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∗ Author to whom any correspondence should be addressed.

E-mail: zrukelj@phy.hr

Keywords: optical conductivity, Fermi surface, thermopower, van Hove singularity, Lifshitz transition, charge density wave, DC carrier
concentration

Abstract
We study the main intra-band and inter-band transport properties at zero temperature of free
electron-like system undergoing a topological reconstruction of the Fermi surface for the
two-dimensional and three-dimensional case. The calculated intra-band properties include
the single-particle density of states, the total and the effective concentrations of electrons and the
thermopower. As for the inter-band case, the real part of the conductivity has been calculated
within the vanishing inter-band relaxation approximation as a function of the incident photon
energy. Within this approach, it is shown that the optical conductivity has a nonvanishing
component parallel to the reconstruction wave vector and the shape which depends on the value of
the Fermi energy. Each dimensionality has its particular features in the transport quantities
presented in the paper, which are discussed and compared with those in the free electron scenario.
Finally, we identify the signature of the topological reconstruction of the Fermi surface in the
intra-band and inter-band transport functions.

1. Introduction

The central goal of this paper is to identify signatures of the topological reconstruction of the Fermi surface
in the static and dynamic electronic response functions in the free electron-like two-dimensional (2D) and
three-dimensional (3D) systems. These response functions are easily experimentally accessible. They are: the
effective concentration of the intra-band charge carriers which defines the Drude weight, the thermoelectric
power known as the Seebeck coefficient and the optical conductivity, namely its real part. The emergence of
the quantum phase transition associated with the topological reconstruction of the Fermi surface is
predicted in the 2D and 3D nearly free electron gas systems [1–3]. In the mentioned works it is shown that
periodic, self-consistent perturbation of the nearly free electron system, such as a charge density wave for
example, can decrease the total energy of the system thus making it unstable with respect to its formation. It
is based on the fact that energy of the electron band is decreased if initially closed Fermi surfaces are related,
by the self-consistent wave vector, in the way to reconstruct and undergo a topological change into an open
one. In that process, two peculiar so-called ‘Lifshitz points’ are created in the band structure below and
above the initial Fermi energy respectfully: a hyperbolic point below and an elliptic point above. The
presence of the hyperbolic point in electron spectrum leads to density of states with the van Hove
singularity below the initial Fermi energy and a pseudo-gap (i.e. significantly reduced electron density of
states around the Fermi level) between the two ‘Lifshitz points’, accommodating the electrons at lower
energies in turn stabilizing the charge density wave phase. Here we mention a few notable examples of
systems whose ground state is well enough approximated by the free electron dispersion.

In the 2D case the recently proposed layered heterostructure LiBN [4–7] has a single parabolic
conduction band. The effective mass, the Fermi energy EF and correspondingly Fermi wave vector kF

depend on the type of the alkali metal and on its concentration relative to the underlying BN hexagonal net.
Another way of changing the Fermi energy is by the electrostatic doping [8] to which majority of the 2D
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materials are susceptible. Furthermore, the real materials exhibiting the topological reconstruction of the
Fermi surface, due to the spontaneous stabilization of the charge density wave ground state, are mostly
effectively 2D systems such as the high-Tc superconducting cuprates [9], or certain intercalated graphite
compounds [10].

Contrary to 2D, a possible 3D system with parabolic electron dispersion for the reconstruction to take
place is hard to find. As it was shown [1–3], a necessary condition on the wave vector of reconstruction,
relating the Fermi surfaces, is that it should be close to the integer multiple of 2kF. In the 3D metals the
Fermi energy is changed by impurity doping. This in turn could invoke the nontrivial effects, leading to the
conduction band renormalisation near the Fermi energy.

In order to find the signature of the topological reconstruction of the Fermi surface in the electronic
transport experiments, we proceed as follows: first we define an auxiliary system which comprises of a free
electron gas in the presence of a weak periodic crystal potential. This procedure is well know from the
elementary solid state physics textbooks [11] and in the vicinity of a single Bragg plane it gives a two-band
description of the electronic system. For simplicity we adopt the simplest approximation where such a
periodic potential has only one Fourier component. In the case of the uniaxial charge/spin density wave this
approximation is exact. Hence, the resulting two-band ground state develops a pseudo-gap thus defining
boundary of the new Brillouin zone which now resembles the infinitely long stripe (2D), or a cylinder (3D).
Also, we can shift the Fermi energy relatively to the centre of the pseudo-gap and calculate the effect of this
shifting on the transport response functions which, to the knowledge of the authors, is not present in the
literature. Finally, the mechanism of topological reconstruction by the density wave is revised trough the
minimization of the total electronic energy by formation of the self-consistent periodic potential. A
correspondence is then made between crystal and self-consistent periodic potential, whose wave vector
(which also determines the Brillouin zone) is locked to the Fermi wave vector. This makes our starting
problem, topologically reconstructed electron gas, just a special case of the auxiliary model of free electrons
in the weak perturbing potential.

The paper is outlined as follows:
In section 2 we define the Hamiltonian along with the electron energies which are written in

dimensionless units defined on the cylinder-like Brillouin zone. In sections 3 and 4 the single-particle
density of state (DOS) is calculated for 2D and 3D case. Certain DOS features are to some extend visible in
the effective concentration of electrons and in the Seebeck coefficient. Both quantities are calculated at near
zero temperature and compared to the well-known free electron gas results. The real part of the optical
conductivity is calculated using the Kubo formula in section 5. We define and evaluate the inter-band
current matrix element whose only non-vanishing component is the one parallel to the wave vector of the
density wave. The closed form of the optical conductivity is found and its dependence on Fermi energy and
dimensionality of the system analyzed in details. Finally, the particular case of the phase with the
topologically reconstructed Fermi surface is addressed.

2. Two-band Hamiltonian

The mathematical framework of this section does not depend on the system dimensionality. The generic
mean-field Hamiltonian describes the free electron gas in the presence of the self-consistent, uniaxial
reconstruction potential with amplitude Δ and spatial modulation vector Q

Ĥ =
∑

k

εkc†kck +Δc†kck−Q +Δc†k−Qck. (2.1)

The electron dispersions have a parabolic shape εk = ck2 where c = �
2/2m, k is electron wave vector, m is

the electron effective mass, while the second part in equation (2.1) is the coupling of electrons to the
self-consistent reconstruction potential. Writing the Hamiltonian equation (2.1) in its matrix form in the
basis of |k〉 and |k − Q〉 states

H =

(
εk Δ

Δ εk−Q

)
, (2.2)

we notice the resemblance to the Hamiltonian matrix found in the problem of determining the electron
energies in the presence of a weak periodic crystal potential in the vicinity of a single Bragg’s plane [11]. In
that textbook example the crystal potential is assumed to have only a single Fourier component with the
spatially-dependent form 2Δ cos(r · Q). Q is the smallest reciprocal lattice vector.
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Figure 1. (a) The Fermi surface for increasing values of the scaled Fermi energy ωF. The blue and the red line correspond to the
s = − and s = + band equation (2.7) respectively. In sub-figure 1 ωF is just above ωB, in 2 ωF = ωL, in 3 ωF = ωU, in 4 ωF is just
above ωU, in 5 ωF is inbetween ωT and ωU and in 6 ωF is just below ωT. (b) Schematic depiction of the Brillouin zone in
dimensionless units of κ after the reconstruction by a periodic potential. The zone is bounded in the κ‖ direction and
unbounded in the κ⊥ direction. (c) The bands equation (2.7) along the direction of κ are shown in (b) with four characteristic
energy values marked by the green circles.

