Kompleksi metala d-bloka i konjugata aminokiselina s oksazolinima i trifenilfosfinima kao kiralni katalizatori u reakcijama hidrogenacije

Bakija, Marija

Doctoral thesis / Doktorski rad

2025

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:083448

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-31

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu PRIRODOSLOVNO-MATEMATIČKI FAKULTET

Marija Bakija

Kompleksi metala d-bloka i konjugata aminokiselina s oksazolinima i trifenilfosfinima kao kiralni katalizatori u reakcijama hidrogenacije

DOKTORSKI RAD

Mentor: dr. sc. Srećko Kirin, zn. savj.

Zagreb, 2025.

University of Zagreb FACULTY OF SCIENCE

Marija Bakija

D-block metal complexes with amino acid conjugates of oxazolines and triphenylphosphines as chiral catalysts in hydrogenation reactions

DOCTORAL DISSERTATION

Supervisor: Dr. Srećko Kirin, Senior Scientist

Zagreb, 2025.

Zahvale

First and foremost, želim zahvaliti mentoru, Srećku Kirinu, na neumornom vodstvu i brojnim savjetima. Zasigurno, nisam ista kemičarka koja sam bila kada sam tek došla.

Želim zahvaliti članovima komisije na savjetima i pregledu ove doktorske disertacije.

Velike zahvale Nataliji, Saši, Silviju i Zoranu koji su veoma spremno i izdašno dijelili svoja znanja (i hranidbe) i vrijeme u Medi.

Za snimanje difrakcije rendgenskih zraka na brojnim monokristalima, svake predane krhke iglice, sraslaca i infinitezimalno tankih pločica raspadljivih na sobnoj temperaturi, svakako zahvaljujem Zoranu Štefaniću i Aleksandru Višnjevcu.

Također zahvaljujem Berislavu Periću na rješavanju i karakteriziranju istih kristalnih struktura, na CREST/CENSO računalnoj analizi spojeva, te detaljnom objašnjavanju i poduci u navedenome. Zahvalila bih Robertu Vianellu, za sva savjetovanja vezana za računalnu kemiju i na našoj suradnji. Također hvala Luciji Hok, koja je isto bila na raspolaganju za sva moja pitanja vezana za istu temu. Hvala Ernestu SanAdersu, tvoj sarkazam je muzika u rana ponedjeljna jutra, a tvoj izostanak kolaps u tehničkom sistemu.

Iako su neki članovi već prozvani, želim zahvaliti CATPHARMA timu na suradnji.

I would like to thank our DAAD collaborators; first many thanks to the head of the reasearch group, Sergey Tin, for having me in your laboratory and detailed guidance concering various topics. Also thanks to Eszter Barath, the head of the department for support and discussions. I would also like to thank Soumyadeep for numerous helpful discussions regarding asymmetric hydrogenations and other, and I would equally like to thank Andrea for discussions on hydroformylation. Again, I would like to thank the whole group, including, Claas, Ana, Shasha,

Fabi, Ayu and Kathi for their wonderful and helpful company-the amazing atmoshpere, the coffees and Fridays are missed.

I would like to thank our French collaborators, Gilles, Lisa, Kevin and Lara, for having me in their laboratory and for our work. Additionally, thanks to Lisa for giving us a tour in Paris! Želim zahvaliti NMR centru, na mnoštvu provedenih snimanja te savjetima i izlaženju u susret kad god su bili potrebni posebni uvjeti snimanja.

Hvala Željku Debeljaku, Maji Lukić i Ivani Marković KBC-a Osijek za HRMS mjerenja i edukaciju. Hvala Lidiji Brkljačić za snimljene masene spektre.

Zahvaljujem Marijani, Lidiji i Ani za društvo i sve savjete i novosti.

Hvala dragim studentima Valentinu, Valentini, Hugu i polaznicima Organskog praktikuma 2 i Organske kemije 1, i ja sam naučila svašta s vama.

Također hvala stanovitom gospodinu M (misterij!) na singularnom, ali značajnom razgovoru. Želim zahvaliti čoporu prijatelja Miji, Nikoli, Lari, Dorotei, Josipu, Ricku i Lauri na ogromnoj i strpljivoj potpori. I čoporu Josipu, Martini, Viktoru, Ivanu, Maji, Stipi, Josipi, Berislavu i Franzu dodatno na avanturističkim bijegovima na ploči.

Hvala kyudo ekipi za zen.

Hvala obitelji Stopić za potporu, izlete, razgovore, savjete i japanski viski.

Hvala mojoj majci Vesni, ocu Sandu, blizancu Jagoru, sestri Ivani i nećaku Nathanielu, nekako ste me dogurali od početka do ovdje-i ja sam u šoku. Ne bi sve ovo išlo bez vas i hvala za uno flip. Babiji! Konačno, posebna hvala Stjepanu Stopiću. Nema ovdje sekcije u koju stanu svi tvoji doprinosi i zato moram počiniti najveću nepravdu i oduprijeti se od pisanja litanija. Hvala na strpljenu, na razumijevanju, na pomoći i potpori, na društvu, na pozitivi, na-na-na-(Batman!)-na svemu! Ova disertacija je izrađena uz potporu CAT Pharma (KK.01.1.1.04.0013) i Cage Cat (IP-2022-10-8456) projekata te uz potporu CSF doktorandske stipendije (DOK-2021-02-7366). Otsukaresama deshita.

Sadržaj

SAŽI	ETAK	IX
ABS	FRACT	XI
§ 1.	UVOD	1
1.1.	Svrha istraživanja	2
§ 2.	LITERATURNI PREGLED	5
2.1.	Oks azolini	5
2.2.	Supramole kukke inte rakacije biokonjugata	9
2.3.	Stereokemija metalnih kompleksa monodentatnih oksazolina	14
2.3.1.	Strukturna analiza tetraedarskih kompleksa nepremošćujućih monodentatnih oksazolina	17
2.4.	Enantioselektivna hidrogenacija	22
2.4.1.	Homogena enantioselektivna hidrogenacija	26
§ 3.	EKSPERIMENTALNI DIO	37
3.1.	Materijali i metode	37
3.2.	Računalne metode	39
3.2.1.	Strukturna analiza supramolekulskih ag regata ok sazolina $A1_{i1}$	39
3.2.2.	Strukturna analiza metalnih kompleksa liganada BI_H , BI_F i BI_N sa $Zn(II)$ i $Co(II)$	43
3.3.	Rendgenska kristalografija	44
3.3.1.	Rendgenska kristalografija spojeva A	44
3.3.2.	Rendgenska kristalografija spojeva B	48
3.3.3.	Rendgenska kristalografija spoja [Rh(C1c*) ₂ COD]BF ₄	54
3.4.	Opće metode priprave prekursora, liganada i metalnih kompleksa	56
3.5.	Sinteza prekursora A	58
3.5.1.	One-pot sinteze prekursora A3	58
3.5.2.	Linearna sinteza prekursora $A3_{ml}$	68
3.5.3.	Linearna sinteza prekursora $A3_{\iota3}$ i $A3_{\iota4}$	70
3.5.4.	Sinteza derivata $A3_b$	72
3.6.	Sinteza prekursora B	74
3.7.	Sinteza prekursora C	76
3.8.	Karakterizacija liganada A	78
3.9.	Karakterizacija liganada B	87
3.10.	Karakterizacija liganada C	90
3.11.	Karakterizacija metalnih kompleksa B	91

3.12.	Karakterizacija metalnih kompleksa C	99
3.13.	Katalitička reakcija hidrogenacije	102
§ 4.	REZULTATI I RASPRAVA	103
4.1.	Uvod	103
4.2.	Analiza supramolekulskih interakcija aminokiselinskih biokonjugata oksazolina (A)104
4.2.1.	. Sinteza prekursora A3	104
4.2.2.	. Sinteza prekursora A3 _{ml}	105
4.2.3.	. One-pot sinteza drugih bis-prekursora A3	107
4.2.4.	. Sinteza tris-prekursora A3,	109
4.2.5.	. Sinteza prekursora A3b	111
4.2.6.	. Sinteza ok sazolina A1	112
4.2.7.	. Rendgenska kristalografija $oldsymbol{A}$	113
4.2.8.	. Supramolekulske interakcije oksazolina A1 u otopini	116
4.2.9.	. Računalna strukturna analiza $A1_{tl}$	119
4.3.	Inducirana helikalna kiralnost u tetraedarskim kompleksima prijelaznih metala s monodentatnim 2-aril- $(4S)$ -fenil oksazolinskim aminokiselinskim ligandima (B)	123
4.3.1.	. Sinteza liganada $m{B}$ i tetraedarskih metalnih kompleksa $m{B}_{\dots$	123
4.3.2.	. NMR spektroskopska analiza $m{B}$	125
4.3.3.	. CD spektroskopska analiza B	127
4.3.4.	. Rendgenska kristalografija $m{B}$	130
4.3.5.	. Računalna strukturna analiza $m B$	135
4.4.	Supramole kuls ko bide ntatni rodij(I) ili iridij(I) fosfins ki i oksazolins ki aminokiselir biokonjugati kao selektivni katalizatori za e nantiose lektivne reakcije hidroge nacije	ıski (C)138
4.4.1.	. Sinteza liganada $m{c}$	138
4.4.2.	. NMR spektroskopska analiza C	140
4.4.3.	. CD spektroskopska analiza C	146
4.4.4.	. Rendgenska kristalografija $m{C}$	148
4.4.5.	. Enantioselektivna hidrogenacija $m{C}$	151
§ 5.	ZAKLJUČAK	159
§ 6.	POPIS OZNAKÂ, KRATICÂ I SIMBOLÂ	163
§ 7.	LITERATURNI IZVORI	165
§ 8.	DODATAK	XIII
§ 9.	ŽIVOTOPIS	XXXIX

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Kemijski odsjek

SAŽETAK

KOMPLEKSI METALA D-BLOKA I KONJUGATA AMINOKISELINA S OKSAZOLINIMA I TRIFENILFOSFINIMA KAO KIRALNI KATALIZATORI U REAKCIJAMA HIDROGENACIJE

Marija Bakija

Institut Ruđer Bošković, Bijenička cesta 54, HR-10000 Zagreb, Hrvatska

Pripravljeno je i okarakterizirano 22 aminokiselinska (Ala, Gly, Phe ili Gly-Val-Phe) biokonjugata oksazolina i 5 oksazolina bez aminokiselinskih supstituenata te njihovih metalnih kompleksa (Cd(II), Co(II), Ir(I), Rh(I) i Zn(II)). Ispitan je utjecaj supramolekulskih interakcija na agregaciju monooksazolinskih spojeva nekoordiniranih i koordiniranih s metalom te na selektivnost u enantioselektivnoj hidrogenaciji. Spektroskopskim tehnikama u otopini je potvrđeno da oksazolini s jednim tripeptidnim ili dva monopeptidna lanca agregiraju bez metala, dok u svim metalnim kompleksima aminokiselinskih derivata djeluju nekovalentne intramolekulske interakcije. Indukcija kiralnosti na prokiralnom metalu u kompleksima je potvrđena CD spektroskopijom, a kristalne strukture pokazuju da je helikalna kiralnost inducirana kompleksacijom. Sklonost nastajanja agregata nemetaliranih spojeva, te helikalne strukture u metalnim spojevima dodatno su analizirane CREST/CENSO i DFT računalnim metodama. Kompleksi rodija(I) i iridija(I) homo- i hetero-kombinacija aminokiselinskih oksazolina i literaturno poznatog trifenilfosfina s indukcijom kiralnosti biokonjugata upotrijebljeni su u enantioselektivnoj hidrogenaciji derivata metil-(Z)-3-fenilprop-2-enoata, pri čemu je maksimalno dobivena vrijednost enantioselektivnosti 85%.

(180 stranica, 48 slika, 13 shema, 25 tablica, 288 referencija, jezik izvornika: hrvatski)

Rad je pohranjen u Središnjoj kemijskoj knjižnici, Horvatovac 102a, Zagreb i Nacionalnoj i sveučilišnoj knjižnici, Hrvatske bratske zajednice 4, Zagreb.

Ključne riječi: aminokiseline/ enantioselektivna hidrogenacija/ helikalna kiralnost/ nekovalentne interakcije/ oksazolini/ prijelazni metali/ stereokemija/

Mentor: dr. sc. Srećko Kirin, zn. savj.

Rad prihvaćen: 04.12.2024.

Ocjenitelji:

- 1. prof. dr. sc. Ines Primožič
- 2. dr. sc. Marina Šekutor, v. znan. sur.
- 3. prof. dr. sc. Mirta Rubčić

ix

University of Zagreb Faculty of Science Department of Chemistry

ABSTRACT

D-BLOCK METAL COMPLEXES WITH AMINO ACID CONJUGATES OF OXAZOLINES AND TRIPHENYLPHOSPHINES AS CHIRAL CATALYSTS IN HYDROGENATION REACTIONS

Marija Bakija

Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

A set of 22 oxazoline amino acid bioconjugates (Ala, Gly, Phe and Gly-Val-Phe) and corresponding metal complexes were prepared and characterized (Cd(II), Co(II), Ir(I), Rh(I) i Zn(II)). The influence of supramolecular interactions on the aggregation of non-metallated and metalled mono-oxazoline compounds and on the enatioselectivity in hydrogenation was examined. Spectroscopic measurements in solution confirmed that oxazolines with one tripeptide or two monopeptide chains aggregate without a metal, while non-covalent intramolecular interactions are acting in all prepared metal complexes. The induction of chirality on the metal in the complexes was confirmed by CD spectroscopy; the crystal structures show that the metal atom is part of a helically chiral structure. The tendency to form aggregates of non-metal compounds and helical structures in metal compounds was analyzed by CREST/CENSO and DFT computational methods. Rh(I) and Ir(I) complexes of homohetero-combinations literature-known and of oxazoline bioconjugates and a triphenylphosphine with induction of chirality were used in the enantioselective hydrogenation of methyl- α -acetamidocinnamate, with obtained enantioselectivity up to 85%.

(180 pages, 48 figures, 13 schemes, 25 tables, 288 references, original in Croatian)

Thesis is deposited in Central Chemical Library, Horvatovac 102A, Zagreb, Croatia and National and University Library, Hrvatske bratske zajednice 4, Zagreb, Croatia.

Keywords: amino acids/ enantioselective hydrogenation/ helical chirality/ non-covalent interactions/ oxazolines/ transition metals/ stereochemistry/

Supervisor: Dr. Srećko Kirin, Senior Scientist

Thesis accepted: 04.12.2024.

