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The elliptic and triangular flow coefficients v2 and v3 of prompt D0, D+, and D∗+ mesons were 
measured at midrapidity (|y| < 0.8) in Pb–Pb collisions at the centre-of-mass energy per nucleon pair of √

sNN = 5.02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic 
decays in the transverse momentum interval 1 < pT < 36 GeV/c in central (0–10%) and semi-central 
(30–50%) collisions. Compared to pions, protons, and J/ψ mesons, the average D-meson vn harmonics 
are compatible within uncertainties with a mass hierarchy for pT � 3 GeV/c, and are similar to those of 
charged pions for higher pT. The coupling of the charm quark to the light quarks in the underlying 
medium is further investigated with the application of the event-shape engineering (ESE) technique 
to the D-meson v2 and pT-differential yields. The D-meson v2 is correlated with average bulk elliptic 
flow in both central and semi-central collisions. Within the current precision, the ratios of per-event D-
meson yields in the ESE-selected and unbiased samples are found to be compatible with unity. All the 
measurements are found to be reasonably well described by theoretical calculations including the effects 
of charm-quark transport and the recombination of charm quarks with light quarks in a hydrodynamically 
expanding medium.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The formation of a strongly coupled colour-deconfined medium 
in ultra-relativistic heavy-ion collisions, called quark–gluon plasma 
(QGP), has been established both at RHIC and LHC energies [1,2]. 
The QGP behaves as a near-perfect fluid with small shear viscosity 
over entropy density ratio, η/s, undergoing an expansion that can 
be described by relativistic hydrodynamics [3].

In heavy-ion collisions, heavy quarks (charm and beauty) are 
predominantly produced via hard-scattering processes on a time 
scale shorter than the QGP formation time [4,5], and therefore 
they experience all the stages of the system evolution, interact-
ing with the medium constituents via both elastic (collisional) [6]
and inelastic (gluon radiation) [7–9] processes. The measurement 
of the suppression of the yield of heavy-flavour hadrons in central 
nucleus–nucleus collisions relative to pp collisions scaled by the 
number of nucleon–nucleon collisions at both RHIC [10–14] and 
LHC energies [15–21] provides compelling evidence of heavy-quark 
energy loss in deconfined strongly interacting matter.

Additional insights into the QGP properties can be obtained by 
measuring the azimuthal anisotropy of heavy-flavour hadrons. In 
non-central nucleus–nucleus collisions the initial spatial anisotropy 
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of the overlap region is converted via multiple interactions into 
an azimuthally anisotropic distribution in the momentum space of 
the produced particles [22,23]. This anisotropy is characterised in 
terms of the Fourier coefficients vn = 〈cos[n(ϕ − �n)]〉, where ϕ
is the azimuthal angle of the particle and �n is the azimuthal an-
gle of the symmetry plane for the nth-order harmonic [23,24]. The 
values of the Fourier coefficients depend on the geometry of the 
collision, the fluctuations in the distributions of nucleons and glu-
ons within the nuclei [25], and the dynamics of the expansion. The 
second order flow coefficient v2, called elliptic flow, is related to 
the almond-shaped geometry of the overlap region between the 
colliding nuclei and, consequently, is the largest contribution to 
the anisotropy in non-central collisions. The third harmonic coef-
ficient v3, named triangular flow, originates from event-by-event 
fluctuations in the initial distribution of nucleons and gluons in 
the overlap region [26]. In particular, the measurement of the az-
imuthal anisotropy of heavy-flavour hadrons at low pT can help 
quantify the extent to which charm and beauty quarks partici-
pate in the collective expansion of the medium [27], as well as 
the fraction of heavy-flavour hadrons hadronising via recombina-
tion with flowing light quarks [28,29]. At high pT, instead, the 
charm hadron azimuthal anisotropy can constrain the path-length 
dependence of heavy-quark in-medium energy loss [30,31]. Precise 
measurements of heavy-flavour vn coefficients are useful to con-
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strain the parameters of models that implement the heavy-quark 
transport in the QGP. In this context, the heavy-quark spatial dif-
fusion coefficient Ds in the QGP is particularly interesting, since 
it is related to the relaxation (equilibration) time of heavy quarks 
τQ = (mQ/T )Ds , where mQ is the quark mass and T is the medium 
temperature [32].

Further investigation into the dynamics of heavy quarks in the 
medium can be performed with the event-shape engineering (ESE) 
technique [33], which allows for selection of events with the same 
centrality but different initial geometry on the basis of the magni-
tude of the average bulk flow. In fact, hydrodynamic calculations 
show that the average flow of the bulk of soft hadrons is pro-
portional to the initial-state eccentricities [34] for small values of 
η/s [3,35,36]. By classifying the events with the ESE technique it 
is possible to investigate the correlation between the flow coeffi-
cients of D mesons and soft hadrons. According to the available 
calculations [34,37,38], the initial system ellipticity is converted 
into parton flow with a similar efficiency for bulk and charm 
quarks, despite the different production mechanisms, dynamics, 
and hadronisation of heavy quarks and light partons forming the 
bulk of the medium. Moreover, the measurement of the D-meson 
spectra in events with different average eccentricity provides in-
formation about the possible correlation between the radial and 
elliptic flows at low-intermediate pT, and the charm-quark energy 
loss and the elliptic flow at high pT. The correlation with the radial 
flow is expected to be present from the observation of the scaling 
of the flow harmonics with the particle mass [39], while the corre-
lation with the in-medium energy loss would be motivated by the 
different path traversed by the charm quark in the medium in the 
case of an isotropic or an eccentric system.

