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Neven Golenić 1,2 , Stefano de Gironcoli 1,3 & Vito Despoja 4,5

Surface plasmon polaritons (SPPs), which are electromagnetic modes representing collective
oscillations of charge density coupled with photons, have been extensively studied in graphene. This
has provided a solid foundation for understanding SPPs in 2D materials. However, the emergence of
wafer-transfer techniques has led to the creation of various quasi-2D van der Waals heterostructures,
highlighting certaingaps inour understandingof their optical properties in relation toSPPs. Toaddress
this, we analyzed electromagnetic modes in graphene/hexagonal-boron-nitride/graphene
heterostructures on a dielectric Al2O3 substrate using the full ab initio RPA optical conductivity tensor.
Our theoretical model was validated through comparison with recent experiments measuring
evanescent in-phase Dirac and out-of-phase acoustic SPP branches. Furthermore, we investigate
how the number of plasmon branches and their dispersion are sensitive to variables such as layer
count and charge doping. Notably, we demonstrate that patterning of the topmost graphene into
nanoribbons provides efficient Umklapp scattering of the bottommost Dirac plasmon polariton (DP)
into the radiative region, resulting in the conversion of the DP into a robust infrared-active plasmon.
Additionally, we show that the optical activity of the DP and its hybridization with inherent plasmon
resonances in graphene nanoribbons are highly sensitive to the doping of both the topmost and
bottommost graphene layers. By elucidating these optical characteristics, we aspire to catalyze
further advancements and create new opportunities for innovative applications in photonics and
optoelectronic integration.

One of the many properties of graphene, with possible applications in
optoelectronics, biosensing, photovoltaics, etc., is its ability to support sur-
face plasmon polariton modes (SPPs); the electromagnetic (EM) modes in
which the photon strongly hybridises with electronic density oscillations1–8.
The SPP electrical field is localised in the perpendicular z direction and thus
propagates along the xy plane. Considering that in graphene, SPPs exhibit
lowdamping4, these plasmonicmodespossess extended lifetimes, low losses
and long propagation lengths2,9–13.

Pristine graphene supports a broad π plasmon in the ultraviolet (UV)
frequency range. However, once the graphene is carrier-doped (either by
holes or electrons), the low-lying intraband π→ π electron–hole excitations
(in the vicinity of the K point) and photons become entangled which
initiates the formation of collective photon-polarisation modes called

plasmon polaritons, also known as Dirac plasmon polaritons (DP). DP is a
p(TM) polarised EM mode producing a longitudinal electrical field which
oscillates parallel to the direction of propagationQ, i.e. along the graphene
sheet. In the optical limit (Q ≈ 0) it has a linear dispersion (Qc), which, in the
shortwavelength limit,Q ~ 1/a (wherea is theunit cell length), converts into
a square-root dispersion, ∼

ffiffiffiffi
Q

p 14. For each additional graphene layer
introduced, another in-planemode appears and hybridises with the already
existing ones forming plasmon polariton mode known as the acoustic
plasmon (AP)due to its linear-likedispersion (vFQ). TheAPproducesan in-
plane electrical field directed oppositely in each distinct layer, i.e. the elec-
trical fields in two layers oscillate out-of-phase. By further stacking differ-
ently doped graphene layers one can achieve vanderWaals heterostructures
(vdW) with diverse plasmonic properties7,15. Unfortunately, due to strong
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charge density overlap between two adjacent layers and consequently strong
screening, these plasmonmodes are suppressed, and hence graphene alone
fails to fulfil the promise of awondermaterial in this regard. Fortunately, the
advent of on-demand manufacturing of vdW, which are weakly bound
quasi-2D crystals composed of many monolayers stacked in a precise
sequence16, has made it possible to overcome this issue. Hence, instead of
building a graphene bilayer, another layer can be inserted in-betweenwhere
the new layer is carefully selected to beweakly polarisable and transparent in
the frequency range of SPPs. In other words, the in-between layers should
have no possible electronic excitations in the energy range of graphene
interbandπ→ π* transitions. An ideal candidate is hexagonal boronnitride
(h-BN) which is a large-bandgap semiconductor17,18. The existence of both
Dirac and acoustic SPPs in bilayer graphenewas already predicted using the
finite-difference frequency-domain method19. However, the applied
method made use of the frequency-independent surface conductivity and
graphene layers were considered as dielectric slabs of finite thickness while
being kept artificially spaced apartwithout an explicit insulating spacer layer
in between. The potential for vdW heterostructures to exhibit exotic plas-
monic properties arises in alternating layers of conductive and semi-
conductive 2D crystals. These structures can host multiple plasmonic
branches spanning a broad IR frequency range, and hold the possibility of
targeted optical activation. If such a heterostructure is periodic then a
plasmonic band structure can form in the direction perpendicular to the
crystal, in analogy with photonic bands in Bragg crystals20. The promise of
van der Waals heterostructures is evident in the huge effort by the experi-
mental community which has led to several successful synthesis alleys for
graphene/h-BN composites, most notably using exfoliation, chemical
vapour decomposition and epitaxial growth16,21–26. Only recently, experi-
mental efforts27 have been made to identify vertical interlayer plasmon-
plasmon coupling (and thus the formation ofDP andAPmodes) in aGR/h-
BN/GR trilayer supported on a SiO2 substrate with the help of near-field
infrared nano-imaging technique.Hu et al.27 have also investigated the effect
of increasing the number of h-BN layers to explore how the coupling
between plasmons in the two graphene layers decays as the separation
between them increases. The latter motivated us to choose this very system
as the benchmark for the ab initio theoretical approach presented in this
paper; the only difference being our choice of substrate where Al2O3 was
chosen instead of SiO2. We also further extended our modelling to explore
themultiplication of plasmon branches in alternating GR/h-BN/GR/h-BN/
... thin films on an Al2O3 substrate.

Another challenge in observing exotic plasmonic modes is their eva-
nescent character, making it hard to directly excite them through light.
However, an alternative approach is to excite them indirectly over the sub-
wavelength tip of a scattering-type scanning near-field optical microscope
(s-SNOM)1, or by patterning the topmost graphene layer into
nanoribbons4,28–33, and adopting it as an atomic-scale grating. Another
advantage of graphenenanoribbons (GNR) is that their optical response can
be tuned in the terahertz region by applying an external magnetic field29.
Although beyond the scope of this study, this opens another avenue in the
quest to unlock nanoscale applications for graphene vdW heterostructures
by fine-tuning and enhancing their response properties.

To calculate the electromagnetic response in vdWheterostructures, we
adapted two ab initio models: (1) a fully atomistic model which can be
applied to vdW heterostructure consisting of several stacked 2D layers (eg.
GR/h-BN/GR heterostructure) and (2) a 2D model which is analogous to
the atomistic model though the interlayer orbital hybridisation and crystal
local field effects are neglected. The latter can be applied to vdW hetero-
structures consisting of an arbitrary number of 2D layers. Due to the lack of
computationally cheap theoretical descriptions of optical properties from
first principles, most experimental groups apply a finite difference method
(FDM)19,34–36, which uses the local frequency-dependent optical con-
ductivity σ(ω).Moreover, if 2D ab initio conductivities σi(ω) (for each layer i
in the composite)were used, the accuracy of the FDMwould likely, in terms
of accuracy, be onparwith the 2Dmethodpresented in thiswork.However,
if the FDM model treats the entire composite as a single dielectric slab

described by an averaged local conductivity (or e.g. amacroscopic dielectric
function), or in the best case scenario, as stacked layers of finite thicknesses
(each one described by a localmacroscopic dielectric function εi(ω))19, it will
fail to properly describe the properties of both the DP and APs. Another
theoretical formulation of the dielectric response in multilayer vdW het-
erostructures was proposed in ref. 37; however, their model completely
neglects photon retardation effects.Given that our 2Dmodel is derived from
approximations on a fully atomistic description and includes retardation
effects, it naturally overcome this issue.

In our fully atomisticmodel, the currentfluctuations in the entire vdW
heterostructure are described by nonlocal conductivity tensor (σ), which is
equivalent to the photon self-energy, and the unscreened electron–electron
or current-current interactions are mediated by the free electrical field
propagator (Γ0)14,38. By solving Dyson’s equation in the random phase
approximation (RPA) we obtain the screened electrical field propagator (E)
whose negative real part represents the spectrum of electromagnetic modes
(S ¼ �Re E). Calculating these spectra for different 2D transfer wavevec-
tors gives us the dispersion relations of both collective and single-particle
electromagnetic modes.

