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1 Introduction

In high-energy nucleus-nucleus collisions at RHIC [1–4] and LHC [5–7], significant correla-
tions are observed between particles emitted over a wide pseudorapidity range. The origin
of these observations are collective effects, which are related to the formation of a strongly
interacting quark-gluon plasma (QGP), which exhibits hydrodynamic behavior (see the re-
views [8–10]). Recent theoretical [11–13] and experimental [14–17] advancements have con-
tributed significantly to the understanding of the transport properties of the QGP. Similar
long-range correlations are also observed in high-multiplicity proton-proton (pp) [18–21],
proton-nucleus (pA) [22–25], and light nucleus-nucleus collisions [26, 27]. The fact that
these correlations extend over a large range in pseudorapidity implies that they originate
from early times in these collisions and thus suggest that hydrodynamic behavior is present
even in these small systems, although the volume and lifetime of the medium produced in
such a collision system are expected to be small, and there are other mechanisms which
can produce similar flow-like signals [28, 29].

Measurements of two-particle angular correlations provide information on many physi-
cal effects, including collectivity, hadronization, fragmentation, and femtoscopic effects [30],
and are typically quantified as a function of ∆η, the relative pseudorapidity, and ∆ϕ, the
separation in azimuthal angle, of particle pairs. The long-range structure of two-particle
angular correlations is well suited to analyze collective effects, since it is not created by reso-
nance decays nor fragmentation of high-momentum partons. A typical source of long-range
correlations in Monte Carlo pp generators is the momentum conservation. The enhance-
ment in the yield of two-particle correlations at small ∆ϕ that extends over a large ∆η is
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dubbed “ridge” due to its characteristic shape in the ∆η–∆ϕ plane. The shape of these
∆ϕ correlations can be studied via a Fourier decomposition [31, 32]. The second and third
order terms are the dominant harmonic coefficients. In heavy-ion collisions, harmonic co-
efficients can be related to the collision geometry and density fluctuations of the colliding
nuclei [33–35] and to transport properties of the QGP in relativistic viscous hydrodynamic
models [11–13, 36, 37].

The ridge structures in high-multiplicity pp and p-Pb events have been attributed
to initial-state or final-state effects. Initial-state effects, usually attributed to gluon sat-
uration [38, 39], can form long-range correlations along the longitudinal direction. The
final-state effects might be parton-induced interactions [40] or collective phenomena due to
hydrodynamic behavior of the produced matter arising in a high-density system possibly
formed in these collisions [41, 42]. Hybrid models implementing both effects are gener-
ally used in hydrodynamic simulations [43, 44]. EPOS LHC describes collectivity in small
systems with a parameterized hydrodynamic evolution of the high-energy density region,
so called “core”, formed by many color string fields [45]. The proton shape and its fluc-
tuations are also important to model small systems [44]. To understand the influence of
initial- or final-state effects, and to possibly disentangle the two, a quantitative description
of the measurements in small systems [46, 47] needs to account for details of the initial
state. Systematic studies of these correlation effects from small to large systems are be-
ing performed, both experimentally [21] and theoretically [47]. However, the quantitative
description of the full set of experimental data has not been achieved yet. A summary of
various explanations for the observed correlations in small systems is given in [29, 48, 49].

Besides the hybrid models mentioned above, alternative approaches were developed
to describe collectivity in small systems. A microscopic model for collectivity was imple-
mented in the PYTHIA 8 event generator, which is based on interacting strings (string
shoving) and is called the “string shoving model” [50]. In this model, strings repel each
other in the transverse direction, which results in microscopic transverse pressure and,
consequently, in long-range correlations. PYTHIA 8 with string shoving can qualitatively
reproduce the near-side (∆ϕ ∼ 0) ridge yield measured by the CMS Collaboration [20].
This challenges the hydrodynamic picture and predicts modifications of the jet fragmenta-
tion properties [51].

It is expected that final-state interactions affect also produced jets if they are the
source of collectivity in small systems. Proving the presence of jet quenching [52, 53]
would be another crucial evidence of the existence of a high-density strongly-interacting
system, possibly a QGP, in high-multiplicity pp collisions. However, there is no evidence
observed so far for the jet quenching effect in high-multiplicity pp and p-Pb collisions [54–
57]. Jet fragmentation can be studied in two-particle angular correlations in short-range
correlations around (∆η, ∆ϕ) = (0, 0) [58].