Reviewers:

- 1. Dr. Ines Primožič, Full Professor with tenure
- 2. Dr. Marina Šekutor, Senior Research Associate
- 3. Dr. Mirta Rubčić, Full Professor

Doctoral Thesis

§ 1. UVOD

2-oksazolini čine strukturno predvidljivu građevnu jedinicu zahvaljujući svojoj maloj i rigidnoj strukturi. Štoviše, mogućnost njihove sinteze iz jeftinih enantiomera β -aminoalkoholnih prekursora dopušta jednostavnu funkcionalizaciju oksazolinskog prstena, što uključuje i ugradnju kiralnosti u strukturu. Navedene karakteristike su veoma važne u dizajnu liganada za metalne komplekse s ciljem njihove primjene kao katalizatora u enantioselektivnim reakcijama.

Osim direktnog dizajna neposredne kiralne okoline metala u kompleksima putem ugradnje sterički zahtjevnih i kiralnih skupina u ligande, moguće je posredno inducirati kiralnost na prokiralnom metalu pod utjecajem intramolekulskih nekovalentnih interakcija, udaljenih od metalnog centra.¹ Takvi metalni kompleksi su također uspješno postigli visoke vrijednosti enantioselektivnosti u katalitičkim reakcijama.² Među njima, posebno zanimljivima su se pokazali biokonjugati aminokiselina i karbamida, zbog dostupnosti prekursora iz prirode i sklonosti sudjelovanju u vodikovim vezama. Nadalje, moguće je sintetizirati metalne komplekse s hetero-kombinacijom pripravljenih liganada, odnosno komplekse u kojima metal koordinira više različitih pripravljenih liganada. Takvi kompleksi mogu postizati više vrijednosti enantioselektivnosti nego odgovarajući kompleksi koji sadrže više ekvivalenata jednog organskog liganda.³ Prednost je da se na taj način iz jednog seta od *n* liganada može pripraviti i testirati n!/(2(n-2)!) kompleksa homo- i hetero-kombinacija pripravljenih liganada.⁴

Za dizajn efikasnih katalizatora je kritična strukturna predvidljivost i poznavanje stereokemije odgovarajućih metalnih kompleksa. Iako su razne metode sinteze. karakterizacije i primjene oksazolinskih spojeva detaljno proučavane još od početka druge polovice prošlog stoljeća,⁵ većina objavljenih rezultata se odnosi na polidentatne, polioksazolinske ili hibridne oksazolinske⁶ spojeve. S druge strane, stereokemija i primjena kompleksa monodentatnih monooksazolinskih spojeva, te niihovih biokonjugata S mogućnošću posredne indukcije kiralnosti, su neusporedivo manje istraženi.

1.1. Svrha istraživanja

Svrha istraživanja ove doktorske disertacije jest pripraviti i okarakterizirati monodentatne oksazolinske spojeve konjugirane s aminokiselinama i njihove metalne komplekse, te analizirati njihovu stereokemiju, sposobnost ostvarivanja inter- i intramolekulskih interakcija, te doprinose indukciji kiralnosti metala u metalnim kompleksima u otopini i čvrstom stanju. Težište će biti na ispitivanju utjecaja elektron odvlačećih i donirajućih skupina, utjecaj sterički zahtjevnih skupina, utjecaj kiralnih skupina ugrađenih neposredno blizu i daleko od metalnog atoma na svojstva pripravljenih metalnih kompleksa. Zatim će rodij(I) i iridij(I) kompleksi homo- i hetero-kombinacija sintetiziranih monooksazolinskih liganada s aminokiselinskim konjugatom trifenilfosfina biti primjenjeni kao katalizatori u enantioselektivnoj reakciji hidrogenacije.

Radna hipoteza ove disertacije jest da se s monodentatnim oksazolinima može sintetizirati metalne komplekse u kojima bi, pod utjecajem supramolekulskih interakcija, došlo do nastanka tzv. supramolekulski bidentatnih kompleksa, a čija struktura bi simulirala strukturni motiv literaturno poznatih bisoksazolinskih liganada (shema 1). Za razliku od veoma rigidnih bisoksazolinskih liganada, monodentatni ligandi su manje veličine te se očekuje da bi pri sintezi metalnih kompleksa mogli nastajati produkti raznih stehiometrija i konformacija. S druge strane, lakše ih je sintetizirati i funkcionalizirati nego bisoksazolinske ligande te bi se ugradnjom različitih tipova supstituentata mogao promatrati njihov utjecaj na stereokemiju. Utjecaj supramolekulskih interakcija na stabilizaciju različitih geometrija kompleksa monodentatnih oksazolina je prvi puta bila analizirana na kompleksima bakra(I).⁷

Shema 1. Struktura metalnog kompleksa s monodentatnim oksazolinima (lijevo) čija struktura je slična kao u bisoksazolinskom ligandu (BOX, desno).

Nadalje, prethodno su istraživani metalni kompleksi u kojima supramolekulske interakcije između aromatskih prstena i aminokiselinskih lanaca prenose kiralnu informaciju na metal, odnosno posredno induciraju kiralnost (slika 1, a). Posebice su istraživani kvadratno-planarni kompleksi monodentatnih derivata aminokiselinskih⁸ i cikloheksandiaminskih⁹ derivata s

primjenom u katalizi te stereokemija tridentatnih aminokiselinskih trifenilfosfinima S derivata.¹⁰ Također je poznat literaturni primjer primjene supramolekulski bidentatnih sastavljenih od monodentatnih karbamidnih oksazolina (SupraBOX),¹¹ koji katalizatora, bisoksazolinskog ciklofana¹² nalik predstavlja supramolekulski analog PhanePhosu (slika 1, b). Pretpostavka jest da monodentatni aminokiselinski oksazolini također mogu tvoriti supramolekulski bidentatne komplekse s posrednom indukcijom kiralnosti (slika 1, c, D = oksazolin), ne samo s metalima koji preferiraju kvadratno-planarnu koordinacijsku geometriju, već i drugima. Štoviše, očekuje se da je moguće prirediti i supramolekulski bidentatni hibridni metalni kompleks posrednom indukcijom kiralnosti, S koristeći kombinaciju trifenilfosfinskih i oksazolinskih aminokiselinskih konjugata, tzv. SupraPHOX (slika 1, d), čiji modelni spoj je PHOX klasa spojeva, odnosno fosfinooksazolinski analog difenilfosfin).¹³ Nadalje, PhanePhos-a (slika 1. c, D varijacijom kombinacija = voluminoznosti i a/kiralnosti supstituenata R, R1 i R2 se može ispitati osjetljivost agregacije kompleksa i učinkovitosti primjene kao katalizatora na navedena svojstva.

Slika 1. a) Posredna indukcija kiralnosti. π - π = π - π interakcije, v.v. = vodikove veze. b) Supramolekulsko bidentatni analog, SupraBOX, sastavljen od monodentatnih karbamidnih oksazolina,¹¹ čija je struktura analogna bisoksazolinskom derivatu PhanePhos-a.¹² c) Supramolekulsko bidentatni aminokiselinski analog, SupraBOX (D = oksazolin); ili SupraPHOX (D = difenilfosfin), čija je struktura dizajnirana prema fosfinooksazolinskom derivatu PhanePhos-a.¹⁴

4

§ 2. LITERATURNI PREGLED

2.1. Oksazolini

Premda su u literaturi poznati derivati^{5,14,15} i metode priprave^{5,16–21} svih izomera oksazolina (slika 2), 2-oksazolini su daleko najviše istraživani.

Slika 2. Oksazolinski izomeri te numeracija atoma u 2-oksazolinskom prstenu.

2-Oksazolini se lako mogu pripraviti iz β -aminoalkohola na nekoliko načina (shema 2), omogućujući steričke modifikacije i funkcionalizaciju uvođenjem različitih supstituenata na položaje 2-, 4- i 5- na rigidnom oksazolinskom prstenu.⁵

Shema 2. Priprave 2-oksazolina iz β -aminoalkohola i supstituiranih nitrila, karboksilnih kiselina, acil-klorida i amida.

Nadalje, poznati su prirodni spojevi koji sadrže oksazolinski prsten u strukturi, te razne bioaktivne molekule s antibakterijskim, antiviralnim, imunosupresivnim, antitumorskim i antimalarijskim djelovanjima.¹⁵ Istaknuti primjeri su: allosamidin, disaharidni oksazolinski spoj s inhibitorskim djelovanjem na hitinazu insekata;²² deflazacort, oksazolinski derivat glukokortiksteroida prednizolon s imunomodulatornim i antinflamacijskim svojstvima;²³ brasilibactin A, spoj s antibakterijskim i citotoksičnim djelovanjem;²⁴ patellamid D, ciklički

oktapeptid sa svojstvima agensa za modifikaciju rezistentnosti CEMVLB₁₀₀ ljudske leukemijske linije stanica na više različitih lijekova (slika 3).²⁵

Slika 3. Reprezentativni bioaktivni spojevi s oksazolinskim prstenom u strukturi: allosamidin,²² deflazacort,²³ brasilibactin A²⁴ i patellamid D.²⁵

Iako su 2-oksazolini osjetljivi na mineralne i Lewisove kiseline, otporni su na nukleofile, baze, radikale i oksidaciju kisikom iz zraka.⁵ Također koordiniraju metale isključivo preko dušikovog atoma te nije poznata koordinacija preko kisikovog atoma u literaturi. Stoga nije začuđujuće da su do danas 2-oksazolini našli široku primjenu kao ligandi metalnih katalizatora za brojne katalitičke reakcije,^{14,26} posebice bisoksazolinski ligandi (slika 4, a)²⁷ (dodatno poznati pod izrazom "privilegirani" ligandi),²⁸ kao i ligandi s hibridnim donorskim atomima (slika 4, b),⁶ te kao monomeri u sintezi brojnih polimera.^{29,30} Spojevi navedeni u literaturi su pretežno polioksazolinski i polidentatni spojevi (slika 4, a-c), dok su monooksazolinski monodentatni spojevi manje istraženi (slika 4, d).^{7,31,32}

a) Bisoksazolinski spojevi (BOX)

Slika 4. Pregled najčešćih strukturnih motiva oksazolinskih spojeva iz literature.14

Relativno su rijetka istraživanja koja su proučavala oksazolinske spojeve sa sposobnošću ostvarivanja supramolekulskih interakcija, a odnose se uglavnom na različite koordinacijske spojeve (vidi poglavlje 2.3. literaturnog pregleda).³³ Navedeni spojevi se većinom oslanjaju na koordinaciju metala za poticanje uspostavljanja supramolekulskih interakcija između liganada,^{34,35} s primjenama u katalizi u kojoj glavnu ulogu u enantioselektivnosti imaju vodikove veze (SupraBox, slika 5, a)¹¹ i π - π interakcije (slika 5, b).⁷ Nadalje, postoji usporedivo manje primjera nepolimernih supramolekulskih agregata koji sadrže oksazolin bez koordinativnih veza (slika 5, c),³⁶ a od njih samo nekolicina sadrži ugrađene biomolekule (slika 5, d).^{37,38}

Slika 5. a) Supramolekulski bidentatan metalni kompleks s istaknutim N-H···O vodikovim vezama,¹¹ b) metalni kompleks s π - π interakcijama benzena monodentatnih oksazolina u čvrstom stanju,⁷ c) oksazolinski spoj s istaknutim N-H···N vodikovim vezama,³⁶ d) ciklopeptidni derivat oksazolina.³⁸

2.2. Supramolekulske interakacije biokonjugata

Biokonjugati su spojevi koji sadrže stabilnu kovalentnu vezu između dviju ili više molekula, od kojih je barem jedna biomolekula, najčešće peptid, nukleinska kiselina, ugljikohidrat, vitamin ili lipid.³⁹ Biokonjugati često posjeduju kombinaciju svojstava svih svojih strukturnih jedinica, što omogućuje dizajn molekula koje su sposobne prevladati višestruke poteškoće kod primjene u složenim ciljnim sustavima. Aminokiseline i peptidi posebno su zanimljivi kao građevni blokovi jer su kiralni i komercijalno lako dostupni.

Peptidni biokonjugati odlikuju se sposobnošću ostvarivanja nekovalentnih interakcija koje mogu dovesti do nastajanja supramolekulskih agregata. Joel Bernstein i Raymon E. Davis su 1995. godine opisali notaciju vodikovih veza koje se pojavljuju u kristalnim strukturama.⁴⁰ Četiri osnovna motiva vodikovog vezanja, unitarni graf-set motivi, dijele se na konačne intermolekulske vodikove veze **D**, intramolekulske vodikove veze **S**, beskonačne, lančane vodikove veze **C** i prstenaste vodikove veze **R** (slika 6). Uz oznake **S**, **C** i **R** motiva vodikovog vezanja u zagradi se zapisuje broj atoma, a dodatno za **R** motiv se u gornjem indeksu zapisuje broj donorskih atoma i u donjem indeksu broj akceptorskih atoma vodikovih veza.

Slika 6. Četiri osnovna motiva vodikovog vezanja prema Bersteinovoj notaciji, unitarni graf-set motivi, prikazanih na oksazolinskim i aminokiselinskim primjerima. **D**, konačne intermolekulske vodikove veze; **S**, intramolekulske vodikove veze; **C**, beskonačne, lančane vodikove veze i **R**, prstenaste vodikove veze.⁴⁰

Specifični motivi vodikovih veza između dva aminokiselinska lanca prethodno su opisani na 1,*n*'-disupstituiranim ferocenskim peptidima (slika 7),¹ i od tada su proučavane različite supramolekulske strukture koje nose jedan ili više tih motiva. Ovi motivi su naročito važni jer se često ugrađuju kao mimetici peptidnih okreta po uzoru na okrete koje možemo naći u proteinima. Tako je Herrickov motiv vodikovog vezanja C_2 -simetričan, ima dvije vodikove veze koje su svaki dio prstenaste strukture po 10 atoma, što ih čini usporedivim s β -okretom kojeg možemo pronaći u proteinima. S druge strane, van Staverenov motiv vodikovog vezanja nema C_2 -simetriju, ima samo jednu vodikovu vezu koja je dio prstenaste strukture od 7 atoma, usporedivog s γ -okretom kojeg možemo pronaći u proteinima. Xu struktura pak predstavlja konformaciju u kojoj ne dolazi do uspostavljanja vodikovih veza između aminokiselinskih lanaca.

Slika 7. a) Motivi vodikovog vezanja u supstituiranim ferocenilpeptidima, prikaz pravila za određivanje b) konformacijske i c) helikalne kiralnosti. Zadebljane i tamnije linije predstavljaju veze koje su prostorno ispred, a svijetlije i tanje linije predstavljaju veze koje su prostorno iza zadebljanih linija. Crni kružići predstavljaju os heliksa.