The2Dmodel introducedhere represents an extension to the atomistic
model developed in ref. 14 to simulate the conductivity or current-current
nonlocal tensor in very large vdW heterostructures, including dielectric
substrateswhile still keeping very good agreementwith the atomisticmodel.
In the 2D model, the partial nonlocal conductivity tensors in each 2D layer
(here GR and h-BN) are first calculated separately. Then the total nonlocal
conductivity of the vdW composite is obtained by performing a summation
over partial conductivity tensors centred around the equilibrium positions
(along the z-axis) of the corresponding 2D layer in the vdW composite. In
thefirst panelof Fig. 1a,we show the reference structure of theGR/h-BN/GR
vanderWaals crystal as described in the atomisticmodel,where crystal local
field effects are included. The variable zi represents the position of each layer
along the perpendicular crystal cell axis, where z0 is chosen as the origin
when computing the electrical field propagator. If the crystal local field
effects are also excluded (G ¼ G0 ¼ 0 in the partial conductivity tensors)
this modelling becomes equivalent to the inherently 2Dmodel where layers
are essentially 2D sheets distributed at equilibrium positions and described
by local 2D conductivities σ(ω). In the optical limit this procedure works
perfectly well, allowing us to investigate very large heterostructures (see 3rd
panel of Fig. 1a) and at the same time, tremendously cutting down on
computational time. Equally important is the addition of a substrate to
realistically depict an experimental setup, which our 2D model easily
addresses. Namely, the electromagnetic field scattering at the dielectric
substrate (here Al2O3) can be easily turned on bymodifying the free electric
field propagator Γ0→ Γ0+ Γsc, where the scattered field Γsc is derived by
solving Maxwell’s equations with the appropriate boundary conditions. In
comparison, introducing a substrate in the full atomistic model would
require adding at least five atomic layers of the desired substrate material to
the crystal structure, which would make solving Dyson’s equation for the
electric field propagator prohibitively expensive to compute.

It’s important to highlight that 2D modelling is accurate only in the
optical or long-wavelength limit. Specifically, this holds true when the
wavelength λ is significantly larger than the dimensions of the parallel or
perpendicular unit cells a and L, respectively, in a single 2D layer (GR or h-
BN). Moreover, the 2Dmodel accurately describes plasmonic properties in
themetallic subsystem(hereGR); however, it is unable to fully reproduce the
electromagnetic response in the semiconductive subsystem (here h-BN).
Further improvement could be achieved by renormalising the semi-
conductive bandgap within the GWapproximation as well as adding vertex
corrections to correctly describe electron-hole binding (excitonic effects).
Nevertheless, these effects negligibly influence the plasmonic excitations in
the IR frequency range (ω < 1 eV) studied here. Instead, they mostly
influence the UV region (4–7 eV), in particular, the π→ π* electronic
excitations at M and K points in GR and h-BN layers, respectively. Finally,
we also neglected electron-phonon interactions which might play an
important role in the IR region (<200meV), where the hyperbolic phonon-
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polaritons of h-BN17,39–42 could possibly interact with plasmon polaritons in
GR layers.

In this paper, we first explore the electromagnetic modes in GR/h-BN/
GR for differently electron-doped graphene n = 0 e cm−2, 1 × 1013 e cm−2,
5 × 1013 e cm−2 and 1 × 1014 e cm−2 whose nonlocal conductivity tensor is
calculated fromfirst principles using two complementarymodels; a slowbut
highly accurate atomistic model, and a faster and more versatile 2Dmodel.
After validating the 2D model, we explore the multifaceted tuning of the
intensities and dispersion relation of infrared DP modes by varying the
number of layers in GR/h-BN/... van der Waals heterostructures, as well as
surface charge carrier doping. By patterning the topmost GR layer into
GNRs, we shed light on understanding the interplay between plasmon
resonances (optically active plasmons supported by self-standing GNRs),
BlochDP (Bragg scatteredDirac plasmon polariton in bottom graphene) in
differently doped GNR and the bottom graphene layer.

In the following paragraph, we briefly introduce the geometry of the
studied systems. The atomistic model system consists of two GR layers
centred at vertical positions z1 and z−1 and a h-BN layer at the origin z0 = 0
of the unit cell, as shown in the first panel of Fig. 1a. The GR↔ h-BN
separation is denoted by Δz, and the unit cell in the z direction by L.

In the 2D model for the trilayer GR/h-BN/GR/Al2O3, GR and h-BN
sheets are placed at equivalent positions and the dielectric substrate is

introduced below the bottom graphene layer at a position zs, as shown in the
2nd panel of Fig. 1a. The substrate occupies the semi-infinite [zs,−∞) half-
space, and the separation between the substrate and bottom graphene is
denoted with Δzs. In this case the system is no longer bounded by a crystal
unit-cell.

The 2Dmodel allows us to study more complex heterostructures with
an arbitrary number of layers N, thus the trilayer geometry can be gen-
eralised to a multilayered heterostructure consisting of periodic repetitions
ofGR/h-BNsubunits, as illustrated in the3rdpanel of Fig. 1a. In this caseGR
sheets occupy the zi = z±1, z±3, . . . , z±(N−1)/2 planes where i are odd integers
while h-BN sheets occupy zi = z0, z±2, . . . , z±(N−3)/2 planes where i are even
integers. The origin of the system is always placed in the plane of the central
h-BN layer (z0 = 0) for convenience, while the surface (top) of the dielectric
substrate is placed in the zs ¼ z0 � N�1

2 Δz � Δzs plane (i.e. below the
bottom GR layer zs < z−(N+1)/2≪ z0 = 0) and extends below to cover the
semi-infinite [zs,−∞) half-space. The distance parameters Δz and Δzs are
considered fixed, as in the case of the GR/h-BN/GR heterostructure.

Finally, we shall also investigate the electromagnetic modes in the
GNR/h-BN/GR/Al2O3 composite which is in fact a GR/h-BN/GR compo-
site where the topmost (GR) layer at position z1 is patterned into nanor-
ibbons (GNR) of width d and period l, also including the substrate, as
illustrated in the last panel of Fig. 1a Here we suppose that the substrate

Fig. 1 | Electromagnetic modes in multilayer geometries of GR/h-BN. Schematic
representation of a heterostructure composition and geometry depicted in the
atomistic model and in the 2D approximation where each layer is collapsed into
conductive sheets which also include substrate polarisation effects. The variable zi
represents the vertical position of each layer, where z0 = 0 is the origin. b Electric
field of a surface plasmon polariton wave propagating along the ŷ direction. The
electrical field (∣Ez∣) of the evanescent EMmodes decay exponentially in the vacuum

region (depicted in blue).When the top layer is replaced by nanoribbons, additional
radiative modes appear, exhibiting an oscillatory field intensity (depicted in green).
c Single-particle interband and plasmonic intraband electronic excitations between
bands near the K high-symmetry point. The inner conus represents graphene
valence π(C) and doped conduction π*(C) bands, while the outer bands correspond
to nitrogen π(N) and boron π*(B) bands which contribute only to interband
transitions.
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polarisation is described by the local dielectric function ϵs(ω), while the
polarisation of the dielectric media occupying the region z > zs is described
by the dielectric constant ϵ0.

In Fig. 1b, we draw a scheme of the asymmetric AP and symmetric
DP modes of graphene propagating along the y-axis while on the left-
hand side we illustrate the spatial confinement of the modes by plotting
the evanescent electrical field ∣Ez∣ (indicated in blue) which can be seen as
quickly decaying away from the graphene layers. In contrast, once the
topmost layer is patterned into graphene nanoribbons, additional modes
appear inside and at the ribbon edges. These modes can have both eva-
nescent and radiative character (∣Ez∣ indicated in green). Due to its large
band-gap the h-BN spacer will only slightly be polarised (by the eva-
nescent SPP field) and will thus have a negligible effect on the
induced fields.

In Fig. 1c, we illustrate the possible electronic excitations between
graphene valence π(C) (subvalence π(N) localised on nitrogen atoms) and
graphene conduction π*(C) (π*(B) localised on boron atoms) bands in the
GR/h-BN/GR trilayer. Interband excitations involve direct electron transi-
tions between different energy bands, while intraband excitations occur
within the same (in this case π*(C) band of surface charge carrier doped
graphene. The latter can couple with infrared (IR) photons (usually coin-
ciding with a change in momentum) to form SPPs2,14,22.

Results
Ground state electronic structure
We begin our discussion by comparing the band structure of GR/h-BN/GR
(Fig. 2a) and its individual graphene (Fig. 2b) and h-BN (Fig. 2c) layers. By
examining the trilayer band structure we can deduce it contains a blend of
unperturbed bands from its monolayer components, almost without any
hybridisation. The only difference being in the splitting of the two graphene
π, π* bands and the opening of a tiny gap (<5meV) at theK high-symmetry
point due to weak degeneracy breaking. We can thus infer that the overlap

between the electron charge densities of particular layers of graphene and h-
BN is negligible.

Consequently, this implies that the nonlocal optical conductivities of
the individual 2D layers are weakly affected by being stacked in a hetero-
structure, so that the electrodynamical response of the entire vdW hetero-
structure can be calculated by implementing a 2Dmodel, i.e. by combining
the electrodynamical responses of individual monolayers calculated within
the atomistic model (as described in “Theoretical Formulation”).