To further investigate the interplay of jet production and collective effects in small
systems, long- and short-range correlations are studied simultaneously in high-multiplicity
pp collisions at

√
s = 13TeV using the ALICE LHC Run 2 data collected with the high-

multiplicity event trigger in 2016–2018. In this article, the near-side per-trigger yield
at large pseudorapidity separation is presented as a function of transverse momentum.
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The results are compared with previous measurements by the CMS Collaboration [19]. In
addition, the ridge yield and near-side jet-like correlations with the event-scale selection are
reported. The event-scale selection is done by requiring a minimum transverse momentum
of the leading particle or the reconstructed jet at midrapidity, which is expected to bias the
impact parameter of pp collisions to be smaller on average [59, 60]. At the same time, the
transverse momentum of the leading particle or the reconstructed jet is a measure of the
momentum transfer in the hard parton scattering [61, 62]. The event-scale dependence of
the second-flow harmonic v2 has previously been studied in pp collisions with and without
a tagged Z boson, where little or no dependence was observed [63].

The experimental setup and analysis method are described in section 2 and 3, re-
spectively. The sources of systematic uncertainties are discussed in section 4. The results
and comparisons with model calculations of the measurements are presented in section 5.
Finally, results are summarized in section 6.

2 Experimental setup

The analysis is carried out with data samples of pp collisions at
√
s = 13TeV collected from

2016 to 2018 during the LHC Run 2 period. The full description of the ALICE detector and
its performance in the LHC Run 2 can be found in [64, 65]. The present analysis utilizes
the V0 [66], the Inner Tracking System (ITS) [67], and the Time Projection Chamber
(TPC) [68] detectors.

The V0 detector consists of two stations placed on both sides of the interaction point,
V0A and V0C, each made of 32 plastic scintillator tiles, covering the full azimuthal angle
within the pseudorapidity intervals 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. The
V0 is used to provide a minimum bias (MB) and a high-multiplicity (HM) trigger. The
minimum bias trigger is obtained by a time coincidence of V0A and V0C signals. The
charged particle multiplicity selection is done on the sum of the V0A and V0C signals,
which is denoted as V0M. The high-multiplicity trigger requires that the V0M signal
exceeds 5 times the mean value measured in minimum bias collisions, selecting the 0.1% of
MB events that have the largest V0 multiplicity. The analyzed data samples of minimum
bias and high-multiplicity pp events at

√
s = 13TeV correspond to integrated luminosities

of 19 nb−1 and 11 pb−1, respectively [69].
The primary vertex position is reconstructed from the measured signals in the Silicon

Pixel Detector (SPD), which forms the innermost two layers of the ITS. Reconstructed
primary vertices of selected events are required to be located within 8 cm from the center
of the detector along the beam direction. The probability of pileup events is about 0.6% in
MB events. Pileup events can be resolved and are rejected if the longitudinal displacement
of their primary vertices is larger than 0.8 cm.

Charged-particle tracks are reconstructed by the ITS and TPC, which are operated
in a uniform solenoidal magnetic field of 0.5 T along the beam direction. The ITS is
a silicon tracker with six layers of silicon sensors where the SPD [70] comprises the two
innermost layers, the next two layers called the Silicon Drift Detector (SDD), and the
outermost layers named the Silicon Strip Detector (SSD). The ITS and TPC, covering the

– 3 –



J
H
E
P
0
5
(
2
0
2
1
)
2
9
0

full azimuthal range, have acceptances up to |η| < 1.4 and 0.9, respectively, for detection
of charged particles emitted within 8 cm from the primary vertex position (zvtx) along the
beam direction. The tracking of charged particles is done with the combined information of
the ITS and TPC that enables the reconstruction of tracks down to 0.15GeV/c, where the
efficiency is about 65%. The efficiency reaches 80% for intermediate pT, 1 to 5GeV/c. The
pT resolution is around 1% for primary tracks with pT < 1GeV/c, and linearly increases
up to 6% at pT ∼ 40GeV/c [71].

The charged particle selection criteria are optimized to make the efficiency uniform
over the full TPC volume to mitigate the effect of small regions where some of the ITS
layers are inactive. The selection consists of two track classes. Those belonging to the first
class are required to have at least one hit in the SPD. Tracks from the second class do not
have any SPD associated hit and their initial point is instead constrained to the primary
vertex [72].

