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The finite-temperature linear response theory based on the finite-temperature relativistic Hartree-Bogoliubov
(FT-RHB) model is developed in the charge-exchange channel to study the temperature evolution of spin-isospin
excitations. Calculations are performed self-consistently with relativistic point-coupling interactions DD-PC1
and DD-PCX. In the charge-exchange channel, the pairing interaction can be split into isovector (T = 1) and
isoscalar (T = 0) parts. For the isovector component, the same separable form of the Gogny D1S pairing
interaction is used both for the ground-state calculation as well as for the residual interaction, while the
strength of the isoscalar pairing in the residual interaction is determined by comparison with experimental
data on Gamow-Teller resonance (GTR) and isobaric analog resonance (IAR) centroid energy differences in
even-even tin isotopes. The temperature effects are introduced by treating Bogoliubov quasiparticles within
a grand-canonical ensemble. Thus, unlike the conventional formulation of the quasiparticle random-phase
approximation (QRPA) based on the Bardeen-Cooper-Schrieffer (BCS) basis, our model is formulated within the
Hartree-Fock-Bogoliubov (HFB) quasiparticle basis. Implementing a relativistic point-coupling interaction and
a separable pairing force allows for the reduction of complicated two-body residual interaction matrix elements,
which considerably decreases the dimension of the problem in the coordinate space. The main advantage of
this method is to avoid the diagonalization of a large QRPA matrix, especially at finite temperature where the
size of configuration space is significantly increased. The implementation of the linear response code is used to
study the temperature evolution of IAR, GTR, and spin-dipole resonance (SDR) in even-even tin isotopes in the
temperature range T = 0–1.5 MeV.

DOI: 10.1103/PhysRevC.104.064302

I. INTRODUCTION

Spin-isospin excitations play an important role not only
in understanding isovector terms of the effective nucleon-
nucleon interaction and the symmetry energy in nuclear
matter [1], but also in calculating reaction rates mediated by
the weak interaction, such as charged lepton capture, β-decay
rates, and neutrino-nucleus reactions and scattering, which are
of significance for understanding the nucleosynthesis of ele-
ments heavier than iron in the r process [2] and the evolution
of core-collapse supernovae [3,4].

Spin-isospin excitations of the charge-exchange type occur
between neighboring nuclei in either the β+ or β− direction,
and include the isobaric analog state (IAS), Gamow-Teller
(GT) transitions, and spin-dipole (SD) transitions [5]. Ex-
perimentally, the spin-isospin excitations can be studied with
charge-exchange reactions such as (p, n) or (3He, t ) in the β−
direction [6], or spontaneously via β decay [7].

Theoretically, the spin-isospin response of the charge-
exchange type can be investigated by the shell-model (SM)
approach and the proton-neutron random-phase approxima-
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tion (RPA). Although SM calculations can provide excellent
agreement with the experimental data [8–11], at present they
are limited to the mass range of A � 70 or nuclei around
the magic numbers due to the huge configurational space
involved. The RPA approach represents a linearization of
the time-dependent Hartree-Fock (TDHF) equation [12] and
provides a unified description of nuclei from the valley of β

stability all the way to the nucleon drip lines, employing only a
small number of parameters adjusted to basic nuclear proper-
ties [13–16]. Based on relativistic [16–20] and nonrelativistic
[21–27] energy density functionals (EDFs), self-consistent
RPA and quasiparticle RPA (QRPA) that includes pairing cor-
relations have been realized, with an excellent extrapolation
ability.

The temperature evolution of spin-isospin excitations is
of particular relevance for nuclear astrophysics, especially
for the initial stages of the r process where the temperature
evolves in the range 109–1010 K [28], and in the final stages
of the core-collapse supernovae where the temperature can
reach up to 3 × 1010 K [29]. To describe this, temperature
effects have to be considered in the RPA or QRPA approach
and self-consistently in the ground state calculations like
the Hartree-Fock (HF) or HF + Bardeen-Cooper-Schrieffer
(BCS), or Hartree-Fock-Bogoliubov (HFB) approaches.
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A fully self-consistent framework for the calculation of
electron-capture rates was developed in Refs. [30,31] based
on the finite-temperature proton-neutron RPA (FT-PNRPA)
using Skyrme EDFs. Based on relativistic density function-
als, the FT-PNRPA approach was developed in Ref. [32]
and also applied to the calculation of electron-capture rates.
The above FT-PNRPA approaches did not include pairing
correlations in open-shell nuclei which are important at tem-
peratures below the pairing collapse. The finite-temperature
quasiparticle RPA (FT-QRPA) based on the finite-temperature
Hartree-Fock + BCS theory using Skyrme density functionals
was developed in Refs. [33,34] and applied to non-charge-
exchange multipole excitations and in Ref. [35] to the
calculation of the temperature evolution of the GT− strength
within the proton-neutron FT-QRPA (FT-PNQRPA) formal-
ism. Within relativistic functionals, FT-PNQRPA based on the
FT-Hartree+BCS (FT-HBCS) model was used for the calcu-
lation of electron-capture rates and the temperature evolution
of β-decay half-lives [36,37].

Covariant density functional theory (CDFT) is based on
Lorentz invariance, which connects in a consistent way the
spin and spatial degrees of freedom of the nucleus. It has
achieved great success in describing the nuclear ground-state
and excited-state properties with a small number of param-
eters [38–40]. Within CDFT, there are two representations
of the effective nuclear interaction. One is the finite-range
meson-exchange representation, where the nucleons interact
with each other through the exchange of mesons, such as the
isoscalar scalar meson σ , the isoscalar vector meson ω, and
the isovector vector meson ρ as well as the electromagnetic
field. The other approach is the point coupling representation,
where local contact interactions between the nucleons replace
the meson exchange in each channel. This is justified by
the large masses of the mesons and the corresponding short
range of the forces [13,15]. For both effective interactions, the
medium dependence is necessary for a quantitative treatment
of nuclear matter and finite nuclei, which can be considered
by including nonlinear terms [38] or by assuming an explicit
density dependence for the coupling constants [13,15]. The
point-coupling effective interaction becomes more and more
popular in complicated calculations due to its simplicity and at
the same time good performance as compared to the meson-
exchange effective interaction. For example, the interaction
DD-PC1 [13] and the newly developed DD-PCX [41] have
shown their success in describing nuclear ground-state and
excited-state properties [42].

Previously introduced self-consistent FT-QRPA calcula-
tions are all based on finite-temperature BCS approaches.
However, the BCS model faces serious problems in nuclei
with a large neutron excess in the neighborhood of the drip
line where the Fermi level is close to the continuum. In these
cases, one has to use the Hartree-Fock-Bogoliubov theory
where pairing correlations in the continuum are treated in a
more consistent way [43]. Within the mean-field approxima-
tion, the essential effect of introducing finite temperature is to
produce a Fermi-Dirac distribution for these independent par-
ticles. In the framework of finite-temperature HFB (FT-HFB),
the independent particles are Bogoliubov quasiparticles that
obey the Fermi-Dirac distribution at a certain temperature.

Therefore, starting from the FT-HFB, it is straightforward to
build the QRPA equation directly in the Bogoliubov quasipar-
ticle basis [44,45]. In the realistic case it leads to the complex-
ity of dealing with the full HFB-wave functions U and V , and
a diagonalization problem of considerable dimension.

Usually, for zero and for finite temperatures, the QRPA
equation is written in the HF-BCS basis which largely simpli-
fies the calculations, because in this case the two-body matrix
elements V1234 are calculated in the particle basis of the HF
solution and the pairing properties enter only through specific
combinations of the BCS occupation amplitudes. In the QRPA
based on the HFB solution (HFB-QRPA) the QRPA matrix
is written in Bogoliubov quasiparticle space with the matrix
elements H22

1234 and H40
1234 [12]. These are not only as twice

as many matrix elements, but they also involve the full HFB
wave functions U and V . For this reason, in the literature, the
full HFB-QRPA equations in Bogoliubov quasiparticle space
(with or without temperature), have rarely been solved for
realistic density functionals [46–49].

For vanishing temperature the full HFB-QRPA equations
can be solved in the canonical basis [50,51], because in this
basis the HFB wave function for the ground state has BCS
form, and this method is used in all the present HFB-QRPA
applications. However this method cannot be extended so eas-
ily for finite temperatures, because in the canonical basis the
Hamiltonian is not diagonal and therefore the corresponding
quasiparticles do not form an independent statistical ensem-
ble. Neglecting this fact and using, in the corresponding
QRPA equations, Boltzmann factors containing the BCS ex-
pression in the canonical basis is only an approximation. Its
validity has to be investigated.

As in all RPA or QRPA calculations, the corresponding
eigenmodes can be determined either by diagonalizing the
RPA/QRPA matrix in an appropriate basis or by solving the
linear response equations in a time-dependent external field
[12]. In the first case, one obtains in one diagonalization all the
eigenmodes and the corresponding wave functions of the sys-
tem, whereas in the second case one has to solve the linear re-
sponse equation by inverting this matrix for a mesh in the en-
ergy space, and it is relatively easy to derive the response func-
tion for various external fields. The wave functions and ener-
gies of specific discrete states are obtained by contour integra-
tions in the complex energy plane. These two methods lead to
exactly identical results. However, there are cases where one
of them is clearly preferable. The linear response method is
definitely preferable in the case of continuum RPA for zero
range forces [20,52] or for applications beyond mean field,
where the effective integral kernel depends on the energy [53].