U navedenim Herrickovim i van Staverenovim motivima vodikovih veza, peteročlani ferocenski prsteni su zaključani u konformaciji, bez mogućnosti rotacije. Sukladno tome i prostornom rasporedu aminokiselinskih lanaca, za Herrickovu i van Staverenovu konformaciju može se odrediti (*P*)-konformacijska kiralnost,⁴¹ prema pravilu prikazanom na

slici 7b. Navedenu kiralnost razlikujemo od helikalne kiralnosti koju se označava istim oznakama, ali određuje prema pravilu na slici 7c. Navedenu konformacijsku kiralnost je moguće utvrditi spektroskopijom cirkularnog dikroizma (CD). U prethodno objavljenom radu u kojem su autori proučavali razne kombinacije L- i D-aminokiselina u dipeptidnim n,n'-ferocenima CD spektroskopijom, potvrđena je indukcija kiralnosti na metalnom atomu ferocena pojavom signala u području valnih duljina karakterističnom za željezni atom ferocena.⁴² Nadalje, autori su u tom radu pokazali da dva 1,n'-ferocena supstituirana s dvije iste L-, odnosno dvije iste D-aminokiseline, imaju enantiomeran odnos vrijednosti eliptičnosti u odgovarajućim CD spektrima.

Motivi vodikovih veza u navedenim ferocenskim spojevima su intramolekulski, međutim, poznati su i supramolekulski agregati s gore navedenim motivima vodikovih veza koji ne sadrže metale. Konkretno, takvi organski agregati uključuju dimerne strukture s Herrickovim motivom vodikovih veza, sastavljenih od molekula koje sadrže aromatski prsten s direktno vezanom jednom (slika 8, a)^{43–46} ili više supstituiranih aminokiselina (slika 8, b),^{47–50} ili pak strukture u kojoj monomeri rade beskonačne slagaline s van Staverenovim motivom vodikovih veza (slika 8, c).⁴⁸

Slika 8. Herrickov motiv vodikovih veza u a) disupstituiranim i b) trisupstituiranim amino kiselinskim biokonjugatima. Literaturni primjeri d) Herrickovih⁴⁶ i e) van Staverenovih⁴⁸ vodikovih veza u kristalnim strukturama trisupstituiranih organskih molekula. Vodikove veze su prikazane svijetlo plavom isprekidanom linijom.

Ipak, istaknuti primjeri sadrže metale,^{9,10,43,51–58} u kojima je nastajanje Herrickovih supramolekulskih interakcija između liganada potaknuto kompleksacijom. Navedena karakteristika ovih spojeva je osobito važna jer, u slučaju kada su ligandi kiralni, vodikove veze i aromatsko slaganje mogu dovesti do prijenosa kiralnosti na metalni atom. Takvi metalni kompleksi imaju CD signale u području valnih duljina karakterističnih za metal te se pokazalo da mogu enantioselektivno katalizirati kemijske reakcije, čak i kada *nemaju ugrađen kiralni element* u strukturu liganda neposredno blizu metalnog atoma (vidi detaljnije u sekciji 2.4. Enantioselektivna hidrogenacija).

Najčešće korišteni ligandi su aminokiselinski biokonjugati fosfina, koji predstavljaju supramolekulski bidentatni analog PhanePhos-a, SupraPhanePhos.⁵⁶ Kod ovih spojeva, moguća su dva načina ostvarivanja vodikovih veza, koji su prikazani na primjeru Herrickovog motiva vodikovog vezanja u metalnom kompleksu *meta*-supstituiranih L-aminokiselinskih biokonjugata trifenilfosfina na slici 9. Pritom razlikujemo konformacijsku kiralnost kod metalnog atoma (slika 9, plavo) i kod aminokiselina (slika 9, crveno). Formalno je moguć nastanak (*M*), (*P*), L- i (*P*), (*M*), L-dijastereoizomera u otopini s Herrickovim motivom vodikovih veza u ovom primjeru. Nastanak (*P*), (*M*), L-dijastereoizomera nije očekivan zbog

nepovoljnog koplanarnog položaja supstituenta kiralnog centra aminokiseline s amidnom vezom. Ovo očekivanje je dodatno potkrijepljeno rezultatom pretrage baze kristalnih struktura CSD (*eng*. Cambridge Structural Database), pri čemu je pronađena 81 struktura s Herrickovim motivom vodikovih veza, bilo koje konfiguracije aminokiseline i s bilo kojim skupinama vezanima na mjesto aromata i na *C*-terminusu aminokiseline. U svim nađenim kristalnim strukturama,^{44–47,49,59–116} molekule s L-aminokiselinama imaju (*P*)-konformacijsku kiralnost *N*-terminusa aminokiselina, a s D-aminokiselinama imaju (*M*)-konformacijsku kiralnost.

Slika 9. Prikaz strukture metalnog kompleksa L-aminokiselinskog biokonjugata trifenilfosfina s π - π interakcijama i Herrickovim motivom vodikovih veza te s određenim konformacijskim kiralnostima kod metalnog atoma (plavo) i kod aminokiselinskih lanaca (crveno).

Većina metalnih kompleksa oksazolina su kiralni s primjenom u katalizi.¹⁴ Općenito, izvor kiralnosti u metalnim kompleksima može se podijeliti na dva glavna tipa, metalne komplekse kod kojih se kiralnost javlja na metalnom centru (slika 10a)^{117–120} i metalne komplekse s kiralnim ligandima (slika 10),^{26,120–124} pri čemu metalni kompleks može sadržavati oba tipa kiralnosti. Prva vrsta metalnih kompleksa dobiva se pripravom kompleksa u kojem je metalni atom koordiniran s četiri ili više različitih liganada (slika 10a) ili koordinacijom akiralnih liganada s nezamjenjivom, stereoizomernom prostornom organizacijom (slika 10b).¹²⁵ Treba napomenuti da kompleksi kvadratno-planarne geometrije ne mogu tvoriti ove vrste kiralnih metalnih kompleksa jer sve četiri koordinacijske veze leže u jednoj ravnini. Za razliku od često izazovne sinteze enantiočistih kiralnih organskih molekula, dobivanje enantiočistih anorganskih spojeva predstavlja još veći izazov. Iako je utvrđeno da određene kombinacije metala i liganada mogu imati sklonost specifičnoj prostornoj organizaciji,^{126,127} obično je potrebno koristiti različite strategije kako bi se izbjeglo dobivanje racemičnih smjesa. Uspješnim dizajnom se može direktno utjecati na kiralno okruženje metala, zbog čega su ovakvi metalni kompleksi ipak u fokusu brojnih istraživanja i primjena.^{117–119}

Slika 10. Kompleksi kiralni na metalnom atomu: a) metalni kompleksi s četiri različita liganda ili b) sa stereoizomernim prostornim rasporedom koordiniranih akiralnih liganada. Metalni kompleksi s kiralnim ligandima: c) metalni kompleksi s kiralnim ligandima u kojima je kiralnost (skupina R*) u blizini metalnog središta ili d) ugrađena nekoliko kovalentnih veza dalje, a kiralna informacija se prenosi na metalni atom kao posljedica nekovalentnih interakcija liganada. S druge strane, drugi tip metalnih kompleksa obično sadrži rigidne multidentatne ligande s kiralnošću tipično ugrađenom blizu donirajućih atoma (slika 10c), koji tvore definirana kiralna okruženja oko atoma metala.^{14,128,129} Spomenuti metalni kompleksi su toliko učinkoviti u katalizi da su neki od njih prozvani "privilegiranima" zbog sposobnosti da selektivno kataliziraju nekoliko reakcija.²⁸ Osim toga, kiralnost ugrađena u ligande navedenih metalnih kompleksa nije ograničena samo na kiralne centre, već su poznate i brojne primjene metalnih kompleksa s ligandima koji sadrže aksijalnu¹³⁰ i helikalnu kiralnost.¹²⁰ Nadalje, ne samo da se mogu koristiti metali s kvadratno-planarnom koordinacijom za sintezu odgovarajućih kompleksa, mogu se ugraditi i biomolekule, poput aminokiselina, kao lako dostupni izvori kiralnosti.¹³¹ Zanimljiva podvrsta ovih spojeva temelji se na metalnim kompleksima s "posrednom indukcijom" kiralnosti (slika 10d). U tim spojevima, kiralnost je ugrađena nekoliko veza dalje od donirajućih atoma liganda, a kiralna informacija prenosi se na metalni atom preko cikličke kiralne strukture koja nastaje kao posljedica nekovalentnih interakcija između liganda (slika 7).^{1,132}

Premda je do danas u CSD bazi pohranjeno 2528 kristalnih struktura prijelaznih metalnih kompleksa s koordiniranim oksazolinom, samo 48 struktura, odnosno svega 2% svih struktura, sadrži nepremošćujuće, monodentatne oksazolinske ligande. Od tih struktura (slika 11, tablica 1), 18 ima tetraedarsku geometriju,^{13,133–136} 16 ima *trans*-^{137–150} i 5 ima *cis*-kvadratno-planarnu geometriju,^{146,151–153} 7 ima geometriju trigonske bipiramide,^{154–156} 1 ima oktaedarsku geometriju¹⁵⁷ i 1 struktura sadrži polu-sendvič kompleks rutenija.¹⁵⁸ Otprilike polovica ukupnog broja ovih struktura čine kompleksi cinka i paladija. Među svim navedenim strukturama samo 10 struktura sadrži kiralni oksazolinski ligand, od kojih niti jedan nije biokonjugiran.

Slika 11. Kompleksi nepremošćujućih i premošćujućih monodentatnih oksazolina i prijelaznih metala, podijeljenih prema steoreokemiji njihove strukture. X = anion ili organski ligand.

Nadalje, u CSD bazi kristalnih struktura pohranjeno je 47 kristalnih struktura kompleksa prijelaznih metala i premošćujućih monodentatnih bisoksazolinskih liganada (tablica 2). Od tih struktura, 17 ima linearnu geometriju,^{159–172} 15 ima trigonsku,^{160,173–177} 10 ima tetraedarsku, 160, 168-170, 174, 178 3 ima *trans*-kvadratno-planarnu geometriju,^{178–180} 3 ima oktaedarsku geometriju^{172,181} i 1 struktura sadrži polu-sendvič kompleks iridija.¹⁸² Više od pola struktura su metalni kompleksi srebra(I), a među njima su najzastupljeniji linearni izgrađena kompleksi. Većina premošćujućih oksazolinskih liganada je od 1.3i 1,4-dioksazolinilbenzena ili 1,3,5-trioksazolinilbenzena, a svega 21 ligand od svih struktura ima kiralnost ugrađenu u strukturu liganda te niti jedan nije vezan na biomolekulu.

Koordinacijska geometrija središnjeg metalnog atoma										
Tetraedarska		<i>Trans</i> -kvadratno -planarna		<i>Cis</i> -kvadratno -planarna		Trigonsko bipiramida1na		Oktaedarska		
Μ	n	Μ	n	Μ	n	Μ	n	Μ	n	
Zn ²⁺	16	Pd ²⁺	11	Pt ²⁺	5	Zn ²⁺	6	Ru ³⁺	1	
Co ²⁺	2	Pt ²⁺	4			Cd ²⁺	1			
		Cu ²⁺	2							

Tablica 1. Kompleksi prijelaznih metala i *nepremošćujućih* monodentatnih oksazolina, podijeljenih prema steoreokemiji njihove strukture i tipu prijelaznog metala. n = broj odgovarajućih struktura pohranjenih u CSD bazi.

Tablica 2. Kompleksi prijelaznih metala i *premošćujućih* monodentatnih oksazolina, podijeljenih prema steoreokemiji njihove strukture i tipu prijelaznog metala. n = broj odgovarajućih struktura pohranjenih u CSD bazi.

Koordinacijska geometrija središnjeg metalnog atoma										
Linearna		Trigonska		Tetraec	larska	Trigonsko bipiramida1na		Oktaedarska		
Μ	n	Μ	n	Μ	n	Μ	n	Μ	n	
Ag ⁺	14	Ag ⁺	9	Ag ⁺	3	Pd ²⁺	2	Ag ⁺	1	
Cu ⁺	2	Cu ⁺	6	Cu ⁺	7	\mathbf{Rh}^{+}	1	Cd ²⁺	2	
Pt ²⁺	1									

2.3.1. Strukturna analiza tetraedarskih kompleksa nepremošćujućih monodentatnih oksazolina U literaturi su metalni kompleksi detaljno proučavani s bidentatnim i polidentatnim derivatima oksazolinskih liganada, dok je broj objavljenih istraživanja monodentatnih oksazolinskih kompleksa neusporedivo manji. Prethodno objavljene kristalne strukture tetraedarskih kompleksa oksazolina opće formule [ML₂X₂] (L = oksazolinski ligand), ali i sličnih monodentatnih peteročlanih liganada, mogu se klasificirati s obzirom na njihove torzijske kutove, α_1 i α_2 (slika 12, a; tablica D1). Vrijednosti torzijskog kuta α od 0° (360°), 90°, 180° i 270° opisuju različite ortogonalne položaje koje oksazolinski prsten može zauzeti u odnosu na ravninu definiranu atomima N—M—N. Međutim, ravnine oksazolinskih prstenova su često prostorno pomaknute od ortogonalnosti. Uzimajući u obzir navedeni pomak i potencijalne kombinacije prostornog rasporeda oba liganda, mogu se definirati različite skupine geometrija I-IV (slika 12, b). Geometrije tipa I obično se mogu naći samo u metalnim kompleksima polidentatnih liganada zbog steričkih odbijanja koji bi se javili između 2-supstituenata u monodentatnim analozima. Ova pretpostavka je dodatno potkrijepljena činjenicom da nijedna kristalna struktura u tablicama D1 i D2 s monodentatnim ligandima nema parametre $\alpha_1 \approx \alpha_2 \approx 180^\circ$. Zbog toga se nadalje neće raspravljati o strukturama tipa I.

Slika 12. Grupe I-IV definirane su mogućim relativnim položajima dviju ravnina oksazolinskog prstena, definiranim kutom α . $\alpha_1 = \measuredangle(T-M-N_1=C_1), \alpha_2 = \measuredangle(T-M-N_2=C_2). X$ oznake su izostavljene radi jasnoće. Točka T je proizvoljna točka, koja se nalazi na sredini dužine između dvaju dušikovih atoma

Za komplekse s ligandima koji sadrže različite supstituente na položajima 2, 4 ili 5, tipovi geometrija II-IV mogu se dalje razdvojiti u podtipove a, b, c ili d (slika 13). Mogući su i granični slučajevi, te će oni biti označeni s oba odgovarajuća podtipa (npr. IIc/IIId). Zanimljivo je da od svih prikazanih mogućih geometrija samo IIa(*), IIb, IVb i IVc imaju C_2 -simetriju.

Slika 13. Moguće geometrije monodentatnih, (4*S*)-supstituiranih oksazolinskih metalnih kompleksa. X oznake su izostavljene radi jasnoće.