In order to observe SPPmodes, which are due to intraband π→ π (or
π*→ π*) transitions near the K point, the trilayer was electron-doped (Fig.
2d) which also had no observable effect on the band structure other than
shifting up the Fermi level with increasing doping. Hence, the Fermi energy
of the two graphene layers increases from 0meV to 306meV and 673meV
up to 932 meV, for the four doping carrier densities applied; n = 0 e cm−2,
n = 1 × 1013 e cm−2, n = 5 × 1013 e cm−2 and up to n = 1 × 1014 e cm−2,
respectively.

Similarly, for the 2D model, monolayers of graphene were doped
by half the values of surface carrier density in the trilayer to reproduce
the same level of doping. Given that freestanding h-BN has a large
bandgap, the doping charge only fills graphene bands. Consequently,
there is no interference between the Dirac plasmon (which is expected
to appear below 1.5 eV) and h-BN interband electron-hole excita-
tions, thus confirming h-BN is an ideal spacer for graphene
plasmonics.

Surface plasmon polaritons
In order to better understand the properties of 2D plasmons appearing
in the GR/h-BN/GR heterostructure it can be useful to analyse a more
phenomenological toy model where the polarisability due to interband
excitations (σinter = 0) is neglected. This completely excludes the influ-
ence of h-BN, and the polarisability of graphene is reduced only to the
intraband conductivity (Eq. (21)). Moreover, because graphene is
isotropic and non-conductive in the vertical z direction the effective
numbers of charge carriers are nx = ny and nz = 0. According to these
conditions, the p(TM) component of Dyson’s equation (eq. (25))
becomes ϵ̂pEp ¼ Γp, where we have defined the p(TM) or longitudinal
dielectric tensor, in the evanescent region ω <Qc, as

ϵ̂pðQ;ωÞ ¼ I� ~β0
ω2
p

ω2

1 e�2~β0Δz

e�2~β0Δz 1

" #
; ð1Þ

where ~β0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � ω2

c2

q
and ωp ¼

ffiffiffiffiffiffiffiffiffiffi
2πnxe2

m

q
. Above, we also used the defi-

nition of the bare propagator (Eq. (26)), where Γsc = 0. By solving the
eigenvalue problem ϵ̂pEp ¼ 0 we obtain two plasmon modes, whose dis-
persion relations (in the non-retarded limit, c→∞) are

ω± ðQÞ ¼ ω0ðQÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ± e�2QΔz

p
: ð2Þ

These two plasmon modes produce an electrical field which in the neigh-
bouring graphene layers oscillates in-phase Eþ

p ¼ ð1; 1Þ and out-of-phase
E�
p ¼ ð1;�1Þ. Because in the longwavelegth limit (Q→ 0) one obtains

ωþðQÞ≈ωp

ffiffiffiffiffiffi
2Q

p
and ω�ðQÞ≈ωp

ffiffiffiffiffiffiffiffi
2Δz

p
Q; plasmon ω+ (due to its square-

root dependence) is denoted as DP and plasmon ω− (due to its linear
dependence) is referred to as AP43.

In Fig. 3, the spectra (Eq. (16)) of p(TM) electromagnetic modes in
the GR/h-BN/GR trilayer for the three distinct transfer wavevectors
(a)Q ¼ 0:001 a0

�1, (b)Q ¼ 0:01 a0
�1 and (c)Q ¼ 0:05 a0

�1 are shown
for four different doping concentrations (as noted in Fig. 2d). The
spectra were calculated using both models; the atomistic (dotted line)
and 2D model (full line). Comparing the two models is essential to

Fig. 2 | Band symmetry and charge carrier doping. Band structures of the aGR/h-
BN/GR trilayer and self-standing b GR and c h-BN single-layers. Magenta and red
colouring of bands indicate their respective σ (denoted in magenta) and π (denoted
in red) symmetry character as obtained by projecting the band structure onto atomic
states. d Schematic close-up of the band structure near the K high-symmetry point
illustrating the levels of electrostatic doping and corresponding Fermi energy shifts
in GR/h-BN/GR.
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explore the validity of approximations applied in the 2Dmodel. As can
be seen in all three plots, the spectral shape and peak positions are in a
very good quantitative agreement between the two models. In the long
wavelength limit Q ¼ 0:001 a0

�1 (Fig. 3a), as expected the agreement
between the twomodels is excellent. For the 0-th doping (blue lines) the
only contribution comes from the continuum of single particle π→ π*
interband transitions which reach a peak in the UV region at 4.2 eV, in
both the atomistic and 2D model, corresponding to the Van Hove
singularity in graphene. Once doping is introduced (in increasing
order depicted by yellow, pink and green lines in Fig. 3), the intraband
π*→ π* channel is open and the AP (lower peak) and DP (upper peak)
modes begin to emerge in the IR frequency range. We can observe
perfect agreement between plasmon peaks in both models. Moreover,
these plasmon peaks agree perfectly with the results obtained in the
simple toy model. The effective charge carrier concentrations corre-
sponding to the three doping levels are nx ¼ 0:0037 a0

�2, 0:0081 a0
�2

and 0:011 a0
�2, and according to Eq. (2), they correspond to AP/DP

plasmon frequencies of ωtoy
�=þ ¼ 14=185 meV , 21/274 meV and 25/

320 meV, respectively. These frequencies are in almost excellent
agreement with peaks derived in the atomistic (as well as in the 2D)
model ωat

�=þ ¼ 14=162 meV , 20/267 meV and 25/319 meV, respec-
tively. Therefore, in the optical limit the AP and DP behave exactly as
two coupled hydrodynamic plasmons in two conductive sheets44. This
supports the presumption about the weak vdW bonding of graphene
layers (the existence of two spatially separated 2D plasmons), as well as
the weak influence of h-BN screening on graphene plasmonics.

Furthermore, by applying the same set of parameters (37 h-BN
layers sandwiched between two GR sheets doped at n ¼ 1× 1013 e=a20
and corresponding to a slab thickness of 12.7 nm) as in ref. 27, the AP
and DP peaks obtained experimentally are in excellent agreement with
our models.

For the wave vectors beyond the optical limit Q ¼ 0:01 a0
�1 (Fig.

3b) and Q ¼ 0:05 a0
�1 (Fig. 3c), the agreement between the spectra of

the atomistic and 2Dmodels remains very good. This is, to some extent,
the expected result considering that the wavelength λ ~ 1/Q is still
greater than the atomic thickness of the 2D crystal. We only notice that
in the 2D model the AP becomes slightly blue-shifted compared to the
atomistic one. In contrast, for such large wave vectors the toy model
can no longer adequately describe plasmonic modes. For example; for
Q ¼ 0:05 a0

�1 and the largest effective charge carrier concentration
nx ¼ 0:011 a0

�2 one obtains ωtoy
�=þ ¼ 1:24=2:26 eV while the result of

the atomistic model is ωat
�=þ ¼ 0:813=1:03 eV . As expected, the toy

model which omits interband transitions that push plasmons towards
lower energies, significantly overestimate atomistic plasmon fre-
quencies. In spite of this shortcoming, the toy model still predicts the
presence of out-of-phase modes and offers very accurate estimations of
DP and AP energies in the optical limit. In practice, experimental
imaging techniques such as electron energy loss spectroscopy,

s-SNOMand similar1,4,30, measure the spectra at and above the top layer
breaking the parity symmetry and thus enable the observation of the
AP. Equations (16), (17), (27) which represent the intensity of the
induced electrical field driven by external oscillating dipole (for
example simulating a atomic forcemicroscope tip) in the topmost layer
closely mimicks s-SNOM spectroscopic techniques.

Figure 4 shows the intensities of the electromagnetic excitations
S(Q, ω) in the (a) trilayer GR/h-BN/GR/Al2O3 (b) five-layer GR/h-BN/
GR/h-BN/GR/Al2O3 and (c) 21-layer GR/h-BN/.../GR/Al2O3 obtained
with the 2D model. Here the largest carrier doping (n = 1 × 1014 e cm−2)
was chosen so that themodes aremore strongly separated and thus easier
to analyse. As discussed above, the DP follows a ω / ffiffiffiffi

Q
p

dependence
and then saturates due to interband transitions, while the AP mode
initially shows the linear-like dependence ω∝Q and then bends as it
comes closer to the DP. The attenuation of the DP as it bends towards
higher energies can be attributed to Landau damping in the interband
channel from the continuum of single-particle π→ π* transitions. The
effect ismore pronounced asmore layers are added to the heterostructure
as the intensity of the interband transitions increases, but also because the
DP dispersion is increasingly steeper and converges to a higher energy.
Although it is beyond the scope of this work, we expect that in the bulk
limit (i.e. for an infinite number of layers) the DP dispersion completely
flattens out to slightly higher energies as is characteristic of a weakly
dispersive surface plasmon. Figure 4b demonstrates that the addition of a
GR/h-BN subunit gives rise to another AP mode. The upper AP mode
has an out-of-phase dipolar character—it produces an electric field that
oscillates out-of-phase in outer graphenes—while the inner graphene
represents the zero field (nodal point). On the other hand, the lower AP
exhibits an out-of-phase quadrupolar character as it produces an electric
field that oscillates in-phase in outer graphenes which are out-of-phase
with the field in the inner graphene. Finally, the highest mode corre-
sponding to the DP exhibits a purely dipolar character producing a field
which oscillates in-phase in all three graphenes. Evidently, electro-
magnetic modes with diverse properties can be achieved by stacking
graphene layers. Figure 4c shows the dispersion relation of electro-
magnetic modes in a 21-layer heterostructure composed of 11 GR and 10
h-BN layers. Each added graphene layer represents a new conductive
sheet supporting another 2D plasmon. These plasmons hybridise, cluster
together and decay in intensity forming an AP series. Interestingly, the
DP mode in this case increases sharply to a higher energy exhibiting an
almost log-like dependence on Q, while at the same time dropping in
intensity as compared to the APs. On the other hand, the lowest energy
APs exhibit an almost linear dependence on Q. Although our 2D model
can not fully explore the semi-infinite bulk limit, our result nonetheless
suggests that the DP converges to the dispersionless surface plasmon
when the number of 2D layers becomes infinite. Moreover, we notice the
multiplication of the AP which in the bulk case likely converges to a qz-
dependent AP band structure.