In this investigation we present a relatively simple and pre-
cise method for the full solution of the temperature-dependent
HFB-QRPA equations for spherical nuclei with realistic den-
sity functionals of zero range. We apply it for proton-neutron
QRPA with covariant functionals, but it is definitely also
applicable for other relativistic and nonrelativistic cases. For
this goal we use (i) the linear response formalism with all
the advantages discussed above and (ii) we represent the zero
range force as a sum of separable terms. This not only allows
us to reduce considerably the dimension of the matrix to be
inverted, but it also simplifies essentially the transformation
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of the matrix elements to quasiparticle space, because here
we have to deal with a finite number of one-body instead of
two-body operators. The basic ideas of this method have been
presented already in Ref. [45] for a schematic model for the
description of giant resonances in deformed rotating nuclei at
finite temperature. Even in this relatively simple model the
solution of the temperature-dependent QRPA equations was
by no means trivial, because all the symmetries are broken in
this case, which leads to matrices of very large dimensions. A
finite-rank separable approximation was applied in the resid-
ual particle-hole interaction in Ref. [54]. However, this work
assumed the Landau-Migdal form of the residual interaction,
i.e., a delta function with spin-isospin operators. It presents
only an approximation because gradient terms, spin orbit, and
Coulomb force are neglected.

The advantage of separable forces can be also used in the
particle-particle channel. In this case, zero-range forces, as
they are commonly used in nonrelativistic Skyrme calcula-
tions [55], have severe problems because of their ultraviolet
divergence [56]. We therefore use a separable version of the
finite-range Gogny force D1S [57] proposed by Tian et al. for
the ground state [58] and for the QRPA calculations [59].

In this work, we develop a self-consistent FT-PNQRPA in
the charge-exchange channel, based on the finite-temperature
relativistic Hartree-Bogoliubov (FT-RHB) model using point-
coupling EDFs: DD-PC1 [13] and DD-PCX [41], within
the linear response formalism. The pairing correlations are
treated with the separable pairing interaction [58,59] both
for the ground state and for the QRPA. For the calculation
of the nuclear ground state, the finite-temperature relativistic
Hartree-Bogoliubov theory (FT-RHB) developed in Ref. [60]
is used. We note that in the calculation of the ground state
no proton-neutron mixing is assumed. Hence only isovector
(T = 1) pairing contributes, while for spin-isospin excitations
the type of included pairing interaction depends on the par-
ity of the transition. For considered natural parity transitions
(Jπ = 0+, 1−), same isovector (T = 1) pairing is employed
as in the ground state, while for unnatural parity transitions
(Jπ = 0−, 1+, 2−), isoscalar pairing (T = 0) interaction of
the same form is used. At present, there is no consensus about
the strength of the isoscalar pairing interaction. However,
some studies imply that it should be of the same magnitude
as the isovector pairing [61,62].

The paper is organized as follows. In Sec. II we present a
brief introduction to the FT-RHB theory and linear response
FT-PNQRPA supplemented with additional derivations in
Appendices A, B, and C. Details on the numerical implemen-
tation and tests with available codes in matrix formulation can
be found in Sec. III. Illustrative calculations of the temper-
ature evolution of spin-isospin excitations for even-even tin
isotopes are presented in Sec. IV. Finally, Sec. V contains
concluding remarks and an outlook.

II. THEORETICAL FORMALISM

A. Finite-temperature Hartree Bogoliubov theory

At finite-temperature the nucleus is treated within the
grand-canonical ensemble, being in equilibrium with a heat

bath of temperature T with chemical potential λ. The ground-
state eigenvalue problem can be obtained by the variational
principle from the grand-canonical potential [63],

� = E − T S − λN, (1)

where E is the ground-state energy, S entropy, and N particle
number. For superfluid systems the variation is performed in
the space of Bogoliubov quasiparticles,

β
†
k =

M∑
l=1

Ulkc†
l + Vlkcl , (2)

βk =
M∑

l=1

V ∗
lkc†

l + U ∗
lkcl . (3)

It is convenient to introduce the set of operators aμ which
combine creation and annihilation quasiparticle (q.p.) oper-
ators β

†
k and βk as in Ref. [45],

aμ = βk

aμ̄ = β
†
k

}
k = 1 . . . M; μ = 1 . . . M,−1,−2, . . . ,−M,

(4)
and obey the commutation relations

{aμ, aμ′ } = δμμ̄′ . (5)

The corresponding generalized density matrix is the
Valatin density [64] of dimension 2M × 2M:

R =
(〈β†

k′βk〉T 〈βk′βk〉T

〈β†
k′β

†
k 〉T 〈βk′β

†
k 〉T

)
=

(
ρkk′ κkk′

−κ∗
kk′ 1 − ρ∗

kk′

)
, (6)

where, at finite temperature T , 〈·〉T denotes the thermal av-
erage. At finite temperature, in the statistical ensemble of
independent quasiparticles this matrix has the form of a
Fermi-Dirac distribution

R̂ = Z−1e−β(Ĥ−λN̂ ), (7)

where Hμμ′ = 〈{[aμ, H], a†
μ′ }〉T is the mean-field Hamilto-

nian, Z = Tr[e−β(Ĥ−λN̂ )] is the grand-canonical partition
function, and β = 1/kBT with kB being the Boltzmann con-
stant.

The ground state is obtained by the variation of the grand-
canonical potential (1) in quasiparticle space with respect to
the density R:

δ�

δR = 0. (8)

This leads to the finite-temperature relativistic Hartree-
Bogoliubov (FT-RHB) equations [60,63](

h − λ − M �

−�∗ −h∗ + λ + M

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (9)

where h is the mean-field Dirac Hamiltonian, � is the pairing
field describing the particle-particle correlations, the nucleon
mass is denoted by M, and the chemical potential λ is de-
termined by the particle number subsidiary condition 〈N̂〉 =
Tr[ρ] = N , where N is either the proton or the neutron particle
number. Ek denote the q.p. energies and Uk,Vk are the corre-
sponding RHB wave functions. In this basis the generalized
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A. RAVLIĆ et al. PHYSICAL REVIEW C 104, 064302 (2021)

density is diagonal,

R =
(

fk 0
0 1 − fk

)
, (10)

and fk is the Fermi-Dirac factor

fk = 1

1 + eβEk
. (11)

In the relativistic case [65] the HFB wave functions Uk and
Vk have the form of Dirac spinors. The single-particle Dirac
Hamiltonian h is given by

h = α · p + V (r) + β(M + S(r)), (12)

where p is the nucleon momentum, V is the timelike com-
ponent of the vector field, and S is the scalar field. For the
relativistic point-coupling interactions used here, they can be
written as [13]

S(r) = αSρs + δS∇2ρs, (13)

V (r) = αV ρv + αTV τ3ρtv + eA0 + �R
0 , (14)

where ρs, ρv , and ρtv are scalar, vector, and isovector den-
sities, respectively. αS, αV , αTV are the density-dependent
couplings depending on ρv , A0 is the time component of the
electromagnetic field and �R

0 is the rearrangement contribu-
tion,

�R
0 = ∂αS

∂ρv

ρ2
s + ∂αV

∂ρv

ρ2
v + ∂αTV

∂ρv

ρ2
tv, (15)

with the functional form of couplings being defined in
Refs. [13,20]. The scalar, vector, and isovector densities are
calculated within FT-RHB theory [45] as

ρs =
∑
Ek>0

V †
k γ 0(1 − fk )Vk + U T

k γ 0 fkU
∗
k ,

ρv =
∑
Ek>0

V †
k (1 − fk )Vk + U T

k fkU
∗
k ,

ρtv =
∑
Ek>0

V †
k τ3(1 − fk )Vk + U T

k τ3 fkU
∗
k ,

(16)

where τ3 is the third component of the Pauli isospin matrix.
Within this work two parameter sets of the relativistic

point-coupling interactions will be employed: DD-PC1 [13]
and DD-PCX [41].

The pairing field is calculated as

�ll ′ = 1

2

∑
kk′

V pp
ll ′kk′κkk′ , (17)

where V pp is the matrix element of the particle-particle (pp)
interaction [58] and κ is the pairing tensor,

κ =
∑
Ek>0

V ∗
k (1 − fk )U T

k + Uk fkV
†

k . (18)

The mean pairing gap � is then defined as

� =
∑

ll ′ �ll ′κll ′∑
l κll

. (19)

For the pp interaction V pp we adopt the separable interaction
of the form [58,59]

V (r1, r2, r′
1, r′

2) = −Gδ(R − R′)P(r)P(r′) 1
2 (1 − Pσ ), (20)

where R = 1
2 (r1 + r2) and r = r1 − r2 are the center-of-mass

and relative coordinates respectively, and P(r) is defined as

P(r) = 1

(4πa2)3/2 e− r2

4a2 . (21)

The parameters of the pp interaction are Gp = Gn =
728 MeV fm3 for DD-PC1 interaction [13] and Gp =
773.78 MeV fm3 and Gn = 800.66 MeV fm3 for DD-PCX
[41] for protons and neutrons respectively, while a2 = 0.644
fm2 for both interactions.