A positive D-meson v2 is observed at both RHIC [10,40,41]
and the LHC [42–48]. The comparison of the D-meson v2 with 
the charged-pion v2 and with theoretical models [49–57] indicates 
that charm quarks participate in the collective expansion of the 
medium and that both collisional processes and the recombination 
of charm and light quarks contribute to the observed elliptic flow. 
Furthermore, a positive D0-meson v3 was measured by the CMS 
Collaboration [47]. The pT-differential yields and v2 of D mesons 
were measured by the ALICE Collaboration in samples of events se-
lected on the basis of the average bulk elliptic flow with the ESE 
technique [48]. A correlation between the D-meson v2 and the v2

of the bulk of light hadrons was observed, while the ratio of the 
pT-differential yields in ESE-selected samples to the yields mea-
sured without any ESE selection was found to be compatible with 
unity within the large uncertainties.

In this Letter, the measurement of the non-strange D-meson 
flow harmonics performed on a large sample of Pb–Pb collisions at √

sNN = 5.02 TeV collected by ALICE in 2018 is reported. With this 
data sample, the D-meson v2 is measured with the Scalar Product 
(SP) method in an extended pT interval and with smaller uncer-
tainties with respect to the previous results obtained with the 
Event Plane (EP) method described in [46,48] in the 30–50% cen-
trality class. The results obtained with the SP and the EP method 
were found to be compatible between each other, as reported in 
previous publications [43]. The measurement of the D-meson v2

coefficient in the 0–10% centrality class and v3 coefficient in the 
0–10% and 30–50% centrality classes are also presented. In ad-
dition, the measurement of the v2 and the modification of the 
pT distributions in the ESE-selected samples is reported in nar-
rower classes of the average event flow with respect to [48]. The 
measurements are compared to theoretical calculations in order to 
assess information about the participation of the charm quark in 
the collective motion of the system and its interactions with the 
QGP constituents.

2. Detector and data sample

A detailed description of the ALICE apparatus and data acquisi-
tion framework can be found in [58,59]. The main detectors used 
for this analysis are the Inner Tracking System (ITS) [60], the Time 
Projection Chamber (TPC) [61], and the Time-Of-Flight (TOF) de-
tector [62]. The ITS is a six-layer silicon detector which provides 
the event selection, the reconstruction of primary and secondary 
vertices, and the tracking of charged particles. The TPC detector 
is used for the track reconstruction and the particle identification 
(PID) via the measurement of the specific energy loss dE/dx, while 
the TOF detector provides PID via the measurement of the flight 
time of the particles. These detectors are located inside a solenoid 
providing a uniform magnetic field of 0.5 T parallel to the LHC 
beam direction and cover the pseudorapidity interval |η| < 0.9. 
A minimum-bias interaction trigger was provided by the coinci-
dence of signals in the two scintillator arrays of the V0 detec-
tor [63], covering the full azimuth in the pseudorapidity regions 
−3.7 < η < −1.7 (V0C) and 2.8 < η < 5.1 (V0A). An online selec-
tion based on the V0 signal amplitudes was applied in order to en-
hance the sample of central and mid-central collisions through two 
separate trigger classes. Background events from beam–gas inter-
actions were removed offline using the time information provided 
by the V0 and the neutron Zero-Degree Calorimeters (ZDC) [64]. 
Only events with a primary vertex reconstructed within ±10 cm 
from the centre of the detector along the beam line were consid-
ered in the analysis.

Events were divided into centrality classes, defined in terms of 
percentiles of the hadronic Pb–Pb cross section, using the ampli-
tudes of the signals in the V0 arrays. The number of events in each 
centrality class considered for this analysis (0–10% and 30–50%) 
is about 100 × 106 and 85 × 106, corresponding to an integrated 
luminosity of � 130 μb−1 and � 56 μb−1, respectively [65]. In or-
der to apply the ESE technique, the events in each centrality class 
were further divided into samples with different average elliptic 
anisotropy of final-state particles, selected according to the mag-
nitude of the second-order harmonic reduced flow vector q2 [36], 
defined as

q2 = |QQQ 2|/
√

M, (1)

where M is the number of tracks used in the |QQQ 2| calculation se-
lected as described below, and

QQQ 2 =
M∑

k=1

ei2ϕk (2)

is a vector built from the azimuthal angles (ϕk) of the considered 
particles. The QQQ 2 vector was measured using charged tracks re-
constructed in the TPC with |η| < 0.8 and 0.2 < pT < 5 GeV/c to 
exploit the ϕ resolution of the TPC and the large multiplicity at 
midrapidity, which are crucial to maximise the selectivity of q2
with respect to the final state flow eccentricity [48,66]. The de-
nominator in Eq. (1) is introduced to remove the dependence of 
|QQQ 2| on 

√
M in the absence of flow [36]. The tracks used to form 

the D-meson candidates were excluded from the computation of 
q2 to partially remove autocorrelations between D mesons and q2. 
The effect of residual autocorrelations between the D mesons and 
q2 was studied in [48] by computing q2 from the azimuthal dis-
tribution of the energy deposition measured in the V0A detector, 
and hence introducing a pseudorapidity gap of two units between 
the D mesons and q2. The v2 values obtained with the q2 calcu-
lated with TPC tracks and using the V0 detector were found to 
be compatible with a reduction of the eccentricity discriminating 
power of the two detectors without allowing for a firm conclusion 
on the magnitude of non-flow contamination. The same study was 
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repeated for the data sample used for this analysis, leading to the 
same conclusions.

The selection of the events according to the average elliptic 
flow of the event was performed by defining q2 percentiles in 
1%-wide centrality intervals as described in [48] and [67] to avoid 
the introduction of biases in the centrality (multiplicity) distribu-
tion of the selected events. The ESE-selected classes defined for the 
analyses presented in this paper correspond to the 20% of events 
with smallest and largest q2, respectively, and will be indicated 
as “small-q2” and “large-q2”. In case of no ESE selection, the term 
“unbiased” will be used.

