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Abstract The first measurement of the production of
pions, kaons, (anti-)protons and φ mesons at midrapidity in
Xe–Xe collisions at

√
sNN = 5.44 TeV is presented. Trans-

verse momentum (pT) spectra and pT-integrated yields are
extracted in several centrality intervals bridging from p–Pb
to mid-central Pb–Pb collisions in terms of final-state mul-
tiplicity. The study of Xe–Xe and Pb–Pb collisions allows
systems at similar charged-particle multiplicities but with
different initial geometrical eccentricities to be investigated.
A detailed comparison of the spectral shapes in the two sys-
tems reveals an opposite behaviour for radial and elliptic flow.
In particular, this study shows that the radial flow does not
depend on the colliding system when compared at similar
charged-particle multiplicity. In terms of hadron chemistry,
the previously observed smooth evolution of particle ratios
with multiplicity from small to large collision systems is also
found to hold in Xe–Xe. In addition, our results confirm that
two remarkable features of particle production at LHC ener-
gies are also valid in the collision of medium-sized nuclei:
the lower proton-to-pion ratio with respect to the thermal
model expectations and the increase of the φ-to-pion ratio
with increasing final-state multiplicity.

1 Introduction

In recent years, the production of hadrons consisting of light
flavour quarks (u,d, and s) has been extensively studied in pp,
p–Pb and Pb–Pb collisions at LHC energies [1–11] with the
aim to explore the strongly interacting Quark-Gluon Plasma
(QGP) produced in heavy-ion collisions. After the formation,
the QGP expands hydrodynamically reaching first a chemi-
cal freeze-out, where hadron abundances are fixed [12,13],
and then a kinetic freeze-out, where the hadron momenta are
fixed.

Remarkably, a smooth evolution of the hadron chemistry,
i.e. of the relative abundance of hadron species, was observed
across different collision systems as a function of the final-

� e-mail: alice-publications@cern.ch

state multiplicity [9]. This behaviour was also found to be
independent of collision energy [10]. In particular, the rela-
tive abundance of strange particles with respect to the non-
strange ones increases continuously from small to large mul-
tiplicities until a saturation is observed for systems in which
about 100 charged particles are produced per unit of pseu-
dorapidity [8]. This observation suggests a gradual approach
to a chemical equilibrium that is assumed to originate from
the same underlying physical mechanisms across different
collision systems [14–16]. The study of the pion, kaon, (anti-
)proton, and φ production in the collisions of medium-sized
nuclei such as Xe provides the ultimate test for validating
this picture by bridging the gap between p–Pb and Pb–Pb
multiplicities.

In this context, two remarkable features of particle pro-
duction are of particular interest to be verified in Xe–Xe
collisions: (i) the low value of the p/π ratio with respect
to statistical-thermal model estimates [17] and (ii) the rising
trend of the φ/π ratio from low to high multiplicities [9].
The first observation has led to several speculations rang-
ing from the incomplete treatment of resonance feed-down
to a potential difference in chemical freeze-out temperatures
among different quark flavours [18–20] but found its most
likely explanation in the inclusion of pion-nucleon phase
shifts within the statistical-thermal model framework [21].
The second effect provides strict constraints for both the
canonical statistical-thermal approach in which no rise is
predicted [9,22,23] as well as for models with only partial
strangeness equilibration in which a steeper rise is expected
similarly to the � baryon [22].

Moreover, the detailed comparison of spectral shapes in
Xe–Xe and Pb–Pb collisions at similar multiplicities pro-
vides the unique opportunity to investigate the hydrodynamic
expansion in systems of similar final state charged particle
multiplicity and different geometrical eccentricity. Already
existing data on the elliptic flow coefficient v2 [24] show a
large difference in central collisions between the two sys-
tems, as expected from the Glauber and hydrodynamical
models. In contrast, the radial flow and consequently the
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mean transverse momenta are expected to be comparable
between Xe–Xe and Pb–Pb at similar multiplicities [25]. The
test of this hypothesis is one of the subjects of this manuscript.
In addition, the data used in this article were collected with a
lower magnetic field, thus allowing us to extend the measure-
ment of pions to lower transverse momenta with respect to
previous studies [26]. For this reason, these data may also be
of great relevance for future studies of potential condensation
phenomena at low transverse momenta [27].

This article is organised as follows. Section 2 describes
the experimental setup and data analysis as well as the sys-
tematic uncertainties. Results and comparisons with model
calculations are discussed in Sect. 3. The summary and con-
clusions are given in Sect. 4.

2 Experimental apparatus, data sample and analysis

The measurements reported in this article are obtained with
the ALICE central barrel which has full azimuthal coverage
around midrapidity in |η| < 0.8 [28]. A detailed descrip-
tion of the full ALICE apparatus can be found in [29]. In
October 2017, for the first time at the LHC, Xe–Xe colli-
sions at

√
sNN = 5.44 TeV were recorded by the ALICE

experiment at an average instantaneous luminosity of about
2 × 10−25 cm−2s−1 and a hadronic interaction rate of 80–
150 Hz. In total, the Xe–Xe data sample consists of about
1.1 × 106 minimum bias (MB) events passing the event
selection described below. The MB interaction trigger is
provided by two arrays of forward scintillators, named V0
detectors, with a pseudorapidity coverage of 2.8 < η < 5.1
(V0A) and −3.7 < η < −1.7 (V0C) [30]. The V0 sig-
nal is proportional to the charged-particle multiplicity and
is used to divide the Xe–Xe sample in centrality classes
defined in percentiles of the hadronic cross section [31–33].
The analysis is carried out in the centrality classes 0−5%,
5−10%, 10−20%, 20−30%, 30−40%, 40−50%, 50−60%,
60−70%, 70−90%. In order to reduce the statistical uncer-
tainty, the φ measurements are obtained in wider central-
ity classes 0−10%, 10−20%, 20−30%, 30−40%, 40−50%,
50−70%, 70−90%. The most central (peripheral) collisions
are considered in the 0−5% (70−90%) class. The 90−100%
centrality bin is not included in the analysis since it is affected
by the contamination of electromagnetic processes (≈ 20%).
In addition, as described in [26,34], an offline selection of
the events is applied to remove the beam-background events.
It combines the V0 timing information and the correlation
between the sum and the difference of times measured in
each of the Zero Degree Calorimeters (ZDCs) positioned at
± 112.5 m from the interaction point [29]. Due to the low
instantaneous luminosity (with an average collision proba-
bility per bunch crossing of μ ≈ 0.0005), the probability
of having more than two events per collision trigger was