3 Analysis procedure

The two-particle correlation function is measured as a function of the relative pseudorapid-
ity (∆η) and the azimuthal angle difference (∆ϕ) between the trigger and the associated
particles,

1
Ntrig

d2 Npair
d∆ηd∆ϕ = B(0, 0)S(∆η,∆ϕ)

B(∆η,∆ϕ)

∣∣∣
pT, trig, pT, assoc

, (3.1)

where pT, trig and pT, assoc (pT, trig > pT, assoc) are the transverse momenta of the trigger
and associated particles, respectively, Ntrig is the number of trigger particles, and Npair
is the number of trigger-associated particle pairs. The average number of pairs in the
same event and in mixed events are denoted as S(∆η,∆ϕ) and B(∆η,∆ϕ), respectively.
Normalization of B(∆η,∆ϕ) is done with its value at ∆η and ∆ϕ = 0, represented as
B(0, 0). Acceptance effects are corrected by dividing S(∆η,∆ϕ) with B(∆η,∆ϕ)/B(0, 0).
The right-hand side of eq. (1) is corrected for the track reconstruction efficiency, which
is mainly relevant for the associated particles, as a function of pT and pseudorapidity.
Primary vertices of events to be mixed are required to be within the same, 2 cm wide, zvtx
interval [58, 73] for each multiplicity class. The final per-trigger yield is constructed by
averaging correlation functions over these primary vertex bins.

Ridge yields at large ∆η are extracted for various multiplicity classes and pT intervals.
The large ∆η range is selected as 1.6 < |∆η| < 1.8, which is the range where the tracking
quality — efficiency and precision — is the best. The ridge yield is only reported for
pT > 1GeV/c. Below 1GeV/c, the jet-like contribution to the correlation function extends
into the region where the ridge yield is measured, 1.6 < |∆η| < 1.8. In this region, the ∆ϕ
distribution, or the so-called per-trigger yield, is expressed as

1
Ntrig

dNpair
d∆ϕ =

∫
1.6<|∆η|<1.8

(
1

Ntrig

d2 Npair
d∆ηd∆ϕ

)
1
δ∆η

d∆η − CZYAM , (3.2)

where δ∆η = 0.4 is the normalization factor to get the per-trigger yield per unit of pseu-
dorapidity.
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The baseline of the correlation is subtracted by means of the Zero-Yield-At-Minimum
(ZYAM) procedure [74]. The minimum yield (CZYAM) at ∆ϕ = ∆ϕmin in the ∆ϕ projection
(note that the value of ∆ϕmin can be different in data and in models) is obtained from
a fit function, which fits the data with a Fourier series up to the third harmonic. By
construction, the yield at ∆ϕmin is zero after subtracting CZYAM from the ∆ϕ projection.
The ridge yield (Y ridge) is obtained by integrating the near-side peak of the ∆ϕ projection
over |∆ϕ| < |∆ϕmin| after the ZYAM procedure,

Y ridge =
∫
|∆ϕ|<|∆ϕmin|

1
Ntrig

dNpair
d∆ϕ d∆ϕ. (3.3)

The ridge yield is further studied in events having a hard jet or a high-pT leading
particle in the midrapidity region. This event scale is set by requiring a minimum pT of
the leading track (pT,LP) or the reconstructed jet (pch

T, jet) at midrapidity. The leading
track is selected within |η| < 0.9 and the full azimuthal angle. Jets are reconstructed
with charged particles only (track-based jets) with the anti-kT algorithm [75, 76] and the
resolution parameter R = 0.4. The recombination scheme used in this article is the pT
scheme. Jets are selected in |ηjet| < 0.4 and in the full azimuthal angle. The pT of jets
pch

T, jet is corrected for the underlying event density that is measured using the kT algorithm
with R = 0.2 [77].