The diagonalisation of equation (2.1) is straightforward using the Bogoliubov unitary transformation
UHU−1 = E, where E is the diagonal eigenvalue matrix and U is [12]

U =

(
cos(ϑk/2) sin(ϑk/2)
− sin(ϑk/2) cos(ϑk/2)

)
. (2.3)

The auxiliary angle ϑk is a function of the Hamiltonian matrix elements in equation (2.1)

tan ϑk =
2Δ

εk−Q − εk
. (2.4)

Utilizing equations (2.3) and (2.2) in the above-described way, the Bloch energies are obtained. They are
defined within the Brillouin zone with the periodicity determined by Q and are labelled by index
s ∈ {+,−}

E±
k =

1

2

(
εk−Q + εk

)
± 1

2

√(
εk−Q − εk

)2
+ 4Δ2. (2.5)

To make the mathematical treatment as simple as possible, three modifications are done in electron
dispersion equation (2.5).

First, k is defined relatively to Q. This way the Bloch wave vector may be decomposed as k = k⊥ + k‖
with respect to the Q direction.

Further, the origin of the newly-formed Brillouin zone is shifted by k → k + Q/2. That way the point
of the band splitting shifts to the origin of Brillouin zone. Implementing these two changes in
equation (2.5) we get

Es
k = ck2

⊥ + ck2
‖ + c(Q/2)2 + s

√
c2k2

‖Q2 +Δ2. (2.6)

The final modifications defines the dimensionless variables, i.e. κ = 2k/Q, and scaling the energies
equation (2.6) to εQ,

ωs
κ ≡ Es

κ

εQ
= κ2

⊥ + κ2
‖ + 1 + s

√
4κ2

‖ + η2, (2.7)

which are shown in figure 1. The energy scale εQ = c(Q/2)2 in equation (2.7) is associated with the bare
electronic energy at the Bragg’s plane prior to the pseudo-gap opening. The dimensionless parameter
η = Δ/εQ is a measure of the strength of the perturbating potential. In the general perturbative crystal
potential approach, as well as in the case of the topological reconstruction, we expect η 	 1.

The Brillouin zone, over which equation (2.7) is spanned, resembles an infinitely long cylinder in
κ⊥ ∈ [−∞,∞] direction of total width κ‖ ∈ [−1, 1]. In the forthcoming calculation, there are four energy
constants which are linked to the bands equation (2.7), of particular importance.

The bottom (B) energy of the s = − band and the top (T) energy of the s = + band within the κ⊥ = 0
cross section of the Brillouin zone are located at the κ‖ = 1 (see figure 1)

ω±
κ⊥=0,κ‖=1 ≡ ωT,B = 2 ±

√
4 + η2. (2.8)

3
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Figure 2. The density of electron states (DOS) of a reconstructed system described by the bands equation (2.7) as a function of
the scaled energy ω in units of G(0)

d for η = 0.2. Full green and red lines represent the 2D and 3D case respectively. The dashed
lines represent the 2D and 3D free electron DOS equation (3.8).

Also, the values ω±
κ at the centre of the Brillouin zone (the pseudo-gap region) κ = 0 are important. We

label them by indices L and U depending on their value

ω±
κ=0 ≡ ωU,L = 1 ± η, (2.9)

being the elliptic point in the upper and saddle point in the lower band, named the upper and the lower
‘Lifshitz point’ respectively [13]. So, the maximal vertical energy difference between the two bands is

ωT − ωB = 2
√

4 + η2, (2.10)

while, correspondingly, the width of the pseudo-gap is

ωU − ωL = 2η. (2.11)

All the transport properties including the DOS to which we shall refer to in the next section, will be the
piecewise functions of energy on the intervals defined by equations (2.8)–(2.11).

3. Density of states

Here we calculate the single-particle DOS per unit volume for the 2D (d = 2) and 3D (d = 3) case. The
mathematical procedure outlined in this section is used throughout the rest of the paper and is presented in
detail in appendix A. DOS is defined as

G(E) =
2

V

∑
s,k

δ(E − Es
k), (3.1)

with the bands Es
k given by equation (2.5). Changing the sum in equation (3.1) to an integral over κ and

introducing the scaled energy ω = E/εQ, as defined in the previous section, we get

Gd(ω) =
23−2d

π2

Qd

εQ

∑
s

∫ ∞

0
κd−2
⊥ dκ⊥

∫ 1

0
dκ‖δ

(
ω − κ2

⊥ − κ2
‖ − 1 − s

√
4κ2

‖ + η2
)
. (3.2)

The dimensionality d enters explicitly in equation (3.2) in the prefactors, giving a correct unit of the
d-dependent DOS, and also as a parameter in the integral over κ⊥. Also, we have exploited the fact that
equation (2.7) is an even function of κ. The way to tackle the integral equation (3.2) which contains the
Dirac delta function of another function g(x) is to decompose the δ-function as a sum over the roots x0

δ(g(x)) =
∑

x0

δ(x − x0)∣∣∣∂g(x)/∂x|x0

∣∣∣ , g(x0) = 0. (3.3)

It is optimal to deal with the κ⊥ variable first. Applying the formula equation (3.3) to equation (3.2) we get

Gd(ω) =
22−2d

π2

Qd

εQ

∑
s

∫ 1

0
dκ‖ {κ⊥}d−3

0 Θ
(
{κ⊥}0

)
, (3.4)

4
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where {κ⊥}0 is the real root of the argument of the delta function in equation (3.2)

{κ⊥}0 =

√
ω − κ2

‖ − 1 − s
√

4κ2
‖ + η2. (3.5)

The Heaviside step function Θ in equation (3.4) changes the integration limits (it is 1 for positive
arguments and zero otherwise). This is equivalent to the constraint that equation (3.5) is real and within the
interval {κ⊥}0 ∈ [0,∞]. This in turn imposes restrictions on the integration boundaries of κ‖ making
them (ω, s)-dependent, transforming (3.4) to

Gd(ω) =
22−2d

π2

Qd

εQ

∑
s

∫ ts(ω)

bs(ω)
{κ⊥}d−3

0 dκ‖. (3.6)

In appendix A it is shown how to obtain limits (the bottom bs(ω) and the top ts(ω)) of integration. Here we
merely state their value:

case s = −:

ωB < ω < ωL ⇒

⎧⎪⎨
⎪⎩

t−(ω) = 1,

b−(ω) =

√
1 + ω −

√
4ω + η2

ω > ωL ⇒

⎧⎪⎨
⎪⎩

t−(ω) = 1,

b−(ω) = 0

case s = +:

ωU < ω < ωT ⇒

⎧⎪⎨
⎪⎩

t+(ω) =

√
1 + ω −

√
4ω + η2

b+(ω) = 0.