sufficiently low that the so-called event pileup is considered
negligible.

The central barrel detectors are located inside a solenoidal
magnet providing a maximum magnetic field (B) of 0.5 T. A
magnetic field of 0.2 T can be set when operating the magnet
in its low B field configuration. The central barrel detectors
are used to reconstruct tracks and measure their momenta,
as well as to perform particle identification (PID). Those
exploited in this analysis are (from the interaction point out-
wards) the Inner Tracking System (ITS) [28], the Time Pro-
jection Chamber (TPC) [35] and the Time Of Flight (TOF)
detector [36]. With respect to previous analyses [26], the low
amount of collected data makes it impracticable to perform
PID with the High Momentum Particle IDentification detec-
tor (HMPID) [37].

The ITS is equipped with six layers of silicon detectors
made of three different technologies: Silicon Pixel Detec-
tors (SPD, first two layers from the interaction point), Sil-
icon Drift Detectors (SDD, two middle layers) and Silicon
Strip Detectors (SSD, two outermost layers). It allows the
reconstruction of the collision vertex, the reconstruction of
tracks and the identification of particles at low momentum
(p < 1 GeV/c) via the measurement of their specific energy
loss (dE/dx). An ITS-only analysis can be performed by
using a dedicated algorithm to treat the ITS as a standalone
tracker, enabling the reconstruction and identification of low-
momentum particles that do not reach the TPC. The TPC,
a cylindrical gas detector equipped with Multi-Wire Pro-
portional Chambers (MWPC), constitutes the main central-
barrel tracking detector and is also used for PID through the
dE/dx measurements in the gas. The dE/dx measurements
obtained with the ITS and TPC detectors are shown in Fig. 1.
The time-of-flight measured with the TOF, a large area cylin-
drical detector based on Multigap Resistive Plate Chamber
(MRPC) technology, combined with the momentum infor-
mation measured in the TPC, is employed to identify parti-
cles at low and intermediate momenta (� 5 GeV/c).

The events analysed in this article are chosen according
to the selection criteria described in [26]. The primary ver-
tex is determined from tracks, including the track segments
reconstructed in the SPD. The position along the beam axis
(z) of the vertex reconstructed with the SPD segments and
of the one reconstructed from tracks are required to be com-
patible within 0.5 cm with a resolution of the SPD one better
than 0.25 cm. The position of the primary vertex along z
is required to be within 10 cm from the nominal interac-
tion point. These criteria ensure a uniform acceptance in the
pseudorapidity region |η| < 0.8.

The results presented in this work refer to primary par-
ticles, defined as particles with a mean proper lifetime of
τ > 1 cm/c that are either produced directly in the interac-
tion or from decays of particles with τ < 1 cm/c, restricted
to decay chains leading to the interaction point [38]. To
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Fig. 1 Distribution of the dE/dx measured in the ITS (left) and TPC
(right) detectors as a function of the reconstructed track momentum in
Xe–Xe collisions at

√
sNN = 5.44 TeV. The bands corresponding to the

signals of π±, K±, p and p are well separated in the relevant momentum
ranges. The good separation power obtained at low momentum is one
of the key features for the measurements reported in this article

reduce the contamination from secondary particles from
weak decays and interactions in the detector material, as well
as tracks with wrongly associated hits, similar selection cri-
teria as described in [26,34] are used and are summarised
below. Tracks reconstructed with both the TPC and the ITS
are required to cross at least 70 TPC readout rows out of a
maximum of 159 with a χ2 normalised to the number of TPC
space points (“clusters”), χ2/cluster, lower than 4. The ratio
between the number of clusters and the number of crossed
rows in the TPC has to be larger than 0.8. An additional
cut on the track geometrical length in the TPC fiducial vol-
ume is used as in [34]. Tracks are also required to have at
least two hits in the ITS detector out of which at least one
has to be in the SPD. In addition, for the ITS-only analysis,
the tracks must have at least three hits in the SDD + SSD
layers. The χ2/cluster is also recalculated constraining the
track to pass by the primary vertex and it is required to be
lower than 36. The same selection is also applied on the ITS
points of the track: χ2

ITS/N hits
ITS < 36. For the ITS-only anal-

ysis, this selection is restricted to χ2
ITS/N hits

ITS < 2.5. Finally,
the tracks are required to have a distance of closest approach
(DCA) to the primary vertex along the beam axis lower than
2 cm. A pT-dependent selection is then applied to the DCA
in the transverse plane (DCAxy): |DCAxy| < 7σDCAxy where
σDCAxy is the resolution on the DCAxy in each pT interval.
Furthermore, the tracks associated with decay products of
weakly decaying kaons (“kinks”) are rejected. This selection
is not applied for kaons studied via their kink decay topology.
The track selection criteria for kaons and pions from kinks
will be described in the next paragraph.