3. Analysis technique

The charmed mesons were reconstructed at midrapidity via the 
decay channels D0 → K−π+ (with branching ratio, BR = 3.89 ±
0.04%), D+ → K−π+π+ (BR = 8.98 ± 0.28%), and D∗+ → D0π+
(BR = 67.7 ± 0.5%) and their charge conjugates [68]. D0 and 
D+ candidates were built combining pairs and triplets of tracks 
with the proper charge, pT > 0.4 GeV/c, |η| < 0.8, a fit quality 
χ2/ndf < 2 in the TPC (where ndf is the number of degrees of 
freedom involved in the track fit procedure), at least 70 (out of 
159) associated space points in the TPC, and a minimum number 
of two hits in the ITS, with at least one in the two innermost lay-
ers. D∗+ candidates were formed by combining D0 candidates with 
low-pT tracks, referred to here as “soft pions”, which were required 
to have pT > 0.1 GeV/c, |η| < 0.8, and at least three associated 
hits in the ITS. These selections limit the D-meson acceptance in 
rapidity, which drops to zero for |y| > 0.6 for pT = 1 GeV/c and 
|y| > 0.8 for pT > 5 GeV/c. A pT-dependent fiducial acceptance 
cut, |yD| < yfid(pT), was therefore applied, defined as a second-
order polynomial function increasing from 0.6 to 0.8 in the range 
1 < pT < 5 GeV/c, and fixed to 0.8 for pT > 5 GeV/c.

The D-meson candidate selection approach adopted to reduce 
the combinatorial background is similar to that used in previous 
analyses [43,46]. The analysis procedure searches for decay vertices 
displaced from the primary vertex, exploiting the mean proper de-
cay lengths of about 123 and 312 μm for D0 and D+ mesons, 
respectively [68]. The variables mainly used to distinguish between 
signal and background candidates are based on the separation be-
tween the primary and decay vertices, the displacement of the 
tracks from the primary vertex, and the pointing angle of the re-
constructed D-meson momentum to the primary vertex, and are 
the same as described in [21,69]. In the strong decay of the D∗+
meson the primary vertex cannot be differentiated from the sec-
ondary vertex. Therefore the geometrical selections were applied 
on the secondary vertex topology of the produced D0 mesons. The 
optimisation of the selection criteria for each D-meson species was 
performed as a function of pT and independently for the two cen-
trality classes. Further reduction of the combinatorial background 
was obtained by applying PID for the daughter tracks with the TPC 
and TOF detectors. A selection in units of resolution (±3 σ ) was 
applied on the difference between the measured and expected sig-
nals of pions and kaons for both dE/dx and time-of-flight. The 
same selections are applied both for the unbiased and the ESE-
selected measurements.

The D-meson elliptic and triangular flow coefficients, v2 and v3, 
were measured using the Scalar Product (SP) method [36,70,71]. 
For each D-meson candidate, the vn coefficients can be expressed 
in terms of the Q n vectors, introduced in Sec. 2, as

vn{SP} = 〈〈uuun · QQQ A∗
n

MA
〉〉

/√√√√√ 〈 QQQ A
n

MA · QQQ B∗
n

MB 〉〈 QQQ A
n

MA · QQQ C∗
n

MC 〉
〈 QQQ B

n
MB · QQQ C∗

n
MC 〉

, (3)

where un = einϕD is the unit flow vector of the D-meson candidate 
with azimuthal angle ϕD and the symbol “*” denotes the complex 
conjugation. The denominator is called the resolution (Rn) and is 
calculated with the formula introduced in [36], where the three 
subevents, indicated as A, B, and C, are defined by the particles 
measured in the V0C, V0A, and TPC detectors, respectively. QQQ k

n is 
the subevent flow vector corresponding to the nth-order harmonic 
for the subevent k, and Mk represents the subevent multiplicity. 
This is defined as the sum of the amplitudes measured in each 
channel for the V0A and the V0C. For the V0A and V0C detectors, 
the Q n vectors were calculated from the azimuthal distribution of 
the energy deposition, and their components are given by

Q V0A or V0C
n,x =

Nsectors∑
k=1

wk cos(nϕk),

Q V0A or V0C
n,y =

Nsectors∑
k=1

wk sin(nϕk), (4)

where the sum runs over the 32 sectors (Nsectors) of the V0A or 
V0C detector, ϕk is the azimuthal angle of the centre of the sec-
tor k, and wk is the amplitude measured in sector k, once the 
gain of the single channels is equalised and the recentering is ap-
plied to correct effects of non-uniform acceptance [72]. For the TPC 
detector, the Q n vectors were computed using Eq. (2). The single 
bracket 〈〉 in Eq. (3) refers to an average over all the events, while 
the double brackets 〈〈〉〉 denote the average over all particles in 
the considered pT interval and all events. The Rn is obtained as a 
function of the collision centrality.

The vn of the D mesons cannot be directly measured using 
Eq. (3) as D0, D+ , and D∗+ cannot be identified on a particle-by-
particle basis. Therefore, a simultaneous fit to the invariant-mass 
spectrum and the vtot

n distribution as a function of the invari-
ant mass (MD) was performed in each pT interval for D0 and 
D+ candidates separately in order to measure the raw yields and 
the flow coefficients. For the D∗+ case the distributions are stud-
ied as a function of the mass difference �M = M(Kππ) − (Kπ). 
The measured anisotropic flow coefficient, vtot

n , can be written as a 
weighted sum of the vn of the D-meson candidate, vsig

n , and that 
of background, vbkg

n [73] as

vtot
n (MD) = vsig

n
Nsig

Nsig + Nbkg
(MD) + vbkg

n (MD)
Nbkg

Nsig + Nbkg
(MD),

(5)

where Nsig and Nbkg are the raw signal and background yields, 
respectively. The fit function for the invariant-mass distributions 
was composed of a Gaussian term to describe the signal and an 
exponential distribution for the background for D0 and D+ candi-
dates, while for the D∗+ candidates the background was described 
by the function a

√
�M − mπ eb(�M−mπ ) , where a and b are free 

parameters. In the case of the D0 invariant mass the contribution 
of signal candidates with the reflected K-π mass assignment was 
taken into account with an additional term. Its invariant-mass dis-
tribution was parameterised with a double-Gaussian distribution 
based on Monte Carlo (MC) simulations [43,46,48,69,74]. In the 
MC simulation, the underlying Pb–Pb events at 

