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The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb
collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations
develop during the collective evolution of the medium when compared to correlations that exist in the initial
state. These new results cannot be interpreted in terms of previous lower-order flow measurements since
contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison
to Monte Carlo simulations provides new and independent constraints for the initial conditions and system
properties of nuclear matter created in heavy-ion collisions.
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Under conditions of extreme temperature and density,
the fundamental theory of the strong interaction, quantum
chromodynamics (QCD), predicts the existence of a
quark-gluon plasma (QGP). In this state, quarks are
deconfined from hadrons but, contrary to the initial
theoretical expectations, remain strongly coupled and
form a liquid state [1]. Results from heavy-ion collision
data are consistent with the scenario in which the
produced nuclear matter undergoes collective expansion,
dominated by its hydrodynamic response to the anisot-
ropies in the initial state geometry. This phenomenon is
known as anisotropic flow [2]. This collective dynamics is
sensitive to η=s and ζ=s, where η and ζ are shear and bulk
viscosities and s the entropy density. The successful
description of heavy-ion data with hydrodynamic models
was essential to determine the low value of η=s of the
QGP [3] and established the perfect liquid paradigm, one
of the most striking recent discoveries in high-energy
physics [4–6].
In models that describe heavy-ion collisions, the pro-

duced matter evolves collectively, with particles being
emitted independently along the azimuthal direction with
a distribution fðφÞ. The corresponding Fourier series is
given by

fðφÞ ¼ 1

2π

�
1þ 2

X∞
n¼1

vn cos½nðφ −ΨnÞ�
�
; ð1Þ

where the flow amplitude vn and the symmetry plane angle
Ψn designate the magnitude and orientation of the nth order
anisotropic flow [7]. Experimental challenges of measuring
these anisotropic flow observables were overcome with
the development of multiparticle azimuthal correlations
[8–12]. A great deal of additional information can be
extracted from correlations between different flow ampli-
tudes and/or different symmetry planes [13–17].
The correlations between event-by-event fluctuations of

two different flow amplitudes were quantified with the
“symmetric cumulant” (SC) observables [12,18], defined
by SCðk; lÞ≡ hv2kv2l i − hv2kihv2l i, with the angular brackets
denoting an average over all events. The measurements of
their centrality and transverse momentum (pT) dependen-
cies revealed that correlations among different flow mag-
nitudes depend on harmonic orders as well as the collision
centrality, while showing moderate pT dependence in
semicentral collisions. The results in Refs. [12,18] showed
that the different SCðk; lÞ observables have different
sensitivities to the initial conditions of a heavy-ion collision
and properties of the created system and can therefore help
in separating the effects of η=s in the final state anisotropies
from the contributions originating in the initial state.
Furthermore, it was demonstrated that the SC observables
are more sensitive to the temperature dependence η=sðTÞ
than the individual flow amplitudes, which are sensitive
only to the average values hη=si [18,19].
In this Letter, a new set of observables, dubbed “higher-

order SC,” are analyzed [20]. These higher-order observ-
ables extract the genuine correlation among multiple flow
amplitudes and provide new and independent constraints
for both the initial conditions and the QGP properties. The
genuine correlation (or cumulant) of three flow amplitudes,
where lower-order two-harmonic correlations have been
removed, can be obtained with the following expression
[20,21]:
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SCðk; l; mÞ≡ hv2kv2l v2mi − hv2kv2l ihv2mi − hv2kv2mihv2l i
− hv2l v2mihv2ki þ 2hv2kihv2l ihv2mi: ð2Þ

The observable SCðk; l; mÞ is, by definition, the 3rd order
cumulant of the three flow amplitudes v2k, v

2
l , and v

2
m. If the

previously used low order flow observables like vnf2g,
vnf4g [10], or SCðk; lÞ [12] would be able to characterize
all collective correlations and anisotropic flow in the
system, SCðk; l; mÞ would be identically zero. On the
contrary, the nonvanishing results for SCðk; l; mÞ provide
access to the information to which these traditionally used
flow observables are insensitive. The normalized versions
of these observables (NSC) are defined as