Fig. 3 | Excitation spectra dependence on transfer momentum at different levels
of doping. Intensities of p(TM) electromagnetic modes for wave vectors:
a Q ¼ 0:001 a0

�1; b Q ¼ 0:01 a0
�1; c Q ¼ 0:05 a0

�1 calculated in the atomistic
(dotted line) and 2D model (full line). Colours (blue, yellow, magenta and green)

correspond to increasing levels of surface charge doping (n = 0 e cm−2,
1 × 1013 e cm−2, 5 × 1013 e cm−2, and 1 × 1014 e cm−2) which increases the intensity
and separation of DP andAP electromagnetic modes. Intensities were normalised to
unity w.r.t. the π→ π* peak.
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Bloch plasmon polaritons
Given that the 2D model has proven to be very accurate, especially in the
optical limit, we have extended it to explore the case where the top layer is a
patterned nanostructure of graphene ribbons. We emphasise that the het-
erostructure goes beyond the standard GNR/substrate experimental
setup4,30,45,46, so that modes appearing in the spectra are a mixture of the
inherent GNR plasmon resonances and Bragg-scattered (background) DPs
inherent to the bottom graphene sheet. Both effects yield a myriad of
plasmonic modes, which will be systematically classified in the subsequent
discussion.

Figure 5 shows the intensity of the electromagnetic modes SGNRyy ðQ;ωÞ
in the trilayer GNR/h-BN/GR/Al2O3. The graphene nanoribbon breaks the
xy translational symmetry which introduces its own set of electromagnetic
modes called plasmon resonances. Localised plasmon resonances in each
GNRare coupled via long-range electromagnetic interaction giving rise to a
plasmon resonance band structure. On the other hand, the background DP
scatters on the periodic GNR which acts as a grating causing a band-gap
opening in the DP dispersion relations, similar to when free electrons are
scattered on a periodic crystal potential. Accordingly, we introduce the first
Brillouin zone in the transfer wave-vector reciprocal spaceQ∈ [− π/l, π/l].
When the gaped DPs are at at the GNR zone boundaries we shall refer to
them as Bloch plasmon polaritons (BP1/BP1*). Finally, these Bloch plas-
mon polaritons and plasmon resonances are mutually coupled. Deter-
mining the origin of the newly formedmodes in the dopedGNR/h-BN/GR/
Al2O3 trilayer is far from straightforward, due to multiple hybridisation
effects influencing the shape of the BlochDP and plasmon resonance bands
and the formation of multiple avoided crossings in the nanoribbon band
structure. To isolate/decouple each effect, we performed the calculations by
varying the surface charge doping of the top GNR and bottom GR layer
independently, as shown in Fig. 5 for:

a–c increasing doping in the GNR while keeping GR maximally doped,
d–f increasing GR doping while keeping GNR maximally doped.
In Fig. 5a, the GNR is pristine (nGNR ≈ 0 e cm−2) and GR is heavily

doped (nGR = 1 × 1014 e cm−2). In this system, the interaction and thus
scattering of the DP on GNR plasmon resonances is very weak. Due to the
weak binding, only single Bragg scattering of the DP occurs, so that there is
no band-gap opening at the 1st Brillouin zone edges. Therefore, the y-
periodicity of nanoribbons only introduces a 2π/l translation (DP2) and
creates mirror images (DP1’ and DP2’) of the Dirac plasmon (DP1), as
illustratedbyyellowdotted lines inFig. 5a.Nonetheless, near 45meVa faint,
seagull-shaped plasmon resonance mode (PR0) appears, as well as another
flat plasmon resonance (PR1) at ~55meV which vanishes near the light
cone. A third barely visible resonance can be found at 81meV, which
extends throughout the 1st BZ and vanishes at its edges. These resonances
are a consequence of a tiny amount of thermal doping which is present due

to finite temperature effects (T = 298 K). In addition, we can notice an early
hint of DP/PR0 hybridisation as a very narrow but perceptible fall in
intensity of PR0 exactly where the yellow dotted line of DP1/DP1’ crosses
PR0 in the vicinity of theΓpoint (aswell as at the periodic replicas in the 2nd
BZ). However, PR1 and PR2 seem completely unaffected by the presence
of the DP.

In Fig. 5b, the nanoribbon is slightly doped (nGNR = 1 × 1013 e cm−2) to
gradually introduce the hybridisationofDPs andnanoribbonmodes. In this
case, the strong coupling (and multiple Bragg scattering) occurs which
manifests as the splitting of DP1/DP2 (and their mirror DP1’/DP2’modes)
into two Bloch plasmon polaritons BP1 and BP1*, with a corresponding
band-gap ofΔEBP1 = 10meVat the 1st BZ boundaries. Near the Γ point one
can see the characteristic seagull-shaped PR0 mode now at a higher energy
of ~82meV which has hybridised with the DP forming upper (U-DP/PR0)
and lower (L-DP/PR0) polaritonic branches which are periodic with a
period of 2π/l.

InFig. 5c,where theGNRdoping is increased tonGNR = 2 × 1013 e cm−2

dispersionless resonances (PR0, PR1 and PR2)move to higher energies and
even more significantly hybridise with DP1 and DP2. Moreover, one can
notice many small gap openings (kinks) up to 300meVwherever PRs cross
theDPdispersion causing themtohybridise and thus bend intomany sets of
U-DP/PR and L-DP/PR branches. Interestingly, for larger GNRdoping, the
background DP replica appears very intensively in the GNR absorption
spectrum, indicating in a sense the presence of plasmon proximity effects.
Moreover, as GNRdoping increases, a significant part of the DP intensity is
folded into the radiative region, which may be (as we shall see below)
tantalising in terms of possible applications. From this we can infer that as
doping of the GNR layer increases so does the energy window in which the
hybridisation between the Dirac plasmon and ribbon plasmon resonances
can occur, opening another avenue for fine-tuning the optical response.

In Fig. 5d, where GNR is strongly doped (nGNR = 1 × 1014 e cm−2) and
GR is pristine (nGR ≈ 0 e cm−2) one can observe a very strong seagull-shaped
(PR0) and twoflat (PR1, PR2) plasmon resonances. The board PR0mode at
~250meV and weak and narrow PR2 mode at ~490meV both exhibit
dipolar character, i.e. the y-dependent induced charge density has a single
nodal point in themiddle of the GNR,making themoptically active. On the
other hand, the flat PR1 mode at ~300meV is a plasmon resonance with
quadrupolar character whose induced charge density has two nodal points
so that PR1 is not an optically active mode (its intensity goes to zero at
Q = 0). Also, due to weaker quadrupolar inter-GNR interactions, it is less
dispersive than the dipolar mode PR0. Given that graphene is slightly
thermally doped one can also observe the weak DP squeezed in the
0–60meV energy region.

By increasing the graphene doping to nGR = 1 × 1013 e cm−2, as shown
in Fig. 5e, the DPmoves to higher energies and hybridise with PR0 causing

Fig. 4 |Dispersion relations of p(TM) electromagneticmodes in the IR spectrum.
Intensities of electromagnetic modes SyyðQ;ωÞ in a trilayer GR/h-BN/GR/Al2O3

b five-layer GR/h-BN/GR/h-BN/GR/Al2O3 and c 21-layer GR/h-BN/.../GR/Al2O3

obtained in the 2D model for the case of strongest doping n = 1 × 1014 e cm−2. The

number of APs increases by one with each additional graphene layer. The yellow
dotted line denotes the dispersion of the Dirac plasmon polariton. All three figures
share the same intensity scale.
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the distortion of its seagull shape. Also, the energies of PR0 and PR1 are
slightly increased and smear out over a slightly broader range. In this case,
PR2 energy has increased by about ~ 60meV, pushing it beyond the
observed energy range. In addition, the Bloch plasmon band structure
begins to emerge below 200meV and a clear band-gap opening can be seen
between BP1 andBP1*.