Ograničeni broj rezultata iz CSD baze podataka za tetraedarske komplekse prijelaznih metala sa sličnim monodentatnim heterocikličkim ligandima (tablica D1), kao što su derivati oksazola, tiazola i pirola (uključujući njihove strukturne izomere i hidrogenirane derivate), ne sugeriraju nikakvu sklonost prema jednom specifičnom tipu i podtipu geometrije. Broj rezultata za svaki od ovih monodentatnih liganada s različitim veličinama i brojem aniona i supstituenata, kao i različitim motivima supstitucije, premalen je da bi se izveo utemeljen zaključak. Nasuprot tome, broj objavljenih tetraedarskih monodentatnih oksazolinskih kompleksa sastoji se od samo osamnaest struktura, međutim, šesnaest od njih su tetraedarski kompleksi s cinkom(II) geometrije tipa IIa i IIa*,^{133,134,136} a dvije strukture su tetraedarski kompleksi kobalta(II) podtipova IIa i IVc strukture.^{13,135}

Tipovi IIa i IIa* opisuju dvije vrste helikalno kiralnih tetraedarskih kompleksa, za koje se očekuje da su međusobno interkonvertibilni kada ne postoje steričke prepreke koje bi ometale rotaciju na sobnoj temperaturi (slika 14). Treba napomenuti da su konformacije ova dva podtipa formalno enantiomerne za strukture navedene u literaturi budući da odgovarajući ligandi oksazolina nisu kiralni, odnosno nemaju supstituente na položajima 4- ili 5-

oksazolinskog prstena. Ova dva podtipa približno su jednako raspoređena među gore spomenutim strukturama navedenima u literaturi, a neke kristalne strukture sadrže obje geometrije unutar kristalne rešetke (CSD kodovi ETUVEU i ETUVIY).¹³³ Preostalih pet tetraedarskih oksazolinskih kompleksa imaju geometriju tipa IV.

Slika 14. Helikalna kiralnost u podtipovima IIa i IIa*. Crna točka predstavlja os heliksa koja je okomita na ravninu u kojoj je nacrtana struktura.

Zajednička strukturna karakteristika analiziranog skupa kompleksa podtipa IIa(*) monodentatnih oksazolina je da su svi razmatrani kompleksi halogenidni spojevi s oksazolinima koji sadrže 2-fenil supstituent. Ovo sugerira da je jednim dijelom prisutna stabilizacija uslijed aromatskog slaganja motiva 2-feniloksazolina kada nema drugih steričkih odbijanja koja bi se suprotstavila ovoj stabilizaciji (npr. kao što su sterička odbijanja uzrokovana voluminoznim anionima). Kako bi se dodatno potvrdilo rade li drugi ligandi također komplekse s ovim konformacijama u čvrstom stanju, kao i važnost halogenidnih atoma i konjugirane aromatske skupine, sve kristalne strukture halogenidnih tetraedarskih kompleksa prijelaznih metala koji nose molekulski fragment u kojem su atom donora dušika i aromatske skupine premoštene preko atoma koji nije vodik (A), tj. -N-A-Ar-, pronađene su u CSD bazi pomoću gore navedenog parametra α i prikupljene u tablici D2. Gotovo sve 84 dobivene strukture imaju sp² hibridizirani donorski atom dušika; među njima je 50 struktura podtipa IIa(*), a 4 strukture spadaju u granične IIa(*) slučajeve. Od 50 nađenih struktura podtipa IIa(*), oko 34 strukture ima aromatsku skupinu gotovo koplanarnu sa sp² hibridiziranim atomom donora dušika, a oko 25 struktura ima jednu ili više udaljenosti između orto-vodikovog atoma 2-aromatske skupine i halogenidnog aniona kraću od njihovog zbroja van der Waalsovih radijusa. Dodatno je pronađeno i evaluirano sedam nehalogenidnih struktura (posljednjih sedam redaka u tablici D2). U tim strukturama metal je koordiniran ili pseudohalogenidnim NCS⁻ anionom ili s još dva liganda. Utvrđeno je da pet od ovih sedam struktura ima IIa(*) konformaciju. Iz ove detaljne analize je očito da su dodatna strukturna razmatranja potrebna u dizajnu tetraedarskih kompleksa kako bi se postiglo ili izbjeglo stvaranje ovih tipova konformacija u čvrstom stanju kada su slični molekulski fragmenti ugrađeni u strukturu ciljnih spojeva.

2.4. Enantioselektivna hidrogenacija

Hidrogenacija je kemijska reakcija u kojoj se dva vodikova atoma vežu na nezasićenu kovalentnu vezu (shema 3), obično uz katalizator.¹⁸³

Shema 3. Katalitička reakcija hidrogenacije.

Razlikujemo homogenu i heterogenu hidrogenaciju, te hidrogenaciju plinovitim vodikom i transfer hidrogenaciju. Homogena hidrogenacija podrazumijeva provođenje reakcije u kojoj su supstrat i katalizator u istoj fazi, dok su kod heteregene hidrogenacije u različitim fazama. Također, izvor vodikovih atoma ne mora biti plinoviti vodik, već može biti i otapalo ili posebni reagensi (npr. Hantzschov ester), pri čemu se takva reakcija hidrogenacije naziva transfer hidrogenacijom.¹⁸⁴ Nadalje, prokiralne supstrate moguće je hidrogenirati uz kiralne katalizatore pri čemu se odabirom kiralnog katalizatora može utjecati na enantioselektivno nastajanje određenog kiralnog produkta. Vrijednost enantiomernog viška (e.e.), definirana kao omjer razlike i zbroja molarnih udjela enantiomera u smjesi dvaju enantiomera, koristi se kao pokazatelj enantiomerne čistoće dobivenog produkta.

Reakcija enantioselektivne hidrogenacije je jedna od najvažnijih poznatih katalitičkih procesa, a odlikuje se jednostavnošću, reproducibilnošću, primjenjivosti na širokom rasponu supstrata,¹⁸⁵ mogućnosti povećavanja skale reakcije, odličnim iskorištenjima i minimalnim nastankom sporednih produkata.¹⁸⁶ Uz gore navedene značajke i s obzirom da je moguće enantioselektivno hidrogenirati prokiralne supstrate, reakcija hidrogenacije našla je primjernu kao sintetski korak u pripravi mnoštva kiralnih i biološki aktivnih molekula, kako u istraživačkom laboratoriju tako i u industriji (slika 15).¹⁸⁷

Slika 15. Pregled struktura odabranih kiralnih, biološki aktivnih molekula u čijem sintetskom putu se koristi reakcija hidrogenacije.¹⁸⁷

U literaturi su poznata dva opće prihvaćena mehanizma rodijem katalizirane hidrogenacije, dihidridni i nezasićeni mehanizam (shema 4).¹⁸⁸ Glavna razlika između dva mehanizma je redoslijed oksidativne adicije vodika i koordinacije supstrata na kompleks. Ukoliko se prvo događa adicija vodika, radi se o dihidridnom mehanizmu, a ako se prvo koordinira supstrat, onda se radi o nezasićenom mehanizmu. Oba mehanizma konvergiraju prema istom monohidridnom intermedijeru, nakon čega imaju iste korake mehanizma do produkta i solvatiranog kompleksa. Oba mehanizma se odvijaju preko kvadratno-planarnih rodij(II) i oktaedarskih rodij(III) kompleksnih intermedijera.

S druge strane, iridijem katalizirana hidrogenacija je nešto kompliciranija.¹⁸⁹ Iako je prekatalizator kvadratno-planarni iridij(I), mehanizam se zapravo odvija preko oktaedarskih iridij(III) kompleksnih intermedijara i heptakoordiniranog iridij(V) kompleksnog intermedijera, pri čemu je moguća i sporedna reakcija u kojoj dolazi do disocijacije protona (shema 5).

Ipak, u mehanizmima i rodijem i iridijem kataliziranih reakcija spori korak je adicija prvog vodikovog atoma na dvostruku vezu supstrata. Nadalje, važno je napomenuti da
ukoliko se koriste dienski derivati metalnih kompleksa za hidrogenaciju, prva dva ekvivalenta vodika se koriste za hidrogenaciju dienskog liganda.

Fokus literaturnog pregleda će u nastavku biti na homogenoj enantioselektivnoj hidrogenaciji plinovitim vodikom.

Shema 4. Dihidridni (lijevo) i nezasićeni (desno) mehanizmi rodijem katalizirane hidrogenacije. O = otapalo.

Predkorak:

Shema 5. Mehanizam iridijem katalizirane hidrogenacije. O = otapalo.

2.4.1. Homogena enantioselektivna hidrogenacija

Wilkinson je 1966. godine pripravio metalni kompleks, tris(trifenil)rodijev(I) klorid, koji je među prvim katalizatorima sa širokom primjenom u hidrogenaciji.¹⁹⁰ Štoviše, Wilkinson je 1973. godine dobio Nobelovu nagradu za svoja otkrića u području organometalnih spojeva. Nadalje, Knowles i Horner su 1968. godine prvi puta proveli rodijem kataliziranu enantioselektivnu reakciju hidrogenacije.^{191,192} Zatim je 1979. godine Crabtree objavio iridijev katalizator, tzv. Crabtreejev katalizator, s primjenom u hidrogenaciji.¹⁹³ Noyori i suradnici su 1980. objavili izvrsne rezultate s BINAP ligandom,¹⁹⁴ a Brunner i suradnici su 1986. godine objavili prve rezultate enantioselektivne katalize s katalizatorom oksazolinskog liganda.¹⁹⁵ Nedugo zatim su Pfaltz,¹⁹⁶ Helmchen¹⁹⁷ i Dawson¹⁹⁸ 1993. godine sa svojim grupama neovisno objavili rezultate selektivne alilne supstitucije s fosfinooksazolinskim ligandom (PHOX; 99%, 99%, odnosno 94% e.e.), koji je roditeljski ligand za pripravu iridijevog katalizatora i primijenio ga u reakcijama hidrogenacije.¹⁹⁹ Naposlijetku je 2001. godine

dodijeljena Nobelova nagrada Knowlesu i Noyoriju za otkrića u području selektivne hidrogenacije, a iste godine je objavljen i prvi pokušaj primjene katalizatora s hetero-kombinacijom pripravljenih liganada u reakciji hidrogenacije.²⁰⁰

U ovom vremenskom periodu je došlo do naglog porasta broja objavljenih znanstvenih radova s uspješnom primjenom bidentatnih liganada kao metalnim katalizatorima u raznim katalitičkim reakcijama, što je kulminiralo do izdvajanja posebnog seta katalizatora sa sposobnošću kataliziranja nekolicine kemijskih reakcija s visokim iskorištenjima i enantioselektivnostima većima od 90%. Navedenim katalizatorima je nadjenut naziv "privilegirani kiralni katalizatori" (slika 17).²⁸ BINAP i BOX ligandi, uz PhanePhos, su iskorišteni kao modeli za ligande sintetizirane u ovom doktorskom radu.

Slika 17. Ligandi "privilegiranih kiralnih katalizatora".²⁸ U crvenoj kućici su označeni ligandi koji su korišteni kao modeli za sintezu liganada u ovoj disertaciji.

Iako su prvi rodijevi i iridijevi katalizatori korišteni u neselektivnim^{190,193} i selektivnim reakcijama hidrogenacije^{191,192} bili monodentatni, bidentatni ligandi brzo su se našli u fokusu istraživanja sljedećih 40 godina zbog svoje izvrsne učinkovitosti (slika 18).^{187,201–203}

Slika 18. Istaknuti primjeri bidentatnih liganada za homogenu enantioselektivnu hidrogenaciju te pripadajući rezultati enantioselektivnosti dobiveni u reakciji hidrogenacije derivata *N*-acil-α-dehidroaminokiselina.^{202,203}

Broj objavljenih radova koji opisuju primjenu brojnih liganada na bazi fosfora u katalitičkoj reakciji hidrogenacije još uvijek raste,^{204–208} a navedenome svjedoči i analiza patenta koja je pokazala da je većina katalitičkih sustava za hidrogenaciju bazirana na fosfornim ligandima.²⁰⁹ Dodatno, popularnost iridijevih katalizatora u enantioselektivnoj hidrogenaciji porasla je u posljednja dva desetljeća, posebno u pogledu njihove primjene na zahtjevne supstrate.^{189,210–212} Ovo uključuje mnoštvo liganada temeljenih isključivo na *P*-donorskim ligandima,²¹³ ali uključuje i hibridne⁶ fosfinooksazolinske ligande (slika 19).^{14,199,210,214–216} Mnogi od tih liganada imaju zajedničku strukturnu karakteristiku da imaju ugrađenu centralnu ili aksijalnu kiralnost u neposrednoj blizini metalnog atoma.¹³²

Slika 19. Istaknuti primjeri fosfinooksazolinskih liganda za hidrogenaciju.¹⁴

Do 2000. godine je bilo uvriježeno mišljenje da monodentatni ligandi ne mogu konkurirati po svojoj učinkovitosti bidentatnim ligandima. To se promijenilo početkom ovog stoljeća kada su objavljeni prvi radovi u kojima su se monodentatni analozi pokazali jednake ili čak i veće učinkovitosti naspram svojih bidentatnih analoga u reakcijama hidrogenacije (slika 20) s enantioselektivnostima u odgovarajućim reakcijama većima od 90%.^{217–219} Razmatranjem struktura ovih monodentatnih liganda možemo vidjeti da njihov dizajn, kao i kod bidentatnih analoga, prati trend ugrađivanja centralne ili aksijalne kiralnosti neposredno blizu mjesta vezanja metala.