The Xe–Xe data were collected by operating the detec-
tor in its low B field configuration (B = 0.2 T). The lower
magnetic field increases the probability of low momentum
particles to cross the full detector thus extending the over-
all acceptance and reach of the analyses to lower pT. This
allowed for the measurement of pions down to 50 MeV/c
for the first time at the LHC with respect to past publications
[2,26] where the lowest pT reach was to 100 MeV/c. While
increasing the particle detection efficiencies at low momenta
with respect to the standard field of 0.5 T, this configuration
leads to a pT resolution for ITS-only tracks that is worse by
almost a factor 2 for π±, K±, p and p in their lowest pT

bin. As a consequence, to achieve a reliable PID, an unfold-
ing technique is used for ITS-only tracks to account for the
resolution effects as it will be described in the next section.
On the contrary, the time-of-flight resolution and hence the
performance of the TOF detector in terms of PID separation
power is unaffected by the lower magnetic field. Overall, the
time-of-flight resolution is about 60 ps in central collisions.

2.1 Pion, kaon and (anti-)proton analysis

The particle identification for π±, K±, p and p relies on the
signals measured in the ITS, TPC and TOF detectors. This
provides a separation between different particle hypothe-
ses using track-by-track or statistical techniques. In addi-
tion, π and K are measured by reconstructing their weak
decay (kink) topology [29]. Each of these identification tech-
niques is best performing in a given pT region, as reported
in Table 1, and all together cover a wide pT interval of up
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to 5 GeV/c. The final spectra of each particle species are
obtained by combining the single analyses. The identifica-
tion of π±, K±, p and p with ITS, TPC and TOF proceeds by
evaluating the difference between the measured and expected
signal (e.g. dE/dx , time-of-flight) for a given species i in
terms of number-of-sigmas (Nσ ):

Nσ (i) = SignalMEAS − SignalEXP(i)

σ (i)
(1)

where SignalEXP(i) is the expected signal and σ(i) its
expected standard deviation obtained under each particle
mass hypothesis, as described in [29,36]. A detailed descrip-
tion of such techniques and the measured separation power
between the different particle species is shown for Pb–Pb
collisions in [26] and it is unchanged for this data set.

ITSanalysisThe ITS can be used as a standalone low-pT PID
detector thanks to the particle energy loss (dE/dx) measured
in its four outermost layers [39]. To correct for the detec-
tor resolution effects on the particle identification for p � 1
GeV/c, a Bayesian unfolding technique is employed with the
RooUnfold package [40]. The unfolding of the momentum
distribution in dE/dx slices (1.1 keV/300 μm each) is per-
formed with a four-iteration procedure where the initial prior
probability is taken from the generated momentum distribu-
tion in the Monte Carlo (MC) simulated events with HIJING
[41]. A proper correction for detector inefficiencies and par-
ticle contamination is applied following the prescription in
[40]. The unfolded momentum (pTRUE) corresponding to the
maximum of the conditional probability P(pTRUE | pMEAS)
for a given measured momentum pMEAS is considered for
the evaluation of the expected signal in the Nσ approach (see
Eq. (1)). Based on this, the plane (pTRUE; dE/dx) is divided
into identification regions where each point is assigned a
unique particle identity. The identity of a track is assigned
based on the difference between the measured dE/dx and the
one computed under each mass hypothesis. The hypothesis
which gives the smallest distance is used, thereby removing
the sensitivity to the parameterisation of the dE/dx resolu-
tion. A further selection |Nπ

σ | < 2 rejects electrons in the
pion identification.

To calculate the unfolded pT distributions (vs pTRUE
T ), the

Bayesian unfolding is also applied to the raw pMEAS
T distribu-

tions of each species. In this case, the initial prior probability
for the unfolding is taken from the generated pT distributions
of each species in the MC and the number of iterations is kept
to four so as to minimize the statistical fluctuations (differ-
ent numbers are considered for the systematic uncertainty
evaluation).

With this method it is possible to identify π±, K±, p and
p in the following pT ranges, respectively: 0.05−0.6 GeV/c,
0.2−0.5 GeV/c and 0.3−0.6 GeV/c. This also allows for the
reduction of the contamination due to other particle species.

For the first time at the LHC, thanks to the low magnetic field
configuration the pT reach of the pion spectra is extended
down to 50 MeV/c with a contamination from electrons
of about 30%. To this purpose, a detailed study in the low
momentum region was carried out in different rapidity inter-
vals to verify the stability of the measurement (as it will be
explained in Sect. 2.3).

TPC and TOF analyses The identification with the TPC
and TOF detectors mostly follows the procedure developed
in [26] with some adaptations. In both cases, the response
of the PID signal was tuned for the lower magnetic field
configuration. The raw yield of particles is extracted in each
pT interval via a statistical unfolding. In particular, for the
TOF analysis templates obtained with a data-driven approach
are used. An additional template is used to take into account
the signal component due to the TPC-TOF track mismatch.
The excellent PID performance achieved with both detectors
allowed a continuous separation of pions from kaons and
kaons from (anti-)protons in a wide interval of pT as reported
in Table 1.

Kink analysis Charged kaons and pions can also be identi-
fied by reconstructing their weak decay topology (kink topol-
ogy) defined as secondary vertices with two tracks (mother
and daughter) having the same charge. The kink topology is
analysed inside the TPC volume within a radius of 110–220
cm. Details about the kaon identification algorithm based on
the kink topology can be found in [5,26,29,42]. In this arti-
cle, the identification of pions via their kink decay topology
is reported for the first time at the LHC.