(3.7)

First we calculate the DOS for the free electron bands in the 3D and 2D case. For consistency, the free
electron DOS is also expressed in terms of ω and εQ

GFree
d (ω) =

1

2d+1πd−1

Qd

εQ
ωd/2−1 ≡ G(0)

d ωd/2−1, (3.8)

showing the usual constant or
√
ω-dependence in 2D and 3D, respectively, as depicted in figure 2 by dashed

lines. The 3D DOS equation (3.6) can be written down immediately since the integration is easily
preformed giving

G3(ω)/G(0)
3 =

(
1 −

√
1 + ω −

√
4ω + η2

)
Θ(ω − ωB)Θ(ωL − ω)

+ Θ(ω − ωL) +

√
1 + ω −

√
4ω + η2 Θ(ω − ωU)Θ(ωT − ω), (3.9)

which is shown as red line in figure 2. Several features of this piecewise function stand out when compared
to the free electron case. First, the onset of DOS is at ωB. Secondly, the emergence of the van Hove
singularities at the points ωL and ωU, as well as a constant value of the DOS between them, ω ∈ (ωL,ωU), is
in contrary to the overall ∼

√
ω shape as anticipated by equation (3.8). This constant value, as reported in

[3], also deviating form the result stated in [11], has a profound influence on the DC transport properties
as shown in the next section.

For the 2D case we obtain the DOS numerically by inserting the boundaries equation (3.7) and the root
equation (3.5) into equation (3.6). The result is shown as a green line in figure 2. As in the previous 3D case
here also we notice differences when compared with the constant DOS as predicted for the free electron
model equation (3.8). The main distinction is visible for energies around the pseudo-gap region. At the
energy ωL a logarithmic singularity is formed due to the saddle geometry of the band. Once the ωU is
reached, DOS jumps abruptly to the free electron gas value equation (3.8) and continues so until ωT is
reached.

5
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Figure 3. Total and effective concentration of electrons in 2D and 3D case as a functions of scaled Fermi energy ωF in units of
n(0)

d equation (4.3) for η = 0.2 and for m = me. It is shown that total concentration is equal to the perpendicular effective
concentration ntot = n⊥ in both dimensionalities. On the other hand n‖ has features of its own. The free electron concentration
n0 is represented by a green dashed line.

4. Carrier concentrations and low-T thermopower

For the upcoming analysis, we regard the scaled Fermi energy ωF ≡ EF/εQ as a variable. The way the Fermi
energy is changed is not of our primary concern, nor shall we go into the discussion about the possible
influence that the doping procedure has on stability of the band structure. This provides an insight in the
often-used charge transport quantities that depend not only on the value of the Fermi energy, but also on
the direction of the applied external perturbation.

First we calculate the total concentration of electrons ntot as it depends on the Fermi energy. Second, the
main component of the Drude weight, the effective concentration of conducting electrons nα, is calculated.
The connection with the experiment here is simple since the Drude weight is measured in the reflectivity
experiments (plasma edge). In a free electron-like system this concentration is trivially related with the total
concentration of electrons [7], but in the system described by more ‘exotic’ bands like equation (2.6), the
two may differ significantly as seen in graphene for example [14]. Finally, the Seebeck coefficient or
thermoelectric power Sα is calculated in the T = 0 limit using the Mott formula.

4.1. Total concentration of electrons ntot

We start by writing the total zero-temperature concentration of electrons in the momentum representation,

n(d)
tot (EF) =

2

V

∑
s,k

Θ(EF − Es
k), (4.1)

where V is the system volume, and in the scaled energy representation,

n(d)
tot (ωF) = εQ

∫ ωF

ωB

Gd(ω)dω, (4.2)

where, in the later, the recently calculated DOS has been utilized. The n(d)
tot , equation (4.2) is a function of

scaled Fermi energy ωF and it is depicted in the figure 3 for 2D and 3D case (n(d)
tot = n(d)

⊥ because of the
reasons given in the following subsection). On the same figure a d-dependent free electron value of electron
concentration

n0(ωF) =
Qd

2dπd−1d
ω

d/2
F ≡ n(0)

d ω
d/2
F , (4.3)

is drawn by the green dashed lines.
The common feature in both 2D and 3D is that the total concentration equation (4.2) and its free

electron analog equation (4.3) are almost equal for energies in the interval (ωB,ωL). Above ωL they start to
deviate, slightly more in 3D then in 2D.

4.2. Effective concentration of electrons nα

Here, the effective concentrations of electrons nα that participate in the DC transport are calculated. Index
α denotes a Cartesian component with respect to the reconstruction wave vector, i.e. α ∈ (‖,⊥), of the

6
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effective concentration. The DC conductivity is defined as σDC = e2τnα/me where τ is the scattering
relaxation time, me is a bare electron mass and the zero-temperature (T = 0) expression for nα [15] is given
in two equivalent forms

n(d)
α (EF) =

2

V

me

�2

∑
s,k

(
∂Es

k

∂kα

)2

δ(EF − Es
k) (4.4a)

=
2

V

me

�2

∑
s,k

∂2Es
k

∂k2
α

Θ(EF − Es
k). (4.4b)

The two expressions in equation (4.4) are obtainable from one another by partial integration. Here, as well,
nα will be expressed in terms of the dimensionless units ωF.

The two distinct directions α ∈ (‖,⊥) in electron dispersions equation (2.6) imply the difference
between n⊥ and n‖. It is easy to check that ∂2Es

k/∂k2
⊥ = �

2/m and thus equation (4.4b) is the same as

equation (4.1), n(d)
tot = n(d)

⊥ , if m = me, which holds for the α = ⊥ case regardless of dimensionality d.
On the other hand, this is not so for the α =‖ case. The second derivative of the electron dispersion

equation (2.6) over k‖ is not a constant, but a rather complicated function of k‖. Since we have already
presented the solution for the integrals involving the δ-function, we shall proceed by evaluating n‖ using
equation (4.4a). Changing the sum into an integral over κ and introducing ω as defined in the previous
section, the following result is obtained

n(d)
‖ (ω) =

24−2d

π2
Qd

∑
s

∫ ∞

0
κd−2
⊥ dκ⊥

∫ 1

0
κ2
‖ dκ‖

⎛
⎝1 +

2s√
4κ2

‖ + η2

⎞
⎠

2

δ
(
κ2
⊥ + κ2

‖ + 1 + s
√

4κ2
‖ + η2 − ω

)
,

(4.5)
which, after the δ-function evaluation by the same recipe from the section 3, gives

n(d)
‖ (ω) =

23−2d

π2
Qd

∑
s

∫ ts(ω)

bs(ω)
κ2
‖ dκ‖

⎛
⎝1 +

2s√
4κ2

‖ + η2

⎞
⎠

2

{κ⊥}d−3
0 . (4.6)

The differences between the effective n(d)
‖ and the total n(d)

tot , concentration are shown in the figure 3. Unlike

the n(d)
tot or equivalently n(d)

⊥ , n(d)
‖ is extremely susceptible to the features originating from the pseudo-gap.