MonoPhos, R = H, R_1 , $R_2 = Me$

Slika 20. Istaknuti primjeri monodentatnih liganada za reakcije hidrogenenacije.²¹⁹

Zanimljiva prednost monodentatnih liganada je mogućnost upotrebe smjese liganada za postizanje poboljšane selektivnosti. Često veoma male strukturne modifikacije u katalizatoru uzrokuju velike promjene u dobivenom iskorištenju i enantioselektivnosti za specifičan

supstrat. Nadalje, metalni kompleksi gore navedenih liganada često posjeduju C2-simetriju, no to ne znači da je uvođenje C_2 -simetrične modifikacije korak koji će dovesti do poboljšanja učinkovitosti navedenog katalizatora. Uvođenje modifikacije u bidentatni ligand koja bi riješila prethodno navedeni problem često nije trivijalno. Umjesto rekonstruiranja i modificiranja cijelog liganda, moguće rješenje problema se može naći korištenjem smjesa monodentatnih liganada koji su već na raspolaganju. Istaknuti rad na ovu temu objavili su Lefort et al. gdje su korištene eksperimentalne metode visoko efikasnog pretraživanja aditiva u velikom obujmu (eng. high throughput screening) za enantioselektivnu hidrogenaciju kataliziranu metalnim kompleksom MonoPhos liganda.²²⁰ Dodatno, kada se koriste smjese liganada, broj katalizatora koji se može dobiti više nije jednak broju sintetiziranih liganada. Umjesto toga, ako bi se testirale sve kombinacije n pripremljenih liganada i isključile ekvivalentne kombinacije, novi broj katalizatora iznosio bi n!/(2(n-2)!), npr. za n = 6, broj jedinstvenih kompleksa homo- i hetero- kombinacija pripremljenih liganada je jednak 15, što je dobro ilustrirano u radu Peña et al.⁴ Nadalje, korištenje kombinacije liganada dopušta proučavanje utjecaja više varijabli nego što je to moguće kod polidentatnih liganada. Na primjer, ne samo da je postignuto poboljšanje selektivnosti (slika 21, a)⁴ i obrat selektivnosti (slika 21, b),³ već je također istražen utjecaj omjera različitih liganada (slika 21, c),²²¹ utjecaj ugradnje negativno nabijenih strukturnih jedinica (slika 21, d),²²² utiecaj uporabe konfiguracijski nestabilnih akiralnih liganada (slika 21, e),223 utjecaj kombinacije s akiralnim P- ili N-ligandima,^{224,225} i dijastereoizomernih liganada,²²⁶ te raznih aditiva.²²⁰

Posebnu grupu gore navedenih monodentatnih liganada čine molekule koje imaju vezane supstituente sa sposobnošću za ostvarivanje supramolekulskih interakcija. Kod ovih liganada kompleksacija potiče agregaciju, čime nastaju kiralni supramolekulsko bidentatni katalizatori.² Manje uobičajena strukturna jedinica ovih katalizatora je krunski eter, derivat porfirina ili drugi ligandi kao dodatno koordinacijsko mjesto,²²⁷⁻²²⁹ čija koordinacija uzrokuje ključnu, prostornu reorganizaciju cijele molekule, omogućujući katalizatoru enantioselektivno provođenje katalize (slika 22). Posebno zanimljiv primjer je titanijev kompleks (slika 22, desno) koji sadrži kiralni ligand čija kiralnost utječe na preferirano nastajanje titanijevog kompleksa s jednim rasporedom liganada oko titanijevog atoma. Nadalje, navedeni specifičan smještaj liganada uzrokuje daljnju indukciju kiralnosti na rodijevom metalnom atomu, što se i očituje u enantioselektivnosti od 81% e.e. dobivenoj u primjeni tog kompleksa u reakciji hidrogenacije.

§ 2. Literaturni pregled

a) poboljšanje selektivnosti

b) obrat selektivnosti

c) utjecaj omjera liganada

d) utjecaj elektrostatski negativnog liganda

e) utjecaj konfiguracijski nestabilnih liganada

Slika 21. Ligandi korišteni za pripravu katalizatora s hetero-kombinacijama pripravljenih liganada za reakcije hidrogenacije, s kojima se ispitivao utjecaj njihovih različitih svojstava na enantioselektivnost reakcije.^{3,4,221–223}

Češće, strukturne jedinice uspješne u "zaključavanju" katalizatora u optimalnoj konformaciji se baziraju na π - π interakcijama i vodikovim vezama. Ti su ligandi često biokonjugati sastavljeni od aminokiselina (SupraPhanePhos; slika 23, a,b i c)^{53,54,56,104} ili

karbamida (UREAPhos; Slika 23, d), 57,230,231 spojeva modeliranih po uzoru na tris-amidne derivate (slika 23, e)²³² ili nukleobaze (slika 23, f), 233 vezanih na aromatske prstenove ili spojnice različitih građa i funkcija.

Slika 22. Supramolekulski bidentatni katalizatori za hidrogenaciju, s drugim koordinacijskim mjestom.^{57,228,234}

Posebno zanimljiv primjer predstavlja dimer derivata bidentatnog *P*-donorskog aminokiselinskog biokonjugata s bifenilnim fragmentom (slika 23, c). Kod ovog liganda dolazi do dimerizacije pod utjecajem π - π interakcija i vodikovih veza bez prisutnosti metalnog atoma. Nadalje, agregacija uzrokuje zaključavanje bifenilnog fragmenta pri čemu su autori dobili bifenilne izomere visoke enantiočistoće za skoro sve ligande sintetizirane u njihovim radovima.^{53,54} te su njihovom primjenom u reakcijama hidrogenacije postigli vrijednosti enantioselektivnosti i preko 90%. Međutim, ako se usporede SupraPhanePhos ili UREAPhos derivati metalnih kompleksa sa i bez koordinirajućih skupina koje sadrže središnju ili aksijalnu kiralnost ugrađenu blizu atoma metala, bolji su rezultati dobiveni s prvim tipom liganada; npr. 99 % naspram 32 % e.e.,⁵⁶ 96 % naspram 0 %.⁵⁷

Nekoliko skupina objavilo je svoja istraživanja o katalizatorima u kojima uspostavljanjem supramolekulskih interakcija dolazi do indukcije kiralnosti oko atoma metala nakon kompleksiranja (posredna indukcija kiralnosti), odnosno bez kiralnih elementa ugrađenih u neposrednoj okolini metala (neposredna indukcija kiralnosti). Najčešći donorski atom ovih liganada je fosfor, a najčešća koordinacijska skupina obično je akiralni trifenil/difenilpiridil

fosfin, kovalentno vezan na kiralni dio molekule (slika 23, a,b i e).^{56,235,236} Poznato je i nekoliko primjera uspješnog poboljšanja enantioselektivnosti upotrebom smjesa ovog tipa liganada^{58,235} i dodatkom aditiva.^{232,236}

Slika 23. Supramolekulski bidentatni katalizatori za hidrogenaciju vezani na biomolekulu ili molekulu modeliranu po uzoru na biomolekule. Primjeri s aminokiselinama: a), b) i c).^{56,235,236} Primjer s karbamidom: d).⁵⁷ Primjer s esterima trikarboksamidnih spojeva: e).²³² Primjer po uzoru na nukleobaze: f).²³³

Kokan, Opačak i suradnici istraživali su različite monodentatne ligande za kiralne, supramolekulski bidentatne katalizatore S posrednom indukcijom kiralnosti za hidrogenaciju.^{8,52,237,238,} U navedenim radovima korišteni ligandi imaju ugrađenu kiralnost, udaljenu za nekoliko kovalentnih veza od donorskih atoma. Pod utjecajem nekovalentnih interakcija u metalnom kompleksu dolazi do prijenosa kiralne informacije s udaljenih susptituenata na metalni atom čime se inducira kiralnost na metalu te su navedeni metalni kompleksi katalizirali reakciju hidrogenacije modelnih supstrata izvrsnim S enantioselektivnostima (slika 24).

Kokan i suradnici proučavali su učinkovitost posredne indukcije kiralnosti metalnih kompleksa biokonjugata trifenilfosfina i aminokiselina, pri čemu se ispitivala ovisnost iskorištenja i enantioselektivnosti katalitičke reakcije hidrogenacije o aminokiselinskom sastavu tripeptidnog lanca (slika 25, a);⁵² ovisnost o broju aminokiselinskih lanaca, tipu motiva supstitucije tih lanaca na benzenskom prstenu te utjecaj primjene smjese navedenih liganda za *in situ* pripravu katalizatora za hidrogenaciju (slika 25, b);²³⁷ ovisnost o broju i tipu aminokiselina u aminokiselinskom lancu, te tipu i duljini spojnica dvaju aminokiselinskih lanaca (slika 25, c).⁸ U ovim metalnim kompleksima, kiralna informacija aminokiselina se posredno prenijela na metalni atom pod utjecajem supramolekulskih interakcija, kojem je posljedično inducirana konformacijska kiralnost. Pri tome su najbolje dobivene vrijednosti enanantioselektivnosti u odgovarajućim radovima veće od 80%.

Opačak i suradnici su proučavali selektivnost kiralnih metalnih kompleksa liganada građenih od trifenilfosfina, kiralnih cikloheksandiamina i voluminozne aromatske ili alkilne skupine (slika 24, d). Ovi ligandi su monodentatna varijacija bidentatnog "Trostovog" liganda alkiliranje,²³⁸ za enantioselektivno alilno sastavljenog od N,N'-bis(trifenilfosfin) U cikloheksandiamina. metalnim kompleksima ovih liganada, kiralna informacija cikloheksandiamina se posredno prenosi na metalni atom pod utjecajem supramolekulskih interakcija. U tom radu su dodatno analizirali stabilnost metalnih kompleksa u ovisnosti o broju prisutnih supramolekulskih interakcija računalnim metodama. Pokazali su da korištena razina teorije predviđa da je najstabilniji kompleks s maksimalnim brojem intramolekulskih veza, odnosno s Herrickovim motivom vodikovog vezanja. Dodatna zanimljivost jest da je prostorni molekulski razmještaj u najstabilnijoj strukturi nalik kristalnim strukturama s Herrickovim motivom, gdje 1S, 2Skiralni centri heksandiamina induciraju M-1,2' konformacijsku kiralnost na metalu i P-1,2' konformacijsku kiralnost kod amidnih veza

direktno spojenih na centralni aromat. Najbolji rezultat od 97 % e.e. postignut je s ligandom sastavljenog od trifenil fos fina, cikloheksandiamina i 2,2,2-trifenil metanske kiseline.

Slika 24. Supramolekulski bidentatni katalizatori za hidrogenaciju bez središnje ili aksijalne kiralnosti ugrađene u kostur liganda u neposrednoj blizini donorskih atoma.

§ 3. EKSPERIMENTALNI DIO

3.1. Materijali i metode

Reakcije su provedene u standardnom staklenom posuđu, a kemikalije i suha otapala su kupljena od komercijalnih dobavljača i korištena bez daljnjeg pročišćavanja. Sve korištene aminokiseline i aminoalkoholi izvedeni iz aminokiselina imaju L relativnu konfiguraciju, osim ako nije drugačije navedeno. Sve aminokiseline označene su svojim standardnim kraticama, dok su aminoalkoholi, ako je primjenjivo, označeni kraticom izvorne aminokiseline i simbolom # (npr. Phg[#] označava fenilglicinol). Sinteze spojeva uz mikrovalno zračenje provedene su u CEM Discover mikrovalnom reaktoru.

Reakcije su praćene tankoslojnom kromatografijom na silikagelu 60 F254 i detektirane UV lampom (254 nm); sirovi produkti su pročišćeni klasičnom kolonskom ili automatskom flash kromatografijom. ESI maseni spektri snimljeni su na HPLC-MS sustavu (Agilent Technologies 1200) spojenom s 6410 Triple-Quadrupole masenim spektrometrom. Maseni spektri visoke rezolucije dobiveni su na MALDI TOF-TOF instrumentu korištenjem CHCA matrice. UV-Vis spektri su snimljeni na Cary 100 spektrometru u 1 cm i 0,1 cm kvarcnim Suprasil kivetama. Absorbancija A izmjerena UV spektroskopijom preračunata je u $\Delta \varepsilon$ (M⁻¹ cm⁻¹) neovisnoj o koncentraciji, kroz relaciju $\Delta \varepsilon = A / (l \times c)$, gdje je l (cm) duljina puta, a c (mM) je koncentracija. CD spektri su snimljeni na Jasco J-815 spektropolarimetru u 1 cm i 0,1 cm kvarcnim Suprasil kivetama. Eliptičnost θ (deg) (u CD) izmjerena CD spektroskopijom preračunata je u $\Delta \varepsilon$ (M⁻¹ cm⁻¹) neovisnoj o koncentraciji, kroz relaciju $\Delta \varepsilon = \theta$ $(l \times 32982 \times c)$, gdje je l (cm) duljina puta, a c (mM) je koncentracija. NMR spektri dobiveni su na spektrometru Bruker Avance AV300 ili AV600, snimanjem na 300 ili 600 MHz za ¹H, 75 ili 150 MHz za ¹³C i 243 MHz za ³¹P jezgre; ako nije naznačeno, spektri su snimljeni na sobnoj temperaturi. Kemijski pomaci, δ (ppm), pokazuju odstupanje od unutarnjeg standarda, tetrametilsilana (TMS) za ¹H NMR, H₃PO₄ (85%) za ³¹P NMR, ili zaostali signal otapala za ¹³C NMR. Konstante sprezanja, J, dane su u Hz. Pojedinačni signali označeni su kao: singlet (s), dublet (d), triplet (t), kvartet (q), kvintet (kvin.) ili multiplet (m). IR spektri su snimljeni u čvrstom stanju, koristeći ATR Agilent Cary 630 FT-IR spektrometar ili KBr pastile s Bruker Alpha FT-IR spektrometrom, u 4000-600 cm⁻¹ (ATR) ili 4000-350 cm⁻¹ (KBr pastile) području valnih brojeva.

Kristalne strukture spojeva određene su na temelju podataka difrakcije rendgenskog zračenja na monokristalu. Difrakcijski eksperimenti na monokristalima su provedeni na uređaju *Oxford Diffraction Xcalibur Nova R*, korištenjem Cu *Ka* zračenja ($\lambda = 1,54184$ Å) uz grafitni monokromator, pri sobnoj ili pri sniženoj temperaturi. Program *CrysAlis PRO*, Oxford Diffraction Ltd. (verzija 1.171.33.32), korišten je za prikupljanje, utočnjavanje jedinične ćelije i redukciju podataka. Za rješavanje kristalne strukture korišten je program *SIR2011*,²³⁹ a za utočnjavanje *SHELXL97*.²⁴⁰ Za vizualizaciju struktura korišten je program CSD-Mercury (verzija 3.3 ili novija). Difrakcijski eksperimenti na praškastim uzorcima provedeni su na PANalytical Aeris instrumentu, a uvjeti mjerenja su: Bragg-Brentano geometrija (θ -2 θ), izvor Cu *Ka* zračenje ($\lambda = 1,54184$ Å), u kutnom području od 5° do 50° s 5.2° min⁻¹.

Katalitičke reakcije na sobnoj temperaturi provedene su korištenjem reaktora za paralelno izvođenje reakcija s 8 bočica sa septom. Enantiomerni viškovi (*e.e.*) određeni su plinskom kromatografijom uporabom kapilarnih kolona s kiralnim punjenjem.

3.2. Računalne metode

3.2.1. Strukturna analiza supramolekulskih agregata oksazolina $A1_{t1}$

Izračun NMR parametara i strukturnih ansambala (SA) niskoenergetskih konformera $A1_{t1}$ i supramolekularnih dimera $A1_{t1}$ u otopini CHCl₃ izračunat je prema literaturno predloženoj CREST/CENSO proceduri u nekoliko koraka:^{241,242}

Generiranje SA monomernih konformera od A1_{t1}. Početni molekularni model konstruiran je pomoću softvera Avogadro,²⁴³ optimiziranog UFF poljem sile i zatim ponovno optimiziranog pomoću softvera xtb s GFN2-xTB semiempirijskom razinom teorije.²⁴⁴ Korištenjem ALPB modela otapala²⁴⁵ za CHCl₃ i GFN2-xTB razine teorije, iMTD-GC tijek rada CREST-ovog izračuna²⁴¹ pronašao je 1599 konformera sa slobodnom energijom nižom od 5 kcal/mol. Dodatno, tijekom CREST izračuna, utvrđene su NMR kemijske/magnetske ¹H nuklearne ekvivalentnosti.