The identification of kaons from kink topology and their
separation from pion decays is based on the two-body decay
kinematics. The method allows for the extraction of kaon
and pion spectra on a track-by-track basis. Both particles
decay into μ+νμ with branching ratios (B.R.) of 63.55% (K)
and 99.99% (π ) [43]. For this decay channel, the transverse
momentum of the charged daughter particle with respect to
the direction of the mother track (qT), has an upper limit
of 236 MeV/c for kaons and 30 MeV/c for pions. Taking
into account that the upper limit of qT for the decay K± →
π± + π0 (with B.R. = 20.66% [43]) is 205 MeV/c, an
effective separation of kaons from pions can be achieved by
selecting kinks with qT > 40 MeV/c. Further selections
are applied to reach a purity of kaons higher than 95%: (i)
qT > 120 MeV/c in order to discard pion and 3-body kaon
decays, (ii) a kink radius in the transverse plane between
110 and 205 cm, (iii) at least 20 TPC clusters for the mother
track, (iv) a decay angle greater than 2o in order to remove
fake kinks from particles that are wrongly reconstructed as
two separate tracks, and (v) a kink decay angle, at a given
mother momentum, between the maximum decay angle for
pion to muon (μ + νμ decay) and the maximum decay angle
of kaon to muon (μ + νμ decay). Finally, identified kaons
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Table 1 Transverse momentum
intervals and the corresponding
PID methods for pions, kaons
and (anti-)protons

Technique π± (GeV/c) K± (GeV/c) p and p (GeV/c)

ITS 0.05–0.6 0.2–0.5 0.3–0.6

TPC 0.35–0.6 0.25–0.35 0.55–0.75

TOF 0.45–5.0 0.45–4.0 0.65–5.0

Kinks 0.3–0.95 0.3–5.0 –

from kinks are accepted if the mother track is found to have a
dE/dx within 3.5σ around the expected Bethe–Bloch value
for kaons.

The charged pions that are identified via their kink decay
topology show a purity higher than 97%. Similar selec-
tion criteria as for kaons are used except for 10 < qT <

40 MeV/c (the most effective cut) and with the requirement
of a decay angle smaller than the maximum decay angle of
π → μ + νμ. The difference in the qT selection for kaon
and pion identification is due to their different decay angles
to a muon at equal mother momentum. The maximum decay
angle of a kink mother track with momentum p = 1.5 GeV/c
is 2o for the pion to muon decay while 50o for the kaon to
muon decay, because of the mass difference of the mother
particles. This feature restricts the pion identification below
p = 1.5 GeV/c.

2.1.1 Corrections for efficiency and feed-down

The pT distributions of π±, K±, p and p are obtained by
correcting the raw spectra for PID efficiency, misidentifica-
tion probability, acceptance and tracking efficiencies as per-
formed in [26] for the ITS, TPC, TOF and kink analyses.
The efficiencies are obtained from Monte Carlo simulated
events generated with HIJING. The propagation of particles
through the detector is simulated with the GEANT3 trans-
port code [44] where the detector characteristics and data-
taking conditions are precisely reproduced. Thanks to the
lower magnetic field of the Xe–Xe data sample, a tracking
efficiency of about 2% (2.4%) is reached at the lowest pT

point (pT = 50 MeV/c) for pions in the most central (periph-
eral) bin compared to an efficiency lower than 1‰ at full
field. It is known [2,26,45] that the energy loss of low-pT

p in the detector material and the cross section of low-pT

K− are not well reproduced in GEANT3. For this reason, a
correction of the efficiency is estimated using GEANT4 [46]
and FLUKA [47], respectively, in which these processes are
reproduced more accurately. The corrections amount to about
10% and 4% for p and K−, respectively, in the lowest pT bin
(see Table 1). The PID efficiency and the misidentification
probability are estimated in the simulation by requiring the
simulated data to reproduce the real PID response for each
detector included in this analysis.

The raw distributions are further corrected for the con-
tribution of secondary particles (feed-down) mainly due to

weak decays of K0
S (affecting π±), � and �+ (affecting p

and p). Secondary protons coming from the detector mate-
rial are also subtracted from the raw spectrum. The estima-
tion of this correction factor is data-driven since the event
generators underestimate the strangeness production and,
as already mentioned, the transport codes do not provide
a precise description of the interaction of low-pT particles
with the detector material. For each analysis, the recon-
structed DCAxy distributions for each particle species are
fitted in each pT interval with three contributions (as tem-
plates) extracted from the Monte Carlo simulation: primary
particles, secondary particles from weak decays of strange
hadrons and secondary particles produced in the interaction
with the detector material, similarly to what is reported in
[2,26]. Finally, the spectra are normalized to the total num-
ber of events analysed in each centrality class. The spectra
in the extended pT range are obtained by combining those
obtained with the single identification techniques. In the pT

intervals where more analyses overlap, the combination is
carried out by performing an averaged mean using the single
systematic uncertainties as weights.

2.2 φ meson analysis

The φ meson signal is reconstructed via invariant mass anal-
ysis by exploiting the decay channel into charged kaons,
φ → K+K− (B.R. = 0.492 ± 0.005 [43]). The analysis
follows a consolidated technique described extensively in
[6,7,11]. Candidate kaons are identified based on the vari-
able defined by Eq. (1) for the dE/dx sampled in the TPC
(NTPC

σ ) or the time-of-flight measured by the TOF (NTOF
σ ).