√
sNN = 5.02 TeV

were simulated using the HIJING v1.383 generator [75] and cc or 
bb pairs were added with the PYTHIA 6.4.25 generator [76] with 
Perugia-2011 tune [77]. In the simultaneous fit, the vn parameter 
for the candidates with wrong K-π mass assignment was set to be 
equal to vsig

n , provided that the origin of these candidates are real 
D0 mesons. The vsig

n is measured from the fit to the vtot
n distribu-

tion with the function of Eq. (5), where vbkg
n is a linear function 
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Fig. 1. Simultaneous fits to the invariant-mass spectrum and v2 (MD) of D0 (left panel), D+ (middle panel), and D∗+ (right panel) meson candidates in the 3 < pT < 4 GeV/c, 
5 < pT < 6 GeV/c, and 8 < pT < 10 GeV/c intervals, respectively, for the 30–50% centrality class. The solid blue and the dotted red curves represent the total and the 
combinatorial-background fit functions, respectively. For the D0 candidates, the green dashed curve represents the contribution of the reflected signal.

for D+ and D∗+ mesons, and D0 mesons with pT > 4 GeV/c. For 
the D0 candidates with pT < 4 GeV/c, a second-order polynomial 
function was used instead. Fig. 1 shows the simultaneous fit to 
the invariant-mass spectrum and vtot

2 (MD) in the pT intervals 3–4 
GeV/c for D0, 5–6 GeV/c for D+ , and 8–10 GeV/c for D∗+ in the 
30–50% centrality class.

The reconstructed D-meson signal is a mixture of prompt D 
mesons from c-quark hadronisation or strong decays of excited 
charmonium or open-charm states, and D mesons from beauty-
hadron decays, called “feed-down” in the following. The vsig

n is 
therefore a linear combination of prompt (vprompt

n ) and feed-down 
(v feed-down

n ) contributions, and can be expressed as

vsig
n = fprompt vprompt

n + (1 − fprompt)v feed-down
n , (6)

where fprompt is the fraction of promptly produced D mesons es-
timated as a function of pT with the theory-driven method de-
scribed in [21]. This method uses (i) FONLL calculations [78,79]
for the production cross section of beauty hadrons, (ii) the beauty-
hadron decay kinematics from the EvtGen package [80], (iii) the 
product of efficiency and acceptance (Acc × ε) from Monte Carlo 
simulations, and (iv) a hypothesis on the nuclear modification fac-
tor of feed-down D mesons.

The anisotropic flow coefficients of promptly produced D 
mesons were obtained assuming v feed-down

n = vprompt
n /2. The hy-

pothesis is based on the measurement of the non-prompt J/ψ
performed by CMS [19] and on the available model calculations 
[49,81,82], that indicate 0 < v feed-down

n < vprompt
n .

For the measurement of the modification of the pT-differential 
distributions of D mesons in the ESE-selected samples compared to 
the unbiased sample, the raw yields were extracted via fits to the 
invariant-mass distributions of D0, D+ , and D∗+ candidates and 
normalised to the corresponding number of events in the corre-
sponding ESE-selected sample. The same functions adopted in the 
simultaneous fits for the invariant-mass distributions were used. 
The extracted raw yields were not corrected for the efficiency in 
the ratio calculation, under the assumption that the reconstruction 

and selection efficiencies do not depend on q2. This assumption 
was previously verified in [48].

4. Systematic uncertainties

The D-meson vn coefficients are affected by the systematic un-
certainties due to (i) the signal extraction from the invariant-mass 
and vtot

n distributions, (ii) the beauty feed-down contribution, (iii) 
on the selection of the centrality interval in which Rn is calcu-
lated, and (iv), for the ESE-selected samples, the uncertainties due 
to possible bias caused by the presence of auto-correlation effects 
between the subevents used for Rn and q2 calculations.

The uncertainty due to the simultaneous fit was estimated by 
repeating the fit several times with different configurations. In par-
ticular, the lower and upper limits of the fit range, the bin width, 
and the background fit functions used for the invariant-mass and 
vtot

n distributions were varied. For each configuration the D-meson 
vn was calculated and the absolute systematic uncertainty for each 
pT interval was assigned as the r.m.s. of the vn distribution ob-
tained from the different trials. The absolute systematic uncer-
tainty values on the vn are reported in Table 1 and they depend 
on the D-meson species, the pT interval and the ESE-selected class. 
This source of uncertainty was considered as uncorrelated among 
the pT intervals and the centrality classes for the two harmonics. 
The correlation between the small-q2/large-q2 and the unbiased 
case was investigated and the outcome indicated that this un-
certainty source is uncorrelated between the different q2-selected 
samples.

For the pT-differential yield ratios in ESE-selected samples, the 
uncertainty for the signal extraction was estimated using the same 
approach described above, directly on the ratio of the yields in 
the ESE-selected and unbiased samples, leading to a systematic 
uncertainty value from 0.7% to 5%, depending on the pT and the 
D-meson species.

The systematic uncertainty source related to the beauty feed-
down correction has two main contributions. The first is due to the 
fprompt calculation and it was studied by varying the quark mass 
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Table 1
Summary of systematic uncertainties on the measurement of the D-meson v2, in the unbiased and 
ESE-selected samples, and v3 in Pb–Pb collisions at √sNN = 5.02 TeV. The range of the uncertainties on 
the fitting procedure and feed-down subtraction are quoted as absolute uncertainties, while those on 
the Rn as relative uncertainty.

