase
in the moments is higher for 132Sn compared to 100Sn because
it is neutron-rich, and with increasing temperature particles
are more easily scattered to the continuum region. Addition-
ally, we observed a slight increase in the centroid energies
with increasing temperature. However, the behavior of the m0

TABLE III. Same as Table I but for the high-energy M1 excitations in 140Sn nucleus. The excitation energies (E ) are given in units of MeV.

Configuration T = 0 MeV T = 1 MeV T = 2 MeV

E = 7.12 E = 9.16 E = 6.97 E = 8.41 E = 8.46 E = 6.79 E = 8.04 E = 8.20 E = 8.27 E = 8.98

ν(1h11/2 → 1h9/2) −1.049 3.664 1.136 2.382 −2.743 1.041 −1.857 2.301 −1.963 0.437
ν(2 f7/2 → 2 f5/2) 0.062 0.046 −0.019 0.013 −0.013 −0.008 −0.003 0.006 −0.005 0.003
ν(2 f7/2 → 3 f5/2) −0.020 0.037 0.031 0.016 −0.016 0.014 −0.007 0.012 −0.009 0.003
ν(1h9/2 → 2h11/2) 0.001 −0.003 −0.028 −0.013 0.111 0.145 −0.003
ν(1i13/2 → i11/2) −0.008 0.004 −0.003 −0.049 −0.008 0.015 −0.013 0.005
ν(1i13/2 → 2i11/2) −0.001 0.005 −0.029 0.031 0.022 0.038 −0.087 0.089 0.890
π (1g9/2 → 1g7/2) 3.913 0.828 −3.227 0.748 −0.806 −3.183 −0.281 0.505 −0.477 0.158
π (1h11/2 → 1h9/2) 0.006 0.029 0.609 0.298 −0.179 0.019

Total B(M1, E ) (μ2
N ) 8.448 20.585 4.420 9.627 12.403 4.647 2.313 9.979 5.811 2.281
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FIG. 6. The isovector M1 non-energy-weighted sum m0, the energy-weighted sum m1, and the centroid energy (m1/m0) in 100−140Sn for
the low-energy region (E < 5 MeV) [panels (a)–(c)] and the high-energy region (E > 5) MeV [panels (d)–(f)] as a function of temperature.

and m1 moments in open-shell nuclei with increasing tem-
perature is not straightforward and displays dependence on
the particular shell structure. In all open-shell nuclei, a sharp
increase is observed in the moments above T = 0.4 MeV
and up to the critical temperatures. This change is mainly
related to the decrease in the pairing correlations. At higher
temperatures, pairing correlations disappear and a decrease is
observed in the m0 and m1 moments for 108,116,140Sn. Only
for 124Sn, the moments continue to increase with increasing
temperature. For instance, in 140Sn, we found that the impact
of the major configuration ν(2 f7/2 → 2 f5/2) decreases with
increasing temperature due to the weakening of the residual
interaction, and the partial contributions from the new con-
figurations interfere destructively. As a result, we observe a
decrease in the moments, as illustrated in Table IV. Similar
results are also obtained for 108,116,140Sn. For 124Sn, there
is a negligible M1 response below E < 5 MeV at very low
temperatures due to the inaccessibility of single-particle part-
ners for M1 transitions in the low-energy region. However,
due to thermal unblocking, new excitation channels primarily
emerge between the ν(2d5/2, 2d3/2) configurations, and the
sum of moments m0 and m1 also increases with temperature. It
is also observed that the difference between the m0 and m1 mo-
ments of different nuclei decrease as the shell effects diminish
at higher temperatures. Finally, the centroid energy first
decreases sharply up to the critical temperatures and then ex-
hibits only slight changes as the temperature increases further.

In the high-energy region (E > 5 MeV), the isovector vari-
ables m0, m1, and Ec smoothly reduce for closed-shell nuclei
100,132Sn. This means that at higher temperatures, a portion of
the M1 strength shifts to the low-energy region. However, a
transition in the variation of moments and centroid energies is
observed around T ≈ 0.8 MeV (or critical temperatures) for
open-shell Sn isotopes in the high-energy region. At higher
temperatures, we observed either a slight increase or a slight
decrease in the m0 and m1 moments, depending on the par-

ticular nuclei. For all open-shell nuclei, the centroid energy
decreases with increasing temperature up to the critical point,
after which it changes only slightly with further temperature
increases. As discussed earlier in the explanation of Fig. 5, this
transition occurs due to the interplay of pairing and thermal
effects. The behavior of the M1 strength is governed by subtle
effects related to single-particle structure, pairing correla-
tions, respective occupation probabilities, and the FT-RQRPA
residual interaction.

IV. SUMMARY

A novel approach, the self-consistent FT-RQRPA frame-
work based on the relativistic energy density functional, has
been applied to study the temperature dependence of isovec-
tor M1 excitations. The properties of 40−60Ca and 100−140Sn
isotopes were calculated at finite temperatures within the
relativistic framework using the FT-HBCS method with
the DD-PCX functional and separable pairing interaction. The
FT-RQRPA is extended for the study of unnatural parity exci-
tations of M1 type.

By employing the FT-HBCS method, we studied the evo-
lution of spin-orbit (SO) splitting energies in the open-shell
nucleus 52Ca at temperatures both below and above the
critical temperature Tc. We observed a reduction in the spin-
orbit splitting energies as the temperature increased. The
FT-RQRPA calculation of the M1 response in both Ca and Sn
isotopes showed a systematic shift of the strength distributions
to lower energies in both Ca and Sn isotope chains as the
temperature increased. The changes in the M1 response are
influenced not only by the weakening and disappearance of
the pairing correlations and the softening of the repulsive
residual interaction but also by the decreasing SO splitting
energies. Remarkably, we found that M1 strength suddenly
emerges as the temperature increases in nuclei with initially
blocked M1 transitions. This phenomenon is attributed to the
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thermal unblocking of new proton and neutron excitations
between the spin-orbit partner states. The thermal unblocking
of states also results in the formation of new M1 peaks in the
low-energy region.

The results of our study are also quantitatively assessed
by analyzing the temperature dependence of the non-energy-
weighted sum (m0), the energy-weighted sum of the transition
strength (m1), and the centroid energy in the considered iso-
tope chains. The changes in the moments m0 and m1 of Ca
and Sn nuclei with increasing temperature indicate that the
isotopic evolution of the M1 response lacks a uniform pattern,
at least at low temperatures. This lack of uniformity can be
attributed to the influence of multiple contributing factors,
such as the particular shell structure, pairing correlations, and
residual interaction. In general, we observe a sharp change
in the variation of moments and centroid energies with tem-
perature for open-shell Sn nuclei. This change results from a
phase transition from a superfluid state to the normal state that
occurs near the critical temperatures, where pairing effects
decrease sharply. At high temperatures, the shell effects also
diminish, and the differences between the m0 and m1 moments
decrease for the considered isotope chains. In conclusion, we
have found that temperature effects can considerably modify

the magnetic dipole response. Further studies on the possible
contributions of magnetic transitions at finite temperature in
the γ -strength functions for (n, γ ) reactions are required.
These studies are left for future work. The experimental data
on M1 excitations in hot nuclei is currently lacking due to the
complexity of methods required to measure M1 emissions in
highly excited nuclei, which are weaker than E1 transitions.
However, certain experimental approaches, as discussed in the
Introduction, with highly efficient γ detectors, can provide
possibilities for investigation of M1 emissions in hot nuclei.
Thus, the experimental studies to assess the properties of M1
emissions at finite temperature are called for.
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