NSCðk; l; mÞ≡ SCðk; l; mÞ
hv2kihv2l ihv2mi

; ð3Þ

which makes it easier to identify the origin of the
correlations, either from the initial stage or from the
collective expansion [20].
Another important aspect is the sign of the SCðk; l; mÞ

observables, which is not trivial and can be understood if
the definition in Eq. (2) is rewritten as

SCðk; l; mÞ ¼
�
ðv2k − hv2kiÞðv2l − hv2l iÞðv2m − hv2miÞ

�
: ð4Þ

For SCðk; l; mÞ > 0, there are the following two distinct
possibilities: (a) if in an event it was found that v2k > hv2ki
and v2l > hv2l i, then the probability of finding v2m > hv2mi
in that event is enhanced [this case is marked as a
ðþ;þ;þÞ pattern in the event-by-event flow fluctuations];
(b) if v2k > hv2ki and v2l < hv2l i in an event, this enhances
the probability of finding v2m < hv2mi in that event and is
marked as a ðþ;−;−Þ pattern. By using the same
reasoning, it can be concluded that SCðk; l; mÞ < 0
permits only the ðþ;þ;−Þ and ð−;−;−Þ patterns.
These persistent patterns of event-by-event flow fluctua-
tions are invariant with respect to permutations of ampli-
tudes of flow harmonics in the definition of SCðk; l; mÞ,
and they are a direct imprint of the three-harmonic
correlations.
It was demonstrated in Ref. [20] that SCðk; l; mÞ,

as defined in Eq. (2), can be estimated reliably in an
experiment with the following combination of azimuthal
correlators:

SCðk; l; mÞ ¼ ⟪cos½kφ1 þ lφ2 þmφ3 − kφ4 − lφ5 −mφ6�⟫
− ⟪cos½kφ1 þ lφ2 − kφ3 − lφ4�⟫⟪cos½mðφ5 − φ6Þ�⟫
− ⟪cos½kφ1 þmφ2 − kφ5 −mφ6�⟫⟪cos½lðφ3 − φ4Þ�⟫
− ⟪cos½lφ3 þmφ4 − lφ5 −mφ6�⟫⟪cos½kðφ1 − φ2Þ�⟫
þ 2⟪cos½kðφ1 − φ2Þ�⟫⟪cos½lðφ3 − φ4Þ�⟫⟪cos½mðφ5 − φ6Þ�⟫: ð5Þ

The double average notation indicates that in the first step
averaging is performed over all distinct combinations of 2, 4,
or 6 particles within the same event, and then these results
are averaged over all events. Each azimuthal correlator in the
above estimator can bemeasured efficiently and exactlywith
the Generic Framework published in Ref. [12]. By defi-
nition, this estimator ensures that large systematic biases
from self-correlations and symmetry planes Ψn are elimi-
nated. In the absence of nonflow (correlations between a few
particles unrelated to collective phenomena and anisotropic
flow), it reduces analytically to Eq. (2) even in the case of
large event-by-event flow fluctuations [20].
The results presented in this Letter are obtained with

the data from Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV
collected with the ALICE detector in 2010. After the
event and track selection, the data sample corresponds to
about 8.2 × 106 minimum bias events for the 0%–50%
centrality range. The Pb-Pb dataset from 2011 is not
included due to the significantly different detector and
trigger conditions.

Detailed descriptions of the ALICE detector and per-
formance can be found in Refs. [22–25]. The time
projection chamber (TPC) was used to reconstruct charged
particles and measure their momenta [26]. The inner
tracking system was used to improve the vertex determi-
nation and momentum resolution, while its innermost part,
the silicon pixel detector (SPD) [27,28], provided the
default centrality estimation. Two scintillator arrays
(V0A and V0C) were used for triggering and for an
alternative determination of centrality [29–31]. The trigger
conditions are identical to those described in Refs. [29,32].
The event and track selection are based on previous SC