To quantify the variation of the near-side jet-like peak with event-scale selections with
a minimum pT,LP or pch

T, jet, the near-side jet-like peak yield is extracted from the near-side
∆η correlations. The near-side is defined as |∆ϕ| < 1.28, where the correlation function is
projected on the ∆η axis. The projection range, 1.28, is chosen to fully cover ∆ϕmin. The
near-side ∆η correlations are then constructed as

1
Ntrig

dNpair
d∆η =

∫
|∆ϕ|<1.28

(
1

Ntrig

d2 Npair
d∆ηd∆ϕ

)
1
δ∆ϕ

d∆ϕ−DZYAM , (3.4)

where δ∆ϕ = 2.56 is the normalization factor to get per-trigger yield per unit of azimuthal
angle. The minimum yield (DZYAM) of the ∆η correlations is found within |∆η| < 1.6
and used for the subtraction from the ∆η correlations, which results in zero-yield at the
minimum. The near-side jet-like peak yield (Y near) is measured by integrating the ∆η
correlations over |∆η| < 1.6,

Y near =
∫
|∆η|<1.6

(
1

Ntrig

dNpair
d∆η

)
d∆η (3.5)

4 Systematic uncertainties of the measured yields

The systematic uncertainties of Y ridge and Y near are estimated by varying the analysis
selection criteria and corrections and are summarized in table 1.

The systematic uncertainties are independent of the event-scale selection except for
DZYAM (see below), as expected, since the multiplicity is weakly dependent on the event
scale and the ALICE detector is optimized for much higher multiplicities (Pb-Pb collisions),
this is in agreement with our expectations.
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Sources
Systematic uncertainty (%)

Y ridge Y near

Pileup rejection ±0.8–3.9 ±0.2–2.2
Primary vertex ±0.5–2.4 ±1.1

Tracking ±2.0–4.0 ±1.5–3.4
ZYAM ±2.1–5.1 ±2.2–4.8

Event mixing ±1.0–4.4 ±0.5–1.7
Efficiency correction ±2.5 ±3.1
Jet contamination −18.8–25.9 (pT < 2GeV/c) N.A.

Total (in quadrature) +4.9–9.4
−19.4–21.0 ±3.9–7.3

Table 1. The relative systematic uncertainty of Y ridge and Y near. Numbers given in ranges
correspond to minimum and maximum uncertainties.

The uncertainty associated to the pileup rejection is estimated by measuring the
changes of results with different rejection criteria from the default one. It is mainly esti-
mated by varying the minimal number of track contributors required for reconstruction of
pileup event vertices from 3 to 5. The estimated uncertainty of Y ridge is 0.8–3.9%. The
corresponding uncertainty of Y near is estimated to be 0.2–2.2%.

Another source of systematic uncertainty is related to the selected range of the pri-
mary vertex. The accepted range is changed from |zvtx| < 8 cm to |zvtx| < 6 cm. The
narrower primary vertex selection allows one to test acceptance effects on the measurement.
The estimated uncertainty of Y ridge is 0.5–2.4%. The uncertainty for Y near is estimated
to be 1.1%.

An additional source of systematic uncertainty is related to the track selection criteria.
The corresponding uncertainty is estimated by employing other track selection criteria,
denoted global tracks, which are optimized for particle identification. The selection criteria
of the global tracks are almost identical to the hybrid tracks. Each global track is required
to have at least one SPD hit. Due to inefficient parts of the SPD, the azimuthal distribution
of global tracks is not uniform. The uncertainties associated with the track selection are
estimated to be 2.0–4.0% and 1.5–3.4% for Y ridge and Y near, respectively.

The systematic uncertainty of Y ridge resulting from the ZYAM procedure is estimated
by varying the range of the fit, which is used to find the minimum, from |∆ϕ| < π/2
down to |∆ϕ| < 1.2. The estimated uncertainty of Y ridge is 2.1–5.1%. The corresponding
uncertainty on Y near is estimated by varying the range from |∆η| < 1.6 to |∆η| < 1.5
and 1.7. The estimated uncertainty of Y near is 2.2% for the unbiased case and increases
to 4.8% for the largest event-scale selections. This is the only systematic uncertainty for
which a significant dependence on the event scale is observed, reflecting a non-negligible
dependence of the near-side magnitude and shape on the event-scale selection.

The source of systematic uncertainty is associated to the choice of the width of zvtx bins
that are used in the event mixing method. The default value of 2 cm is changed to 1 cm.
The resulting uncertainty of Y ridge is 1.0–4.4%. The uncertainty for Y near is about 0.5–
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Figure 1. Two-particle correlation functions as functions of ∆η and ∆ϕ in minimum-bias events
(0–100%, left) and high-multiplicity (0–0.1%, right). Note that the near-side jet peaks exceed the
chosen range of the z-axis. The intervals of pT, trig and pT, assoc are 1 < pT < 2GeV/c in both cases.