Generiranje SA dimernih konformera od A1_{t1}. Najstabilniji konformer A1_{t1}, dobiven nakon DFT optimizacije geometrije SA monomera (vidi dolje) korišten je u modeliranju agregata A1_{t1} dimera za koje se očekuje da postoje u CHCl₃ otopini, korištenjem softvera Avogadro.²⁴³ Konstruirana su dva tipa početnih modela dimera označenih s vS1 i vS2. Model vS1 dobiva se kopiranjem strukture najstabilnijeg energetskog konformera A1_{t1} (CONF1, slika 25) i postavljanjem kopirane molekule na udaljenost od 3 Å iznad originalne molekule, u agregiranu poziciju u kojoj su dva benzenska prstena međusobno paralelna (slika 26). Dodatno, kopirana molekula se rotira oko osi okomite na benzenske prstenove za 60°. Model vS2 se dobiva kopiranjem istog konformera najniže energije CONF1 od A1_{t1} i postavljanjem kopirane molekule na udaljenost od 3 Å iznad originalne molekule, u složenoj poziciji (dva benzenska prstena su međusobno paralelna) i rotiranjem kopirane molekule oko osi okomito na benzenske prstenove za 180° (slika 26).

Slika 25. Optimizirani konformer oksazolina $A1_{t1}$ (CONF1) najniže energije korištenjem r²SCAN-3c kompozitne DFT razine teorije.²⁴⁶

Slika 26. Početni modeli dimera za molekule A1_{t1} (vS1 i vS2), pripremljeni softverom Avogadro iz dvije kopije A1_{t1} konformera najniže energije. Kako bi se oponašali van Staverenovi motivi vodikovih veza za model vS2 bilo je potrebno promijeniti torzijske kutove dviju amidnih skupina u odnosu na benzenske prstenove.

Svaki početni strukturni model korišten je kao ulaz u dvije neovisne CREST konformacijske pretrage,²⁴¹ s ciljem pronalaska drugih mogućih, stabilnijih dimernih agregata $A1_{t1}$ molekula.

Ovi računi su rađeni korištenjem NCI-iMTD tijeka rada, tj. iterativne metadinamičke simulacije (iMTD) s dodatnim potencijalom elipsoidnog zida.²⁴¹ CREST poslovi s početnim modelima vS1 ili vS2 završili su s 95 ili 93 nađenih konformera (tj. strukturnih modela $A1_{t1}$ -dimernih agregata) ispod energetskog praga od 6 kcal/mol.

Geometrijske optimizacije i procjena slobodnih energija. Početni strukturni ansambli monomernih i dimernih strukturnih modela koje je generirao CREST dodatno su poboljšani korištenjem CENSO procedure.²⁴² Strukture su postupno optimizirane (od grubog do vrlo uskog praga konvergencije) korištenjem r²SCAN-3c kompozitne DFT razine teorije.²⁴⁶ Tijekom optimizacija, korišten je SMD model otapala za CHCl₃.²⁴⁷ Termostatistički doprinosi Gibbsovoj energiji (G_{mRRHO}) izračunati su korištenjem Single Point Hessian (SPH) pristupa za frekvencije izračunate na GFN2-xTB razini teorije na konačnim DFT-optimiziranim geometrijama.²⁴⁸ Tijekom izračuna frekvencija korišten je ALPB model otapala za CHCl₃.²⁴⁵ Konačni izraz za potpunu Gibbsovu energiju G, tj. doprinos solvatacije otapala (G_{solv}) , izračunat je sa SMD modelom za CHCl₃.²⁴⁷ Tijekom optimizacija je bila uključena provjera za identične konformere te su u konačnim optimizacijama korišteni samo konformeri s ΔG vrijednostima nižim od 3,5 kcal/mol (za 298 K). Zatim je izračunata slobodna energija G_i za svaki konformer na šest različitih temperatura (233, 253, 273, 293, 298 i 313 K). Konačni skupovi od 47 monomernih konformera i 41 dimernih konformera te njihove slobodne energije G_i na različitim temperaturama dani su u zasebnim datotekama dostupnim u dodatnom materijalu objavljenog rada.²⁴⁹ Boltzmannove prosječne slobodne energije strukturnih cjelina pri različitim temperaturama, kao i odvojeni doprinosi $\langle G_{gas} \rangle$, $\langle G_{solv} \rangle$ i $\langle G_{mRRHO} \rangle$, dani su u tablicama 17 i 18.

Izračun NMR parametara i korelacije s eksperimentima. Za konformere s Boltzmannovom populacijom > 1% u svakom SA (monomerskom i dimerskom), ¹H-¹H J sprezanja i ¹H i ¹³C zasjenjenja izračunata su korištenjem GIAO pristupa.²⁵⁰ NMR parametri izračunati su na standardnoj DFT hibridnoj razini (PBE0-D4 funkcional i Jensenovi pcJ- 0^{251} i pcSseg- 2^{252} bazni skupovi za sprezanja, odnosno zasjenjenja).²⁵³ S informacijama dobivenim iz CREST izračuna o kemijskim/magnetskim ekvivalencijama ¹H jezgri i korištenjem eksperimentalno dobivenih NMR podataka za signale metilenskih vodikovih atoma oksazolina, zasjenjenja i J sprezanja uprosječeni su za svaki skup podataka skupljen pri svakoj temperaturi na slijedeći način: na niskim temperaturama (233, 253 i 273 K) izračunato zasjenjenje za te protone ostavljeno je neuprosječeno, dok je na visokim temperaturama (293, 298 i 313 K) izračunato zasjenjenje za ovaj signal bio prosjek dvaju GIAO izračunatih protonskih zasjenjenja. Usrednjavanje ostalih NMR parametara za protonske skupine koje se brzo izmjenjuju izvedeno je na sličan način. Ovo usrednjavanje kemijski ekvivalentnih jezgri provedeno je za svaki pojedinačni konformer u oba ansambla. Jedina razlika u uprosječnjavanju NMR parametara između skupova monomera i dimera bilo je jedno dodatno usrednjavanje kemijski identičnih atoma (ili parova atoma) za obje A1_{t1} molekule u dimeru.

Konačni NMR parametri za svaku temperaturu izračunati su pomoću relacije:

$$\operatorname{param}^{\mathrm{w}} = \sum_{\operatorname{conf.}} P_i(T) \cdot \operatorname{param}_{\operatorname{CONF}(i)}$$
(1)

gdje je param_{CONF(i)} NMR parametar konformera *i* u određenom strukturnom ansamblu (već usrednjen za protone koji se brzo izmjenjuju), a $P_i(T)$ je normalizirana populacija konformera *i* na temperaturi *T*. Populacija $p_i(T)$ je izračunata prema jednadžbi:

$$p_i(T) = \exp(-G_i/kT) / \Sigma[\exp(-G_i/kT)]$$
(2)

gdje je G_i slobodna energija konformera *i*, izračunata na temperaturi *T*. U jednadžbi (2) zbrajanje je provedeno za sve konformere u određenom ansamblu, a u (1) zbrajanje je provedeno za konformere koji imaju $P_i(T) > 2\%$. Normalizirana populacija $P_i(T)$ u (1) je populacija $p_i(T)$ pomnožena s faktorom koji normalizira zbroj populacija $P_i(T)$ u (1) na 1.

Izračunati NMR parametri (težinski usrednjeni prema Boltzmannovoj raspodjeli) za skupove monomera i dimera te korelacije izračunatih, težinski usrednjenih prosječnih zasjenjenja (σ_i^c) i eksperimentalnih kemijskih pomaka (δ_i^o), za skupove monomera i dimera, date su u dodatnom materijalu objavljenog rada.²⁴⁹ Za svaku korelaciju izračunate su teorijski određene vrijednosti kemijskih pomaka pomoću jednadžbe:

$$\delta_i^{\ c} = \mathbf{A} \cdot \ \sigma_i^{\ c} + \mathbf{B} \tag{3}$$

te vrijednosti MAE (srednja apsolutna pogreška) definirane jednadžbom:254

$$MAE = (\Sigma i |\delta_i^c - \delta_i^o|) / N.$$
 (4)

A i B su parametri dobivenih korelacijskih pravaca (koeficijenti smjera i odsječci na osi y)

¹H pomaci amidnih protona izračunatih pomoću jednadžbe (3) nalaze se u dodatnom materijalu objavljenog rada,²⁴⁹ kao i njegova apsolutna pogreška (AE = $|\delta_i^c - \delta_i^o|$) u odnosu na eksperimentalnu vrijednost.

Svi izračuni "single point" energija i optimizacije geometrija te GIAO izračuni koji su koristili CREST (verzija 2.12) i CENSO (verzija 1.2.0) procedure, izvedeni su pomoću softvera ORCA (verzija 5.0.1).²⁵⁵ Svi izračuni prosječnih NMR parametara i proračuni korelacija provedeni su pomoću programa Excel.²⁵⁶

3.2.2. Strukturna analiza metalnih kompleksa liganada $B1_H$, $B1_F$ i $B1_N$ sa Zn(II) i Co(II)

Početne geometrije za derivate metalnih kompleksa bromida i nitrata generirane su primjenom kristalne CREST/CENSO iz protokola na geometriju dobivenu strukture $[Zn(B1_H)_2(NO_3)_2]^{253,257}$ i u skladu s našim prethodnim radom.²⁴⁹ Iz CENSO struktura, početne geometrije bromidnih analoga izvedene su zamjenom R supstituenata te nitratnih aniona s bromidima i postavljanjem duljina M-X veza na duljine koje se nalaze u njihovim odgovarajućim kristalnim strukturama. Sve geometrije optimizirane su korištenjem DFT hibridnog funkcionala M05-2X/6-31+G(d)/LANL2DZ + ECP modela, koji je poznat po uspješnosti za različite Zn komplekse.²⁵⁸⁻²⁶⁰ Tijekom optimizacije geometrije korišten je implicitni SMD model solvatacije kako bi se opisali utjecaji CHCl3 ili CH3CN na strukture.²⁶¹ Termalne korekcije su izvedene iz odgovarajućih frekvencijskih izračuna, i svi prikazani rezultati odgovaraju razlikama u Gibbsovim energijama. Svi DFT izračuni izvedeni su pomoću programa Gaussian 16.262

3.3. Rendgenska kristalografija

3.3.1. Rendgenska kristalografija spojeva A

Podaci o intenzitetima difraktiranih snopova rendgenskih zraka za $A2_{m1}$ - $A1_{n5}$ prikupljeni su na sobnoj temperaturi (293 K) na Xcalibur ili XtaLAB difraktometrima korištenjem monokromatskog Cu-Ka zračenja ($\lambda = 1,54184$ Å). Podaci su obrađeni programom CrysalisPro²⁶³ (određivanje jedinične ćelije i redukcija podataka). Strukture su riješene programom SHELXT²⁶⁴ i utočnjene metodom najmanjih kvadrata (F^2 na svim podacima) programom SHELXL-2018.²⁶⁵ Osnovni eksperimentalni podaci dani su u tablicama 3, 4 i 5. Zbog bržeg mjerenja, za $A2_{m1}$ i $A1_{n4}$ dobiven je manji broj refleksa, međutim, kvaliteta konačnih strukturnih parametara za ove spojeve ostala je vrlo visoka (R vrijednosti, min. i maks. rezidualna elektronska gustoća, valjanost testa (eng. "Goodnes of fit"), itd.). Apsolutne konfiguracije ispitivanih spojeva bile su poznate iz sintetskih postupaka, tako da nisu mjereni Friedelovi suprotni refleksi. Svi parametri ne-vodikovih atoma utočnjeni su u anizotropnom modelu parametara atomskog pomaka (ADP). Terminalne fenilne skupine u $A1_{t3}$ tretirane su kao kruti prstenovi s idealnom geometrijom (AFIX 66) i jedna od njih je utočnjena preko dva djelomično popunjena položaja (orijentacije), s utočnjenim zauzećem od 0,55(2) odnosno 0,45(2). Ograničenja krutog tijela za ADP parametre (RIGU, ISOR) također su korištena za ugljikove atome terminalnih fenilnih prstenova u strukturi $A1_{t3}$. Atomi vodika, vezani na atome ugljika tretirani su u modelima krutih tijela, tj. njihovi položaji izračunati su iz položaja atoma ugljika. Torzijski kutovi metilnih i hidroksilnih skupina u svim spojevima (uključujući molekulu metanola u otapalu u strukturi A1m6) određeni su prema najboljoj prilagodbi u izračunu razlike elektronske gustoće (HFIX 137 odnosno HFIX 147). Također, korištene su restrikcije krutog tijela (RIGU) za ADP parametre za atome molekule metanola u otapalu. Iznimke od tretmana u modelu krutog tijela bili su atomi vodika vezani na atome dušika amidnih skupina, zbog njihovog sudjelovanja u vodikovim vezama. Parametri ovih atoma su bili utočnjeni slobodno, uključujući njihove izotropne ADP parametre. Dodatna ograničenja udaljenosti N-H korištena su za strukture A1_{m6}, A1_{t3} i A1_{t4}. CSD 2335938-2335948 sadrži dopunske kristalografske podatke za ova mjerenja. Ovi se podaci mogu besplatno dobiti od centra Cambridge Crystallographic Data Centre putem poveznice www.ccdc.cam.ac.uk/data request/cif.