Several features are highlighted depending on the position of ωF. The main feature of 2D effective
concentration is the ‘shark fin’ shape at ωF within the pseudo-gap. The logarithmic divergency in DOS at
energy of the lower Lifshitz point, ωL (the saddle point in the lower band), corresponds to the inflection
point in n(2)

‖ (ωL). Also, the discontinuity in the DOS generates the discontinuity in the slopes of n(2)
‖ (ωU) at

the energy of the higher Lifshitz point, ωU (bottom of the upper band). Above the pseudo-gap, n(2)
‖ ∼ ωF

gradually tends to equation (4.3) as ωF increases.
The features of the effective concentration in 3D system are more ‘tamed’ than those in 2D. Outside the

pseud-gap, n(3)
‖ (ωF) has roughly a ω

3/2
F -dependence as shown by equation (4.3). Within the pseudo-gap

region, n(3)
‖ (ωF) is a constant.

It is particularly visible on the example of this system how n(d)
tot and n(d)

α differ. Although n(d)
⊥ = n(d)

tot , they
are both approximately by a factor of two larger then n(d)

‖ for ωF > ωL. Eventually they meet at higher values
of ωF. The discrepancy is a result of an unphysically large value of η, chosen as such merely for the matter of
presentation, for depiction of the two concentrations. This discrepancy also serves as a reminder to the fact
that even a simple distortion like the pseudo-gap opening on the Fermi surface changes the concentration
of electrons participating in the DC conductivity substantially comparing to their total number. As η is set
to zero, nα and ntot naturally become equal to n0.

4.3. The Seebeck coefficient Sα

We use the well-known Mott formula for Sα [11, 16]. This formula is a result of the Sommerfeld expansion
(kBT 	 EF) of the Onsanger’s transport coefficients and it reads

S(d)
α (ωF) ≈ π2k2

BT

3eεQn(d)
α (ωF)

∂n(d)
α (ω)

∂ω

∣∣∣∣
ωF

. (4.7)

As noted in the in section 4.2, nα depends differently in α =‖ and α = ⊥ case, so consequently will Sα. For
comparison, the Seebeck coefficient for the 2D and 3D free electron gas is derived using equations (4.7) and

7
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Figure 4. Direction-dependent Seebeck coefficient, S‖ and S⊥, as a function of scaled Fermi energy ωF for the 2D and 3D system
described by equation (2.7) in units of S(0)

d for η = 0.2 and m = me. The free electron gas value S0 equation (4.8) is presented by
the green dashed line.

(4.3). This gives simply

S0(ωF) =
π2k2

BT

3eεQ

d

2ωF
= S(0) d

2ωF
, (4.8)

since, as noted before for the free electron gas, the total and the effective concentrations are equal.
Expression (4.8) is shown in figure 4 as a green dashed line. The results for the Seebeck coefficient
equation (4.7) with two different components α ∈ (⊥, ‖) are shown in figure 4 for the 2D and 3D case. The
common characteristic for 2D and 3D case is that, for Fermi energies small compared to ωL, S(d)

α is equal to
the free electron value equation (4.8). Also, in general, S(d)

⊥ deviates weakly from the free electron result with
the main differences located around and in the pseudo-gap region. S(d)

‖ on the other hand has a rich
structure. For the 2D system, it has a logarithmic divergency at ωL and a discontinuity at ωU. Also, between
these two points S(2)

‖ changes sign. In the 3D case S(3)
⊥ manages to follow free electron result with minor

deviations in the form of small spikes at ωL and ωU. On the other hand, S(3)
‖ vanishes in the pseudo-gap.

This is due to the constant DOS equation (3.9) for this energy interval. In the ωF � ωL limit, as well as for
η → 0, Sα(ωF) → S0(ωF), ∀ α, both in the 2D and 3D case.

5. Optical conductivity

Here we calculate the zero-temperature optical response of the electron system described by equation (2.1)
in 2D and 3D case. The calculation consists of defining the optical conductivity tensor within the two-band
picture in the limit of vanishing inter-band relaxation and with the current matrix elements derived from
the Hamiltonian equation (2.1). We shall see that shape of the real part of the optical conductivity strongly
depends on the values of the scaled Fermi energy ωF, and weakly on the dimensionality d of the system.

5.1. Optical conductivity Kubo formula
In the two-band model the complex inter-band conductivity tensor is defined [17] as a function of the
incident photon energy E

σα(E ) =
2i�

V

∑
s�=s′=±

∑
k

|Jss′
αk|2

Es
k − Es′

k

f s′
k − f s

k

E − Es
k + Es′

k + iΓ
, (5.1)

where α is index of the Cartesian component of the inter-band conductivity tensor. The only α-dependent
part in the conductivity formula equation (5.1) is the inter-band current matrix element Jss′

αk. These
elements are part of the diagonalized current matrix defined as a unitary transformation of the Hamiltonian
equation (2.2) matrix derivative

Jα =
e

�
U(∂H/∂kα)U−1, (5.2)
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with the unitary matrix U given by equation (2.3). In the expression equation (5.1) Γ is a small
phenomenological relaxation parameter and in the limit Γ → 0 the real part of the conductivity tensor for
the incident photon energies E > 0 reduces to

Reσα(E ) =
2�π

EV

∑
k

|J+−
α,k |2

(
f −k − f +k

)
δ(E − E+

k + E−
k ). (5.3)

Once the elements equation (5.2) are derived we can use equation (5.3) for further analytical derivation.

5.2. Optical conductivity of 2D and 3D system
We begin by evaluating the inter-band current element. Inserting the unitary matrix elements
equation (2.3) and the derivatives of the Hamiltonian (2.2) in equation (5.2) we get

J+−
αk =

e

2�
sin ϑk

∂(εk−Q − εk)

∂kα
. (5.4)

The only non-vanishing component in the derivative of the free electron dispersion (section 2) in the above
expression is α =‖. Therefore, the optical conductivity in the presented model has only the α =‖
component. Written in terms of dimensionless variables κ and η the inter-band current element is

J+−
‖κ =

e

�
Qc

η√
4κ2

‖ + η2
. (5.5)

We shall omit the label ‖ when addressing the real part of the optical conductivity which we calculate by
inserting the equation (5.5) into equation (5.3) and changing the sum to an integral over the dimensionless
variable κ within the limits given in section 2. As a general result for dimensionality d we find

Reσ(d)(Ω) =
29−2d

π
σ0Qd−2 η

2

Ω

∫ ∞

0
κd−2
⊥ dκ⊥

∫ 1

0
dκ‖

Θ
(
EF − E−

κ

)
− Θ

(
EF − E+

κ

)
4κ2

‖ + η2
δ
(
Ω− 2

√
4κ2

‖ + η2
)
.