1.7%. The uncertainty from the efficiency correction for charged particles is estimated by
comparing correlation functions of true particles with correlation functions of reconstructed
tracks with the efficiency correction in simulation. The estimated uncertainties are 2.5%
and 3.1% for Y ridge and Y near, respectively.

In the limited η-acceptance of ALICE, the ridge structure is not flat in ∆η suggesting
that jet-like correlations (non-flow) could contribute, implying that they would impact the
ridge-yield extraction. We stress that the models used for comparisons also contain such a
non-flow effect, but differences in jet-like correlations between data and MC models could
influence the interpretation. To account for the related uncertainty, the variation of the
yield with ∆η between 1.5 and 1.8, which should be an upper limit of the residual jet-like
contamination, is used as a systematic uncertainty of the ridge yield. The estimated upper
limit of the uncertainty is −25.9% for the 1.0 < pT < 1.5GeV/c range, −18.8% for the
1.5 < pT < 2.0GeV/c range, −18.9% for the 1.0 < pT < 2.0GeV/c range, and negligible
for pT > 2.0GeV/c. This uncertainty is considered only for the measured ridge yields.

5 Results

5.1 Ridge yield

Figure 1 shows the per-trigger yield obtained from eq. (1) for 1 <pT,trig (pT,assoc)< 2GeV/c
in pp collisions at

√
s =13 TeV for minimum bias events (left) and high-multiplicity events

(right). It is worth noting that the z-axes for the yield of the correlations is properly
scaled in order to zoom in the ridge yield, as a result, the jet peaks are sheared off in both
figures. The ridge structure is clearly observed in the high-multiplicity class while it is
less significant in the minimum bias events. The away-side yield is populated mostly by
back-to-back jet correlations.

Figure 2 shows ∆ϕ projections of the two-particle correlation functions obtained in
the range 1.6 < |∆η| < 1.8 for several track pT intervals after the ZYAM subtraction (see
eq. (2)). The results are shown for various pT intervals in the minimum bias class (upper)
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Figure 2. One-dimensional ∆ϕ distribution in the large ∆η projection for three transverse mo-
mentum intervals in minimum bias (upper panels) and high-multiplicity (lower panels) events after
ZYAM subtraction. Transverse momentum intervals of the trigger particles and associated parti-
cles are 1 < pT < 2 (left), 2 < pT < 3 (middle) and, 3 < pT < 4GeV/c (right), respectively. The
presented model predictions were calculated using PYTHIA 8 String Shoving, PYTHIA 8 Tune 4C,
and EPOS LHC.

and the high-multiplicity class (lower) down to 1GeV/c where the non-flow contamination
is negligible. The near-side (∆ϕ ∼ 0) ridge in the high-multiplicity class is clearly observed
for pT < 3GeV/c while there is no definitive signal in the minimum bias class. Within the
range of analyzed particle pT, the yield in the near-side ridge decreases with increasing pT
in the high-multiplicity class.

The measurements in the high-multiplicity class are compared with the results pub-
lished by the CMS Collaboration [19]. In case of the CMS measurement, the charged parti-
cle multiplicity was obtained by counting the number of particles satisfying pT > 0.4GeV/c
in |η| < 2.4. In our analysis, event multiplicity is determined from the forward V0 detectors.
The difference in multiplicity selection between ALICE (forward) and CMS (midrapidity)
is studied using PYTHIA 8 simulations and it is found that the calculated multiplicity
using the CMS procedure is about 20% larger than the one from ALICE when compared
in the acceptance region of the measurements reported in this article, |η| < 0.9. Near-side
ridges in all transverse momentum ranges are comparable. The larger away-side yields
observed in figure 2 for the CMS results can be attributed to the overlap in η acceptance
between the multiplicity selection and the correlation function measurement.