analyses [18,33]. The reconstructed primary vertex is
required to be within �10 cm of the nominal interaction
point along the beam axis. The main analysis is performed
using tracks reconstructed only with the TPC (referred to as
“TPC-only” from now on) in the kinematic range 0.2 <
pT < 5.0 GeV=c and jηj < 0.8. The low pT cutoff
decreases the biases from the smaller reconstruction effi-
ciency, while the high pT cutoff reduces the anisotropic
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contaminations in the azimuthal distributions from jets. The
selected tracks are reconstructed with a minimum of 70
space points out of a maximum of 159 in TPC and the
χ2=NDF of their momentum fit is required to satisfy
0.1 < χ2=NDF < 4.0. Only tracks with a maximum dis-
tance of closest approach (DCA) to the primary vertex of
2.4 cm in the transverse plane and 3.2 cm along the beam
axis are kept for the analysis. This choice reduces the
contributions from secondary tracks and has already been
used in Ref. [18] with hybrid tracks, for which the tracking
information is combined from the TPC and the inner
tracking system detectors to achieve the best transverse
momentum resolution and to correct for the nonuniform
azimuthal acceptance due to dead zones in the SPD [25,34].
Also, tracks with an abrupt change of direction, e.g., due to
multiple scattering or K� decays, are rejected. With this
selection, the contamination from secondaries in TPC-only
tracks varies from about 16% at 0.2 GeV=c to about 7% at
5 GeV=c. The track reconstruction efficiency is almost
constant at about 80%–88% as a function of transverse
momentum. Its uncertainties are found to be negligible and
thus not propagated in the final results.
Corrections both for nonuniform reconstruction effi-

ciency (NUE) as a function of transverse momentum
and nonuniform acceptance (NUA) as a function of
azimuthal angle are computed as particle weights, follow-
ing Ref. [12]. Particle weights for NUE were obtained with
the Monte Carlo generator HIJING (Heavy-Ion Jet
INteraction Generator) [35], while the ones for NUA are
data driven. Only the corrections for NUE are applied to all
the selected tracks in the main analysis with the default
selection. Effects of NUA in TPC-only tracks were also
checked but found to be negligible. The nonflow contri-
butions estimated with HIJING are found to be negligible
for all SCðk; l; mÞ observables reported in this Letter [20].
The systematic uncertainties are estimated by varying

each selection criterion independently. The values of
SCðk; l; mÞ with the variation and with the default selection
are compared in each centrality interval. If the difference
between the two results when taking into account the
correlations between their statistical uncertainties is larger
than one σ (σ is the uncertainty of the difference), the
variation is included in the quadratic sum for the total
systematic uncertainty. The importance of each trial
depends on the considered SCðk; l; mÞ. The data sample
was collected with two configurations of the magnetic field
polarity in the solenoid magnet surrounding the ALICE
central barrel detectors, giving two samples with similar
size. The main analysis uses both samples, and no
significant systematic effect is seen for the analysis on
each individual orientation of the field polarity. Below, the
ranges of relative variations observed in semicentral colli-
sions (20%–50%) for each trial are reported. Moreover, the
variations observed in collisions with a centrality up to 20%
and for SCð2; 4; 6Þ and SCð3; 4; 5Þ in the range 20%–30%

can be larger than the ones indicated due to the small size of
the signal and are therefore not reported. The systematic
uncertainties are represented by the shaded boxes around
each data point in all figures.
On the other hand, there are variations that impact only

some SCðk; l; mÞ observables. For example, the variation
of the distance of the primary vertex to the nominal
interaction point along the beam direction (�6 cm and
�12 cm) does not impact SCð2; 3; 5Þ, NSCð2; 3; 5Þ, and
SCð3; 4; 5Þ but results in an uncertainty of about 3.2% for
SCð2; 3; 4Þ and NSCð2; 3; 4Þ. For the DCAvariation in the
plane transverse to the beam direction (from 2.4 cm to
1 cm and 2 cm), only SCð2; 4; 6Þ is not affected, while
there is an effect of about 12% for NSCð2; 3; 4Þ to about
36% for SCð2; 3; 5Þ. The default analysis uses the central-
ity estimated with the SPD, while the systematic check is
based on the determination of the centrality with the V0
detector. This change impacts the final results for all
combinations with the exception of SCð3; 4; 5Þ, ranging
from about 15% for SCð2; 3; 4Þ and NSCð2; 3; 4Þ to 21%
for SCð2; 3; 5Þ. The variation of the minimum number of
space points in the TPC (from 70 to 50 and 100 space
points) leads to systematic biases in SCð2; 3; 4Þ,
SCð2; 3; 5Þ, and NSCð2; 3; 5Þ, ranging from 5% for
SCð2; 3; 4Þ to 14% for SCð2; 3; 5Þ. This is also the case
for the quality of fit χ2=NDF for 0.3 < χ2=NDF < 4.0 and
0.1 < χ2=NDF < 3.5. This leads to significant differences
for SCð2; 4; 6Þ, SCð3; 4; 5Þ, and NSCð2; 3; 5Þ [about 12%
for NSCð2; 3; 5Þ]. For the tightening of the DCA criterion
along the beam axis from 3.2 cm to 2.1 cm, we report the
systematic bias of about 8%–10% for SCð2; 3; 5Þ and
NSCð2; 3; 5Þ. Finally, non-negligible systematic effects
are seen when repeating the analysis with hybrid tracks,
which have a smaller contamination from secondaries,
allowing an estimation of their systematic effects in the
default selection. For this last check, all SCðk; l; mÞ see
significant changes [between 4% and 19% for SCð2; 3; 4Þ
and NSCð2; 3; 5Þ, respectively].
The centrality dependence of SCðk; l; mÞ and