(5.6)
In writing the above integral we have used the T = 0 Fermi–Dirac distribution function

f(Eκ) = Θ(EF − Eκ). Also, in the above expression, the scaled dimensionless variable for the incident
photon energy, Ω = E/εQ, is introduced alongside the conductivity constant σ0 = e2/4�.

In equation (5.6) the variable κ‖ is used for decomposing the δ-function over its roots. According to the
procedure from section 3

δ
(
Ω− 2

√
4κ2

‖ + η2
)
=

Ω

8{κ‖}0
δ
(
κ‖ − {κ‖}0

)
, (5.7)

where {κ‖}0 =
√
Ω2 − (2η)2/4. The initial restriction κ‖ ∈ [0, 1] limits the range of Ω to

2η = Ωmin < Ω < Ωmax = 2
√

4 + η2, (5.8)

and so does the interval on which Reσ(d)(Ω) is defined. The effect, that the restriction equation (5.8) has on
Reσ(d)(Ω), can be summarized to Reσ(d)(Ω) ∝ Θ(Ω− Ωmin)Θ(Ωmax − Ω). Limits in equation (5.8) are
thus easily identified. The lower value, Ωmin, is the minimum vertical spacing between the valence and
conduction band and is equal to the pseudo-gap width (see figures 1(c) and 5(a) and equation (2.8). The
larger value, Ωmax, is the maximum distance from the bottom of the valence to the top of the conduction
band (see figures 1(c) and 5(a) and equation (2.9)).

Inserting the δ-function equation (5.7) back into equation (5.6) and changing κ‖ → {κ‖}0 in the
electron energies E±

κ in arguments of the Θ-functions, we have

Reσ(d)(Ω) =
210−2d

π
σ0Qd−2η2Θ(Ω− Ωmin)Θ(Ωmax − Ω)

Ω2
√
Ω2 − (2η)2

×
∫ ∞

0
κd−2
⊥ dκ⊥

{
Θ

[
ωF −

(Ω− 4)2 − (2η)2

16
− κ2

⊥

]
− Θ

[
ωF −

(Ω+ 4)2 − (2η)2

16
− κ2

⊥

]}
.

(5.9)

The Θ-functions within the integral in equation (5.9) are finite (equal to 1) only if their arguments are
positive. We exploit that by introducing the auxiliary function

R± =

√
ωF −

(Ω± 4)2 − (2η)2

16
, (5.10)

9
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Figure 5. (a) Schematic view of the characteristic regions for optical excitations with respect to the band structure. The position
of several characteristic Fermi energies ωF is shown in orange alongside with Ωmin, Ωmax and a optical threshold energy Ω− with
respect to ωF1. The thick line segments on the bands around ωF2 indicate filled and empty states that are shifted with respect to
one another by the energy Ωmin. A hypothetical third band is shown as a dotted line together with the critical ωc

F. Gray thick lines
and arrows on the bands around ωF2 indicate states excited from the ω−

κ to ω+
κ band by a constant energy Ωmin leading to the

divergent optical response. (b1)–(c3) Reσ(d)(Ω) plotted for several values of ωF within the three intervals as described in the
main text. The conductivity is given in units of σ(d) with parameter η = 0.2 defining the position of Ωmin as indicated by an
arrow. The characteristic points such as the onset of optical excitation at Ω−, the positions of maxima (at energy Ω0) and the
kinks position at −Ω− are indicated on the figures by dots or arrows. For comparison, both 3D and 2D Re σ(d)(Ω) are plotted for
the same values of ωF belonging to the one of three intervals as noted in figures. In (b1) and (c1) Re σ(d)(Ω) is plotted for
ωF = 0.4, 0.6, 0.7, 0.75, 0.8. In (b2) and (c2) Re σ(d)(Ω) is plotted for ωF = 0.8001, 0.805, 0.807, 0.81, 0.815, 0.83, 0.9, 1, 1.2. In
(b3) and (c3) Re σ(d)(Ω) is plotted for ωF = 1.5, 2, 2.5, 3, 3.5.

so we can factorise the arguments of the Θ-functions in equation (5.9) as

Θ
(
R2
± − κ2

⊥
)
= Θ ((R± − κ⊥)(R± + κ⊥)) ≡ Θ (R± − κ⊥) . (5.11)

In equation (5.11) it states: if R2
± < 0 (R± is not real), then the argument of the Θ-function on the left-hand

side of equation (5.11) is zero since κ⊥ > 0 and the Θ-function vanishes, as does the entire equation (5.9).
If R2

± > 0 (R± is real), the argument of the Θ-function on the left-hand side of equation (5.11) is positive
and can be written as a product of monomials. Since R± + κ⊥ > 0, it does not influence the value of the
Θ-function, leaving effectively the result in equation (5.11). Thus, from equation (5.11) we see that the
Θ-function influences only the upper limit of integration

Reσ(d)(Ω) =
210−2d

π
σ0Qd−2η2 Θ(Ω− Ωmin)Θ(Ωmax − Ω)

Ω2
√
Ω2 − (2η)2

(∫ R−

0
κd−2
⊥ dκ⊥ −

∫ R+

0
κd−2
⊥ dκ⊥

)
. (5.12)

Whether equation (5.10) is real or not and consequently equation (5.12) finite or zero, depends on the
value of Ω and ωF. Of course, the allowed values of Ω should fall within the limits set by equation (5.8).
With a modest effort in determining the sign of the sub-root functions in equation (5.10), the following
conclusions can be made for each integral in equation (5.12) separately.

R− is real (the sub-root function equation (5.10) is positive) and hence the first integral in the curly
brackets in equation (5.12) is finite for Ω within the interval

Ω− < Ω < Ω+, (5.13)

where
Ω± = 4 ±

√
16ωF + (2η)2. (5.14)

10
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Also, comparing equations (5.14) and (5.8) we conclude

ωF < 1 − η ⇒ Ω− > Ωmin,

ωF > 1 − η ⇒ Ω− < Ωmin, (5.15)

and Ω+ > Ωmax.
On the other hand, R+ is real (the sub-root function equation (5.10) is positive) and hence the second

integral in the curly brackets in equation (5.12) is finite for Ω in the interval

− Ω+ < Ω < −Ω−. (5.16)

From equation (5.14) we see that regardless of ωF, −Ω+ < Ωmin, while −Ω− > Ωmin if ωF > 1 + η.
When collected, the conditions and restrictions (5.13)–(5.16) are best expressed by the aid of the step

function Θ. Defining a d-dependent constant of conductivity as

σ(d) =
210−2d

π
σ0η

2 Qd−2

d − 1
, (5.17)

we arrive to the final expression for the real part of the d-dimensional optical conductivity

Reσ(d)(Ω) = σ(d) Θ(Ω− Ωmin)Θ(Ωmax − Ω)

Ω2
√
Ω2 − Ω2

min

[
Rd−1
− Θ(ωL − ωF)Θ(Ω− Ω−) + Rd−1

− Θ(ωF − ωL)

+ Rd−1
+ Θ(−Ω− − Ω)Θ(ωF − ωU)

]
. (5.18)

There are two main features in equation (5.18). The first one is the prefactor which, regardless of d, has
a strong Ω−3-dependency. The second one is the part within the square brackets. Besides on Ω, it is also
depends on d and ωF. To fully understand how Reσ(d)(Ω) evolves with ωF we analyze each dimensionality
separately.