In figure 2, the ALICE measurements are also compared with model predictions where
a comparable high-multiplicity selection and ∆η projection range are applied. The selection
of high-multiplicity events in the models is done by requiring a minimal number of charged
particles emitted within the V0M detector acceptance. In case of PYTHIA 8 Tune 4C,
the 0–0.1% centrality threshold is 105 charged particles. The threshold for EPOS LHC
and PYTHIA 8 String Shoving are 110 and 108, respectively. The magnitude of string
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Figure 3. Fully corrected near-side ridge yield as a function transverse momentum. The open blue
boxes denote the measurement by ALICE. The statistical and systematic uncertainties are shown
as vertical bars and boxes, respectively. The CMS measurement [19] is represented by filled circles
and extends down to lower pT due to the larger ∆η acceptance (see section 3). The three lines show
model predictions from PYTHIA 8 Tune 4C (blue dotted line), PYTHIA 8 String Shoving (orange
line), and EPOS LHC (green dashed line).

shoving (g) is set to 3.0 in this study. The statistical uncertainties due to the lim-
ited number of events for the model calculations are shown as bands in each figure.
The PYTHIA 8 String Shoving provides good estimates of the near-side ridge yield and
slightly overestimates the away-side yield for the interval 1 < pT < 2GeV/c. How-
ever, the PYTHIA 8 String Shoving model underestimates the near-side ridge yield for
pT > 2GeV/c. The PYTHIA 8 Tune 4C model does not show any near-side ridge as ex-
pected. It slightly underestimates the away-side peak for 1 < pT < 2GeV/c and provides
good estimates for pT > 2GeV/c. On the other hand, EPOS LHC describes the shape
of the ridge yield quantitatively better in the 2 < pT, trig (assoc) < 4GeV/c range, while
overestimating the near-side ridge yield for pT, trig (assoc) < 2GeV/c range.

Figure 3 shows the near-side ridge yield measured in high-multiplicity events as a
function of pT, trig (assoc). The measurement is compared with the result from CMS [19].
Considering the differences in acceptance and the chosen multiplicity estimator of both mea-
surements, perfect agreement between the two sets of results is not expected. The measure-
ment is also compared with model calculations. As expected, the PYTHIA 8 model with
Tune 4C does not produce a near-side ridge because it is not designed to account for this
effect. The PYTHIA 8 String Shoving model describes the yield qualitatively, however the
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Figure 4. Two-dimensional correlation functions as a function of ∆η and ∆ϕ in high-multiplicity
events including a selection on the event-scale. The interval of pT, trig and pT, assoc is 1 <

pT, trig (assoc) < 2GeV/c. Left: HM events with a pT, LP > 9GeV/c leading track. Right: HM
events with a pch

T, jet > 10GeV/c.

predicted yield decreases more rapidly than the measured one for increasing pT, trig (assoc).
The EPOS LHC model, unlike the PYTHIA 8 String Shoving model, describes well the pT
dependence of the ridge yield for the range pT > 2GeV/c, while predicting larger yields
for pT < 2GeV/c.

5.2 Event-scale dependence of the ridge yield

The ridge yield is further studied with respect to two different event-scales. In the first
measurement, the event-scale is set by requiring a minimum pT on the leading particle in
each event (denoted as pT,LP), while in the second measurement, a minimum pT is imposed
on the leading jet (denoted as pch

T, jet).
Figure 4 shows that the ridge structure for 1 < pT, trig (pT, assoc) < 2GeV/c still persists

in high-multiplicity pp collisions with pT,LP > 9GeV/c (left) and pch
T, jet > 10GeV/c (right).

It is worth noting that the correlation function obtained with the minimum pch
T, jet selection

has a double peak structure which is oriented along the ∆η axis at ∆ϕ = π. This structure
emerges due to the restricted acceptance of the jet tagging, |ηjet| < 0.4.

Figure 5 shows projected ∆ϕ distributions of the correlation functions in 1.6 <

|∆η| < 1.8 with the minimum pT,LP (lower) and pch
T, jet (upper) requirement. Even with

the event-scale selection, the ridge is still visible on the near-side. The near-side ridge peak
increases as the thresholds of pT,LP and pch

T, jet increase compared to the one measured in
unbiased events in section 5.1. The results are compared with PYTHIA 8 String Shoving,
PYTHIA 8 Tune 4C, and EPOS LHC calculations. The near-side ridge peaks are quali-
tatively reproduced by PYTHIA 8 String Shoving and EPOS LHC models. On the other
hand, the PYTHIA 8 Tune 4C does not show the near-side ridge peak for neither of the two
event-scale selections, but it gives compatible results for the away-side yield just like the
PYTHIA 8 String Shoving model.