Finally, Fig. 5f shows the intensity of the electromagnetic modes
when both top and bottom layers are strongly doped
(nGNR = nGR = 1 × 1014 e cm−2) resulting in a combination of all effects from
Fig. 5a to e. The yellow dashed line representing the uncoupled DP1 and
DP2 in these figures is only shown for easier visual interpretation as those
modes are now fully hybridised. Evidently, strong doping enables a whole
variety of plasmonic modes, some of which are evanescent ω >Qc, while
others fall into the radiative region ω ≥ Qc and become IR active. In fact,
there is a whole cacophony of plasmonic bands appearing at:
ω ~ 120meV, 215meV, 265meV, 300meV, 350meV, etc., which can be
directly excited by infrared radiation. For example, the intesive radiative

mode atω ~ 120meV is a standard optically active GNRPR, while the large
seagull-shapedpatterns atω ~ 260meVand~300meVrepresent theBragg-
folded DP. This latter case is especially intriguing. Namely, the seagull-
shaped pattern covers a very large fraction of the background DP which is
folded into the radiative region and thus replicated in the GNR optical
absorption spectrum. In otherwords, this systemenablesdirect excitationof
very strong DP by IR radiation, making it extraordinarily useful in optoe-
lectronic applications. We also observe that strong coupling of DP to the
GNRgrating results in the bending of theDP into arcs (in the energy region
ω ≤ 100meV) representing the Bloch plasmon BP1 which repeats peri-
odically with a period of 2π/l. Moreover, due to hybridisation with GNR
plasmon resonances, the upperBloch plasmon branchBP1* is barely visible
at the BZ edge (Q = ± π/l). Nevertheless, we estimate a band-gap opening of
ΔEBP1 ≈ 85meV. In the gap between BP1 and BP1* one can notice the
nanoribbon plasmon resonances, which extend through extended BZs, but
precisely in such a way that they resemble the DP1 and DP2 square-root
dependence (/ ffiffiffiffi

Q
p

), albeit shifted to higher energies. It should be

Fig. 5 | Bloch-Dirac plasmon band structure arising in GNR/h-BN/GR/Al2O3.
Intensities of electromagnetic modes [SGNRyy ðQ;ωÞ] as a function of top (nGNR) and
bottom (nGR) layer charge carrier doping. a nGNR = 0 e cm−2, nGR = 1 × 1014 e cm−2

b nGNR = 1 × 1013 e cm−2, nGR = 1 × 1014 e cm−2 c nGNR = 2 × 1013 e cm−2,
nGR = 1 × 1014 e cm−2 d nGNR = 1 × 1014 e cm−2, nGR = 0 e cm−2

e nGNR = 1 × 1014 e cm−2, nGR = 1 × 1013 e cm−2 f nGNR = 1 × 1014 e cm−2,
nGR = 1 × 1014 e cm−2. The Dirac plasmons DP1/DP2' and DP1'/DP2 in the bottom
GR layer (yellow) scatter on topmost GNR forming Bloch plasmon polaritonmodes
BP1 and BP1* (red). The GNR by itself supports plasmon resonances PR0, PR1,

PR2,... (blue) which hybridise with DP1/DP2' and DP1'/DP2 to form lower (L-DP)
and upper (U-DP) polaritonic branches (yellow+blue). Hybridisation is controlled
by doping of the bottom GR and the top GNR layer. When doping is set to zero,
thermal doping is still present due to finite temperature effects T = 298 K. Black
dashed lines represent the ribbon Brillouin zone boundaries Q = ± π/L, while the
grey lines represent the light cone (±∣Qc∣). Dirac cones above each plot illustrate the
doping level of each layer. All six figures share the same intensity scale and are
symmetric w.r.t. Q ¼ 0 a0

�1.
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emphasised that DP1 and DP2 plasmons are inherent to the background
(bottom) GR and not the (top) nanoribbon graphene layer. In other words,
the same pattern would appear in the spectrum in the absence of the
nanoribbon47.

Finally, all these plasmon resonances can be tuned on-demand, as it is
straightforward tomodify both the ribbonwidth4,30,45,48, aswell as the doping
of each layer. As expected this property means GNR/h-BN/GR contains an
integrated nano-scale diffraction grating which could pave way for many
attractive applications in terahertz electronics, optoelectronics (emitters,
photovoltaics, sensors) and sub-diffraction optics5,25,49–54.

Discussion
A versatile and computationally efficient theoretical model (based on a
fully ab initio RPA optical conductivity tensor) for predicting on-
demand optical properties of multilayer vdW heterostructures was
developed and applied on GR/h-BN/GR/... composite systems. The
multifaceted tuning of the dispersion relation of surface plasmon
polariton modes by varying the number of layers in GR/h-BN van der
Waals heterostructures, as well as electrostatic doping and patterning of
graphene layer into graphene nanoribbons was demonstrated. The
inclusion of the dielectric substrate was shown to be straightforward, as
was demonstrated for Al2O3, and thus provided a far more realistic
depiction of the system. The computationally extremely efficient 2D
model enabled the exploration of limiting behaviour in the SPP dis-
persion from trilayer graphene/h-BN to surface bulk composed of 21
layers. The systematic classification of plasmon polariton modes in GR/
h-BN/GR/Al2O3 and in GNR/h-BN/GR/Al2O3 heterostructure was
provided; allowing for a clear distinction between Dirac and acoustic
plasmon polaritons, as well as plasmon resonances and Bloch plasmon
polaritons, respectively. In addition, we quantified the BP band-gap
opening. Furthermore, our calculations predicted very efficient Umk-
lapp scattering of the DP into the radiative region leading to its con-
version into a strong IR active mode. We have shown that the intensity
and frequency of the BP mode can be tuned by biasing the bottom
graphene layer, as well as the topmost GNR, which significantly facil-
itates the frequency-tuning process and achievement of different plas-
monic properties. This phenomenon is yet to be examined
experimentally, but its investigation should pose no significant chal-
lenge, as the synthesis of multilayer and graphene ribbons has already
been become routine. In future work, the developed model (including
ladder corrections to the RPA photon self-energy) could be easily
applied to explore electromagnetic modes in the semiconducting
composites (such as TMD/h-BN heterostructures) to investigate the
strong exciton-photon coupling. In addition, the formalism could be
extended to include the coupling between DP in graphene and widely
studied hyperbolic phonon polaritons in hexagonal boron nitride2,17,55.

Methods
Theoretical formulation
Thequantity fromwhichwe shall extract thepieces of informationabout the
electromagnetic modes in GR/h-BN nanostructures is the electrical field
propagatorEμν . The electricalfield produced by an external oscillating point
dipole p0e

−iωt placed in point r0 is defined as56

Eμðr;ωÞ ¼
X

ν¼x;y;z

Eμνðr; r0;ωÞp0ν ; ð3Þ

whereEμν canbe connectedwith the time-orderedphotonpropagatorDμν ¼
i
_c T AμAν

n oD E
as Eμν ¼ iω

c Dμν . Due to the aforesaid, the electric field

propagator satisfies Dyson’s equation E ¼ Γþ ΓσE, where σ represents the
conductivity tensor (orphoton self-energy)ofGR/h-BNnanostructure, andΓ
represents the propagator of electrical field in the absence of GR/h-BN
nanostructure, i.e. when σ = 0 14,38. Considering that the wavelength of the
electromagnetic modes considered here (λ = 2π/Q > 100Å) will be much
larger than the crystal unit cell in parallel xy direction (a ~ 2.5Å) we shall
neglect the dispersivity of the dynamic response within crystal unit cell in xy
plane. However, we shall retain the important effects coming from the
dispersion of the dynamic response in the direction perpendicular to GR/h-
BN nanostructures (z direction). Therefore, the conductivity tensor σwill be
considered as translationally invariant in the xy plane while its dispersivity in
the z direction will be considered exactly or within 2D approximation. This
also means that the crystal local field effects will be neglected in the xy plane
but will be (at different levels of approximation) included in the z direction.
After imposing the planar symmetry of the GR/h-BN heterostructure, the
Dyson equation for the propagator E becomes explicitly

EμνðQ;ω; z; z0Þ ¼ ΓμνðQ;ω; z; z0ÞþP
α;β¼x;y;z

R L=2
�L=2 dz1

R L=2
�L=2 dz2 ΓμαðQ;ω; z; z1Þ

σαβðQ;ω; z1; z2ÞEβνðQ;ω; z2; z
0Þ;

ð4Þ

where Q = (Qx,Qy) and ω are the transfer wavevector and frequency,
respectively. The propagator of the electrical field, in the absence of GR/h-
BN nanostructure, can be written as

Γ ¼ Γ0 þ Γsc; ð5Þ

where the propagator of the ‘free’ electric field (or free photon propagator)
is14,56,57

Γ0ðQ;ω; z; z0Þ ¼ � 4πi
ϵ0ω

δðz � z0Þz � z� 2πω
β0c

2
eiβ0 ∣z�z0 ∣

X
q¼s;p

e0q � e0q: ð6Þ

Thepropagator of the electricfield scatteredby thedielectric substrate, in the
region z > zs, is given by56

ΓscðQ;ω; z; z0Þ ¼ � 2πω
β0c

2
eiβ0ðzþz0Þ X

q¼s;p

rq � eþq � e�q : ð7Þ

Here the unit vectors of the s(TE) polarised electromagnetic field are
e0;±s ¼ Q0 × z. The unit vectors of p(TM) polarised electromagnetic field

are e0;±p ¼ c
ω

ffiffiffi
ϵ0

p α0;± β0Q0 þ Qz
� �

, where α0 ¼ �sgn z � z0ð Þ, α± =∓ 1,

andQ0 and z are the unit vectors in theQ and z directions, respectively. The
reflection coefficients of the s(TE) and p(TM) polarised electromagnetic
waves at the media/substrate interface are rs = (β0− βs)/(β0+ βs) and
rp = (β0ϵs− βsϵ0)/(β0ϵs+ βsϵ0), respectively. The complex wave vectors in
the perpendicular (z) direction are

β0;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
ϵ0;sðωÞ � Q2

r
: ð8Þ

For simplicity, from now on, we assume that the dielectric media is a
vacuum, i.e. ϵ0 = 1.