5.3. 3D optical conductivity features
Here we describe the 3D Ω-dependent conductivity Reσ(d)(Ω) as it depends on ωF.

Case ωF � ωL:
In figure 5(b1) Reσ(3)(Ω) is shown for several values of ωF bounded by condition ωF � ωL. The onset of

the inter-band excitation begins at Ω− equation (5.3), indicated by an arrow in figure 5(b1) for a specific
value of ωF = 0.7, and ends at Ωmax. Ω− is the vertical distance between the bands as shown schematically
in figure 5(a). In this range of ωF values, Reσ(3)(Ω) is a humped curve expanding toward Ωmin, with
increasing amplitude and spiking as ωF → ωL. For small enough ωF, the position of maximum is roughly
estimated to be at

Ω0 ≈ 8 − 4
√

1 + 3ωF, (5.19)

represented by orange dots in figure 5(b1). Equation (5.19) was obtained under the assumption
Ω− � Ωmin. Clearly this breaks as we approach ωF → ωL.

There is a steep linear dependence Re σ(3)(Ω) ∝ (Ω− Ω−)/
√
Ω− − Ωmin for photon energies just above

the onset of inter-band excitations at Ω− (figure 5(b1)). The steepness increases as ωF → ωL. Finally, for
ωF = ωL equation (5.18) reduces to

Reσ(3)(Ω) ≈ σ(3)

23/2Ω
5/2
min

√
Ω− Ωmin (Ω+ − Ω), (5.20)

for energies Ω just above Ω− = Ωmin. At the particular value, ωF = ωL, we can analytically find the position
of the maximum which is located at Ω0 = Ωmin (1 +

√
17)/4, clearly above the threshold energy Ωmin with

the peak height of Reσ(3)(Ω0) ≈ 0.013 4σ(3)
0 (8 − 2.281Ωmin)/Ω2

min, depicted by the red circle in
figure 5(b1). The square-root in Re σ(3)(Ω) ∝

√
Ω− Ωmin for ωF = ωL has its origin in the shape of DOS

below ωL and above ωU which has a square-root dependence (see equation (3.9) and figure (2)).
Case ωL � ωF � ωU:
For ωF slightly above ωL, two features take place in Reσ(3)(Ω). The first one is a one over a square-root

divergency Reσ(3)(Ω) ∝ 1/
√
Ω− Ωmin for Ω � Ωmin, which quickly falls off to the second feature, which is

a residuum of the hump shown in figure 5(b2). As ωF increases and enters into the pseudo-gap, the hump
in Reσ(3)(Ω) shifts to the left and eventually disappears leaving only a one over square-root singularity
which is present for all ωF > ωL. The origin of the divergency can be easily traced from the figure 5(a)
where it is shown that the upper ω+

κ the lower ω−
κ bands are parallel in κ⊥ direction, shifted by the amount

Ωmin. Once the Fermi energy ωF is slightly larger than ωL (ωF2 in figure 5(a)), a finite amount of states

11
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determined by κ‖ = 0 is excited across the pseudo-gap by the photon energy of Ω = Ωmin, producing a
divergent optical response. Overally, for ωF well within a pseudo-gap, the optical conductivity behaves
roughly as Ω−3 over the entire interval between the points Ωmin and Ωmax, as it is shown in figure 5(b2) for
several values of the ωL < ωF < ωU.

Case ωF > ωU:
In this case an additional feature appears in the optical conductivity as can been seen from figure 5(b3)

plotted for several values of ωF. Now, −Ω−, which is positive equation (5.16), is the limiting value, dividing
the two different Ω-dependencies which arise due to the square brackets in equation (5.18). The rough
dependence on Ω can be summarized as:

Reσ(3)(Ω) ∼ Ω−1/2, Ω � Ωmin

Reσ(3)(Ω) ∼ Ω−2, Ωmin < Ω < −Ω−

Reσ(3)(Ω) ∼ Ω−3, −Ω− < Ω < Ωmax .

(5.21)

In figure 5(b3) a kink in Reσ(3)(−Ω−) is indicated by an arrow. As ωF is further increased, the kink
travels to the right.

5.4. 2D optical conductivity features
Similar considerations apply for the 2D optical conductivity.

Case ωF < ωL:
The 2D optical conductivity which is shown in figure 5(c1) for several values of ωF, has an onset of

inter-band excitations at Ω−. Reσ(2)(Ω) is humped-like curve with a bit more pronounced amplitude then
its 3D analog. The conductivity curve expands toward Ωmin, with increasing amplitude and spikes as
ωF → ωL. Again, for ωF 	 ωL, which implies Ω− � Ωmin, the position of maximum is roughly estimated to
be at

Ω0 ≈ 5 −
√

1 + 24ωF, (5.22)

denoted by the orange circles in figure 5(c1). In the 2D case there is a square-root dependence
Reσ(2)(Ω) ∝

√
Ω− Ω−/

√
Ω− − Ωmin for photon energies just above the onset of the inter-band excitation

at Ω− as shown in figure 5(c1). The amplitude of the square-root increases as ωF → ωL. Finally, for
ωF = ωL, equation (5.18) reduces to the simple approximate expression

Reσ(2)(Ω) ≈ σ(2)

√
2

1

Ω2√Ω + Ωmin
, (5.23)

valid for energies Ω not much larger than Ωmin. For this particular value of Fermi energy, the spike of the

optical conductivity is finite, located at Ω0 = Ωmin, and has a height of Re σ(2)(Ω0) = σ(2)
0 /2Ω5/2

min (red dot in
figure 5(c1)).

Although a singularity in the DOS is located at ωL (see figure 2), it does not imply the divergency of the
optical conductivity as shown in figure 5(c1). The reason is the so-called ‘bottle-neck’ effect that the upper
band creates with its parabolic bottom and a constant DOS (figures (1) and (2)) at energy ωU. There is an
infinite number of electron states at ωL ready to be excited across the pseudo-gap to ωU. However, at ωU

there is only a finite number of states to accept those electrons. This is the origin of a finite point-like
dependence of optical conductivity equation (5.20) at photon energy Ω = Ωmin.