B. Linear response theory at finite temperature

The linear response equation is derived by introducing the
time-dependent external field F (t ) on top of the FT-RHB
ground state. In this case the density R(t ) depends on time
and it obeys the equation of motion

iṘ(t ) = [H(R(t )) + F (t ),R(t )]. (22)

If there is no external field, the above equation reduces to the
FT-RHB equation

[H(R0),R0] = 0, (23)

with the static solution R0 at finite temperature. In this basis
R0 and H(R0) are diagonal, with the eigenvalues

fμ = fk, fμ̄ = 1 − fk

Eμ = Ek, Eμ̄ = −Ek

}
μ > 0. (24)

By linearizing the generalized density

R(t ) = R0 + (δRe−iEt + H.c.) (25)

and inserting in Eq. (22), the linear response equation for
charge-changing transitions is obtained:

(ω − Eπ + Eν )δRπν = ( fν − fπ )

{
Fπν+

∑
π ′ν ′

Wπνπ ′ν ′δRπ ′ν ′

}
,

(26)

where (π ) and (ν) are proton-quasiparticle and neutron-
quasiparticle states. The matrix elements of the external field
operator F are denoted by Fπν and the effective interaction
Wπνπ ′ν ′ is defined as

Wπνπ ′ν ′ = δHπν

δRπ ′ν ′
. (27)

Introducing the response function R [12,45]

δRπν =
∑
π ′ν ′

Rπνπ ′ν ′Fπ ′ν ′ , (28)

we obtain the Bethe-Salpeter equation

Rπνπ ′ν ′ = R0
πνπ ′ν ′ +

∑
μμ′

R0
πνμμ′

∑
π ′′ν ′′

Wπνπ ′′ν ′′Rπ ′′ν ′′π ′ν ′ . (29)
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By setting the interaction term to zero we obtain the unper-
turbed response

R0
πνπ ′ν ′ = ( fπ − fν )

ω − Eπ − Eν + iη
δππ ′δνν ′ , (30)

where the small parameter iη has been added due to the ana-
lytic structure of the response function [12,45]. As discussed
in the Introduction, for point-coupling interactions, the full
Hamiltonian Ĥ can be written as a separable form [20],

Ĥ = Ĥ0 +
∑

ρ

χρD†
ρDρ, (31)

where Ĥ0 is the mean-field Hamiltonian, ρ runs over a set of
single-particle operators Dρ , and χρ represents the coupling of
the residual interaction channel. As discussed in Ref. [20], ρ

runs for the point-coupling models over the various relativistic
channels and over the mesh points in r-space. For this sepa-
rable form of the interaction [45] we keep, as usual in RMF
models, only the direct terms

Wπνπ ′ν ′ =
∑

ρ

χρD∗
ρπν

Dρπ ′ν′ + χρD∗
ρπ̄ ′ ν̄′Dρπ̄ν̄

. (32)

This considerably simplifies the linear response equation. The
above two terms can be effectively treated as two separate
channels. Instead of solving the Bethe-Salpeter equation in
quasiparticle space, as in Eq. (29), we introduce the reduced
response function as

Rρρ ′ (ω) =
∑

πνπ ′ν ′
D∗

ρπν
Rπνπ ′ν ′ (ω)Dρ ′

π ′ν′ . (33)

The unperturbed reduced response function is given by a
simple substitution of R0 in the above definition,

R0
ρρ ′ =

∑
πν

D∗
ρπν

Dρ ′
πν

( fν − fπ )

ω − Eπ + Eν + iη
, (34)

which now yields the reduced Bethe-Salpeter equation in the
ρ-space (i.e., in r-space)

Rρρ ′ = R0
ρρ ′ +

∑
ρ ′′

R0
ρρ ′′χρ ′′Rρ ′′ρ ′ . (35)

This is a linear equation for the unknown matrices Rρρ ′ in
ρ-space. It is solved by inversion of the matrix δρρ ′ − R0

ρρ ′χρ ′ ,
whose dimension is the number of separable terms in the
expansion (31). The strength function can be calculated as
[12,45]

SF (ω) = − 1

π
Im

( ∑
πνπ ′ν ′

F ∗
πνRπνπ ′ν ′ (ω)Fπ ′ν ′

)
. (36)

In the following we will denote the separable terms of
particle-hole residual interaction from the relativistic point-
coupling density functional as Qcπν (r), where c is the channel
index. If the external field can be written in terms of separable
channels Qcπν (r), then [20,66]

Fπν =
∑

c

∫
r2dr fc(r)Qcπν (r), (37)

where the radial dependence of Fπν is contained in fc(r).
We note that this is the case for the spin-isospin excitations
considered within this work. From Eq. (36) we obtain the
strength function as

SF (ω) = − 1

π
Im

(∑
cc′

∫
r2dr

∫
r′2dr′ f ∗

c (r)Rcc′ (r, r′) fc′ (r′)

)
.

(38)

If Fπν cannot be expressed in terms of the separable interac-
tion channels Qcπν (r), then an additional step in solving the
Bethe-Salpeter equation is needed as described in Ref. [20]. If
we define the response function for the external field operator
F̂ as

RFF =
∑

πνπ ′ν ′
F ∗

πνRπνπ ′ν ′Fπ ′ν ′ , (39)

then the discrete FT-QRPA strength can be calculated using
the contour integral [20,67]

B(F̂ ) ≡ |〈i|F̂ |0〉|2 = 1

2π i

∮
Ci

RFF (ω)dω (40)

for the FT-QRPA eigenvalue i, where the Ci is an appropriately
chosen contour in the complex energy plane that encloses
the ith pole. Details regarding the calculation of discrete FT-
QRPA modes within the linear response theory are given in
Appendix C. Having the FT-QRPA modes Pi

πν, X i
πν,Y i

πν, Qi
πν ,

the contribution of a particular two-quasiparticle (2 q.p.) exci-
tation in the β− direction is obtained as

〈i|F̂ |0〉πν = −Pi
πν (U †FU )πν + X i

πν (U †FV ∗)πν

− Y i
πν (V T FU )πν + Qi

πν (V T FV ∗)πν, (41)

with respect to the external field operator F̂ .

C. Separable channel matrix elements in proton-neutron
quasiparticle basis

For the residual particle-hole (ph) interaction the separable
terms, coupled to a good angular momentum J and projection
M can be written in the proton-neutron quasiparticle basis as

Q̂pn =
∑
πν

(
U †QJU U †QJV ∗
V T QJU −V T QJV ∗

)
πν

[a†
πaν]JM, (42)

where the operators a†, a are defined in Eq. (4). The ph matrix
elements QJ for the point-coupling interactions employed can
be found in Appendix A. Similarly, for the particle-particle
residual interaction (pp) it follows that

V̂pn =
∑
πν

(−U †V JV U †V JU ∗
−V T V JV −V T V JU ∗

)
πν

[a†
πaν]JM, (43)

where the matrix elements of the separable pp interaction are
given in Eq. (A16). More details about the derivation and
angular momentum coupling, with the definition of [a†

πaν]JM ,
can be found in Appendix B. Here we note that the second
term in Eq. (32) is treated as another separable channel, thus
the total number of channels Nρ has to be multiplied by 2 to
account for all the terms in proton-neutron basis.
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The external field operator for the excitation strength in the
β− direction, assuming spherical symmetry, can be written as

F̂pn =
∑

pn j j′mm′
Fpjm;n j′m′c†

p jmcn j′m′

=
∑

pn j j′mm′
〈p jm|[σSYLτ−]JM |n j′m′〉c†

p jmcn j′m′ , (44)

where τ− is the isospin lowering operator defined as τ−|n〉 =
|p〉, and c†

p jm, cn j′m′ are single-particle creation and anni-
hilation operators, with angular momenta j, j′ and their
projections m, m′.

III. NUMERICAL IMPLEMENTATION AND TESTS

A. Numerical implementation

Our linear response FT-PNQRPA model is developed on
top of the FT-RHB model. The FT-RHB equation is solved
by expanding the wave functions on the harmonic oscillator
basis [68], and, if not stated otherwise, 20 oscillator shells
are used, i.e., Nosc = 20. The coordinate-space Bethe-Salpeter
equation (35) for the reduced response is solved on the Gauss-
Hermite radial mesh with Ngh = 24 mesh points within a box
of R = 20 fm. We note that the residual pairing interaction can
be either isovector (T = 1) or isoscalar (T = 0) depending on
the natural parity of considered excitation [61,62]. Although
the form of the separable interaction remains the same (as
shown in Appendix A), its strength changes. For natural parity
transitions (0+, 1−), the same interaction strength G is used as
in the ground-state case, while for unnatural parity transitions
(0−, 1+, 2−), pairing interaction strength G is multiplied by
the isoscalar pairing strength V is, which is a free parameter
in the model. For the ph interaction we use both DD-PCX
and DD-PC1 parameter sets with residual interaction channels
defined in Appendix A.

In conventional matrix QRPA calculations based on
Hartree + BCS, the total number of quasiparticle pairs is
restricted by the energy cutoff Ecut, otherwise the dimension
of the eigenvalue problem can become too large [16,50]. Also,
to remove the q.p. pairs that almost do not contribute to the
strength function, a threshold on the product of the BCS
occupation amplitudes u and v of a particular pair is set. We
emphasize that in our implementation of the linear response
FT-PNQRPA no such restrictions are used. We neglect the
antiparticle-hole transitions [69], which is a good approxima-
tion for the charge-exchange channel [16].

The Bethe-Salpeter equation (35) is solved for each en-
ergy mesh point with a �E = 0.1 MeV interval. The matrix
element in Eq. (40) is calculated using a circular loop with
a radius of 0.1 MeV that encloses the ith pole in the re-
sponse function. The contour integral is solved using the
Simpson’s integration rule. Similarly, the transition strength
matrix elements contributed by a particular 2 q.p. excitation
[see Eq. (41)] are calculated with the same contour around the
ith pole by obtaining the discrete matrix FT-QRPA eigenvec-
tors from Eqs. (C5)–(C8) and calculating the matrix element
of the external field operator as in matrix FT-QRPA [33]. The
method presented in this work is significantly faster compared
to conventional matrix PNQRPA both at zero [16] and finite

temperature [35], making it suitable for large-scale calcula-
tions of excitation strength functions and weak interaction
processes of astrophysical relevance.

B. Numerical tests

For the numerical tests of the linear response FT-PNQRPA,
we performed a comparison with the following codes based on
the matrix implementation of the QRPA:

(i) RHB + matrix PNQRPA code at zero tempera-
ture based on the DD-PC1 interaction (denoted as
RHB+mQRPA in the following) [42].

(ii) FT-RMF (relativistic mean-field) + matrix FT-
PNRPA code at finite-temperature based on the
DD-PC1 interaction (denoted as FT-RMF+mFT-
RPA) [32].

(iii) FT-HBCS + matrix FT-PNQRPA code at finite-
temperature based on the DD-PC1 interaction (de-
noted as FT-BCS+mFT-QRPA in the following)
[35,36].