NSCðk; l; mÞ for the different combinations of flow ampli-
tudes is shown in Fig. 1(a) and Fig. 1(b), respectively.
When moving from central to semicentral collisions, the
magnitude of both SCð2; 3; 4Þ and SCð2; 3; 5Þ increases,
albeit with opposite sign. These nonzero values for semi-
central collisions are the first experimental indications of
correlations between three flow amplitudes. The results for
SCð2; 3; 5Þ provide new and independent constraints on the
nonlinear response contribution in v5 from v2 and v3,
which for the first time do not require any assumption in the
derivation on the nature of two-harmonic correlations [36].
For the higher-order flow amplitudes, the measurements for
SCð2; 4; 6Þ and SCð3; 4; 5Þ are compatible with zero for all
centralities. The negative increasing trend observed for
SCð2; 3; 4Þ is also present for NSCð2; 3; 4Þ. However, this
is not the case for SCð2; 3; 5Þ and NSCð2; 3; 5Þ. The
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increase seen in the former cannot be found in the latter,
which shows a decrease for semicentral events. This
different behavior originates from the fact that the nonlinear
response introduces a correlation among all three ampli-
tudes in SC(2,3,5), while the contribution from nonlinear
response is not present in SC(2,3,4).
The results for the higher-order SC observables

are compared to the event-by-event Eskola-Kajantie-
Ruuskanen-Tuominen ðEKRTÞ þ viscous [19] and
TRENToþ iEBE-VISHNU hydrodynamic models [37].
In the EKRT model, the initial energy density
profiles are calculated using a next-to-leading order
perturbative-QCDþ saturation model [38,39]. The sub-
sequent space-time evolution is described by relativistic
dissipative fluid dynamics with different temperature
parameterizations η=sðTÞ. This state-of-the-art model gives
a good description of the charged hadron multiplicity and
the low-pT region of the charged hadron spectra at BNL’s
Relativistic Heavy Ion Collider and at CERN’s Large
Hadron Collider. Each of the η=sðTÞ parameterizations is
adjusted to reproduce the measured vn from central to

semiperipheral collisions. The model calculations in which
the temperature of the phase transition is larger than for the
“param1” parameterization are ruled out by the previous
measurements [18,33]. In the study presented in this Letter,
the EKRT prediction for the centrality dependence of
SCðk; l; mÞ was obtained from a sample consisting of
40 000 events in the 0%–100% centrality range.
The calculations for the η=sðTÞ ¼ “param 1” parameter-

ization, which gives a good description of the lower-order
SC results, are thus compared to our new results for higher-
order SC in Fig. 2. They can describe the overall trends of
all combinations in the centrality dependence. However,
SCð2; 4; 6Þ is found to be strictly positive in models.
The hybrid hydrodynamic model TRENToþ

iEBE-VISHNU has successfully described the previous
ALICE measurements [37]. It consists of the TRENTo
model [40] for the initial condition, which is connected
with a free streaming to a 2þ 1 dimensional causal
hydrodynamic model VISH2þ 1 [41,42]. The evolution
is continued in the hadronic phase via the ultrarelativistic
quantum molecular dynamics model [43,44]. The initial
conditions, η=sðTÞ, ζ=sðTÞ and other free parameters of the
hybrid model are extracted by the global Bayesian analysis.
We perform a model calculation with the best-fit parameter
points chosen by maximum a posteriori (MAP) for Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV as they are reported in
Ref. [37]. All the kinematic cuts such as transverse
momentum and pseudorapidity intervals are matched with
the data reported in this Letter.
In heavy-ion collisions, the main source of anisotropy in