More precisely, a track associated with a hit in the TOF detec-
tor is identified as a K if |NTOF

σ | < 3 and |NTPC
σ | < 5. If a

track does not reach the TOF detector and no time-of-flight
measurement is available, only the information of the TPC
is used by requiring that |NTPC

σ | < 2 for pT > 0.4 GeV/c,
|NTPC

σ | < 3 for 0.3 < pT < 0.4 GeV/c, and |NTPC
σ | < 5

for pT < 0.3 GeV/c. Within each event, identified kaons
are combined in oppositely-charged pairs (“unlike-sign”) to
extract the invariant mass (MKK) distribution of the signal.
To estimate the background from uncorrelated pairs, an event
mixing technique is used, which consists in building the
invariant mass distribution of K+K− pairs from five different
events with similar centrality (within 5%) and a similar vertex
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position along the beam axis (within 1 cm). Only same-event
and mixed-event pairs with rapidity |y| < 0.5 are selected.
The mixed-event background is normalised to the integral
of the unlike-sign distribution in the invariant mass interval
1.07 ≤ MKK ≤ 1.1 GeV/c2 and then subtracted. The result-
ing distribution exhibits a clear peak centered at the nominal
mass of φ [43], on top of a low residual background. The
φ signal peak is fitted with a Voigtian function (as in [48]),
which is the convolution of a Breit–Wigner, describing the
characteristic shape of the resonance state, and a Gaussian,
taking into account the detector resolution. The resonance
width is fixed to the nominal value ofφ =4.26 MeV/c2 [43],
whereas the mass and the mass resolution σφ are left as free
fit parameters. The mass resulting from the fit is consistent
with the nominal value of the φ mass reported in [43]. The σφ

parameter ranges from ≈ 1.5 MeV/c2 at pT = 0.5−1 GeV/c
to ≈ 2.5 MeV/c2 at pT = 10 GeV/c, and it is consistent with
the mass resolution extracted from Monte Carlo simulations
of the full detector setup and reconstruction chain. The resid-
ual background is parameterised with a linear function. The
fit is performed in the range 0.994 < MKK < 1.07 GeV/c2.
This procedure is repeated for each pT and centrality interval.

The pT-differential yields obtained with the described
procedure are corrected for efficiency and acceptance, as
described in [11]. The corrections are obtained from a Monte
Carlo simulation where events are generated with HIJING
[41] and particles are transported through a detailed simula-
tion of the ALICE detector with the GEANT3 transport code
[44]. The selection criteria for φ candidates are the same in
Monte Carlo and data.

2.3 Systematic uncertainties

The calculation of the systematic uncertainties follows the
procedure performed already for previous analyses [2,7,26,
42,48]. The main sources of systematic uncertainties for each
particle species are summarised in Table 2 (π±, K±, p and
p) and in Table 3 (φ).

The main sources of systematic uncertainty affecting
this analysis are: PID, feed-down correction, the imperfect
description of the material budget in the Monte Carlo simula-
tion, the knowledge of the hadronic interaction cross section
in the detector material [26], the ITS-TPC [34] (accounted
twice for the decay daughters of the φ) and TPC-TOF match-
ing efficiencies, the track selection, the unfolding iterations
and the rapidity selection for the ITS. The uncertainties for
track selection refer to the quality requirements based on the
number of crossed rows in the TPC, the number of clusters
in the ITS, the DCAxy and DCAz, and the χ2/NDF of the
reconstructed tracks. To estimate these uncertainties, a vari-
ation of the standard selection criteria is performed and the
ratio between the corrected spectra with modified selection
criteria and the ones with standard requirements is calcu-

lated, as performed in [26]. For the uncertainty related to the
number of iterations in the Bayesian unfolding for the ITS
analysis, a similar approach is followed where the number
of iterations is changed from 4 (default) to 3, 5, 7 and 9. The
uncertainties related to PID are evaluated by comparing dif-
ferent techniques (e.g. statistical unfolding versus track-by-
track Nσ selection). In addition, for the φ, a detailed study of
the yield extraction procedure was carried out by investigat-
ing the effect of variations in the signal shape parameters, the
background shape and the fit range, as performed in [48]. The
uncertainties of the detector material budget are estimated
by changing the material budget in the simulation with the
GEANT3 transport code by ± 7% as in [26,49]. The uncer-
tainty of the hadronic interaction cross section is calculated
by comparing the efficiencies in different transport codes
(GEANT3, GEANT4, FLUKA) following the prescription
given in [50]. Finally, the uncertainties on the feed-down are
determined by varying the range of the template fit to the
DCAxy distributions.

For the ITS analysis, a systematic uncertainty is intro-
duced to take into account the shift of the cluster positions
caused by the Lorentz force (E × B effect), as described
in [26]. For the kink analysis, the systematic uncertainties
are estimated by comparing the standard spectra with the
ones obtained by varying the selection criteria on the decay
product transverse momentum, the minimum number of TPC
clusters and the kink radius.

Finally, the systematic uncertainties on the very low pT

region of the spectra are higher compared to previous analy-
ses [2,26] because of the lower momentum resolution in the
reduced magnetic field. Nonetheless, the uncertainty on the
pion measurement below 100 MeV/c is below 12%. In addi-
tion, the limited statistics of the Xe–Xe data sample restricts
the detectors and techniques that can contribute to the PID
at higher momenta, excluding the HMPID detector and the
TPC energy loss measurement in the relativistic rise region.
This yields overall larger uncertainties with respect to pre-
vious ALICE measurements in other collision systems. At
3 GeV/c the uncertainties are approximately twice as large
with respect to [26] for π±, K±, p and p.