Calculation of propagator EμνðωÞ in the atomistic model. The
approximation of translational invariance in the xy plane results that the
Fourier transform of the conductivity tensor can be approximated as

σμν;G;G0 ðQ;ωÞ≈ σμν;GzG
0
z
ðQ;ωÞδGk0

δG0
k0 ð9Þ
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so that its Fourier expansion in z direction becomes

σμνðQ;ω; z; z0Þ ¼ 1
L

X
Gz

X
G0
z

eiGzze�iG0
zz

0
σμν;GzG

0
z
ðQ;ωÞ; ð10Þ

where G = (G∥,Gz) are 3D reciprocal vectors and L is unit cell in the z
direction.TheFourier transformofRPAconductivity tensorof entireGR/h-
BN/GR heterostructure is14

σμν;GG0 ðQ;ωÞ ¼ � 2i_
Ω

P
K;n;m

1
EnK�EmKþQ

f nK�f mKþQ

_ωþiηþEnK�EmKþQ
×

jμnK;mKþQðGÞ ½jνnK;mKþQðG0Þ��;
ð11Þ

were the current vertices are

jμnK;mKþQðGÞ ¼
Z
Ω
dre�iðQþGÞr jμnK;mKþQðrÞ; ð12Þ

and the current produced by transitions between Bloch states ϕ�nK !
ϕmKþQ are defined as

jμnK;mKþQðrÞ ¼
e_
2im

ϕ�nKðrÞ∂μϕmKþQðrÞ � ½∂μϕ�nKðrÞ�ϕmKþQðrÞ
n o

: ð13Þ

HereΩ = S × L andS are thenormalisationvolumeandsurface, respectively,
while K = (Kx,Ky) is the 2D wave vector, ϕnK and EnK are Bloch wave
functions and energies obtained in the ground state DFT calculation, and
f nK ¼ ½eðEnK�EFÞ=kT þ 1��1

is the Fermi-Dirac distribution at temperature
T. Here η represents the phenomenological damping parameter. After the
Fourier expansion (Eq. (10)) and the same Fourier expansion for Γ0 and E
are inserted in (Eq. (4)), it becomes a matrix equation

Eμν;GzG
0
z
ðQ;ωÞ ¼ Γ0μν;GzG

0
z
ðQ;ωÞ

þ P
α;β¼x;y;z

P
Gz1 ;Gz2

Γ0μα;Gz ;Gz1
ðQ;ωÞσαβ;Gz1;Gz2

ðQ;ωÞEβν;Gz2;G
0
z
ðQ;ωÞ;

ð14Þ

where the free photon propagator matrix is defined as

Γ0αβ;Gz1 ;Gz2
ðQ;ωÞ ¼ 1

L

Z L=2

�L=2
e�iGz1z Γ0αβðQ;ω; z; z0Þ eiGz2z

0
dz dz0: ð15Þ

Once we solve the matrix equation, Eq. (14), we obtain the E tensor. The
spectra of surface electromagnetic modes are then defined as

SμνðQ;ωÞ ¼ �RefEgμνðQ;ωÞ; ð16Þ

where the surface electrical field propagator is defined as

EμνðQ;ωÞ ¼ EμνðQ;ω; z ¼ z1; z
0 ¼ z1Þ

¼ 1
L

P
Gz

P
G0
z

eiGzz1e�iG0
z z1Eμν;GzG

0
z
ðQ;ωÞ; ð17Þ

i.e. as the dipolar electric field in the topmost graphene layer at z = z1.

CalculationofpropagatorEμνðωÞ in the2Dmodel. Thefirst assumption
required to implement the 2D model is that the ground state electronic
structure of each self-standing 2D crystal (i.e. layer), forming the het-
erostructure, is weakly affected when they are stacked in a vdW hetero-
structure. Figure 2 undoubtedly confirms that this is for example the case
in GR/h-BN/GR heterostructures. This makes it possible to calculate the
electromagnetic response of the entire heterostructures in two steps:

1. the calculation of conductivity tensor for each type of self-standing 2D
crystals σi which is part of the heterostructure;

2. stacking the σis in the heterostructure and calculating their mutual
screening via the photon propagator Γ.

Moreover, sinceherewe are interested in the electromagneticmodes in
the visible (VIS) and IR frequency regions, i.e., ℏω < 2 eV, according to Eq.
(8), the maximum wavelength in the perpendicular direction λ = 2πc/ω is
incomparably larger than the thickness of self-standing 2D crystals (gra-
phene orh-BN) so that their conductivities can be approximated by local 2D
conductivities

σ iμνðQ;ω; z; z0Þ≈ σ iμμðωÞδμνδðz � ziÞδðz0 � ziÞ: ð18Þ

The local conductivity of the ith 2D layer is defined as14

σ iμμðωÞ ¼ Liσ
i
μμ;G¼0G0¼0ðQ ¼ 0;ωÞ; ð19Þ

where σ iμν;GG0 ðQ;ωÞ represents the full microscopic conductivity of 2D
crystal, given by (Eq. (11)), and Li is vertical (z) lattice parameter in theDFT
ground state calculation of ith 2D crystal. Furthermore, the RPA 2D con-
ductivity of ith crystal can be split into intraband and interband contribu-
tions explicitly

σ iμμðQ;ωÞ ¼ σ intra;iμμ ðωÞ þ σ inter;iμμ ðQ;ωÞ: ð20Þ

Here the intraband (n =m) contribution is simply the Drude conductivity

σ intraμμ ðωÞ ¼ i
e2

m

nμμ
ωþ iηintra

; ð21Þ

where the effective number of charge carrier is

nμμ ¼ � m
Se2

X
n

X
K21:SBZ

∂f nK
∂EnK

∣jμnK;nKðG ¼ 0Þ∣2: ð22Þ

While the interband (n ≠m) conductivity is defined as

σ interμμ ðQ;ωÞ ¼ �i
_

S

X
n≠m

X
K21:SBZ

f nK � f mKþQ

EnK � EmKþQ

∣jμnK;mKþQðG ¼ 0Þ∣2
_ωþ EnK � EmKþQ þ iηinter

:

ð23Þ

Correspondingly, the conductivity of the entire heterostructure in the 2D
approximation is

σμνðQ;ω; z; z0Þ ¼
Xn
i¼1

σ iμνðQ;ω; z; z0Þ ¼
Xn
i

σ iμνðωÞδμνδðz � ziÞδðz0 � ziÞ:

ð24Þ
We note in passing that this summation procedure leads to the neglect of
interlayer hybridisationwhichhas annegligible effect due to the exponential
decay of the induced field outside of each layer. After setting z = zi and
z0 ¼ zj and inserting the conductivity (Eq. (24)) in Eq. (4), we obtain the
matrix equation for the propagator of the electrical field between the points
placed within 2D layers (zi, zj)

EμνðQ;ω; zi; zjÞ ¼ ΓμνðQ;ω; zþi ; zjÞ

þ P
α;β¼x;y;z

Pn
kl¼1

ΓμαðQ;ω; zþi ; zkÞσklαβðωÞEβνðQ;ω; zl; zjÞ;

ð25Þ
where σklαβðωÞ ¼ σkααðωÞδαβδkl . Here we assume that substrate is included in
calculations, so according to (Eqs. (5) to (7)) and if we choose Q = y the
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propagator Γ is explicitly

ΓðQ;ω; zþi ; zjÞ ¼
Γ0xx 0 0

0 Γ0yy Γ0yz

0 Γ0yz Γ0zz

2
64

3
75eiβ0 ∣zi�zj∣ þ

Γscxx 0 0

0 Γscyy Γscyz
0 �Γscyz Γsczz

2
64

3
75eiβ0ðziþzjÞ;