Systematic uncertainty source v2 v3 v2 small-q2 v2 large-q2

0–10%

M and vn fits 0.005–0.03 0.006–0.03 0.006–0.01 0.006–0.01
Feed-down 0.002–0.01 0.0007–0.01 0.0003–0.006 0.003–0.016
Rn determination 3.5% negl. 3.5% 3.5%
Autocorrelations on R2 and q2 - - 3.5% 1%

30–50%

M and vn fits 0.006–0.025 0.01–0.05 0.006–0.015 0.004–0.015
Feed-down 0.0004–0.02 0.003–0.018 0.003–0.01 0.004–0.029
Rn determination 0.5% 0.5% 0.5% 0.5%
Autocorrelations on R2 and q2 - - 0.5% 0.5%

and the renormalisation and factorisation scales in the FONLL cal-
culations, the Rfeed-down

AA hypothesis as reported in [21]. The second 
contribution is due to the assumption of v feed-down

n = vprompt
n /2, 

previously described in Sec. 3, and was estimated by assuming a 
flat distribution of v feed-down

n between 0 and vprompt
n and by varying 

the central value of v feed-down
n by ±vprompt

n /
√

12. The values of the 
absolute systematic uncertainty from the beauty feed-down cor-
rection are reported in Table 1 and they depend on the D-meson 
species, the pT interval and the ESE-selected class. The uncertainty 
due to the beauty feed-down correction was assumed to be fully 
correlated among the pT bins for the measured vn coefficients in 
the same centrality class.

The non-flow effects are naturally suppressed because of the 
pseudorapidity gap of at least 0.9 units between the pseudorapid-
ity interval used for the D-meson reconstruction, and the V0C used 
for the Q n-vector determination. Furthermore, the auto-correlation 
effect due to the usage of the TPC tracks for the q2 estimate has 
been discussed in Sec. 2 and the related systematic uncertainty 
was found to be negligible, as described in [48].

The contribution of the Rn to the systematic uncertainty is due 
to the centrality dependence. The central value of Rn was esti-
mated using the three subevent formula, as described in Sec. 3, 
averaged over the events in the 0–10% and 30–50% intervals. The 
uncertainty was evaluated as the difference of the centrality inte-
grated Rn values with those obtained as weighted averages of Rn
values in narrow centrality intervals using the D-meson yields as 
weights. A systematic uncertainty of 3.5% and 0.5% was assigned 
on R2 in the 0–10% and 30–50% centrality classes and for all ESE-
selected samples. For the R3, an uncertainty of 0.5% was assigned 
in the 30–50% interval while it was found to be negligible for the 
0–10% class. The uncertainty associated with the resolution factor 
is smaller for the third harmonic than for the second harmonic, 
due to the milder centrality dependence of R3 compared with that 
of R2.

For the ESE-selected samples an additional source of system-
atic uncertainty on the resolution originates from auto-correlations 
due to the usage of the TPC tracks both for q2 and R2 deter-
mination. This potential bias is assessed by replacing the ratio 
〈QQQ V0C

n /MV0C · QQQ TPC∗
n /MTPC〉/〈QQQ V0A

n /MV0A · QQQ TPC∗
n /MTPC〉 in Eq. (3)

with the one from the q2-integrated analysis, following the same 
approach used for the J/ψ azimuthal anisotropy measurement 
[83]. In this case, the systematic uncertainty was estimated to 
be 3.5% for the small-q2 and 1% for the large-q2 samples in the 
0–10% centrality class, and 0.5% for both q2-selected classes in the 
30–50% centrality class, as reported in Table 1. The last two sources 
of systematic uncertainty, related to the resolution, are considered 
to be fully correlated among the different pT intervals.

For the analysis of the pT-differential yield ratios in ESE-
selected and unbiased samples the reconstruction efficiency was 
verified to be independent of q2. Consequently, it cancels out in 
the ratio of the two ESE-selected classes.

5. Results

5.1. Unbiased flow harmonics

Fig. 2 shows the average v2 (top panels) and v3 (bottom pan-
els) coefficients of prompt D0, D+ , and D∗+ mesons measured in 
the unbiased sample as a function of pT in the 0–10% (left pan-
els) and 30–50% (right panels) centrality classes. The average vn
of prompt D0, D+ , and D∗+ mesons was computed by using the 
inverse squared absolute statistical uncertainties as weights, after 
having compared their compatibility [67]. The systematic uncer-
tainties were propagated to the average by considering the con-
tributions from the centrality dependence of the Rn resolution 
and the correction for the beauty feed-down component in the 
D-meson yields as correlated among the D-meson species. The 
D-meson vn harmonics are compared to the corresponding coef-
ficients measured for charged pions and protons at midrapidity 
(|y| < 0.5) [39] as well as to inclusive J/ψ mesons at forward ra-
pidity (2.5 < y < 4) [84].

The D-meson elliptic flow increases significantly from cen-
tral to semi-central collisions, as expected from the increasing 
eccentricity of the interaction region. Conversely, the triangular 
flow is compatible in the two centrality classes within the large 
uncertainties, following the milder centrality dependence of the 
third flow harmonic observed for light-flavour particles [39]. For
pT < 3–4 GeV/c (pT < 4–5 GeV/c) the measured D-meson v2 (v3) 
is lower than that of pions and protons. This observation is consis-
tent within uncertainties with the hypothesis of a mass hierarchy, 
vn(D) < vn(p) < vn(π), in the low pT region (pT � 3 GeV/c). In 
semi-central events the vn coefficients of J/ψ mesons seem to fol-
low the mass hierarchy (vn(J/ψ) < vn(D)). In central events the 
data suggests a similar behaviour, however within the current un-
certainties no firm conclusions can be drawn. This observation can 
be explained by the interplay between the anisotropic flow and 
the isotropic expansion of the system (radial flow), which imposes 
an equal velocity boost to all particles. For 4 � pT � 6–8 GeV/c, 
the D-meson vn coefficients are similar to those of charged pi-
ons and lower than those of protons. This observation is con-
sistent with a scaling of the vn coefficients with the number of 
constituent quarks, which supports the hypothesis of particle pro-
duction via quark coalescence [85]. In the same pT interval, for 
the 30–50% centrality class the larger values of vn for D mesons 
compared to J/ψ mesons can be explained by (i) the hadronisa-
tion via coalescence together with the larger flow coefficients of 
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Fig. 2. Average v2 (top panels) and v3 (bottom panels) coefficients of prompt D0, D+ , and D∗+ mesons as a function of pT for Pb–Pb collisions at √sNN = 5.02 TeV in the 
0–10% (left panels) and 30–50% (right panels) centrality classes. The v2 and v3 of π± , p + p̄ [39] and inclusive J/ψ mesons [84] measured at the same centre-of-mass energy 
and in the same centrality classes are shown for comparison.