3 Results and discussion

3.1 Transverse momentum spectra

The π±, K±, p, p and φ pT spectra obtained after all cor-
rections are shown for central and peripheral collisions in
Fig. 2. Each spectrum is individually fitted with a Blast-
wave function [51], shown with dashed lines. The integrated
yield 〈dN/dy〉 and the mean transverse momenta 〈pT〉 are
calculated from the measured spectra and the extrapola-
tion of the Blast-wave functions in the unmeasured regions.
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Table 2 Main sources and values of the relative systematic uncertain-
ties (expressed in %) of the pT-differential yields of π±, K±, p and p
obtained in the analysis of Xe–Xe collisions. The first section is com-
mon to all the analyses, the analysis specific uncertainties are listed sep-
arately. When two values are reported, they correspond to the lowest
and highest pT bin respectively, considering the maximum contribu-

tion among the various centrality classes. If only one value is reported,
the systematic uncertainty is not pT-dependent. For certain sources,
the centrality is specified when a larger dependence on centrality is
observed. The maximum total systematic uncertainties (among all cen-
trality classes) are shown. The total uncertainty refers to the uncertainty
of the combined results (see text)

Effect π± (%) K± (%) p and p (%)

ITS−TPC matching efficiency (0−5%) 2.2−0.4 2.2−0.4 2.2−0.4

ITS−TPC matching efficiency (40−50%) 3.0−1.2 3.0−1.2 3.0−1.2

ITS−TPC matching efficiency (70−90%) 2.8−0.6 2.8−0.6 2.8−0.6

Material budget 1.6−0.2 1.3−0.4 2.9−0.1

Hadronic interaction cross section 2.5−2.4 2.7−1.8 4.6

ITS analysis

PID 1.4−3.1 1.4−7.7 1.2−0.7

Track selection 4.7−4.4 6.0−6.7 9.8−7.9

E × B 3.0 3.0 3.0

Unfolding iterations 5.5−2.2 6.1−5.2 13.7−2.3

Rapidity selection 7.0−3.0 3.0 10.0

Feed-down correction 3.2−3.2 3.0−3.0 3.0−3.0

Matching efficiency (0−5%) 1.2 1.2 1.2

Matching efficiency (40−50%) 0.5 0.5 0.5

Matching efficiency (70−90%) 2.0 2.0 2.0

Hadronic interaction cross section (ITS tracks) 3.0−0.3 2.7−1.5 13.3−5.6

TPC analysis

PID (0−5%) 14.−14.4 3.3−15.0 4.3−19.5

PID (40−50%) 5.4−5.3 2.0−7.4 0.8−9.5

PID (70−90%) 3.9−4.6 2.1−6.6 1.0−4.8

Track selection 0.4−1.5 5.0−6.0 3.8−3.0

Feed-down correction 0.5 − 0.8−9.7

TOF analysis

PID 3.0−12.0 3.0−18.0 2.0−20.0

Track selection 1.5 1.5 1.8

Matching efficiency 1.2−5 4.5−5.0 5.3−5.0

Feed-down correction 0.5 − 9.7−0.4

Kink analysis

PID + reconstruction efficiency (0−5%) 2.6 1.7−6.0 −
PID + reconstruction efficiency (40−50%) 2.6 1.0−4.4 −
PID + reconstruction efficiency (70−90%) 1.6 2.7−4.7 −
Contamination (0−5%) 1.0−4.0 0.5−5.3 −
Contamination (40−50%) 1.0−2.0 0.5−3.2 −
Contamination (80−90%) 1.0−2.0 0.5−3.0 −
Total 11.1−21.9 9.0−10.0 22.4−10.5

As performed in previous analyses [2,26], the systematic
uncertainties for both 〈dN/dy〉 and 〈pT〉 are evaluated by
shifting the data points up and down within their system-
atic uncertainty to obtain the softest and hardest spectra.
An additional contribution is given by the extrapolation to
pT = 0 GeV/c where different functions (mT-exponential,
Fermi-Dirac, Bose-Einstein, Boltzmann) were used for the

calculation. The uncertainty on the extrapolation for the most
central collisions is found to be ∼ 1% for pions and kaons,
∼ 5% for protons and ∼ 2% for φ.

As already observed in Pb–Pb and also in small collision
systems [1,9,26], the 〈pT〉 rises with increasing centrality
and multiplicity (〈dNch/dη〉). This hardening is significantly
more pronounced for heavier particles. For instance, the max-
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Fig. 2 pT distributions of π±,
K±, p, p, φ as measured in
central (left) and peripheral
(right) Xe–Xe collisions at√
sNN = 5.44 TeV. The

statistical and systematic
uncertainties are shown as error
bars and boxes around the data
points
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Table 3 Main sources and values of the relative systematic uncertain-
ties (expressed in %) of the pT-differential yields of φ obtained in the
analysis of Xe–Xe collisions. When two values are reported, they cor-
respond to the lowest and highest pT bin respectively, considering the
maximum contribution among the various centrality classes. If only one
value is reported, the systematic uncertainty is not pT-dependent. The
maximum total systematic uncertainties (among all centrality classes)
are shown

Effect φ (%)

B.R. 1

ITS−TPC matching efficiency 6.4−11

Track cuts 2.2−4

PID 2−12

Hadronic interaction 2.2−0

Material budget 1.0−0

Yield extraction 5−15

Total 10−20

imum of the p spectrum shifts from pT ≈ 0.8 GeV/c in
peripheral to pT ≈ 1.4 GeV/c in central collisions, while
for pions the shift is much smaller. This feature is generally
considered as a consequence of the radial expansion of the
system. The comparison of 〈pT〉 as a function of charged-
particle multiplicity for Pb–Pb and Xe–Xe collisions, shown
in Fig. 3, clearly demonstrates that this effect is entirely
driven by the multiplicity and not by the collision geome-
try. Most notably, the 〈pT〉 values of protons and φ differ in
peripheral (low dNch/dη) Xe–Xe and Pb–Pb collisions, but
reach similar values in semi-central and central collisions.
This behaviour is expected due to the small mass difference
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Fig. 3 Mean pT of pions, kaons, (anti-)protons and φ as a function of
the charged-particle multiplicity density in Xe–Xe collisions at

√
sNN =

5.44 TeV and Pb–Pb collisions at
√
sNN = 5.02 TeV [11,26]. The

statistical and systematic uncertainties are shown as error bars and boxes
around the data points

of these two particles if the spectral shape is more and more
dominated by radial flow with increasing centrality.