In the present analysis, we set the parameter η in Eq. (34)
to 0.25 MeV in order to better visualize distinct peaks. It can
be inferred that η corresponds to smearing width parameter in
the matrix QRPA defined in Refs. [16,50]. As a first check, we
will compare the results of the linear response FT-PNQRPA
based on the FT-RHB (denoted as FT-RHB+lrFT-QRPA) with
those of RHB+mQRPA at zero temperature, in order to check
the correctness of the zero-temperature limit of the linear
response FT-PNQRPA code. A comparison is shown in Fig. 1
for 120Cd of Jπ = 1− (upper panel) and 1+ (lower panel)
excitations in the β− direction. In the RHB (or FT-RHB) code,
a total of Nosc = 12 harmonic oscillator shells are used to
limit the number of two-quasiparticle (2 q.p.) pairs. For the
isoscalar pairing strength in the 1+ excitation, we use V is =
2.0, for demonstration purposes. Our implementation of linear
response FT-PNQRPA reproduces the zero-temperature limit
when compared to the corresponding matrix code.

Next we check the implementation of temperature effects
in the linear response FT-PNQRPA code, so in Fig. 2 results
for a relatively high temperature T = 3 MeV are compared
between linear response FT-PNQRPA based on the FT-RHB
(FT-RHB+lrFT-QRPA) and FT-PNRPA based on FT-RMF
which does not include pairing correlations, again keeping
Nosc = 12. Strength functions corresponding to these two cal-
culations agree well, and this shows the correct linear response
implementation in the high temperature limit where pairing
correlations vanish.

In order to test the more general case with both the pair-
ing correlations and temperature effects present, we have
constructed the linear response FT-PNQRPA on top of the
FT-HBCS ground-state (denoted as FT-BCS+lrFT-QRPA),
and compared it with the FT-HBCS + matrix FT-PNQRPA
code. The FT-HBCS code employs the delta-pairing force as
defined in Eq. (6) of Ref. [55] with strength V0,p = V0,n =
−300 MeV fm3 for both protons and neutrons. We note that
for this test both linear response FT-PNQRPA and matrix FT-
PNQRPA use the same form of delta-pairing in the FT-HBCS
ground-state, while at the level of the residual interaction
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FIG. 1. Strength functions of Jπ = 1− (upper panel) and 1+

(lower panel) excitations in β− direction in 120Cd calculated by
linear response FT-PNQRPA calculation based on FT-RHB at zero
temperature (red dots), in comparison with those calculated by the
matrix PNQRPA based on RHB (blue line). In order to limit the total
number of 2 q.p. pairs, Nosc = 12 is used in the RHB and FT-RHB
calculations.

separable pairing is used. Results for the 120Cd at T = 0.5
MeV are shown in Fig. 3, where we take Nosc = 12 har-
monic oscillator shells, to limit the size of the FT-PNQRPA
matrix for comparison, and isoscalar pairing strength in 1+
excitation is set to V is = 2.0, again for demonstration. We
note that in this case both temperature and pairing effects are
present, with pairing also included in the residual interaction,
which displays the most general case studied within this work.
Agreement between the two codes is excellent.

An additional test can be made by explicitly calculating
the matrix FT-PNQRPA eigenmodes and corresponding tran-
sition matrix elements using the linear response formalism
detailed in Appendix C. For this test, we use the previous
calculation for the Jπ = 1+ excitation at T = 0.5 MeV in
120Cd. We select the peak at E = 13.54 MeV and enclose it
with a circular contour of 0.05 MeV radius in the complex
energy plane. The matrix FT-PNQRPA eigenvectors are then
calculated by solving the contour integrals in Eqs. (C5)–

FIG. 2. Same as in Fig. 1 except the comparison is between the
linear response FT-PNQRPA based on the FT-RHB (red dots) with
the matrix FT-RPA based on the FT-RMF (blue line) at T = 3.0 MeV.

(C8) using Simpson’s rule with NS integration mesh points,
while the corresponding transition strength is calculated with
Eq. (40) using the same integration meshes. Results for the
transition strength of the Jπ = 1+ state at E = 13.54 MeV
and the transition matrix elements from the selected 2 q.p.
pairs with largest contribution are shown in Table I for NS = 4,
NS = 6, and NS = 8. Results for NS = 6 already show a good
convergence, having agreement up to five or more significant
digits. Improvement when going from NS = 6 to NS = 8 is
only up to one significant digit, leading to the conclusion that
the optimal number of Simpson’s mesh points for the contour
integration is NS = 6 due to faster execution time.

To check for the convergence of the strength function
with respect to the number of the harmonic oscillator shells
Nosc in the FT-RHB ground-state we study as an example
the GT− strength function in 120Cd for different Nosc. The
isoscalar pairing strength is set to V is = 1.5 for demonstration
purposes. We use Ngh = 24 Gauss-Hermite mesh points for
radial integration and Npp = 8 separable pairing interaction
terms [upper limit on N summation in Eq. (A16)]. As a mea-
sure of the convergence we calculate the centroid energies
[see Eq. (45)] for (i) the low-lying strength and (ii) the GT
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FIG. 3. Same as in Fig. 1 except the comparison is between the
linear response FT-PNQRPA based on the FT-HBCS (red dots) with
the matrix FT-PNQRPA based on the FT-HBCS (blue line) at T =
0.5 MeV.

resonance region. To this aim we define the low-lying strength
as up to 10 MeV with respect to the ground state of the parent
nucleus, while the GT resonance is defined as to include the
main resonance peak. First we show the results for T = 0.5
MeV in Fig. 4. In the upper panel of Fig. 4 we display the
low-lying strength function together with its centroid energy
in the insert for various Nosc, while in the lower panel of Fig. 4
we show the same for the GT resonance. It can be observed
that the results converge well for Nosc ≈ 18 and above. To
test for the convergence with higher temperature in Fig. 5 we
show similar results at T = 1.5 MeV. Again, using Nosc = 20
provides satisfactory convergence of the strength function.
Within this work the temperature is studied up to 1.5 MeV,
thus using Nosc = 20 is enough.

Lastly, to check for the convergence with respect to the
number of separable pairing interaction terms Npp we choose
the same nucleus at T = 0.3 MeV with Ngh = 24 and the
number of oscillator shells fixed at Nosc = 20 in the FT-RHB
ground-state. In Fig. 6 we show the GT− strength function
(split into low-lying and GT resonance region as defined
above in the previous example) for varying Npp. It is observed
that Npp = 8 yields satisfying convergence, therefore we em-
ploy it in further calculations.

IV. ILLUSTRATIVE CALCULATIONS IN TIN
ISOTOPIC CHAIN

In this section, we present the calculations of various
spin-isospin excitations at different temperatures by linear re-
sponse FT-PNQRPA based on the FT-RHB model. We choose
even-even tin isotopes in the range A = 112–134 represent-
ing open-shell nuclei where the pairing interaction is present
only for neutrons in the ground state due to the Z = 50
shell closure. We will fix the isoscalar pairing strength in
unnatural-parity transitions to V is = 1.5, guided by the study
of the difference between GTR and IAR centroid energies for
relativistic point-coupling functionals within this work (see
Fig. 11) and in Ref. [42]. We note that for natural-parity
transitions only isovector pairing (T = 1) is present and deter-

TABLE I. Comparison of GT− strength B(GT−) of the 1+ state at E = 13.54 MeV in 120Cd at T = 0.5 MeV, as shown in Fig. 3, and
the corresponding transition matrix elements contributed by the particular two-quasiparticle excitations 〈i|F̂ |0〉πν between lrFT-QRPA and
mFT-QRPA calculations. In order to show the convergence of the method, results for NS = 4, NS = 6, and NS = 8 Simpson’s integration
mesh points are shown. Bold values denote digits of the lrFT-QRPA calculation that agree with the corresponding digits of the mFT-QRPA
calculation (second column).

lrFT-QRPA

mFT-QRPA NS = 4 NS = 6 NS = 8

B(GT−) 16.828564095 16.832567631 16.828851131 16.828572685
Transition i 〈i|F̂ |0〉πν 〈i|F̂ |0〉πν 〈i|F̂ |0〉πν 〈i|F̂ |0〉πν

(ν3s1/2, π3s1/2) 0.111059165 0.111086451 0.111059201 0.111059374
(ν2d5/2, π2d3/2) 0.345657488 0.345729591 0.345658125 0.345657672
(ν2d3/2, π2d5/2) 0.163268438 0.163299678 0.163268732 0.163268551
(ν2d5/2, π2d5/2) 0.193705886 0.193749887 0.193706236 0.193706013
(ν1g7/2, π1g7/2) 0.156681034 0.156709583 0.156681123 0.156681087
(ν1g9/2, π1g7/2) 3.170115103 3.169786542 3.170114949 3.170115424
(ν1h11/2, π1h9/2) −0.373797786 −0.373204264 −0.373762528 −0.373798104
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FIG. 4. The GT− strength function with respect to the number of
oscillator shells Nosc in 120Cd at T = 0.5 MeV. The number of Gauss-
Hermite integration mesh points is set to Ngh = 24 and number of
pairing interaction terms is Npp = 8. In the upper panel the low-lying
GT strength is shown for different Nosc together with its centroid
energy Ecent. in the inset. In the lower panel the same is displayed
for the GT resonance region.

mined in the ground-state FT-RHB calculation. To explore the
temperature effects on charge-exchange excitations, we study
the centroid energy evolution, defined as

Ecent. = m1

m0
, (45)

where the kth moment is defined as mk = ∫
dω ωkSF (ω).

Using this approach, we investigate the most general case
where both pairing and temperature effects are present. For
all calculations, the number of oscillator shells in the ground-
state calculation is Nosc = 20, and no additional constraint
on 2 q.p. pairs is set. This demonstrates the computational
efficiency of the linear response QRPA calculation compared
to the conventional matrix QRPA. For example, for Jπ = 2−
excitations with Nosc = 20 and no additional cutoff on 2 q.p.