up and down quarks compared to that of charm quarks [28] and 
(ii) the fraction of J/ψ mesons coming from beauty-hadron de-
cays [86,87], which are expected to have lower v2 and v3 than 
charmed mesons [26,88]. In the 0–10% centrality class, the current 
experimental uncertainties do not allow for firm conclusions on 
the expected difference for J/ψ and D mesons. The measured vn
coefficients for all the hadron species are compatible within un-
certainties for pT � 8 GeV/c. Similar values of vn coefficients are 
expected, because in this kinematic range the charm-quark mass 
is small compared to the momentum, and because the path-length 
dependence of the in-medium parton energy loss is similar for 
high-pT charm quarks and gluons.

In Fig. 3, the average D-meson vn coefficients are compared 
to theoretical calculations that include the charm-quark transport 
in a hydrodynamically expanding medium. The theoretical uncer-
tainties, where available, are displayed with a coloured band. In 
the TAMU [89], POWLANG HTL [34,56], PHSD [53], Catania [94,95], 
and BAMPSel [49] calculations the interactions between the charm 
quarks and the medium constituents are modelled with collisional 
processes, while the MC@sHQ+EPOS2 [26], LBT [57,90], LIDO [91,
92], BAMPSel+rad [55], DAB-MOD(M&T) [37,93], and LGR [96] mod-
els include also radiative processes. The difference in the variants 
of the BAMPS model indicates that in this model elastic collisions 
are the dominant process that imparts a positive D-meson v2 in 
the low and intermediate pT region. All the models except for 
BAMPS include the hadronisation of the charm quark via coales-
cence, in addition to the fragmentation mechanism. Initial-state 
event-by-event fluctuations are included in the POWLANG HTL, 
LIDO, PHSD, MC@sHQ+EPOS2, LBT, and DAB-MOD(M&T) models, 
which are therefore the only ones that provide predictions for the 
triangular flow. Although the models differ in several aspects re-
lated to the interactions both in the QGP and in the hadronic phase 
as well as to the medium expansion, most of them provide a fair 
description of the measured vn harmonics. The largest difference is 
observed in the 2 < pT < 6 GeV/c interval for the v2 in the 30–50% 

centrality class, where most of the models provide a prediction 
lower than the measured points. This is more evident for the LIDO 
model, which shows a deviation of 5.4 σ , and BAMPSel+rad, which 
underestimates the measured v2 by about a factor two with more 
than 10 σ significance. In contrast to this, BAMPSel overestimates 
the measurement by about 3 σ . The underestimation of the data 
by the BAMPSel+rad model can be eventually due to the missing 
implementation of the charm-quark coalescence with light quarks 
from the medium, which seems to be necessary in the description 
of the measured v2. In the same pT range, the DAB-MOD model 
overestimates the measured v2 in the 0–10% centrality class by 
3.7 σ . These discrepancies expressed in number of standard devi-
ations were computed combining the probability to observe a de-
viation from the null hypothesis (i.e. the model prediction) for all 
the measured points in the 2 < pT < 6 GeV/c interval, considering 
both the experimental (statistical and systematic) and the theoret-
ical uncertainties, when available. The global agreement between 
the data and the theoretical models was evaluated by computing 
the χ2/ndf, as done in [46]. The values are reported in Table 2. All 
the centrality classes and vn harmonics were considered when the 
model predictions were available. Compared to the results in [46], 
for almost all the models the χ2/ndf is found to be higher than 
unity, most likely because of the improved precision of the mea-
surement. The models that describe the data with χ2/ndf < 2 are 
MC@sHQ+EPOS2, LBT, LGR, PHSD, POWLANG, Catania, and TAMU 
which is more in agreement with the data compared to [46], 
thanks to the improved description of the charm-quark coales-
cence in its latest version [89]. These models use a value of heavy-
quark spatial diffusion coefficient in the range 1.5 < 2π Ds Tc < 7
at the critical temperature Tc = 155 MeV [97], which is consistent 
with the interval obtained in [46]. It is however important to con-
sider that not all the theoretical models provide predictions for all 
the vn harmonics in all the centrality classes reported in this arti-
cle, hence the global interpretation of these comparisons could not 
be conclusive.
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Fig. 3. Average v2 (top panels) and v3 (bottom panels) coefficients of prompt D0, D+ , and D∗+ mesons as a function of pT for Pb–Pb collisions at √sNN = 5.02 TeV in the 
0–10% (left panels) and 30–50% (right panels) centrality classes compared with model calculations [26,34,37,49,53,55–57,89–95].

Table 2
Summary of χ2/ndf values obtained for the different model predictions compared with the measured D-
meson vn harmonics.