Case ωL � ωF � ωU:
As in the 3D case, here we also find a one over square-root divergency Reσ(2)(Ω) ∝ 1/

√
Ω− Ωmin for

Ω � Ωmin and ωF slightly above ωL. However, unlike in the 3D case, there is no hump present. As ωF

increases into the pseudo-gap, the square-root divergency is more and more pronounced. This also has its
roots in the existence of a finite segment of the ω−

κ band that can be excited (vertically) to ω+
κ band along

the κ⊥ direction at energy Ωmin. The higher the value of ωF, the larger is the segment and so is the
amplitude of the square-root divergency (figure 5(a)). The optical conductivity is shown in figure 5(c2) for
several values of ωL < ωF < ωU. Overally, for ωF well within the pseudo-gap, the optical response behaves
roughly as Ω−3 along the entire interval between the points Ωmin and Ωmax.

Case ωF > ωU:
Here also, as it was in the 3D case, −Ω− is the limiting value dividing the two different Ω-dependencies

which arise due to the expression within the square brackets in equation (5.18) (see figure 5(c3). They are
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approximately given by
Reσ(2)(Ω) ∼ Ω−1/2, Ω � Ωmin

Reσ(2)(Ω) ∼ Ω−2, Ωmin < Ω < −Ω−

Reσ(2)(Ω) ∼ Ω−3, −Ω− < Ω < Ωmax .

(5.24)

Comparing expressions equations (5.21) and (5.24) we can see that the overall frequency dependence is
universal in 2D and 3D. At the particular point, Re σ(2)(−Ω−) has a small spike at energy −Ω−, as pointed
by an arrow in figure 5(c3). As ωF is further increased, the kink (spike) travels to the right, while the overall
conductivity curve moves to the left. This movement of the curve to the left is in contrast to the 3D case
where the optical conductivity curve tends to move to the right as ωF is increased (see figures 5(c3)
and (b3)).

5.5. Validity of the two-band model in the calculation of optical response
The optical excitations in the two-band model are limited by the minimal Ωmin and maximal Ωmax value of
the incoming photon. Ωmax, which is equal to ωT, corresponds to the excitation as shown in figure 5(a). The
question arises to which value of the Fermi energy, call it the critical Fermi energy ωc

F, can we fill the second
ω+
κ band so that electron excited from ωc

F hits the hypothetical third band (dashed line in figure 5(a)) when
absorbing the photon with the highest allowed energy Ωmax? Once being above the energy ωc

F, the two-band
description of the optical conductivity is not sufficient and the third band has to be included into the
consideration when calculating σ(d)(Ω).

This scenario is relevant under the assumption that higher Fourier components of the crystal potential
are finite. This also implies that the inter-band current matrix elements equation (5.5) between the second
and the third band are finite, allowing the single-particle optical transitions.

The numerical estimate for ωc
F can be done easily by taking the non-perturbative free electron dispersion

of the third band εk−2Q, shift it and express it in dimensionless units as described in section 2 to get ωκ.
Then we search for the wave vector κ for which ωκ − ω+

κ = ωT. Neglecting η and any other equivalent gap
parameter in this procedure we obtain κ ≈ 1 − ωT/8. This in turn gives

ωc
F ≈

(
2 − ωT/8

)2 ≈ 2.25, (5.25)

where we have taken ωT ≈ 4. Thus the result is that the optical response of the two-band model, as
presented in section 5.2, is correct for the Fermi energy within the interval ωF ∈ (ωB,ωc

F). For ωF > ωc
F, a

third band has to be taken into account for calculating the optical conductivity.

6. Signatures of the topologically reconstructed Fermi surface

In order to understand the signature of the Fermi surface reconstruction ‘seen’ by the optical probe, let us
briefly summarize the onset of this process in physical systems. The systems that spontaneously undergo the
topological reconstruction of its Fermi surface do so by lowering the total energy with respect to the initial
system without reconstruction. Usually, the spontaneous self-consistent periodic potential, that initiates the
reconstruction, is some form of the density wave (charge or spin). Here, mainly two scenarios can take
place: (1) the ‘nesting scenario’ in which parts of the Fermi surface, with special open topology, get mapped
to each other by a single wave vector, fully (or to the great extent) gaping the Fermi surface thus causing the
corresponding density wave instability [18]; (2) the ‘touching scenario’ in which the closed Fermi surfaces
very slightly overlap each other leading to the formation of the pseudo-gap which lowers the band energy as
predicted and well described in references [1, 3]. It is also worth mentioning the type of topological
reconstruction of the Fermi surface triggered (due to some external influence such as pressure) by the
inter-band instability of the initial system, consisting of distant parabolic valence and conduction band, in
which the latter are related by a finite wave vector and reconstructed in the way to form the self-consistent
‘exciton band’ which in turn lowers the overall energy of the system [19].

In this work we analyse the optical response within the intra-band ‘touching scenario’. Any scenario of
electron-driven instability is closely related to the Fermi wave vector, which, in turn, determines the wave
vector of the density wave. It turns out that in such systems reconstruction of the Fermi surface takes place
in such a way that the optimal Fermi energy ‘falls’ in the pseudo-gap, i.e. ωF ∈ {ωL,ωU}, between lower and
upper Lifshitz point (closer to the upper one at ωU). Therefore, to change the Fermi energy significantly for
the sake of optical probing does not seem to be feasible since it would compromise the stability of the
system presented as such in this work. Nevertheless, in real systems it can be changed to some extent. The
reason why is the crystal lattice potential (for simplicity not considered within the model under
consideration). It permits the reconstruction with the wave vector which does not deviate from
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commensurability with the (reciprocal) crystal lattice to the great extent (see the charge ordering in the
high-Tc superconducting cuprates for example [9]). In that sense we may say that the density wave ordering
with reasonably small adjustments of the Fermi energy, small compared to η, are protected by the crystal
symmetry.

Concerning the intra-band transport, which is a good probe once we can change the Fermi energy, the
intra-band coefficients calculated in this paper are therefore evaluated only at one particular value of the
Fermi energy, or its close vicinity. However, combining the knowledge about the Drude weight, which is
finite, and Seebeck which is either zero (3D), or negative (2D), some information about the reconstructed
phase can be obtained.

Optical probe may give a better insight. As noted in the last section, we are interested in the shape of the
optical conductivity when the Fermi energy lies inside the pseudo-gap, exactly given by equation (5.18).
Analysing the experimentally measured optical conductivity results, a hump-like feature, such as in
figures 5(b1) and (c1), or a kink-like one in figures 5(b3) and (c3), indicate that ωF lies outside the
pseudo-gap and hence we are not dealing with the topologically reconstructed Fermi surface.

Finally it is worth mentioning that, although there are some similarities in the shape of the inter-band
conductivity (see figure 5) with the inter-band conductivity of the 1D density wave condensate with finite
and infinite mass reported in [20], the process studied in this paper is of entirely different nature. In the
afore-mentioned paper the density wave contribution to the conductivity is studied in the fully gapped 1D
Fröhlich system, while in this work we deal with the 2D/3D mostly metallic system in the pseudo-gap
regime.