The ridge yields as function of the minimum pT,LP (pLP
T,min) and pch

T, jet (pjet
T,min) selec-

tions are shown in figure 6. High-multiplicity events with imposed event-scale bias exhibit
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Figure 5. One-dimensional ∆ϕ projections of the correlation functions constrained to 1.6 <

|∆η| < 1.8 in HM events with an additional event-scale bias. Top: with an imposed selection
on the leading jet pT, bottom: with an imposed selection on the leading particle pT. ALICE data
are compared with prediction of models.

increased ridge yields when compared to unbiased HM events. A small increase of the ridge
yields as a function of pT,LP or pch

T, jet is observed and there is no difference between the two
event-scale selections within the uncertainties. Comparisons to model calculations show
that PYTHIA 8 String Shoving provides a comparable trend with data, but underestimates
the ridge yield. On the other hand, EPOS LHC overestimates the ridge yield while provid-
ing a trend comparable with the data. The origin of the enhanced ridge yields for higher
momentum jet-tagged events is not clear to date but it might be related to the expected
smaller impact parameters for dijet or multi-jet production events as studied in [60].

Finally, the near-side jet-like peak yield is measured as a function of minimum pT,LP
and pch

T, jet in figure 7 to further test the models that aim to describe the near-side ridge.
EPOS LHC provides comparable estimates of the near-side jet-like peak yield, while
PYTHIA 8 Tune 4C and PYTHIA 8 String Shoving overestimate the near-side yields for
both event selections.

In all models if the ridge is due to final-state interactions, e.g., EPOS LHC and
PYTHIA 8 String Shoving, one also expects the near-side jet-like peak yield to be affected.
This can be observed when comparing the measured near-side jet yields with PYTHIA 8
calculations with and without String Shoving. The new ALICE results therefore provide
constraints beyond traditional ridge measurements that challenge existing models.

6 Conclusions

Long- and short-range correlations for pairs of charged particles with 1 < pT < 4GeV/c are
studied in pp collisions at

√
s = 13TeV with a focus on high-multiplicity events. The ridge

– 11 –



J
H
E
P
0
5
(
2
0
2
1
)
2
9
0

0.00

0.02

0.04

0.06

0.08
Yr

id
ge Leading Particle

|η| < 0.9

ALICE Near-side
PYTHIA 8 String Shoving g = 3
PYTHIA 8 Tune 4C
EPOS LHC

Jet, anti-kT
R = 0.4 |η| < 0.4

0.0

2.5

Ra
tio

0 3 5 7 9 13 20
pLP
T,min (GeV/c)

0 10 20 30 40
pjet
T,min (GeV/c)

pp
√
s = 13 TeV

0–0.1%

1 < pT,trig(assoc) < 2GeV/c
1.6 < |∆η| < 1.8

Figure 6. Near-side ridge yield as a function of the pLP
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T,min (right). Data points
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uncertainty of the data is represented by the gray band centered around unity.

and near-side jet yields are extracted and their event scale dependence have been studied.
The obtained long-range ridge yields are compatible to those observed by the CMS Col-
laboration [19]. The PYTHIA 8 String Shoving model describes the observed yields quali-
tatively but the yields it predicts decrease more rapidly with increasing pT, trig (assoc) than
those measured. On the other hand, the EPOS LHC model gives a better description for
the pT, trig (assoc) dependence while overestimating the ridge yield for pT, trig (assoc) < 2GeV/c.
Finally, no long-range ridge is formed in the PYTHIA 8 Tune 4C model.

The ridge yields are further studied in high-multiplicity events biased with additional
event-scale selections, which impose a minimum transverse momentum cutoff on a leading
track or jet. The ridge structure still persists with both selection criteria. The ridge yield
increases as pT,LP and pch

T, jet increase. PYTHIA 8 String Shoving and EPOS LHC estimate
qualitatively the trends for the event-scale selections. However, the former underestimates
and the latter overestimates it. The model predictions are also compared with the yield of
the near-side jet-like correlation measured in the biased events. The evolution of the near-
side jet yield as a function of event-scale pT is better captured by EPOS LHC, while the
PYTHIA 8 String Shoving calculation tends to overshoot the data. The results might open
a new way of studying the impact parameter dependence of small systems with jet tagged
events in the future and will help to constrain the physical origins of long-range correlations.
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