Spoj	A1 _{p1}	A1 _{m6}	A1 _{n2}	A1 _{n4}
Formula	$C_{16}H_{20}N_2O_4$	$C_{33}H_{36}N_4O_6{\cdot}CH_4$	$C_{19}H_{20}N_2O_4$	$C_{20}H_{22}N_2O_4$
$F_{\rm w}$ (g mol ⁻¹)	304,34	616,70	340,37	354,39
Kristalni sustav	Tetragonski	Monoklinski	Monoklinski	Monoklinski
Prostorna grupa	P4 ₃ (No. 78)	<i>P</i> 2 ₁ (No. 4)	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	C2 (No. 5)
<i>a</i> (Å)	7,30610(10)	4,85790(10)	14,4335(2)	22,688(4)
<i>b</i> (Å)	7,30610(10)	21,1948(4)	13,2892(2)	5,2784(6)
<i>c</i> (Å)	29,5083(6)	15,9374(3)	9,4990(2)	16,099(2)
α (°)	90	90	90	90
β(°)	90	91,905(2)	105,099(2)	105,082(17)
γ (⁰)	90	90	90	90
V (Å ³)	1575,13(5)	1640,04(6)	1759,10(5)	1861,6(5)
Ζ	4	2	4	4
D_{calc} (g cm ⁻³)	1,283	1,249	1,285	1,264
F(000)	648	656	720	752
Instrument	XtaLAB	Xcalibur	XtaLAB	Xcalibur
Zračenje (Å)	1,54184	1,54184	1,54184	1,54184
Temperatura (K)	293(2)	293(2)	293(2)	293(2)
Skupljeni refleksi	5610	8050	12736	2235
Neovisni refleksi	2524	4801	3615	1615
Rinit	0,0253	0,0320	0,0349	0,0307
Opaženi refleksi	2375	4108	3143	1209
Parameteri	207	423	233	243
$R_1 [I > 2\sigma(I)]^{[a]}$	0,0376	0,0504	0,0528	0,0549
wR ₂ (svi podaci) ^[b]	0,0930	0,1596	0,1550	0,1352
Goof, S ^[c]	1,105	1,169	1,063	1,030
Maksimum/minimum elektronske gustoće (e $Å^3$)	0,152/-0,195	0,247/-0,228	0,306/-0,392	0,168/-0,135

Tablica 3. Kristalografski podaci za $A1_{p1}$, $A1_{m6}$, $A1_{n2}$ i $A1_{n4}$.

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. [b] $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$. [c] $S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2}$, gdje je n broj refleksa i p je ukupni broj utočnjenih parametara.

Spai	A1 _	A 1	A1 .
<u> </u>	AI_{n5}	AI_{a1}	$\frac{AI_{t4}}{C U N O}$
Formula	C20H22N2O4	C24H24N2O4	C37H35N3U7
$F_{\rm W}$ (g mol ⁻¹)	354,39	404,45	633,68
Kristalni sustav	Ortorompski	Ortorompski	Tetragonski
Prostorna grupa	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 2 ₁ 2 ₁ 2 (No. 18)	P4 ₁ 2 ₁ 2 (No. 92)
a (Å)	5,1830(1)	13,2430(4)	18,8070(2)
<i>b</i> (Å)	5,5120(1)	20,7980(6)	18,8070(2)
c (Å)	64,5994(13)	7,7513(2)	19,0641(5)
α (°)	90	90	90
β (°)	90	90	90
γ (°)	90	90	90
V (Å ³)	1845,52(6)	2134,92(10)	6743,0(2)
Z	4	4	8
D_{calc} (g cm ⁻³)	1,275	1,258	1,248
F(000)	752	856	2672
Instrument	XtaLAB	XtaLAB	Xcalibur
Zračenje (Å)	1,54184	1,54184	1,54184
Temperatura (K)	293(2)	293(2)	293(2)
Skupljeni refleksi	14023	8620	14949
Neovisni refleksi	3887	4022	5899
Rinit	0,0353	0,0318	0,0326
Opaženi refleksi	3813	3596	4958
Parameteri	243	279	434
$R_1 [I > 2\sigma(I)]^{[a]}$	0,0867	0,0468	0,0419
wR ₂ (svi podaci) ^[b]	0,2865	0,1288	0,1103
Goof, S ^[c]	1,161	1,083	1,038
Maksimum/minimum	0,498/-0,350	0,218/-0,176	0,138/-0,109
elektronske		. ,	· · · · ·
gustoće (e Å ³)			

Tablica 4. Kristalografski podaci za $A1_{n5}$, $A1_{a1}$ i $A1_{t4}$.

 $\frac{[a]}{[a]} \frac{R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|. [b]}{[b]} wR_2 = \{ \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}. [c] S = \{ \Sigma [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2}, \text{ gdje je n broj refleksa i p je ukupni broj utočnjenih parametara.}$

Spoj	$A2_{m1}$	$A4_{m5}$	$A2_{n5}$	A3 _{t3}
Formula	$C_{16}H_{20}N_2O_6$	$C_{24}H_{24}N_2O_4$	$C_{20}H_{22}N_2O_6$	C37H37N3O8
$F_{\rm w}$ (g mol ⁻¹)	336,34	404,45	386,39	651,69
Kristalni sustav	Monoklinski	Monoklinski	Monoklinski	Tetragonski
Prostorna grupa	C2 (No. 5)	C2 (No. 5)	C2 (No. 5)	P4 ₃ 2 ₁ 2 (No. 96)
<i>a</i> (Å)	6,4358(2)	20,892(2)	6,5044(4)	18,8640(2)
<i>b</i> (Å)	8,0804(3)	4,9926(3)	8,0195(6)	18,8640(2)
<i>c</i> (Å)	16,4380(6)	21,517(2)	18,7137(12)	19,6976(4)
α (°)	90	90	90	90
β (°)	98,198(3)	111,246(12)	95,141(6)	90
γ (°)	90	90	90	90
V (Å ³)	846,10(5)	2091,8(4)	972,22(11)	7009,4(2)
Z	2	4	2	8
D_{calc} (g cm ⁻³)	1,320	1,284	1,320	1,235
F(000)	356	856	408	2755
Instrument	Xcalibur	Xcalibur	Xcalibur	Xcalibur
Zračenje (Å)	1,54184	1,54184	1,54184	1,54184
Temperatura (K)	293(2)	293(2)	293(2)	293(2)
Skupljeni refleksi	1358	11420	1845	22636
Neovisni refleksi	994	3874	1343	7226
R _{init}	0,0195	0,0849	0,0258	0,0411
Opaženi refleksi	980	2974	1261	4601
Parameteri	116	281	134	443
$R_1 \ [I > 2\sigma(I)]^{[a]}$	0,0483	0,0671	0,0416	0,0852
wR ₂ (svi podaci) ^[b]	0,1483	0,1950	0,1413	0,2769
Goof, $S^{[c]}$	1,165	1,060	1,179	1,048
Maksimum/minimum elektronske gustoće (e Å ³)	0,279/-0,176	0,217/-0,222	0,292/-0,208	0,295/-0,194

Tablica 5. Kristalografski podaci za $A2_{m1}$, $A4_{m5}$, $A2_{n5}$ i $A3_{t3}$.

[a] $R_1 = \Sigma ||F_0| - |F_c|| \Sigma ||F_0|$. [b] $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$. [c] $S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2}$, gdje je n broj refleksa i p je ukupni broj utočnjenih parametara.

3.3.2. Rendgenska kristalografija spojeva B

Podaci o intenzitetima difrakcijskih snopova rendgenskih zraka za metalne komplekse $[Cd(B1_H)_2Br_2] - [Zn(B1_N)_2Br_2]$ prikupljeni su na XtaLAB ili Xcalibur difraktometrima pomoću monokromatskog Cu-Ka zračenja ($\lambda = 1,54184$ Å). Podaci su obrađeni programom CrysalisPro¹ (određivanje jedinične ćelije i redukcija podataka).²⁶³ Strukture su riješene programom SHELXT²⁶⁴ i utočnjene u skladu s postupkom najmanjih kvadrata (F^2 na svim SHELXL.²⁶⁵ podacima) programom Osnovni eksperimentalni podaci dani su u tablicama 6-10. Apsolutne konfiguracije ispitivanih spojeva poznate su iz sintetskih postupaka. Svi ne-vodikovi atomi utočnjeni su u anizotropnom modelu parametra pomaka atoma (APD). U strukturi [Zn(B1_N)₂Br₂], zbog velikih vrijednosti ADP parametara za atome unutar pojedinih benzenskih prstena korišten je model krutog benzenskog prstena (AFIX 66), kao i za molekulu toluena u spoju $[Co(B1_N)_2Br_2]$. Također, u strukturama $[Co(B1_P)_2Br_2]$ i $[Co(B1_P)_2Cb_2]$ korišten je kruti model molekule pirena, dobiven iz biblioteke idealiziranih molekuskih geometrija.²⁶⁶ Za spojeve $[Cd(\mathbf{B1}_{\mathbf{mA}})_2I_2], [Co(\mathbf{B1}_{\mathbf{mA}})_2Br_2]$ i $[Zn(\mathbf{B1}_N)_2Br_2]$ pronađene su dovoljno velike šupljine u strukturama koja su dostupne molekulama otapala, iako je jedna molekula diklormetana detektirana u strukturi $[Zn(B1_N)_2Br_2]$ i uračunata u strukturni model. Doprinos elektronske gustoće u prostoru takvih šupljina u strukturnim faktorima refleksa uračunat je postupkom SOUEEZE u programu PLATON.²⁶⁷ Atomi vodika izračunati su iz položaja atoma ugljika, dok su se parametri vodikovih atoma vezanih na dušik utočnjavali slobodno, s eventualnim ograničenjima na duljinu N-H veza. Za [Zn(B1_H)2I2] spoj primijenjena je točnija Gaussova korekcija apsorpcije s određivanjem površina kristala, što je dovelo do vrlo dobre konačne R-vrijednosti i dobre konačne rezidualne gustoće elektrona, dok je za $[Cd(B1_F)_2I_2]$ spoj primijenjena samo empirijska korekcija apsorpcije, što je mogući razlog za manje točnu strukturu (veću R-vrijednost) i manje točnu konačnu rezidualnu gustoću elektrona (visoki rezidualni vrh/minimum). Izostrukturni spojevi [Co(B1_{m2A})₂Br₂] i $Zn(B1_{m2A})_2$]Br₂ utočnjavani su kao dvokomponentni sraslaci gdje je druga komponenta kristala zarotirana za 180° oko osi c u odnosu na prvu. Utočnjeni volumni doprinos druge komponente u spoju $[Co(B1_{m2A})_2Br_2]$ je zanemariv, dok je za spoj $[Zn(B1_{m2A})_2Br_2]$ on značajan (20%), što je znatno poboljšalo parametre određene utočnjavanjem, kao i konačane R vrijednosti i elektronsku gustoću.

Spoj	$[Cd(\mathbf{B1}_{\mathbf{H}})_2Br_2]$	$[Cd(\mathbf{B1}_{\mathbf{H}})_{2}I_{2}]$	$[Cd(\mathbf{B1}_{\mathbf{mA}})_2I_2]$	$[Co(\mathbf{B1}_{\mathbf{H}})_2Br_2]$
Formula	$C_{30}H_{26}Br_2CdN_2O_2$	C ₃₀ H ₂₆ CdI ₂ N ₂ O ₂	C40H40CdI2N4O	8 C ₃₀ H ₂₆ Br ₂ CoN ₂ O ₂
$F_{\rm w}({\rm g}{ m mol}^{-1})$	718,75	812,73	1070,96	665,28
Kristalni sustav	Rompski	Rompski	Monoklinski	Rompski
Prostorna grupa	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	P212121 (No. 19)	<i>I</i> ₂ (No. 5)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)
<i>a</i> (Å)	11,6376(2)	11,6369(2)	16,5861(6)	11,6190(2)
<i>b</i> (Å)	15,6304(2)	15,6256(2)	9,8711(3)	15,6486(4)
<i>c</i> (Å)	15,8479(2)	15,8470(2)	27,9391(11)	15,7104(3)
α (°)	90	90	90	90
β(°)	90	90	101,591(4)	90
γ (°)	90	90	90	90
V (Å ³)	2882,74(7)	2881,52(7)	4481,0(3)	2856,48(11)
Ζ	4	4	4	4
D_{calc} (g cm ⁻³)	1,656	1,873	1,587	1,547
F(000)	1416	1560	2104	1332
Instrument	XtaLAB	XtaLAB	XtaLAB	XtaLAB
Zračenje (Å)	1,54184	1,54184	1,54184	1,54184
Temperatura (K)	293(2)	293(2)	293(2)	293(2)
Skupljeni refleksi	12073	10718	19663	14537
Neovisni refleksi	5397	4424	6987	5581
R _{init}	0,0283	0,0291	0,1002	0,0321
Opaženi refleksi	5059	4253	5052	4775
Parametri	334	335	500	334
$R_1 [I > 2\sigma(I)]^{[a]}$	0,0271	0,0862	0,0572	0,0336
wR ₂ (svi podaci) ^[b]	0,0694	0,2548	0,1607	0,0863
Goof, S ^[c]	1,071	1,059	1,004	1,043
Maksimum/	0,552/-0,591	4,231/-2,152	0,531/-0,945	0,593/- 0,485
minimum				
elektronske				
gustoće (e Å ³)				
Solvatacijski	-	-	351	-
volumen (Å ³)				
Br. el. u prostoru	-	-	107	-
otanala (SOUFEZE)				

Tablica 6. Kristalografski podaci za $[Cd(B1_H)_2Br_2]$, $[Cd(B1_H)_2I_2]$, $[Cd(B1_{mA})_2Br_2]$ i $[Co(B1_H)_2Br]$.

otapala (SQUEEZE) [a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. [b] $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$. [c] $S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2}$, gdje je n broj refleksa i p je ukupni broj utočnjenih parametara.

Spoj	$[\operatorname{Co}(\mathbf{B1}_{\mathbf{m2A}})_2\operatorname{Br}_2]$	$[Co(\mathbf{B1}_{\mathbf{mA}})_2Br_2]$	$[Co(\mathbf{B1}_{\mathbf{N}})_2Br_2]$	$[\operatorname{Co}(\mathbf{B1}_{\mathbf{P}})_2\operatorname{Br}_2]$
Formula	$C_{50}H_{54}Br_2CoN_6O_1$	$_4C_{40}H_{40}Br_2CoN_4O$	$_{8}$ C ₃₄ H ₃₆ Br ₂ CoN ₄ O ₂	$\cdot C_{50}H_{34}Br_2CoN_2O$
			C7H8	
$F_{\rm w}$ (g mol ⁻¹)	1181,74	923,51	843,55	913,54
Kristalni sustav	Monoklinski	Monoklinski	Rompski	Rompski
Prostorna grupa	<i>P</i> 2 ₁ (No. 4)	<i>I</i> 2 (No. 5)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 2 ₁ 2 ₁ 2 (No. 18)
<i>a</i> (Å)	10,0171(10)	16,4540(3)	12,8400(2)	88,3041(14)
<i>b</i> (Å)	12,0161(13)	9,7175(2)	15,9943(3)	27,8265(3)
<i>c</i> (Å)	23,106(2)	27,9903(6)	19,5600(5)	7,99640(10)
α (°)	90	90	90	90
β (°)	102,115(10)	102,116(2)	90	90
γ (°)	90	90	90	90
V (Å ³)	2719,3(5)	4375,73(16)	4016,97(14)	19648,7(4)
Ζ	2	4	4	20
D_{calc} (g cm ⁻³)	1,443	1,402	1,395	1,544
F(000)	1210	1876	1724	9220
Instrument	XtaLAB	XtaLAB	XtaLAB	XtaLAB
Zračenje (Å)	1,54184	1,54184	1,54184	1,54184
Temperatura (K)	265(2)	293(2)	293(2)	293(2)
Skupljeni refleksi	23090	13790	16854	82627
Neovisni refleksi	9903	7208	7044	34411
R _{init}	0,1988	0,0233	0,0403	0,0474
Opaženi refleksi	3922	6246	5460	23843
Parametri	671	508	444	2146
$R_1 [I > 2\sigma(I)]^{[a]}$	0,0821	0,0362	0,0588	0,0764
wR ₂ (svi podaci) ^[b]	0,2418	0,0935	0,1462	0,1781
Goof, $S^{[c]}$	0,925	1,029	1,140	1,031
Maksimum/	0,717/-0,630	0,435/-0,213	0,570/-0,408	1,189/-0,550
minimum				
elektronske				
gustoće (e Å ³)				
Solvatacijski	-	370	-	-
volumen (Å ³)				
Br. el. u prostoru	-	91	-	-
otapala (SQUEEZE)				

Tablica 7. Kristalografski podaci za $[Co(B1_{m2A})_2Br_2]$, $[Co(B1_{mA})_2Br_2]$, $[Co(B1_N)_2Br_2]$ i $[Co(B1_P)_2Br_2]$.