7. Conclusions

In this paper we calculate the main zero-temperature intra-band charge transport coefficients and the real
part of the (inter-band) optical conductivity for the 2D and 3D metallic system in which initially closed
Fermi surface of the parabolic one-electron band undergoes the topological reconstruction into an open
one. The topological reconstruction of the Fermi surface presumably takes place due to the instability of the
initial electron band, with electron–phonon or electron–electron interaction, with respect to the
spontaneous formation of the charge density wave with such a wave vector that relates the initial Fermi
surfaces within so-called ‘touching scenario’ resulting in formation of the saddle point in the lower and
elliptical point in the upper newly formed electron band dispersion, and opening of a pseudo-gap in
electron spectrum between them. In turn, the total energy of electron band is lowered, consequently
stabilizing the density wave if the coupling constant of interaction is large enough [1–3]. Such a scenario
may explain an onset of the charge density wave ground state accompanied with such a reconstruction of
the Fermi surface, for example in the high-Tc superconducting cuprates [9], or certain intercalated graphite
compounds [10].

In order to track a signature of the specific reconstruction of the Fermi surface experimentally (for
example the absence of the Hall effect in the 2D net of the closed Fermi surfaces reconstructed by a biaxial
charge density wave as predicted in [21]), we calculate the above-mentioned transport properties adopting,
in this work, the two-band model. Obtained quantities are complementary to the data obtained from the
nowadays mostly used techniques such as ARPES for example [22]. The electron density of states after the
Fermi surface reconstruction, clearly exhibiting the pseudo-gap with logarithmic van Hove singularity in
the 2D and Heaviside step discontinuity in the 3D system at the energy of the saddle point in the spectrum,
has a profound impact on the calculated transport properties: the effective concentration of carriers taking
part in electric conductivity, the Seebeck coefficient and the real part of the optical conductivity.

In terms of the Cartesian components with respect to the reconstruction wave vector, the perpendicular
effective number of carriers shows no significant change, with respect to the total concentration of
electrons, in both 2D and 3D case. The effective number of carriers addresses the problem of effective
electron mass in the band reconstructions process, i.e. passing through the pseudo-gap as the Fermi energy
is changed. On the other hand, the parallel component shows significant deviations form the total
concentration in terms of reduction of concentration of electrons, more pronounced in 2D than in 3D,
especially in the region of the pseudo-gap. The signatures of the band reconstruction are even more striking
in thermopower. The perpendicular component of the Seebeck coefficient, similar to the effective electron
concentration, does not show the significant deviation from the free electron value as the Fermi energy is
changed. However, the parallel component attains negative value along the pseudo-gap, with large spikes at
the energies of saddle point and elliptical point in electron band, in the 2D case, while in the 3D case the
parallel Seebeck coefficient is zero, indicating the absence of corresponding thermopower for Fermi energies
within the pseudo-gap.
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The real part of the optical conductivity, within the framework of vanishing inter-band relaxation
approximation, is presented in the closed form as a function of an incident photon energy and position of
the Fermi energy for 2D and 3D system. We present all relevant features of the optical conductivity with
respect to characteristic energies: minimal and maximal single-electron energy, and energies of saddle and
elliptical points in the reconstructed electron band (so-called lower and upper Lifshitz points between
which the pseudo-gap is spanned). For the Fermi energy within the interval below the lower Lifshitz point,
optical conductivity is a finite hump-like curve in both 2D and 3D system. However, for the Fermi energy
within the interval above the lower Lifshitz point, the optical conductivity attains a one over square root
energy dependence for the incident photon energies above the pseudo-gap threshold (width of the
pseudo-gap), also in both 2D and 3D system. Specificity of the 2D system is seen from comparison of the
electron DOS and optical conductivity, where we see that the divergency in DOS does not imply the
divergency in optical conductivity due to the so-called ‘bottle-neck’ effect (due to the logarithmic van Hove
singularity there is an infinite number of electrons to be excited into the finite number of available states).
Furthermore, this implies that the oversimplified expression for real part of optical conductivity, involving
the joint DOS [17], is not applicable here.
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Appendix A. DOS mathematics

We explicitly solve the d = 3 case. The d = 2 follows accordingly. We investigate the s = + case first. The
equation (3.4) is

G3(ω) ∝
∫ 1

0
dκ‖ Θ

(√
ω − κ2

‖ − 1 −
√

4κ2
‖ + η2

)
, (A.1)

where we assumed the square root is real. Hence the sub-root function has to be positive. We solve this
irrational inequality under the root to determine the boundaries of κ‖ for which it holds

ω > κ2
‖ + 1 +

√
4κ2

‖ + η2 ⇒ κ‖ ∈ 〈0, A−(ω)〉, (A.2)

where

A±(ω) =

√
1 + ω ±

√
4ω + η2. (A.3)

Correspondingly, the Θ-function in (A.1) can be written in a few alternative ways

Θ

(√
κ‖

(
κ‖ − A−(ω)

))
= Θ

(
κ‖

(
κ‖ − A−(ω)

))
= Θ

(
κ‖
)
Θ
(
A−(ω) − κ‖

)
= Θ

(
A−(ω) − κ‖

)
. (A.4)

The last line in equation (A.4) follows because κ‖ > 0. The necessary condition for A−(ω) to be real gives

ω > 1 + η = ωU while for it to be A(ω) < 1 yields ω < 2 +
√

4 + η2 = ωT. The Θ-function (A.4) once
inserted back in (A.1) change the upper limit of integration. For those ω that give A(ω) < 1, integral (A.1)
becomes

G3(ω) ∝
∫ A−(ω)

0
dκ‖, (A.5)

while for ω > ωT it stays

G3(ω) ∝
∫ 1

0
dκ‖. (A.6)
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Similar reasoning applies for the s = − case. Here the irrational inequality for the boundaries of κ‖ gives

ω > κ2
‖ + 1 −

√
4κ2

‖ + η2 ⇒ κ‖ ∈ 〈A−(ω), A+(ω)〉. (A.7)

Since A+(ω) > 1, ∀ ω, we focus only on A−(ω) which is A−(ω) < 1 for ω > 2 −
√

4 + η2 = ωB and
ω < 1 − η = ωL. Hence using the same recipe as in equation (A.4) the Θ-function can be written as

Θ

(√
ω − κ2

‖ − 1 +
√

4κ2
‖ + η2

)
≡ Θ

(
κ‖ − A−(ω)

)
Θ
(
A+(ω) − κ‖

)
. (A.8)

Now, the Θ-function (A.8) changes in the integral (A.1) only the lower limit of integration. For those ω that
give A−(ω) < 1, integral (A.1) becomes

G3(ω) ∝
∫ 1

A−(ω)
dκ‖, (A.9)

while for ω > ωL it stays

G3(ω) ∝
∫ 1

0
dκ‖. (A.10)

Collecting the cases of different ω values alongside with the integration limits we come to equation (3.7).
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