Model pT (GeV/c) χ2/ndf

v2 v3 global

0–10% 30–50% 0–10% 30–50%

BAMPSel [49] [1–24] - 31.7/11 - - -
BAMPSel+rad [55] [1–24] - 203.6/11 - - -
Catania [94,95] [1–12] 3.1/7 14.0/8 15.1/7 8.1/4 40.3/26
DAB-MOD(M&T) [37,93] [1–8] 24.6/7 9.8/6 16.1/7 7.1/3 57.6/23
LBT [57,90] [1–36] 18.2/11 15.8/12 24.9/11 8.4/7 67.4/41
LIDO [91,92] [1–24] 10.7/10 62.0/11 17.8/10 12.5/6 102.9/37
LGR [96] [1–24] - 15.5/11 - - -
MC@sHQ+EPOS2 [26] [1–36] - 15.7/12 - - -
PHSD [53] [1–24] 13.2/10 19.6/11 7.9/10 8.6/6 48.9/37
POWLANG HTL [34,56] [1–12] 9.6/7 13.5/8 14.6/7 8.3/4 45.9/26
TAMU [89] [1–12] - 8.15/9 - - -

5.2. Event-shape engineered flow harmonics and pT-differential yields

The average v2 of prompt D0, D+ , and D∗+ mesons measured 
in the ESE-selected samples is shown in Fig. 4 for the 0–10% (top 
row) and the 30–50% (bottom row) centrality classes. The mea-
surements in the small-q2 sample are reported in the left column, 
those in the large-q2 sample in the right column, while the mea-
surements in the unbiased samples recomputed in the same pT
intervals of the ESE analysis are in the middle column. A reduced 
pT range (2 < pT < 16 GeV/c) and wider pT intervals compared 
to the unbiased v2 measurement were adopted due to the lim-
ited size of the ESE-selected samples. The average v2 among the 
three D-meson species was computed as described in Sec. 5.1. In 
Fig. 5 the ratio between the average D-meson v2 measured in the 
ESE-selected samples with respect to that in the unbiased sample 
is depicted. The statistical uncertainties of the ratio were calcu-
lated taking into consideration the degree of correlation between 
the measurements in the ESE-selected and unbiased samples. The 

systematic uncertainties arising from the centrality dependence of 
Rn, the non-flow contaminations among sub-events, and the cor-
rection for the beauty feed-down contribution were considered as 
fully correlated.

The D-meson v2 was found to be on average about 50% higher 
(lower) in the 20% of the events with largest (smallest) q2 in both 
the 0–10% and 30–50% centrality classes. No significant centrality 
dependence was found within the current uncertainties. The cor-
responding variation of the average q2 in the small-q2 (large-q2) 
sample with respect to the unbiased one was found to be about 
65% (75%) and 60% (65%) for the 0–10% and 30–50% centrality 
class, respectively. This confirms the correlation between the D-
meson azimuthal anisotropy and the collective expansion of the 
bulk matter already observed in [48]. This modification of the v2

coefficient was found to be independent of pT within uncertain-
ties, which might suggest that the ESE selection is related to a 
global property of the events (i.e. a property that is independent 
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Fig. 4. Average of prompt D0, D+ , and D∗+ meson v2 as a function of pT in Pb–Pb collisions at √sNN = 5.02 TeV in the small-q2, large-q2 (see text for details), and unbiased 
samples, for the 0–10% (top panels) and 30–50% (bottom panels) centrality classes, compared to model calculations [34,37,91,93–95]. In the LIDO, DAB-MOD, and Catania 
predictions, the ESE selection is performed with a q2 estimator, while in the POWLANG model the elliptic eccentricity ε2 is used.

Fig. 5. Ratio of the average prompt D0, D+ , and D∗+ meson v2 coefficients measured in the small-q2 (left panels) and large-q2 (right panels) selected samples with respect to 
that of the unbiased sample as a function of pT in Pb–Pb collisions at √sNN = 5.02 TeV for the 0–10% (top panels) and 30–50% (bottom panels) centrality classes, compared 
to model calculations [34,37,91,93,95].

of the measured particle and is related to the entire event). A sim-
ilar trend was also observed for light-flavour particles [66].

Figs. 4 and 5 also compare the measured v2 and v2 ratios be-
tween ESE-selected and unbiased samples to the POWLANG, LIDO, 
DAB-MOD, and Catania theoretical predictions. For the POWLANG 

model, both the predictions obtained with the transport coeffi-
cients from weak coupling (Hard Thermal Loop, HTL [98]) and 
from lattice QCD calculations (lQCD [99]) are reported. For the 
DAB-MOD model, a version based on the heavy-quark transport 
(M&T [32]) and a parametric model for the heavy-quark energy 
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Fig. 6. Average of the ratio of pT-differential D0, D+ , and D∗+ yields measured in the ESE-selected samples to those in the unbiased sample in Pb–Pb collisions at √sNN =
5.02 TeV for the 0–10% (top panels) and 30–50% (bottom panels) centrality classes, compared to the POWLANG [34] and LIDO [91,92] predictions.

loss (E loss [100]) were considered. In the LIDO, DAB-MOD, and 
Catania models the ESE selection is performed with a q2 estima-
tor computed starting from generated quantities [91,93,95], while 
in the POWLANG model the elliptic eccentricity ε2 is directly 
used [34]. The v2 measured in the small-q2 sample is described by 
all the available models within the uncertainties. On the contrary, 
in the 30–50% centrality class the LIDO, DAB-MOD, and Catania 
models underestimate the measurement in the large-q2 sample, 
which is instead well described by the POWLANG HTL prediction. 
In the case of POWLANG lQCD, the theoretical prediction is com-
patible with the measured v2 for pT < 4 GeV/c and lower for 
higher pT. The DAB-MOD calculations give a better description of 
the experimental data with the M&T approach for pT < 5 GeV/c
and in the E loss case for pT > 5 GeV/c. When the ratios between 
the v2 in the ESE-selected and the unbiased samples are consid-
ered, the models seem to better describe the measured values, 
owing to similar discrepancies between theoretical predictions and 
experimental data in the ESE-selected and unbiased samples which 
lead to similar ratio values in the different models. In the small-q2
samples the model predictions are more similar to each other and 
the discrepancies are less significant, also due to the larger ex-
perimental uncertainties. Interestingly, different implementations 
of the same model with the studied transport parameterisations 
(i.e. POWLANG HTL vs. POWLANG lQCD, and DAB-MOD(M&T) vs. 
DAB-MOD(E loss)) give similar predictions, suggesting that the ef-
fect of the ESE selection is more related to the initial geometry 
and the underlying hydrodynamic expansion rather than the dy-
namic evolution of the heavy quarks in the medium.