the azimuthal distribution in the final state originates from
anisotropies in the initial state geometry. The initial state
geometry can be described by quantities called eccen-
tricities, ϵn, that are the moments of the initial energy (or
entropy) density. For instance, the values of ϵ2 and ϵ3
indicate to what extent the initial geometry is elliptical and
triangular, respectively. For small values of eccentricities,
one can approximate the response of the collective evolu-
tion to the initial state geometry as a linear relation vn ¼
knϵn [45,46]. For n ¼ 2, 3, this linear approximation is
more accurate than for higher harmonics where nonlinear
terms play a non-negligible role [13]. If the higher-order
eccentricity cumulants are normalized by their averages
[analogous to Eq. (3)], the response coefficients kn can
cancel between numerator and denominator. Therefore, any
difference in the NSC values calculated from the eccen-
tricities in the initial state to those obtained from the
measured flow amplitudes in the final state is an indication
of a hydrodynamic nonlinear response.
The comparison to the TRENToþ iEBE-VISHNU cal-

culation is also shown in Fig. 2. The overall trends in the
centrality dependence are captured by this model. However,
both SC(2,3,4) and SC(2,3,5) are clearly underestimated,
while NSC(2,3,4) and NSC(2,3,5) are in a better agreement
with the data. In the case of NSCðk; l; mÞ, predictions from
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p ¼ 2.76 TeV. The statistical
(systematic) uncertainties are shown with the lines (boxes).
The data points are shifted horizontally for visibility.
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TRENTo for the initial state are shown in Fig. 2(b) and
Fig. 2(d). As iEBE-VISHNU uses TRENTo as input, the
comparisons between the two sets of predictions can give
insights about the development of multiharmonic correla-
tions in the system. The relative change in NSC(2,3,4) for
iEBE-VISHNU calculations from the ones from TRENTo
for 10%–30% centralities indicates that in addition different
correlations have developed during the hydrodynamic
evolution of the medium. The same phenomenon is hinted
at within uncertainties in NSC(2,3,5). In this latter case,
this can be explained by the nonlinear response contribu-
tion to v5 induced by the low order v2 and v3 found in
Refs. [47,48]. For SC(2,4,6) and SC(3,4,5), iEBE-
VISHNU is in agreement with the predictions from
EKRT within uncertainties.
Recent Bayesian analyses [37,49] show that the TRENTo

model reproduces certain features of EKRT models with
the energy deposition parameter, p ≈0.0. However, as
shown in Fig. 2(b) and Fig. 2(d), in semicentral collisions
the TRENTo model shows stronger initial-state correlations

among eccentricities than the EKRT model, and the
resulting final-state multiharmonic correlations obtained
with SCðk; l; mÞ show differences as well. This difference
can originate from the fact that EKRT does not include
effects from bulk viscosity, while the extracted bulk
viscosities from two different Bayesian analyses give
sizable differences.
In summary, we have presented the first measurements of

correlations between three flow amplitudes, obtained with
higher-order SC observables in Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV. The nonzero values of SCðk; l; mÞ
for semicentral collisions are the first experimental indi-
cation of correlations (cumulants) between three flow
amplitudes. The relative changes between TRENTo and
iEBE-VISHNU for NSC(2,3,4) and NSC(2,3,5) are con-
sistent with the development of different correlations
during the collective evolution of the medium. A similar
conclusion can be extracted from the EKRT model. These
results provide the first constraints on the nonlinear
response contribution in v5 from v2 and v3, which do
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not require any assumption on the nature of lower-order
two-harmonic correlations. The new results for SCðk; l; mÞ
provide independent constraints for the initial conditions,
system properties, nonlinear response, and possible pat-
terns of event-by-event flow fluctuations when compared to
the previous flow measurements obtained with lower-order
observables.
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22Dipartimento di Fisica dell’Università ’La Sapienza’ and Sezione INFN, Rome, Italy
23Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
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138Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
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