FIG. 5. Same as in Fig. 4 but for T = 1.5 MeV.

pairs, total number of pairs is close to 7500, which results
in a dimension of 30000 × 30000 for the QRPA matrix at
finite-temperature using the conventional matrix approach as
in Refs. [33,35,36], and the diagonalization of such a big
matrix in the matrix QRPA is very time consuming, while
the present linear response QRPA approach avoids such a
diagonalization problem. The smearing width η is set to 1
MeV in accordance with QRPA calculations in Ref. [16].

We limit our study to the Fermi (Jπ = 0+), Gamow-Teller
(Jπ = 1+) and spin-dipole (Jπ = 0−, 1−, 2−) excitations. The
excitation strength is studied within the temperature inter-
val of T = 0 to T = 1.5 MeV. Due to the grand-canonical
treatment of the nuclear ground state at finite temperature, a
sharp phase transition is obtained at the critical temperature
Tc where pairing correlations vanish [63]. In Table II the neu-
tron critical temperatures T n

c together with mean pairing gaps
at zero temperature �0

n are shown for selected tin isotopes
calculated both with DD-PC1 and DD-PCX interactions. The
separable pairing interaction with the parametrization de-
scribed in Sec. II is used. It is observed that T n

c is higher
for the DD-PCX interaction because of the larger pairing
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FIG. 6. Convergence properties of the GT− strength in 120Cd at
T = 0.3 MeV with respect to the number of separable pairing in-
teraction terms Npp for a fixed number of Gauss-Hermite integration
mesh points Ngh and harmonic oscillator shells fixed to Nosc = 20
in the FT-RHB ground state. The upper panel shows the low-lying
strength, while the GT resonance is shown in the lower panel, both
together with the centroid energy Ecent. in the insets.

strength parameters (cf. Sec. II and Ref. [41]). From Table II
it follows that we can neglect the pairing correlations for
the considered tin nuclei above T ≈ 0.8(1.0) MeV for DD-
PC1(DD-PCX). As already mentioned, the FT-HBCS theory
predicts a sharp vanishing of pairing at the critical tempera-
ture. However, the nucleus is a finite-system and both quantal
(due to nonconservation of particle number) and thermal (due
to finite-temperature effects) fluctuations can play an impor-
tant role on the temperature evolution of nuclear pairing gaps.
These effects have been thoroughly investigated by employing
both schematic models [70,71], as well as more realistic cal-
culations [72–75]. General consideration of fluctuations can
be also found in Refs. [76–78]. The main effect of including

TABLE II. The neutron critical temperature T n
c and mean pairing

gap �0
n at zero temperature for particular even-even tin isotopes

considered within this work. Results are calculated with the DD-PC1
and DD-PCX interactions.

DD-PC1 DD-PCX

Nucleus T n
c (MeV) �0

n (MeV) T n
c (MeV) �0

n (MeV)

112Sn 0.81 1.31 1.06 1.73
116Sn 0.79 1.25 1.04 1.65
120Sn 0.80 1.34 1.00 1.64
124Sn 0.76 1.31 0.93 1.56
128Sn 0.66 1.08 0.80 1.28

both thermal as well as quantal fluctuations is a smoothing of
the sharp phase transition or even its complete vanishing.

The Fermi strength distribution (Jπ = 0+) is obtained by
setting S = 0 and L = 0 in the matrix element of Eq. (44)
and solving the reduced Bethe-Salpeter equation for the lin-
ear response strength function. Since this is a natural-parity
transition, the residual pairing interaction is an isovector one,
and we adopt the same pairing strengths for protons and
neutrons as for the ground-state calculation with DD-PC1,
while their average is taken for DD-PCX (see Appendix A for
details). The temperature evolutions of the Fermi excitation
strengths calculated with DD-PC1 (upper panel) and DD-
PCX (lower panel) interactions for even-even A = 112–122
tin isotopes are shown in Fig. 7. Experimental centroid en-
ergies from Ref. [79] are denoted with black arrows. Our
results agree with experimental data within the interval of 1
MeV for both considered functionals, with better agreement
for DD-PCX. The importance of self-consistent calculations
is especially exemplified for the Fermi strength function, as
noted in Ref. [16]. A common test of self-consistency is to
neglect the Coulomb interaction in the FT-RHB calculation at
zero temperature. In that case the nuclear Hamiltonian com-
mutes with the isospin operator, representing a good isospin
symmetry. Therefore, the IAR strength should be located at
zero energy with respect to the parent nucleus and have a
strength corresponding to N − Z [12]. We have verified that
our implementation satisfies this test, and thus shows the
self-consistency of our model. If the interaction is not im-
plemented self-consistently, the strength function would be
fragmented as described in Ref. [16]. As the number of neu-
trons increases, the IAR strength also increases, while the IAR
centroid energy shifts from 13.60 (13.78) to 13.27 (13.45)
MeV when going from 112Sn to 122Sn at zero temperature for
the DD-PC1 (DD-PCX) interaction. From Fig. 7, it can be
observed that the temperature almost does not have an effect
on the IAR strength and excitation energy. This is because the
Coulomb energy difference between parent and daughter nu-
clei remains stable within the considered temperature interval.
Therefore, since the Coulomb energy difference corresponds
to IAR excitation energy, it also displays only minor changes
at finite temperature.

In the following we limit our discussion to the DD-PCX
interaction. Similar conclusions also follow for DD-PC1.
The temperature evolution of the Gamow-Teller (Jπ = 1+)
strength function is shown for 112–132Sn in Fig. 8. It can

064302-10



FINITE-TEMPERATURE LINEAR RESPONSE THEORY … PHYSICAL REVIEW C 104, 064302 (2021)

FIG. 7. The Jπ = 0+ strength functions in A = 112–122 even-even tin isotopes with respect to the excitation energy of the parent nucleus
for temperatures T = 0, 0.5, 0.9, and 1.5 MeV calculated by linear response FT-PNQRPA using the DD-PC1 (upper panel) and DD-PCX
(lower panel) interactions. Black arrows denote the experimental centroid energies from Ref. [79].

be observed that the Gamow-Teller strength is split into
two main peaks: (i) low-lying peaks mainly composed of
the core polarization (ν j = l ± 1/2, π j = l ± 1/2) and back
spin-flip (ν j = l − 1/2, π j = l + 1/2) 2 q.p. excitations, and
(ii) the main GTR peak at higher excitation energies com-
posed mainly of direct spin-flip 2 q.p. excitations (ν j =
l + 1/2, π j = l − 1/2). With increasing neutron number, the
overall strength function shifts to lower excitation energies,
while the total strength in GTR increases, a trend observed
for all considered temperatures. The excitation energy of the
main peak of the doubly-magic 132Sn is in excellent agreement
with experimental centroid energy from Ref. [80] indicated
by black arrow in Fig. 8. Although the main peaks of the
112Sn, 116Sn, and 120Sn display a difference in the excitation
energy when compared to experimental data from Ref. [79],
these differences are at most around 2 MeV. We note that
the QRPA considers only 2 q.p. excitations, while the inclu-
sion of higher-order terms via the particle-vibration coupling
(PVC) should improve the agreement [24,81]. Furthermore,
adjusting the isoscalar pairing strength for individual nucleus
can slightly improve the difference; however, most studies
prefer global fits to a particular functional form [82,83]. It
is also observed that, instead of having one prominent GTR
peak, the strength can be fragmented as is visible for 120Sn
and 124Sn, where the main GTR peak is split into two peaks.
A similar splitting was described in Refs. [16,42], where its
evolution with respect to the isoscalar pairing strength at zero
temperature was studied. This fragmentation disappears for
high enough temperatures where pairing correlations vanish.
The temperature can influence both the low-lying and GTR
strengths with effects being visible already at T = 0.5 MeV.
In order to explain the temperature evolution, we need to study
the particular nuclear structure properties of selected nuclei.

We start our discussion for 112Sn at zero temperature. From
Fig. 8, it is seen that almost the entire strength is concentrated
in the GTR peak at E = 18.62 MeV. In order to better explain
the structure of 2 q.p. pairs contributing to the GTR, in Fig. 9
we show the single-particle levels calculated by FT-RHB in
the canonical basis for neutrons and protons at T = 0 and
T = 0.9 MeV. The single-particle energies ε and occupation
probabilities v2 are obtained by performing the canonical
transformation of Bogoliubov quasiparticle states as described
in Ref. [12]. At zero temperature, most contributions to the
GTR originate from the (ν1g9/2, π1g7/2) transition, and some
are from the (ν2d5/2, π2d3/2) transition. At T = 0.9 MeV, the
occupation probability of the ν1g9/2 transition increases due
to the weakening of the pairing correlations by the tempera-
ture effect, and thus the contribution of the (ν1g9/2, π1g7/2)
transition to the GTR strength is increased. From Fig. 9, it is
observed that a higher temperature leads to the unblocking of
some proton q.p. levels, e.g., π1g9/2. These temperature ef-
fects combined with the vanishing of pairing correlations lead
to an enhancement of the low-lying strength, where among
many other 2 q.p. excitations, (ν2d5/2, π2d3/2) dominates.

By examining the strength function of 116Sn, a significant
change in the low-lying strength can be noticed. Compared
to 112Sn, a strong peak appears at E = 5.34 MeV at zero
temperature. It is noticed that with increasing temperature,
the strength of the peak decreases, diminishing completely for
temperatures above the pairing collapse. The peak stems from
four additional neutrons in 116Sn, and is dominated by the pp
part of the residual interaction in the (ν2d3/2, π2d5/2) transi-
tion, with also significant contributions from core-polarization
transitions. The GTR peak at zero temperature, now located
at E = 17.12 MeV, is still dominated by the (ν1g9/2, π1g7/2)
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FIG. 8. The evolution of the Gamow-Teller (Jπ = 1+) strength
function with temperature for selected even-even tin nuclei with
respect to the excitation energy of the parent nucleus for temperatures
T = 0, 0.5, 0.9, and 1.5 MeV calculated by the linear response FT-
PNQRPA model with DD-PCX interaction. Black arrows denote the
experimental centroid energies from Refs. [79,80].

transition, yet with increasing mixing of the (ν1h11/2, π1h9/2)
transition due to the strong pp interaction.