The mass-dependent radial flow naturally explains in cen-
tral collisions the so-called baryon-to-meson enhancement at
low to intermediate pT (� 5 GeV/c) observed in the light-
flavour sector [26]. This effect is seen in Fig. 4 where the p/π
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Fig. 4 Left: proton-to-phi and proton-to-pion pT-differential ratios in
0−10% central Xe–Xe collisions at

√
sNN = 5.44 TeV and 10−20%

central Pb–Pb collisions at
√
sNN = 5.02 TeV [26]. Right: proton-

to-phi and proton-to-pion pT-differential ratios in 50−70% Xe–Xe
collisions at

√
sNN = 5.44 TeV and 60−70% Pb–Pb collisions at√

sNN = 5.02 TeV [11,26]. The two selected groups of central-

ity bins have similar 〈dNch/dη〉 (see text for details). The statistical
and systematic uncertainties are shown as error bars and boxes around
the data points. The pT-differential ratios measured in pp collisions at√
s = 5.02 TeV [11,26] are also shown in the right panel for compar-

ison. The bands represent the systematic uncertainties alone

ratio shows a maximum at around 3−4 GeV/c. Considering
the most central Xe–Xe collisions, which have a multiplicity
similar to 10−20% Pb–Pb collisions at

√
sNN = 5.02 TeV

[26], the p/π ratio at the peak is enhanced by a factor of about
3 with respect to pp collisions at the same energy. Instead,
in peripheral Pb–Pb collisions the effect of the radial flow is
less evident and a pT-dependence similar to the one found in
pp is observed. Therefore, the measurements shown in Fig. 4
for peripheral collisions suggest that this consideration might
hold true also in Xe–Xe collisions. Another explanation for
the baryon-to-meson enhancement advocates quark recom-
bination [52,53] as the dominant production mechanism for
baryons at intermediate momenta. In this picture, the produc-
tion of baryons is enhanced at intermediate momenta as it is
more likely to combine three soft quarks (with pT,q = pT/3)
into a baryon in order to reach a given momentum pT than
to produce a meson via quark–antiquark pair (each with
pT,q = pT/2). However, the p/φ ratio displayed in Fig. 4
is rather independent of pT as expected in the radial flow
picture. Although their quark content is different, p and φ

have similar masses, indicating that this is the main variable
in the determination of the spectral shape. Nevertheless, as
discussed in [54], the same model including radial flow and
coalescence plus fragmentation is able to describe both p/π

and p/φ in central Pb–Pb collisions showing that both radial
flow and recombination play a role.

A direct comparison of the Xe–Xe with Pb–Pb collisions
allows the study of systems with the same charged particle

density and different initial eccentricity: semi central Pb–Pb
collisions have the same multiplicity as central Xe–Xe colli-
sions, however, the initial eccentricity is smaller in the latter
case. A difference in the initial eccentricity affects the hydro-
dynamic expansion, eventually leading to a different elliptic
flow of the charged particles. This is best illustrated in Fig. 5
which compares the elliptic flow coefficient v2{2, |�η| > 2}
of charged particles (for details on the definition, see [24,55])
with the p/π ratio. Due to the large mass difference between
protons and pions this ratio is very sensitive to radial flow
effects. Consequently, a depletion of this ratio at low trans-
verse momenta and an enhancement at intermediate trans-
verse momenta with increasing particle density is observed.
The magnitude of this effect is not only qualitatively, but
also quantitatively, within uncertainties the same in Xe–Xe
and Pb–Pb collisions for similar charged particle densities. In
contrast, the v2 coefficient shows large differences between
the two collision systems at similar particle densities, because
it is dominantly influenced by the initial eccentricity.

3.2 Hadrochemistry

To investigate the particle chemistry, the pT-integrated parti-
cle yields are determined in each centrality bin with the pro-
cedure described above for the 〈pT〉. The resulting 〈dN/dy〉
values are summarised in Table 4. The ratios of kaons, (anti-
)protons, and φ to pions are shown in Fig. 6 and compared
with results from Pb–Pb collisions. Similarly to the spectral
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data points

shapes, also the particle yield ratios are comparable between
Xe–Xe and Pb–Pb collisions at similar charged-particle mul-
tiplicities. The results reinforce two of the surprising features
that were first observed in Pb–Pb collisions at the LHC ener-
gies and are now confirmed in a new heavy-ion collision
system. First, the p/π -ratio values are around 0.05, signifi-
cantly lower than those predicted before the LHC era [17].
While the overall magnitude is understood as a consequence
of the pion-nucleon phase-shift [21,56] the decreasing trend
with increasing centrality can be interpreted as a consequence
of the antibaryon–baryon annihilation [57]. The results pre-
sented in this article add constraints to the particle production
mechanisms proposed to explain this observation. The data
reported in this work suggests that at LHC energies, parti-
cle production is not only independent of collision energy
but also of the collision system when studied as a function of
multiplicity. Second, the φ/π ratio shows an increasing trend
from peripheral to central collisions with a hint of a decrease
at higher multiplicities. Notably, this increase appears to be
slightly stronger for φ/π with respect to K/π . As shown in
Fig. 6, this is not expected in canonical statistical hadroni-
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Fig. 6 Ratio of kaon, proton and φ integrated yields to pion inte-
grated yield as a function of the charged-particle multiplicity density
for Xe–Xe collisions at

√
sNN = 5.44 TeV and Pb–Pb collisions at√

sNN = 2.76 TeV [2,48] and 5.02 TeV [11,26]. The statistical and
systematic uncertainties are shown as error bars and boxes around the
data points. Predictions from the canonical statistical model (CSM) are
shown as bands considering different correlation volumes [59] (based
on [22]) and chemical freeze-out temperatures [56]. The correlation
volume indicates the volume over which the strangeness conservation
is imposed

sation models [22,56], which predict a constant or slightly
decreasing trend since the net strangeness content S of the φ

is zero. This feature is predicted from both models reported
in Fig. 6, independent of the fact that the correlation vol-
ume over which the strangeness conservation is imposed is
kept fixed in [22] and has a multiplicity dependence in [56].
Future studies including the measurement of double-strange
(S = 2) � baryons in Xe–Xe collisions can determine across
all available collision systems whether the increase for the
φ is closer to S = 1 (such as kaons or lambdas) or S = 2
particles (�). The measurements of φ production in Pb–Pb
collisions [58] indicate that the increase lies in between these
two extremes.