ð26Þ

where Γ0xx ¼ � 2πω
c2β0

, Γ0yy ¼ � 2πβ0
ω , Γ0zz ¼ � 2πQ2

β0ω
Γ0yz ¼ 2πQ

ω sgnðzi � zjÞ,
Γscxx ¼ Γ0xxrs,Γ

sc
yy ¼ �Γ0yyrp,Γ

sc
zz ¼ Γ0zzrp and Γ

sc
yz ¼ 2πQ

ω rp. Here z
þ
i ¼ zi þ δ

(where δ is an infinitesimally small positive number) eliminates the local
term in Γ0zzðz; z0Þ. After solving the matrix equation Eq. (25), we obtain the
Eμνðzi; zjÞ components. The spectra of surface electromagnetic modes are
also defined as Eq. (16), where by analogywith Eq. (17) the surface electrical
field propagator is defined as

EμνðQ;ωÞ ¼ EμνðQ;ω; zn; znÞ; ð27Þ

i.e. as the dipole electric field in the topmost (n-th) 2D layer.
It should be emphasised that the 2D conductivity defined by Eq. (19)

contains only the monopolar contribution to the induced current density
(i.e., only the dipolar contribution to the induced charge density), which
would correspond to keeping only the dipolar contribution in the density
response functions (Eq. (2) of ref. 37). The plausibility of this approximation,
in addition to the already well-established agreement with the atomistic
model, can be confirmed by using a computationally more intensive quasi-
2D approximation58. In this approximation, the full spatial dispersivity and
non-local character of partial conductivities σ iμνðz; z0Þ is retained, or more
formally, instead of using the approximation in Eq. (18), we use
σ iμνðQ;ω; z; z0Þ ¼ σ iμνðQ;ω; z � zi; z

0 � ziÞ. Thenaccording toEq. (24) the
total conductivitybecomesσμνðQ;ω; z; z0Þ ¼

P
iσ

i
μνðQ;ω; z � zi; z

0 � ziÞ.
After this conductivity is Fourier transformed (w.r.t. the multilayer unit
supercell L) and inserted in Eq. (14), the obtained intensities of the elec-
tromagnetic modes are almost identical to the ones determined by using Eq.
(18) for all wavenumbers up toQ ≤ 0.05 a. u. This implies that contributions
to the induced current from all highermultipoles beyond the dipole have no
effect on the electromagnetic modes in this Q range.

Calculation of propagator EGNR
μν ðωÞ in the GNR/h-BN/GR nanos-

tructure 2D model. Suppose that the topmost graphene layer at z = z1 is
patterned into graphene nanorribons ofwidth d and a period l (see last panel
of Fig. 1a). This causes electromagnetic field fluctuations inherent to the
background heterostructure B≡ h-BN/GR/Al2O3 to be scattered by current
fluctuations in the GNR. In other words, in the presence of the GNR, the
propagator of electromagneticmodes satisfies the followingDyson equation

EGNRðr; r0;ωÞ ¼ E0ðr; r0;ωÞ þ
Z

dr1dr2 E0ðr; r1;ωÞσGNRðr1; r2;ωÞEGNRðr2; r0;ωÞ;

ð28Þ

where σGNR is the GNR nonlocal conductivity and E0 now represents the
electrical field propagator in the h-BN/GR/Al2O3 heterostructure. In other
words, the propagator E0 satisfies an equation analogous to Eq. (28), i.e.
E0 ¼ Γþ ΓσBE0, where σB represents the nonlocal conductivity of the
background heterostructure B≡ h-BN/GR/Al2O3. According to the pre-
viously mentioned local and 2D approximation, the conductivity tensor,
describing current fluctuations in the GNR, can be written as

σGNRμν ðr; r0;ωÞ≈; δðz � z1ÞσGNRμν ðy;ωÞδðr� r0Þ; ð29Þ

where the periodic part of conductivity can be approximated as

σGNRμν ðy;ωÞ ¼ σμνðωÞ
Xn¼1

n¼�1
θðy � nlþ d=2Þ � θðy � nl� d=2Þ� �

; ð30Þ

andwhere σμν(ω) is local conductivity of single-layer graphene derived from
Eq. (19). Due to Bragg scattering on a periodic GNR grating, the propagator
EGNR is no longer translationally invariant in the xy direction so that its
Fourier expansion becomes

EGNR
μν ðr; r0;ωÞ ¼

X
g0

Z
dQ

ð2πÞ2 E
GNR
μν;gg0 ðQ;ω; z; z0ÞeiðQþgÞρe�iðQþg0Þρ0 ; ð31Þ

where the 2D reciprocal vectors are g = (0, g), with g ¼ 2πk
l ; k ¼

0 ± 1; ± 2; ::: and ρ = (x, y) is the 2D position vector. The background
electrical field propagator E0 remains translationally invariant in the xy
plane, however, we want to retain the same form of its Fourier expansion

E0
μνðr; r0;ωÞ ¼

X
g0

Z
dQ

ð2πÞ2 E
0
μν;gg0 ðQ;ω; z; z0ÞeiðQþgÞρe�iðQþg0Þρ0 ; ð32Þ

where

E0
μν;gg0 ðQ;ω; z; z0Þ ¼ E0

μνðQþ g;ω; z; z0Þδgg0 : ð33Þ

After the expressions (Eqs. (29) to (33)) are inserted into Dyson’s equation
(Eq. (28)) it transforms into the following (spatial) matrix equation for the
scattered propagator

EGNR
μν;gg0 ðQ;ω; z; z0Þ ¼ E0

μν;gg0 ðQ;ω; z; z0ÞþP
αβ

P
g1g2

E0
μα;gg1

ðQ;ω; z; z1ÞσGNRαβ;g1g2
ðωÞEGNR

βν;g2g
0 ðQ;ω; z1; z

0Þ;

ð34Þ

where the conductivity matrix is

σGNRμν;gg0 ðωÞ ¼ σμνðωÞ×
2

lðg�g 0Þ sin½ðg � g 0Þd=2�; g≠g 0

d=l; g ¼ g 0

(
: ð35Þ

After inserting z ¼ z0 ¼ z1 we obtain the pure matrix equation for the
propagator of the scattered electrical field inside the GNR plane

EGNR
μν;gg0 ðQ;ω; z1; z1Þ ¼ E0

μν;gg0 ðQ;ω; z1; z1ÞþP
αβ

P
g1g2

E0
μα;gg1

ðQ;ω; z1; z1ÞσGNRαβ;g1g2
ðωÞEGNR

βν;g2g
0 ðQ;ω; z1; z1Þ:

ð36Þ

The ingredients required to solve this equation are; matrix σGNR, defined
explicitly by Eq. (35) and the matrix E0 which is according to (Eq. (33))
defined as

E0
μν;gg0 ðQ;ω; z1; z1Þ ¼ E0

μνðQþ g;ω; z1; z1Þδgg0 : ð37Þ

In the atomistic model the propagator of the background electrical field
E0
μνðQ;ω; z1; z1Þ is exactly equal to the surface electrical field propagator

(Eq. (17)), which is obtained by solvingDyson’s equation (Eq. (14)) inwhich
enters the conductivity tensor (Eq. (11)) calculated for the h-BN/GR bilayer,
i.e. for the GR/h-BN/GR composite in which the topmost atomic layer is
simply removed. Here we adopt the 2D model, where the background field
propagatorE0

μνðQ;ω; z1; z1Þ is equal to the surface electricalfieldpropagator
(Eq. (27)) which is the solution of Dyson’s equation (Eq. (25)) for n = 3,
where the dynamical response of the topmost GR layer is passivised, i.e.

σ i¼1
αβ ðωÞ ¼ 0:

Finally, after solving matrix equation (Eq. (36)), the spectra of electro-
magnetic modes in GNR/h-BN/GR nanostructures can be calculated from
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the following relation,

SGNRμν ðQ;ωÞ ¼ �RefEgGNRμν;g¼g0¼0ðQ;ω; z1; z1Þ: ð38Þ

This procedure can be applied without loss of generality to any number of
background layers, n > 3.

Computational details
All calculations (in atomistic and in 2D models) consisted of three
major steps:
1. the ab initio DFT calculation of the ground state crystal structure and

electronic structure, i.e. obtaining the Kohn-Sham (KS) states,
2. the calculation of the RPA photon self-energy, i.e. the tensor of the

nonlocal optical conductivity σμν;Gz ;G
0
z
ðQ;ωÞ,

3. solvingDyson’s equation for the photonpropagator, here referred to as
the electrical field propagator E.