By further increasing the neutron number, a fragmentation
of GTR strength occurs in 120Sn and 124Sn at zero temper-
ature. To describe the splitting of the GTR, we show the
unperturbed strength function of 124Sn in Fig. 10. The un-
perturbed GT response peaks correspond to singularities of
the unperturbed response function defined in Eq. (34). At
zero temperature, two peaks are of interest in the unperturbed
response: (i) the state at E = 13.06 MeV corresponding to
the (ν1g9/2, π1g7/2) 2 q.p. transition, and (ii) the state at

FIG. 9. The single-particle energy levels in canonical basis for
neutrons (blue) and protons (red) calculated by FT-RHB at T = 0
(upper panel) and T = 0.9 MeV (lower panel) using the canonical
transformation to obtain single-particle energies ε and occupation
probabilities v2

ν(π ) for neutrons (protons). Dashed lines denote the
Fermi levels.

E = 15.58 MeV corresponding to the (ν1h11/2, π1h9/2) tran-
sition. The total unperturbed excitation energy is just a sum
of proton and neutron quasiparticle energies E = Eπ + Eν ,
where quasiparticle energies are determined from the FT-RHB
ground-state calculations. Once we include the residual in-
teraction, the GTR splitting originates from these two peaks.
From Fig. 10 it is observed that, as the temperature increases,
the unperturbed energy difference between the described two
transitions reduces. Above the pairing-collapse temperature,
these two peaks become nearly degenerate in the unperturbed
energy, thus coherently contributing to the GTR, once the
residual interaction is included in the calculation.

For 128Sn, the GTR has again one prominent peak at zero
temperature at E = 14.56 MeV. Due to increased neutron
number, the strength of the (ν1h11/2, π1h9/2) transition in-
creases, and the difference between the unperturbed energies
described previously in Fig. 10 decreases, thus combining
the peaks into the GTR by the residual interaction. With
increasing temperature, the strength of the main peak slightly
increases and it shifts to lower excitation energies due to the
weakening of the pairing interaction. Finally, for the doubly-
magic nucleus 132Sn, the temperature evolution of the GT
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FIG. 10. Temperature evolution of the unperturbed Jπ = 1+

strength distributions in 124Sn for T = 0, 0.5, 0.9, and 1.5 MeV
calculated with DD-PCX interaction.

strength is solely determined by the finite-temperature effects.
The main GTR peak at T = 0 MeV is found at E = 13.64
MeV, mainly dominated by the (ν1h11/2, π1h9/2) transition.
With increasing temperature, the strength of the main peak
decreases due to the softening of the residual interaction.

FIG. 11. Difference between centroid energies of Gamow-Teller
and isobaric analog resonances, EGTR − EIAR, for even-even tin iso-
topes as a function of mass number A = 112–130 at temperatures
T = 0, 0.5, 0.9, 1.5, and 2.0 MeV. Experimental data are taken from
Ref. [79].

In Fig. 11, we show the centroid energy difference be-
tween the GTR and IAR for even-even tin isotopes in the
range A = 112–130 for temperatures T = 0, 0.5, 0.9, 1.5, and
2.0 MeV. For calculation of the GT strength function, the
2 q.p. basis was truncated to include only direct spin-flip
transitions (ν j = l + 1/2, π j = l − 1/2) in addition to usual
angular momentum selection rules. The dependence of cen-
troid energy differences on mass number is almost linear,
although some deviation can be noticed for T = 0.9 and 1.5
MeV near the closed neutron shell. At zero temperature, our
model reproduces the experimental data from Ref. [79] well,
with the largest difference being within 1 MeV. The centroid
energy difference displays sensitivity on the isoscalar pairing
strength V is, and an overall best agreement was obtained for
V is = 1.5 (cf. Ref. [42]), which is adopted in the present
calculations. Note that in Ref. [61] a value of V is ≈ 1.1
was determined by similar considerations with nonrelativistic
functionals and a δ pairing force. From Fig. 11, it is seen that
already at T = 0.9 MeV we get a temperature effect on the
centroid energy difference of ≈ 0.5 MeV up to A = 128, while
almost no change in centroid energy difference is obtained
by increasing the temperature from T = 0.9 up to 2.0 MeV.
This temperature dependence is changed for A = 128 and
A = 130, where the centroid energy differences are less af-
fected at T = 0.9 MeV. We have already seen in Fig. 7 that the
IAS strength is almost temperature independent, showing at
most ≈0.1 MeV shift to lower excitation energies at T = 1.5
MeV across the considered isotopic chain, and, hence, only
the GTR excitation energy influences the temperature depen-
dence of the centroid energy differences. At T = 0.9 MeV,
the temperature effect plays an important role on GT strength
through pairing collapse for mid-shell nuclei; however, for
128,130Sn, the pairing collapse does not have much influence
on GT excitations, since the pairing correlations are weak for
128,130Sn that are close to the doubly magic nucleus 132Sn,
and hence do not play important roles on the GT excitations,
which can be seen in Fig. 8 as well.

Finally, the spin-dipole (SD) excitations are obtained by
setting S = 1 and L = 1 in the matrix element of the external
field operator defined in Eq. (44). The matrix element can thus
be coupled to Jπ = 0−, 1−, and 2−. It can be shown that the
SD sum rule is directly connected to the difference between
neutron and proton mean-square-root radii, thus providing
valuable information on neutron skin thickness [12]. The tem-
perature evolution of SD excitation strength distributions is
shown in Fig. 12 calculated with the DD-PCX interaction for
112Sn, 120Sn, and 128Sn in the temperature range T = 0–1.5
MeV. In the figure, we plot separately contributions from
0−, 1−, and 2− multipolarities together with their total sum.
The same strength of isoscalar pairing V is = 1.5 is used for
unnatural-parity transitions 0− and 2− as was used for GT
transitions. It is observed that the SD strength has consider-
ably richer structure compared to the previously discussed GT
and IAS. The 2− strength function shows fragmented structure
while the strength of 0− and 1− is mostly concentrated within
the main peak, due to considerably larger number of 2 q.p.
excitations contributing to 2− transitions, which agrees with
the results from Refs. [23,84]. For all considered nuclei and
temperatures, the centroid of 2− transitions has the lowest
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FIG. 12. The evolution of the spin-dipole excitation strength with temperature in 112Sn (left panel), 120Sn (center panel), and 128Sn (right
panel) for T = 0, 0.5, 0.9, and 1.5 MeV calculated using the DD-PCX interaction. Also shown are Jπ = 0− (solid red), 1− (dotted blue), and
2− (dash-dotted green) multipoles as well as their total sum (solid black).

energy, while the main peaks of 0− and 1− are ≈8 MeV
higher. This can be confirmed by examining Table III, where
we show the 0−, 1−, and 2− centroid energies at T = 0 and
T = 1.5 MeV together with the centroid energies of unper-
turbed strength. By examining Table III, it is seen that the
inequality Ecent.(0−) > Ecent (1−) > Ecent (2−) is valid at T =
0 and T = 1.5 MeV for both full and unperturbed strength
of all considered nuclei. A shift of ≈ 4 MeV of the centroid
energy compared to the unperturbed one is achieved by the
repulsive residual interaction. At T = 1.5 MeV, there is no
significant shift in the centroid energy compared to the zero-

TABLE III. The spin-dipole centroid energy Ecent. of 0−, 1−, and
2− multipoles for 112Sn, 120Sn, and 128Sn at temperatures T = 0
and T = 1.5 MeV. Values in parentheses denote centroid energies
of unperturbed strength functions.

T = 0 MeV Ecent.(0−) Ecent.(1−) Ecent.(2−)

112Sn 34.76(31.61) 33.05(29.56) 29.17(26.81)
120Sn 31.54(28.22) 29.89(25.99) 24.75(22.10)
128Sn 29.48(25.27) 27.68(22.91) 21.99(17.96)
T = 1.5 MeV Ecent.(0−) Ecent.(1−) Ecent.(2−)
112Sn 34.75(31.07) 32.78(28.91) 29.16(26.28)
120Sn 31.52(27.58) 29.60(25.29) 24.72(21.28)
128Sn 29.28(24.76) 27.34(22.40) 21.88(18.52)

temperature case; however, by examining Fig. 12, moderate
changes of the low-lying SD strength and the main peak can
be noticed.

For 112Sn at zero temperature, the main peak is located at
E = 31.68 MeV for 0− and at E = 31.33 MeV for 1−. Both
peaks are dominated by (ν1g9/2, π1h9/2) and (ν1 f7/2, π1g7/2)
transitions. With increasing temperature, the structure of these
peaks in 112Sn remains unchanged. The 2− excitation has
also a peak composed of the above mentioned transitions
at E = 30.13 MeV; however, it also has stronger peaks lo-
cated lower in excitation energy with most contributions from
(ν1h11/2, π1g7/2), (ν1g7/2, π1h11/2), (ν2p1/2, π2d5/2), and
(ν1g9/2, π1h11/2) transitions. With increasing temperature, it
can be noticed that the low-lying peak of the 2− transition
strength at E ≈ 9 MeV disappears due to vanishing of pairing
correlations, while the peaks at E ≈ 17 and 34 MeV (at T = 0
MeV) increase in strength. However, the overall shape of the
SDR, apart from a small shift of ≈0.5 MeV to lower excitation
energies, remains almost unchanged up to T = 1.5 MeV.