4 Conclusion and outlook

In this article, results on the π±, K±, p, p and φ production
measured as a function of centrality in Xe–Xe collisions at
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Table 4 〈dN/dy〉 of pions, kaons, (anti-)protons and φ for different centrality classes as measured at midrapidity in Xe–Xe collisions at
√
sNN =

5.44 TeV. The uncertainties are reported in the order ± (stat) ± (syst)

Centrality class 〈dN/dy〉π++π− 〈dN/dy〉K++K− 〈dN/dy〉p+p 〈dN/dy〉φ
0−5% 1002.67 ± 0.39 ± 57.16 149.37 ± 0.21 ± 14.07 46.21 ± 0.09 ± 4.73 9.27 ± 0.27 ± 0.95

5−10% 808.76 ± 0.41 ± 45.34 123.58 ± 0.22 ± 11.01 37.79 ± 0.09 ± 3.89

10−20% 620.47 ± 0.24 ± 34.71 95.38 ± 0.14 ± 7.94 29.26 ± 0.06 ± 3.02 5.58 ± 0.11 ± 0.64

20−30% 426.77 ± 0.21 ± 24.14 66.15 ± 0.11 ± 5.44 20.74 ± 0.05 ± 2.15

30−40% 287.20 ± 0.16 ± 16.48 44.02 ± 0.09 ± 3.61 14.31 ± 0.04 ± 1.48 2.35 ± 0.07 ± 0.28

40−50% 182.89 ± 0.13 ± 10.87 27.80 ± 0.07 ± 2.25 9.38 ± 0.03 ± 0.98

50−60% 111.05 ± 0.10 ± 6.62 16.25 ± 0.05 ± 1.33 5.82 ± 0.02 ± 0.61 0.84 ± 0.024 ± 0.11

60−70% 61.23 ± 0.07 ± 3.77 8.83 ± 0.04 ± 0.77 3.26 ± 0.02 ± 0.36

70−90% 21.43 ± 0.03 ± 1.39 2.95 ± 0.01 ± 0.26 1.17 ± 0.01 ± 0.14 0.19 ± 0.01 ± 0.02

√
sNN = 5.44 TeV are presented. For the first time at the

LHC, it was possible to disentangle with AA collisions the
role of the collision region “shape” (eccentricity) and “size”
(charged-particle multiplicity) on the aspects of the particle
production. The results show a mass dependent enhancement
of the particle production at intermediate pT and a deple-
tion at low pT. This feature is more prominent in central
collisions and is typically associated with the presence of
radial flow. The effect of the radial flow is reflected in a mass
dependent increase of the average momentum for more cen-
tral collisions. In light of this interpretation scheme, particles
with similar masses receive a similar increase in their aver-
age momentum. This behaviour is confirmed in the compar-
ison of the 〈pT〉 of p and φ as a function of 〈dNch/dη〉. The
effect of the radial flow on the production of particles with
different masses is investigated by comparing the baryon-
to-meson (p/π and p/φ) ratios. A sizable depletion of the
low-pT part of the spectrum is only observed when compar-
ing particles with large mass differences, in agreement with
the expectations from the radial flow. The comparison of par-
ticles with similar mass (such as p and φ) hints to the fact
that the effect is mostly driven by the hadron mass and not
by the quark content as one could expect from the recombi-
nation of quarks into baryons and mesons. However, models
including recombination of quarks and radial flow are able
to reproduce both p/π and p/φ at intermediate pT in central
Pb–Pb collisions suggesting the importance of both mecha-
nisms [54]. Moreover, it is found that the results in Xe–Xe
and Pb–Pb collisions are in agreement, indicating that radial
flow has a similar magnitude in the two collision systems at
LHC energies. The magnitude of the radial flow is compared
in the two systems by using the p/π ratio in the depletion (1
GeV/c) and enhancement (3 GeV/c) regions. It is found that
the amount of depletion and enhancement is similar in both
cases, while the v2 exhibits a clear deviation. This observa-
tion corroborates the intuition that the radial flow depends
exclusively on the 〈dNch/dη〉, while anisotropic flow (e.g.

v2) depends also on the initial eccentricities of the collision
region.

The hadrochemistry is investigated by studying the inte-
grated particle yield ratios of kaons, (anti-)protons, and φ

to the most abundantly produced pions. Also, in this case,
a behaviour that is mostly driven by 〈dNch/dη〉 is observed
and thus the intriguing observations from Pb–Pb collisions
related to the p/π ratio and the φ/π ratio are now confirmed
in a smaller heavy-ion collision system at LHC energies.

As an outlook, these results also pave the way for the future
programme of light nuclei collisions at the LHC (in particular
the proposed extended future programme with nuclear beams
lighter than Pb [60]) which is attractive since higher parton
luminosities are achievable. Our results suggest that particle
chemistry and radial flow will be driven also in these systems
by the final-state charged particle densities. While Pb–Pb
collisions offer the largest dynamic range in this context, it
is also clear from our findings that collisions of small and
intermediate nuclei provide an excellent tool to study the
hot and strongly-interacting matter in the range of moderate
multiplicities.
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