Electronic Ground State. To obtain the crystal and electronic ground
states of the studied systems, ab initio plane-wave density functional
theory (DFT) calculations were performed in Quantum Espresso 6.4
code59–61 using the vdW-DF-cx functional62. Core electrons on all atoms
were treated in the pseudopotential scheme using the optimised norm-
conserving Vanderbilt pseudopotentials (ONCVPSP) provided by
PseudoDojo63,64 for all three atom types (C, B, N). We relaxed each
structure self-consistently until forces on all atomswere below 1mRy a�1

0
while keeping the cell parameters fixed to their experimental values
obtained from the Materials Project65. The obtained optimised distance
between graphene and h-BN layers was Δz = 3.2Å. The cell constant for
GR was set to a = 4.664 a0, and for h-BN to a = 4.747 a0, while the per-
pendicular cell size was set to c = 7a to ensure no interaction occurs
between periodic replicas. GR/h-BN/GR trilayer cell parameters were
strained to the graphene cell size. The Brillouin zone (BZ) was sampled
with a 13 × 13 × 1 Monkhorst-Pack mesh and wavefunction/charge
density cutoffs were converged to 55/240 Ry formonolayer graphene, 80/
320 Ry for monolayer h-BN and 65/280 Ry for the GR/h-BN/GR trilayer,
respectively. The Methfessel-Paxton electron smearing parameter was
kept at 10 mRy for all calculations. Band structure calculations were
performed along the high-symmetry path (ΓKMΓ) with a total of 150
equidistant k-points. Thereafter, we projected the resulting bands onto
atomic states; allowing for the determination of their σ and π character.
Additionally, exact diagonalizations were performed for each k-point on
a much denser 201 × 201 × 1 Monkhorst-Pack mesh, necessary for ade-
quate spectral resolution in subsequent excited states calculations.
Summations over bands were performed over 40 bands for GR, 60 bands
for h-BN, and 100 bands for GR/h-BN/GR.

RPA Conductivity Tensor σμν. The RPA optical conductivities are cal-
culated for four different doping concentrations a) 0 e cm−2 b)
1 × 1013 e cm−2 c) 5 × 1013 e cm−2 and d) 1 × 1014 e cm−2 per graphene
layer, which corresponds to Fermi level shifts relative to theDirac point of
a) 0 meV, b) 306 meV c) 673 meV and d) 932 meV, respectively.

In the atomisticmodel, the trilayer ground state wavefunctionwas used
to calculate the RPA current-current conductivity tensor (Eq. (11)),
including local-field effects up to a cut-off of Elf

cut ¼ 25Ha (corresponding
to 65 Gz Fourier components) in the z direction. Here a large number of
local-field vectors is essential to correctly describe induced electricfields and
current fluctuations perpendicular to the heterostructure plane where the
induced electric fields are expected to strongly vary along the z-axis.
However, only the zeroth component (Gk ¼ G0

k ¼ 0) was taken into
account in the xy direction. The latter is shown to be adequate in IR and
visible frequency range when the wavelength of the induced electric field
λ = 2πc/ω much larger that the unit cell parameter a (λ≫ a)14,38. The
relaxation processes within the system due to electron-impurity,
electron–phonon and electron–electron scattering processes were accoun-
ted for phenomenologically in terms of the relaxation-time approximation

(RTA)66,67, with separate intraband and interband damping parameters set
to ηintra = 10meV, ηinter = 50meV, respectively. Finally, we solve Dyson’s
equation and obtain the screened current-current conductivity tensor for
the trilayer (Eq. (14)). The spectra of surface electromagnetic modes are
determined from the real part of the EðQ;ωÞ in the topmost graphene layer
z1 (Eq. (16)) which is essentially the z; z0 integrated screened conductivity
~σ ¼ σ=ð1� ΓσÞ so it represents the absorption of monochromatic elec-
tromagnetic wave (Q, β0,ω) throughout the entire heterostructure.

In the 2D model, the ground state wavefunctions for GR and h-BN
monolayers were first used to calculate their respective conductivity tensors
σGRμν and σh�BN

μν (according to Eq. (11)) forG ¼ G0 ¼ 0 and thus obtaining
the 2D local conductivities (Eq. (19)) for each layer. The intraband and
interband and damping paramters were kept the same as in the atomistic
model corresponding to ηintra = 10meV and ηinter = 50meV, respectively.
The separationbetweenGRandh-BN sheetswas set toΔz = 3.2Åmatching
the relaxed crystal structure. Also, the separation between graphene planes
and dielectric surfaces was fixed to Δzs = 3.0Å. Here we assumed that the
dielectric medium is a vacuum (i.e. ϵ0 = 1) and that the substrate is alumina
(Al2O3), described by a macroscopic dielectric function

ϵsðωÞ ¼ 1=ϵ�1
G¼0G0¼0ðq≈ 0;ωÞ; ð39Þ

where the dielectricmatrix is ϵ̂ ¼ Î� V̂ χ̂0 and the irreducible polarizability
χ0 is

χ0GG0 ðq;ωÞ ¼ 2
Ω

P
k2BZ

P
n;m

f nðkÞ�f mðkþqÞ
ωþiηþEnðkÞ�EmðkþqÞ ρnk;mkþqðGÞ ρ�nk;mkþqðG0Þ:

ð40Þ

Here, k, q and G are the 3D wave vector, the transfer wavevector and the
reciprocal lattice vector, respectively; corresponding to the bulk Al2O3 crystal.
The charge vertices are ρnk;mkþqðGÞ ¼ ϕnk

�
∣e�iðqþGÞr∣ϕmkþq

E
and the bare

Coulomb interaction is VGG0 ðqÞ ¼ 4π
jqþGj2 δGG0 . The ground state electronic

density of the bulk Al2O3 is calculated using 9 × 9 × 3 K-mesh, the plane-
wave cut-off energy is 50 Ry and the Bravais lattices are hexagonal (12 Al and
18 O atoms in the unit cell) with the lattice constants aAl2O3

¼ 4:76 Å and
cAl2O3

¼ 12:99 Å. The Al2O3 irreducible polarizability χ
0 is calculated using

the 21 × 21 × 7k-point mesh and the band summations (n,m) are performed
over 120 bands. The damping parameter is η= 100meV and the
temperature is T= 10meV. For the optically small wave vectors q≈ 0 the
crystal local field effects are negligible, i.e. the crystal local field effects cut-off
energy is set to zero. The detailed results for ϵs using this approach are
presented in ref. 47. Using this approach, Reϵs is almost constant (Re½ϵs�≈ 3)
for low frequencies (ω < 3 eV), i.e. in the IR and VIS range, while Imϵs is
equal to zero up to the band-gap energy (Eg~ 6 eV). Therefore, Al2O3 is a
good choice for the substrate in the IR and visible frequency range since its
electronic excitations are above that range whichmeans that in the frequency
range of interest, there is no dissipation of the electromagnetic energy in the
substrate (it is transparent). Additionally, we explore the IR and VIS DP and
APwhich are above the Al2O3 IR active SO phonons (atωSO < 100meV)68 so
that their hybridisation is negligible. Furthermore, the dielectric function is
mostly constant, nevertheless, in this calculation, we used the fully dynamical
and complex ϵs(ω).

Subsequently, the electromagnetic energy absorption spectra are
obtained from Eq. (16) after solving Dyson’s equation (Eq. (25)) with the
obtained spatially-resolved sum of local 2D conductivites (Eq. (24)) as
described in detail in “Theoretical Formulation”).

In order to excite the plasmon polaritons in the frequency range
ω < 1 eV, the wavelength of the incident electromagnetic field should be in
the range λph > 1200 nm (IR/VIS spectrum). To make the electromagnetic
field scatteringmore efficient, in theGNR2DmodelwedefineaGNRgrating
of sub-wavelength width d = 100 nm and a period of l = 2d = 200 nm< λ.
Conversely, a SPP of wavelength λSPP ~ l = 200 nm is typically in the IR
region ωSPP ~ 100meV, while the same IR photons have a wavelength of
λph ~ 10000 nm. Therefore, the grating l enables the single-scattering of SPP
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into the radiative regionQ = 1/λph ≈ 0. All other parameters are the same as
in the 2D model as described above.

By settingQ ¼ Qyŷ we choose the p(TM) polarisation because we are
interested in how the longitudinal p(TE) plasmon polariton converts into
radiative resonances. We then proceed to compute the real part of the
p(TM) electromagnatic field propagator from Eq. (36) and take its g ¼
g0 ¼ 0 component, i.e. EGNR

yy;g¼g0¼0ðQyŷ;ω; z1; z1Þ. However, in order to
classify more easily the eigenmodes that appear in the GNR, the
calculation of the excitation spectrum is slightly modified, so that instead of
the field (Eq. (38)), we rather calculate the induced current
Re½σGNRyy;g¼g0¼0ðωÞEGNR

yy;g¼g0¼0ðQy ŷ;ω; z1; z1Þ�, which essentially corresponds
to the measurable absorption spectrum. The macroscopic field criteria g ¼
g0 ¼ 0 means that we neglect the spatial resolution of the electromagnetic
field within the unit cell l, i.e. in the limit Qy = 0, the only dipolar (optically
active) modes (the constant electrical field produced by a homogeneous
distribution of the dipole momentum) will appear in the spectrum. How-
ever, by increasing Qy the multipolar GNR modes and their dispersion
relations appear in the spectrum.
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