For 120Sn at zero temperature, the strength of the main
peaks in the 0− and 1− components is fragmented due to
the strong mixing of (ν1g9/2, π1h9/2), (ν1 f7/2, π1g7/2), and
(ν1h11/2, π1i11/2) transitions, a similar effect as described
for the GT strength in 120Sn. By vanishing of the pairing
correlations at T ≈ 0.9 MeV, the fragmentation is reduced
and the previously mentioned transitions start to contribute
coherently to the SDR peak. 128Sn exhibits a similar SD

064302-14



FINITE-TEMPERATURE LINEAR RESPONSE THEORY … PHYSICAL REVIEW C 104, 064302 (2021)

structure as previously described for 112Sn and 120Sn, although
with a significantly increased strength at lower excitation
energies, related to the increase in the neutron chemical
potential with adding neutrons. The 0− and 1− peaks are
now dominated by (ν1 f7/2, π1g7/2), (ν1g9/2, π1h9/2), and
(ν1h11/2, π1i11/2) transitions, with an increased contribution
of the (ν1h11/2, π1i11/2) transition compared to 120Sn. Simi-
larly to 112Sn, for the 2− component of 120Sn and 128Sn, as the
temperature increases, the low-lying strength decreases and
shifts slightly to lower excitation energies.

V. CONCLUSION

In this work, we have developed the finite-temperature
linear response theory based on the FT-RHB model, and ap-
plied it to the calculation of spin-isospin excitations in tin
isotopes at finite-temperatures. Our approach employs the
point-coupling relativistic EDFs, such as DD-PC1 and DD-
PCX, for the calculation of both the mean-field potential in the
ground state and the residual ph interaction in the FT-QRPA
approach. The same form of the separable pairing interaction
was also used both for the pp interaction in FT-RHB and for
the residual pp interaction in FT-QRPA. In the ground-state
calculation, no proton-neutron mixing is assumed, so only
the isovector (T = 1) component of the pairing interaction
contributes, while in the residual interaction both the isovector
(T = 1) and the isoscalar (T = 0) pairing interactions can
contribute.

The implementation of the linear response FT-PNQRPA
was compared with the conventional matrix QRPA at zero
temperature [42] and also at finite temperature (based on
the FT-HBCS ground-state) [35], which successfully re-
produces the results of both matrix implementations. The
linear response QRPA based on separable forces avoids the
diagonalization of large QRPA matrices (especially at finite-
temperature), so it provides a fast and efficient method for
obtaining the spin-isospin excitation strength functions.

We have shown that the temperature has almost no effects
on IAS excitations, and the whole IAS strength remains con-
centrated in one single peak at finite temperature. For GT
transitions, temperature effects are particularly important for
120Sn and 124Sn, where with vanishing pairing correlations,
the fragmentation of the main peak disappears at T ≈ 0.9
MeV. We also studied the temperature dependence of the GTR
and IAR centroid difference, demonstrating a visible effect
already at T = 0.9 MeV. At zero temperature by setting V is =
1.5, an agreement with experimental data from Ref. [79] was
obtained within 1 MeV. Lastly, we have studied the tempera-
ture evolution of the SD excitation strengths in 112Sn, 120Sn,
and 128Sn. A clear hierarchy of 0−, 1−, and 2− transitions was
confirmed also at finite temperatures, where the centroid of
0− excitations is located at highest and the centroid of 2− ex-
citations at lowest excitation energy. Moderate effects on the
shape of the SD excitations were found at finite temperature,
mainly related to the reduction of strength in low-lying peaks
with vanishing pairing correlations, and a removal of the SDR
fragmentation in 120Sn, as was also confirmed for GT strength
at T ≈ 0.9 MeV.

As was emphasized in the Introduction, the study of the
spin-isospin response is important for the calculation of weak-
interaction rates which serve as inputs in many astrophysical
scenarios (e.g., r-process and core-collapse supernovae). The
efficiency in calculating the excitation strengths within the
linear response formalism makes large-scale calculations of
electron capture, β-decay, and neutrino-nucleus reactions at
zero and finite temperature feasible. Besides, the linear re-
sponse implementation of the QRPA has its advantage in
saving computational effort when extending to the description
of deformed nuclei, where the angular momentum J is no
longer a good quantum number, thus drastically increasing
the space of available 2 q.p. excitations. We leave the imple-
mentation of axially deformed QRPA in the linear-response
formalism for the future.
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APPENDIX A: SEPARABLE CHANNELS OF THE DD-PC1
AND DD-PCX INTERACTIONS

Since we are considering the charge-exchange excitations,
the only terms in the residual interaction of the point-coupling
functionals that can contribute (due to charge-conservation)
are

(i) the isovector-vector (TV) interaction

〈ab|VTV |cd〉 = −αTV (ρv )(ψ̄aτγμψc)

· (ψ̄bτγ μψd )δ(r1 − r2), (A1)

(ii) the isovector-pseudovector (TPV) interaction

〈ab|VT PV |cd〉 = g0(ψ̄aγ0γ5γμτψc)

· (ψ̄bγ0γ5γ
μτψd )δ(r1 − r2), (A2)

where · implies integration over r1, r2 as well as summation
over μ. The parameter g0 is the TPV interaction coupling con-
stant. We note that no TPV term is present in the Lagrangian
density of the point-coupling functionals in the ground state,
therefore g0 should be determined from the excited state prop-
erties. Its strength is g0 = 0.734 for the DD-PC1 interaction
and g0 = 0.621 for DD-PCX as determined by reproducing
the experimental GT− centroid energy in 208Pb [42]. The
Dirac spinors in the central field with spherical symmetry have
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the form [68]

〈r|ψ〉 =
(

fi(r)[χ1/2 ⊗ Yl (�)] jm
igi(r)[χ1/2 ⊗ Yl̃ (�)] jm

)
, (A3)

where fi(r) [gi(r)] are upper [lower] components of the Dirac
spinor, j labels the total angular momentum with projection
m and orbital angular momentum l (l̃) for upper (lower)
components, while χ1/2ms are spin-1/2 wave functions with
projection ms. The Dirac spinors are expanded in Nosc (Ñosc)
harmonic oscillator shells for upper (lower) components [68]

fi(r) =
Nosc∑
n=0

f (i)
n Rnli (r, b), gi(r) =

Ñosc∑
n=0

g(i)
n Rnl̃i (r, b), (A4)

where Rnli (r, b) are radial harmonic oscillator wave functions,
and b the oscillator length defined as b = √

h̄/mω0, where m is
the bare nucleon mass and h̄ω0 the oscillator frequency [68].
The residual interaction Vph can be written as a product of

separable terms

〈k1k2|Vph|k3k4〉 =
∫

r2dr
∫

r′2dr′

×
∑

c

Qck1k3 (r)vc(r, r′)Qck2k4 (r′), (A5)

where c is the interaction channel index and vc(r, r′) contains
the radial dependence. For point coupling models we have
vc(r, r′) ∼ δ(r − r′) and the remaining radial integral can be
represented as a sum over the mesh points ri. In this case we
can combine i with the channel index c to ρ = (i, c) and ob-
tain the matrix elements (A5) in the separable form of Eq. (31)
with appropriate coupling constants χρ . k1, k2, k3, k4 denote
single-particle states in the basis of a spherical harmonic
oscillator. Separable channels can be distinguished between
natural parity and unnatural parity transitions. Introducing
fnli (r) ≡ f (i)

n Rnli (r, b), they are given by

(i) natural parity transitions

Q1k1k3 (r) = fnk1 lk1
(r) fnk3 lk3

(r)〈lk1 jk1 ||YJ (�)τ||lk3 jk3〉 + gnk1 l̃k1
(r)gnk3 l̃k3

(r)〈l̃k1 jk1 ||YJ (�)τ||l̃k3 jk3〉, (A6)

Q2k1k3 (r) = fnk1 lk1
(r)gnk3 l̃k3

(r)〈lk1 jk1 ||[σSYJ−1(�)]Jτ||l̃k3 jk3〉 − gnk1 l̃k1
(r) fnk3 lk3

(r)〈l̃k1 jk1 ||[σSYJ−1(�)]Jτ||lk3 jk3〉, (A7)

Q3k1k3 (r) = fnk1 lk1
(r)gnk3 l̃k3

(r)〈lk1 jk1 ||[σSYJ+1(�)]Jτ||l̃k3 jk3〉 − gnk1 l̃k1
(r) fnk3 lk3

(r)〈l̃k1 jk1 ||[σSYJ+1(�)]Jτ||lk3 jk3〉, (A8)

Q4k1k3 (r) = fnk1 lk1
(r) fnk3 lk3

(r)〈lk1 jk1 ||[σSYJ (�)]Jτ||lk3 jk3〉 + gnk1 l̃k1
(r)gnk3 l̃k3

(r)〈l̃k1 jk1 ||YJ (�)τ||l̃k3 jk3〉, (A9)

with v1(r, r′) = αTV (r)
r2 δ(r − r′), v2(r, r′) = −αTV (r)

r2 δ(r − r′), v3(r, r′) = −αTV (r)
r2 δ(r − r′), v4(r, r′) = − g0

r2 δ(r − r′);
(ii) unnatural parity

Q1k1k3 (r) = gnk1 l̃k1
(r) fnk3 lk3

(r)〈l̃k1 jk1 ||[σSYJ (�)]Jτ||lk3 jk3〉 − fnk1 lk1
(r)gnk3 l̃k3

(r)〈lk1 jk1 ||[σSYJ (�)]Jτ||l̃k3 jk3〉, (A10)

Q2k1k3 (r) = fnk1 lk1
(r)gnk3 l̃k3

(r)〈lk1 jk1 ||YJ (�)τ||l̃k3 jk3〉 − gnk1 l̃k1
(r) fnk3 lk3

(r)〈l̃k1 jk1 ||YJ (�)τ||lk3 jk3〉, (A11)

Q3k1k3 (r) = fnk1 lk1
(r) fnk3 lk3

(r)〈lk1 jk1 ||[σSYJ−1(�)]Jτ||lk3 jk3〉 + gnk1 l̃k1
(r)gnk3 l̃k3

(r)〈l̃k1 jk1 ||YJ−1(�1)τ||l̃k3 jk3〉, (A12)

Q4k1k3 (r) = fnk1 lk1
(r) fnk3 lk3

(r)〈lk1 jk1 ||[σSYJ−1(�)]Jτ||lk3 jk3〉 + gnk1 l̃k1
(r)gnk3 l̃k3

(r)〈l̃k1 jk1 ||YJ−1(�)τ||l̃k3 jk3〉, (A13)

with v1(r, r′) = − g0

r2 δ(r − r′), v2(r, r′) = g0

r2 δ(r − r′), v3(r, r′) = −αTV (r)
r2 δ(r − r′), v4(r, r′) = − g0

r2 δ(r − r′).