To study a possible interplay between the azimuthal anisotropy 
of the event and the charm-quark radial flow (at low/intermediate 
pT) and in-medium energy loss (at high pT), the ratio of the mea-
sured per-event yields of prompt D0, D+ , and D∗+ mesons in the 
ESE-selected and unbiased samples has been calculated as a func-
tion of pT in the range 2 < pT < 24 GeV/c. The average D-meson 
ratios, computed by using the inverse of the squared relative statis-

tical uncertainties as weights, are compared to the POWLANG and 
LIDO models in Fig. 6. The POWLANG model predicts a hardening 
(softening) of the pT distributions in the large (small)-q2 class of 
events due to an interplay between the radial and elliptic flows, 
while no significant modification is predicted by the LIDO model. 
Within the current precision, the measured per-event yield ratios 
and are found compatible with unity, and hence to the LIDO model 
predictions, and with the POWLANG model in the case of lQCD, 
while the measured effect seems to be lower than the effect pre-
dicted with HTL transport coefficients.

6. Conclusions

The elliptic and triangular flow of D0, D+ , and D∗+ mesons 
was measured with the SP method at midrapidity (|y| < 0.8) as 
a function of pT in central (0–10%) and semi-central (30–50%) Pb–
Pb collisions at 

√
sNN = 5.02 TeV.

Compared to other particle species, the average D-meson vn
harmonics were found to be compatible with the hypothesis of 
a mass hierarchy for pT � 3 GeV/c as observed for light-flavour 
hadrons [39]. At intermediate pT, the D-meson vn is similar to 
those of charged pions, lower than those of protons, and higher 
than those of J/ψ mesons, supporting the hypothesis of charm-
quark hadronisation via coalescence. Moreover, the contribution 
to the hadronisation of charm quarks from coalescence with light 
quarks from the medium seems to be necessary in the theoretical 
models to quantitatively reproduce the measured D-meson vn. For 
pT � 8 GeV/c, the D-meson v2 and v3 are compatible within un-
certainties with the values measured for the other particle species, 
indicating a similar path-length dependence of the energy loss of 
high-pT charm quarks and gluons. The comparison of the mea-
sured D-meson vn with theoretical calculations suggests that the 
interactions with the hydrodynamically expanding medium impart 
a positive v2 and v3 to the charm quarks.

9



ALICE Collaboration Physics Letters B 813 (2021) 136054

The elliptic flow and the modification of the pT distributions of 
D0, D+ , and D∗+ mesons were also investigated with the event-
shape engineering technique. The D-meson v2 was found to be 
larger (smaller) in events with larger (smaller) q2, confirming the 
correlation with average bulk elliptic flow. The ratios of the pT-
differential yields measured in the ESE-selected samples and the 
unbiased sample were found to be compatible with unity. The 
measurements in the ESE-selected samples are qualitatively de-
scribed by theoretical calculations and provide new constraints to 
models based on charm-quark transport in a hydrodynamically ex-
panding medium and charm-quark energy loss in the QGP.
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96 Oak Ridge National Laboratory, Oak Ridge, TN, United States
97 Ohio State University, Columbus, OH, United States
98 Petersburg Nuclear Physics Institute, Gatchina, Russia
99 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
100 Physics Department, Panjab University, Chandigarh, India
101 Physics Department, University of Jammu, Jammu, India
102 Physics Department, University of Rajasthan, Jaipur, India
103 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
104 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
105 Physik Department, Technische Universität München, Munich, Germany
106 Politecnico di Bari, Bari, Italy
107 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
108 Rudjer Bošković Institute, Zagreb, Croatia
109 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
110 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
111 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
112 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
113 St. Petersburg State University, St. Petersburg, Russia
114 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
115 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
116 Suranaree University of Technology, Nakhon Ratchasima, Thailand

16



ALICE Collaboration Physics Letters B 813 (2021) 136054

117 Technical University of Košice, Košice, Slovakia
118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
119 The University of Texas at Austin, Austin, TX, United States
120 Universidad Autónoma de Sinaloa, Culiacán, Mexico
121 Universidade de São Paulo (USP), São Paulo, Brazil
122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
123 Universidade Federal do ABC, Santo Andre, Brazil
124 University of Cape Town, Cape Town, South Africa
125 University of Houston, Houston, TX, United States
126 University of Jyväskylä, Jyväskylä, Finland
127 University of Liverpool, Liverpool, United Kingdom
128 University of Science and Technology of China, Hefei, China
129 University of South-Eastern Norway, Tonsberg, Norway
130 University of Tennessee, Knoxville, TN, United States
131 University of the Witwatersrand, Johannesburg, South Africa
132 University of Tokyo, Tokyo, Japan
133 University of Tsukuba, Tsukuba, Japan
134 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
135 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
136 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
137 Université Paris-Saclay, Centre d’Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay, France
138 Università degli Studi di Foggia, Foggia, Italy
139 Università degli Studi di Pavia, Pavia, Italy
140 Università di Brescia, Brescia, Italy
141 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
142 Warsaw University of Technology, Warsaw, Poland
143 Wayne State University, Detroit, MI, United States
144 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
145 Wigner Research Centre for Physics, Budapest, Hungary
146 Yale University, New Haven, CT, United States
147 Yonsei University, Seoul, Republic of Korea

i Deceased.
ii Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy.

iii Dipartimento DET del Politecnico di Torino, Turin, Italy.
iv M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
v Department of Applied Physics, Aligarh Muslim University, Aligarh, India.

vi Institute of Theoretical Physics, University of Wroclaw, Poland.
17


	Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb--Pb collisions at √sNN=5.02TeV
	1 Introduction
	2 Detector and data sample
	3 Analysis technique
	4 Systematic uncertainties
	5 Results
	5.1 Unbiased flow harmonics
	5.2 Event-shape engineered flow harmonics and pT-differential yields

	6 Conclusions
	Declaration of competing interest
	Acknowledgements
	References
	ALICE Collaboration