The spin rank is either S = 0 or S = 1, therefore the rank of
spherical harmonics is J, J ± 1 so that the total matrix element
can be coupled to J . The isospin Pauli matrix is denoted by
τ, while the spin matrix is σS . There are only four channels
for both cases of natural parity. Finally, ph separable matrix
elements are transformed from the harmonic oscillator basis
to the Gauss-Hermite coordinate mesh.

Two-body matrix elements of residual pairing interaction
in the basis of spherical harmonic oscillator are calculated as

〈nk1 lk1 jk1 , nk2 lk2 jk2 |V̂pp(r1, r2, r′
1, r′

2)|nk3 lk3 jk3 , nk4 lk4 jk4〉,
(A14)

where we assume the separable interaction in Eq. (20):

V̂pp(r1, r2, r′
1, r′

2) = −Gδ(R − R′)P(r)P(r′) 1
2 (1 − PrPσ Pτ ),

(A15)
with Pr, Pσ , Pτ being coordinate, spin, and isospin exchange
operators respectively, other expressions being defined in

Sec. II. By calculating matrix element in Eq. (A14) and cou-
pling to good angular momentum J residual pairing matrix
elements assume the separable form

V J
k1k2,k3k4

= −G f
∑
NLS

V NLSJ
k1k2

V NLSJ
k3k4

, (A16)

where we define the separable terms as

V NLSJ
k1k2

= L̂Ŝ

23/2π3/4b3/2

(1 − α2)n

(1 + α2)n+3/2

(2n + 1)!

2nn!

× ĵk1 ĵk2

⎧⎨
⎩

lk2 1/2 jk2

lk1 1/2 jk1

L S J

⎫⎬
⎭MNLn0

nk1 lk1 nk2 lk2
, (A17)

with α = a/b, a being the width parameter in Eq. (21) and
b the harmonic oscillator constant. MNLn0

nk1 lk1 nk2 lk2
are the Talmi-

Moschinsky brackets [59]. We use the usual abbreviation ĵ =
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√
2 j + 1. Due to constraints imposed by coupling charge-

exchange channel and exchange operators of Eq. (A14):

f =
⎧⎨
⎩

1 if T = 1, S = 0,

V is if T = 0, S = 1,

0 otherwise.
(A18)

For the charge-exchange channel total isospin operator can
assume values T = 0, 1. In Eq. (A16) we restrict the summa-
tion up to maximum N = 8. For DD-PCX interaction where
Gp �= Gn (cf. Sec. II) we use their average G = (Gp + Gn)/2.

APPENDIX B: SEPARABLE CHANNELS IN
PROTON-NEUTRON QUASIPARTICLE BASIS

The single-particle operator Dρ defined in Eq. (31) in the
proton-neutron basis is given by

D† =
∑

pn

Q∗
pnc†

pcn, (B1)

where for simplicity we drop the ρ channel label. Separable
matrix elements of point-coupling interaction are denoted as
Qpn while cp(n) and c†

p(n) are proton (neutron) annihilation
and creation operators respectively. Note that in the proton-
neutron basis the number of separable channels is doubled to
account for second term in Eq. (32). The Bogoliubov transfor-
mation between fermion operators to the quasiparticle basis
assuming spherical symmetry is defined by [85]

ck j−m =
∑

l

U j
klβl j−m + (−) j+mV j∗

kl β
†
l jm, (B2)

c†
k jm =

∑
l

(−) j−mV j
klβl j−m + U j∗

kl β
†
l jm, (B3)

where indices k, l denote single-particle states in the harmonic
oscillator basis while j is the total angular momentum of the
state and m its projection. In the above, βl jm, β

†
l jm denote an-

nihilation and creation quasiparticle operators. We notice that
matrices U and V are independent of projection m. In order to
couple the quasiparticle operators to good J and projection M
we define the couplings [12,85]

[β†
p jβ

†
n j′ ]JM =

∑
mm′

CJM
jm j′m′β

†
p jmβ

†
n j′m′ , (B4)

[β̃p j β̃n j′ ]JM = −(−)J+M
∑
mm′

CJ−M
jm j′m′βp jmβn j′m′ , (B5)

[β†
p j ⊗ β̃n j′ ]JM =

∑
mm′

(−) j′−m′
CJM

jm j′−m′β
†
p jmβn j′m′ , (B6)

[β̃p j ⊗ β
†
n j′ ]JM = −(−)J+M

∑
mm′

(−) j′−m′
CJ−M

jm j′−m′βp jmβ
†
n j′m′ ,

(B7)

where β̃ jm = (−) j+mβ j−m. Single-particle operator in
Eq. (B1) can therefore be transformed to the spherical
q.p. basis as

Q̂pn =
∑

pn; j j′;mm′
Qpjm;n j′m′c†

p jmcn j′m′

=
∑

pn; j j′;mm′
Qpjm;n j′m′

(
(−) j−mV j

pπU j′
nνβπ j−mβν j′m′

+ (−) j+ j′−m−m′
V j

pπV j′∗
nν βπ j−mβ

†
ν j′−m′

+ U j∗
pπU j′

nνβ
†
π jmβν j′m′

+ (−) j′−m′
U j∗

pπV j′∗
nν β

†
π jmβ

†
ν j′−m′

)
. (B8)

By performing the coupling of the ph matrix element defined
as

Qpjm;n j′m′ =
∑
JM

QJ
pj;n j′ (−) j′−m′

CJM
jm j′−m′ , (B9)

and inserting in above derivation with use of Eqs. (B4)–(B7)
we get

Q̂pn =
∑

pπnν j j′JM

QJ
pj;n j′

(
V j

pπU j′
nν[β̃π j β̃ν j′ ]JM

− V j
pπV j′∗

nν [β̃π j ⊗ β
†
ν j′ ]JM

+U j∗
pπU j′

nν[β†
π j ⊗ β̃ν j′ ]JM + U j∗

pπV j′∗
nν [β†

π jβ
†
ν j′ ]JM

)
.

(B10)

In the matrix notation introduced in Sec. II

Q̂pn =
∑
πν

(
U †QJU U †QJV ∗
V T QJU −V T QJV ∗

)
πν

[a†
πaν]JM . (B11)

For the residual pairing interaction, the single-particle opera-
tor Dρ assumes the following form:

D† =
∑

pn

V NLSJ
pn c†

pc†
n, (B12)

which when rewritten in q.p. basis and coupled to total angular
momentum J yields Eq. (43).

APPENDIX C: CALCULATING
(QUASI)PARTICLE-(QUASI)HOLE CONTRIBUTIONS

WITHIN THE LINEAR RESPONSE THEORY

In order to gain additional information from the response
function we need to establish correspondence between the dis-
crete matrix FT-QRPA modes and linear response FT-QRPA.
Matrix FT-QRPA equations can be obtained by rewriting
Eq. (26) in the form

δRπν = fν − fπ
ω − Eπ + Eν

{
Fπν

+
∑

c

∫
r2dr vc(r)Qcπν (r)

∫
r′2dr′ f (r′)RcF (ω; r′)

}
,

(C1)

where we have used the definition of the two-particle matrix
element [cf. Eq. (27)]

Wπνπ ′ν ′ =
∫

r2drQcπν (r)vc(r)Q∗
cπ ′ν ′ (r), (C2)

with separable interaction matrix element Qcπν for the chan-
nel c of the residual interaction, while the radial dependence
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is written as vc(r). The response function RcF (ω; r) can be
calculated from the Bethe-Salpeter equation

Rc′F (ω; r′) = R0
c′F (r′) +

∑
cc′′

∫
r2dr r′′2dr′′R0

c′c(r′, r)vc,c′′

× (r, r′′)Rc′′F (ω; r′′), (C3)

where R0
c′c(r′, r) is obtained from Eq. (34), while

R0
c′F (r′) =

∑
πν

fν − fπ
ω − Eπ + Eν + iη

Q∗
c′πν (r′)Fπν (r′). (C4)

We can now define the linear response amplitudes
δRπν̄ = Xπν (ω), δRπ̄ν = Yπν (ω), δRπν = Pπν (ω), and
δRπ̄ ν̄ = Qπν (ω). Using the formalism developed in Ref. [44]
one can connect finite-temperature linear response function
R with the eigenvectors of the matrix FT-QRPA approach.
Employing the normalization of the FT-QRPA eigenvectors
and contour integration around suitably chosen loop Ci the

linear response amplitudes can be used to calculate FT-QRPA
eigenvectors of the ith mode

X i
πν = e−iθ |〈i|F̂ |0〉|−1 1

2π i

∮
Ci

Xπν (ω)dω, (C5)

Y i
πν = e−iθ |〈i|F̂ |0〉|−1 1

2π i

∮
Ci

Yπν (ω)dω, (C6)

Pi
πν = e−iθ |〈i|F̂ |0〉|−1 1

2π i

∮
Ci

Pπν (ω)dω, (C7)

Qi
πν = e−iθ |〈i|F̂ |0〉|−1 1

2π i

∮
Ci

Qπν (ω)dω, (C8)

where we have extended the formalism of Ref. [67] to finite
temperature. The overall phase e−iθ remains undetermined.
The FT-QRPA matrix elements of the external field operator
|〈i|F̂ |0〉| can be calculated using Eq. (40). Above system of
equations can be easily discretized on the circular loop of
small radius η that encloses the ith pole and integrated using
Simpson’s or the trapezoidal rule. Once the eigenvectors from
Eqs. (C5)–(C8) are calculated for the particular 2 q.p. exci-
tation its strength matrix element is obtained as in the usual
matrix FT-QRPA calculations [cf. Eq. (41)].
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