^[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. ^[b] $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$. ^[c] $S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2}$, gdje je n broj refleksa i p je ukupni broj utočnjenih parametara.

Spoj	$[Co(\mathbf{B1}_{\mathbf{P}})_2Cb_2]$	[Co(BOX1)Br ₂]	[Co(BOX2)Br ₂]	$[Zn(\mathbf{B1}_{\mathbf{F}})_2Br_2]$
Formula	C50H34Cl2CoN2O2	C ₂₁ H ₂₂ Br ₂ CoN ₂ O	$2C_{23}H_{26}Br_2CoN_2O_2$	$[C_{30}H_{24}Br_2F_2N_2O_2Zn]_3$
	$\cdot C_2H_3N$			$\cdot C_2H_3N$
$F_{\rm w}({\rm g\ mol}^{-1})$	865,67	553,15	581,21	2164,16
Kristalni sustav	Rompski	Rompski	Rompski	Monoklinski
Prostorna grupa	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 2 ₁ (No. 4)
<i>a</i> (Å)	8,98640(10)	8,9434(2)	9,6188(2)	20,3881(3)
<i>b</i> (Å)	17,3007(2)	11,9881(3)	12,4880(2)	7,6278(2)
<i>c</i> (Å)	26,6213(3)	20,7458(4)	20,1106(3)	28,2622(5)
α (°)	90	90	90	90
β(°)	90	90	90	95,495(2)
γ (°)	90	90	90	90
V (Å ³)	4138,84(8)	2224,25(9)	2415,68(7)	4375,04(15)
Ζ	4	4	4	2
$D_{\text{calc}}(\text{g cm}^{-3})$	1,389	1,652	1,598	1,643
<i>F</i> (000)	1788	1100	1164	2156
Instrument	XtaLAB	XtaLAB	XtaLAB	XtaLAB
Zračenje (Å)	1,54184	1,54184	1,54184	1,54184
Temperatura (K)	293(2)	293(2)	293(2)	293(2)
Skupljeni	21554	8862	10526	35198
refleksi				
Neovisni	8108	4000	4384	15337
refleksi				
Rinit	0,0349	0,0295	0,0296	0,0338
Opaženi refleksi	7208	3540	3834	14115
Parametri	458	255	273	1082
$R_1 [I > 2\sigma(I)]^{[a]}$	0,0515	0,0325	0,0310	0,0449
wR ₂ (svi podaci) ^[b]	0,1455	0,0781	0,0688	0,1304
Goof, <i>S</i> ^[c]	1,037	1,038	1,052	1,034
Maksimum/	0,516/-0,469	0,345/-0,430	0,344/-0,416	1,471/-0,735
minimum				
elektronske				
gustoće (e Å ³)				
Solvatacijski	-	-	-	-
volumen (Å ³)				
Br. el. u	-	-	-	-
prostoru				
otapala				
(SQUEEZE)				

Tablica 8. Kristalografski podaci za $[Co(B1_P)_2Cb_2]$, $[Co(BOX1)Br_2]$, $[Co(BOX2)Br_2]$ i $[Zn(B1_F)_2Br_2]$.

^[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. ^[b] $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$. ^[c] $S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2}$, gdje je n broj refleksa i p je ukupni broj utočnjenih parametara.

Spoj	$[Zn(\mathbf{B1}_{\mathbf{H}})_2Br_2]$	$[Zn(\mathbf{B1}_{\mathbf{H}})_2I_2]$	$[Zn(B1_H)_2(NO_3)_2]$	$[Zn(B1_{m2A})_2Br_2]$
Formula	$C_{30}H_{26}Br_2N_2O_2Z_1$	$nC_{30}H_{26}I_2N_2O_2Zn$	$C_{30}H_{26}N_4O_8Zn$	$C_{50}H_{54}Br_2N_6O_{14}$
			CH ₂ Cl ₂	Zn
$F_{\rm w}$ (g mol ⁻¹)	671,72	765,70	720,84	1188,18
Kristalni sustav	Rompski	Rompski	Rompski	Monoklinski
Prostorna grupa	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	P212121 (No. 19)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 2 ₁ (No. 4)
<i>a</i> (Å)	11,61390(10)	11,6207(2)	10,5827(2)	9,9588(3)
<i>b</i> (Å)	15,6548(2)	15,7953(2)	15,4896(3)	11,8825(3)
<i>c</i> (Å)	15,7104(2)	16,0535(2)	19,1308(3)	23,1348(12)
α (°)	90	90	90	90
β (°)	90	90	90	102,198(4)
γ (°)	90	90	90	90
V (Å ³)	2856,36(6)	2946,66(7)	3135,95(10)	2675,86(18)
Ζ	4	4	4	2
D_{calc} (g cm ⁻³)	1,562	1,726	1,527	1,475
<i>F</i> (000)	1344	1488	1480	1216
Instrument	Xcalibur	XtaLAB	XtaLAB	XtaLAB
Zračenje (Å)	1,54184	1,54184	1,54184	1,54184
Temperatura (K)	293(2)	290(2)	200(2)	293(2)
Skupljeni refleksi	9441	19506	13020	13531
Neovisni refleksi	5258	5960	5888	5960
R _{init}	0,0263	0,0296	0,0380	0,0868
Opaženi refleksi	4743	5606	5679	4957
Parametri	334	334	415	681
$R_1 [I > 2\sigma(I)]^{[a]}$	0,0371	0,0242	0,0419	0,0721
wR ₂ (svi podaci) ^[b]	0,1024	0,0568	0,1160	0,2032
Goof, $S^{[c]}$	1,061	1,046	1,040	1,040
Maksimum/minimum	0,521/-0,468	0,648/-0,468	0,946/-0,746	0,905/-0,912
elektronske gustoće (e				
Å ³)				
Solvatacijski volumen	-	-	-	-
(Å ³)				
Br. el. u prostoru	-	-	-	-
otapala (SQUEEZE)				

Tablica 9. Kristalografski podaci za [Zn($B1_H$)₂Br₂], [Zn($B1_H$)₂I₂], [Zn($B1_H$)₂(NO₃)₂] i [Zn($B1_{m2A}$)₂Br₂].

 $\frac{|S_{\rm eq}(1-1)|^2}{[a] R_1 = \Sigma ||F_0| - |F_c||^2 \Sigma |F_0|. [b] wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}. [c] S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2}, \text{ gdje je n broj refleksa i p je ukupni broj utočnjenih parametara.}$

Spoj	$[Zn(\mathbf{B1}_{\mathbf{mA}})_2Br_2]$	$[Zn(B1_N)_2Br_2]$
Formula	$C_{40}H_{40}Br_2N_4O_8Zn$	$[C_{34}H_{36}Br_2N_4O_2Zn]_3 \cdot CH_2Cl_2$
$F_{\rm w}$ (g mol ⁻¹)	929,95	2358,49
Kristalni sustav	Rompski	Triklinski
Prostorna grupa	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 1 (No. 1)
<i>a</i> (Å)	13,3934(2)	10,1623(2)
<i>b</i> (Å)	16,7400(3)	17,4237(2)
c (Å)	17,6341(2)	17,5862(4)
α(°)	90	61,320(2)
β(°)	90	76,181(2)
γ (°)	90	83,6630(10)
V (Å ³)	3953,66(10)	2652,76(10)
Ζ	4	1
D_{calc} (g cm ⁻³)	1,562	1,476
F(000)	1888	1194
Instrument	XtaLAB	XtaLAB
Zračenje (Å)	1,54184	1,54184
Temperatura (K)	293(2)	293(2)
Skupljeni refleksi	20590	43466
Neovisni refleksi	7973	16035
R _{init}	0,0429	0,0385
Opaženi refleksi	7081	15545
Parametri	508	1189
$R_1 \ [I > 2\sigma(I)]^{[a]}$	0,0315	0,0492
wR ₂ (svi podaci) ^[b]	0,0795	0,1284
Goof, $S^{[c]}$	1,033	1,066
Maksimum/minimum	0,342/-0,262	2,508/-1,375
elektronske gustoće (e Å ³)		
Solvatacijski volumen (Å ³)	-	212
Br. el. u prostoru	-	52
otapala (SQUEEZE)		
[a] $\mathbf{D}_{i} = \mathbf{\Sigma} \mathbf{E}_{i} - \mathbf{E}_{i} / \mathbf{\Sigma}_{i} \mathbf{E}_{i} + [\mathbf{b}]$	$(\Sigma E_{\rm ev}) = (\Sigma E_{\rm ev})^2 = E^2$	$\sqrt{21} \sum \left[\frac{E}{2} + \frac{2}{21} \right] \frac{1}{2} \left[\frac{E}{2} \left[\frac{E}{2} \right] \frac{1}{2} \left[\frac{E}{2} \right] \frac{1}{2} \left[\frac{E}{2} \left[\frac{E}{2} \left[\frac{E}{2} \right] \frac{1}{2} \left[\frac{E}{2} \left[\frac{E}{2} \left[\frac{E}{2} \right] \frac{1}{2} \left[\frac{E}{2} \left$

	Tablica	10. Kristalografski	podaci za [Zn	$(\mathbf{B1}_{\mathbf{mA}})_2 \operatorname{Br}_2$] i [Zn	$(B1_N)_2Br_2$]
--	---------	---------------------	---------------	---	------------------

^[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. ^[b] $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$. ^[c] $S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2}$, gdje je n broj refleksa i p je ukupni broj utočnjenih parametara.

3.3.3. Rendgenska kristalografija spoja [Rh(C1c*)2COD]BF4

Podaci o intenzitetima difraktiranih snopova rendgenskih zraka za metalni kompleks [Rh(C1c*)2COD]BF4 prikupljeni su na XtaLAB difraktometru pomoću monokromatskog Cu-K α zračenja ($\lambda = 1,54184$ Å). Podaci su obrađeni programom CrysalisPro²⁶³ (određivanje jedinične ćelije i redukcija podataka). Strukture su riješene programom SHELXT²⁶⁴ i pročišćene u skladu s postupkom najmanjih kvadrata (F^2 na svim podacima) programom SHELXL.²⁶⁵ Osnovni eksperimentalni podaci dani su u tablici 11. Apsolutne konfiguracije ispitivanih spojeva poznate su iz sintetskih postupaka. Svi ne-vodikovi atomi utočnjeni su u anizotropnom modelu parametara pomaka atoma (ADP). Struktura se sastoji od tri molekule (iona) u asimetričnoj jedinici: dva C_2 -simetrična [Rh(C1c*)2COD]⁺ kompleksa i [BF4]⁻ aniona. Molekulske simetrije oba kompleksa su kristalografske simetrije I_2 prostorne grupe, tako da samo jedna polovica oba kompleksa pripada asimetričnoj jedinici kristalne strukture. Ograničenja krutog tijela primijenjena su na sve atome COD skupina i na atome aniona [BF4]. Atomi vodika izračunati su iz položaja atoma ugljika. Torzijski kutovi metilnih skupina određeni su prema najboljoj prilagodbi u izračunu razlike elektronske gustoće (HFIX 137). Položaji i parametri izotropnog pomaka atoma vodika amida su utočnjeni, a njihove udaljenosti do atoma dušika prilagođene su na vrijednost 0,86 Å. Nađeno je dodatno beskonačno područje dostupno otapalu (tuneli) od 2046 Å³ po jediničnoj ćeliji, bez značajnih maksimuma gustoće elektrona. Doprinos gustoće elektrona iz ovog područja u izračunatim strukturnim faktorima obračunat je postupkom SQUEEZE u programu PLATON.²⁶⁷ CSD 2379143 sadrži dopunske kristalografske podatke za ova mjerenja. Ovi se podaci mogu besplatno dobiti od Cambridge Crystallographic Data Centra putem poveznice www.ccdc.cam.ac.uk/data_request/cif.

Spoj	[Rh(C1c*) ₂ COD]BF ₄
Formula	XtaLAB Synergy
$F_{\rm w}$ (g mol ⁻¹)	293(2)
Kristalni sustav	$[C_{48}H_{52}N_4O_8Rh][BF_4]$
Prostorna grupa	1002,65
a (Å)	Monoklinski
b (Å)	I ₂
<i>c</i> (Å)	20,5437(4)
α (°)	10,4027(4)
β(°)	30,6083(9)
γ (⁰)	90
V (Å ³)	106,710(3)
Ζ	90
D_{calc} (g cm ⁻³)	6265,1(3)
F(000)	4
Instrument	1 (1/2+1/2)
Zračenje (Å)	1,063
Temperatura (K)	2072
Skupljeni refleksi	27698
Neovisni refleksi	10689
R _{init}	0,0287
Opaženi refleksi	9566
Parameteri	606
$R_1 \ [I > 2\sigma(I)]^{[a]}$	0,0346
wR_2 (svi podaci) ^[b]	0,1010
Goof, $S^{[c]}$	1,110
Maksimum/minimum elektronske gustoće (e Å ³)	0,617/-0,528
Solvatacijski volumen (Å ³)	2046
Broj e- u prostoru otapala (SQUEEZE)	473
	$= \frac{1}{2} \frac{1}{2} = \frac{1}{2} $

Tablica 11. Kristalografski podaci za [Rh(C1c*)2COD]BF4.

 $\frac{[a]}{[a]} R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|. [b] wR_2 = \{ \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}. [c] S = \{ \sum [w(F_0^2 - F_c^2)^2] / (n-p) \}^{1/2}, \text{ gdje je n broj refleksa i p je ukupni broj utočnjenih parametara.}$

3.4. Opće metode priprave prekursora, liganada i metalnih kompleksa

Opći postupak sinteze diamida u diklormetanu, one-pot sinteza I. Dikarboksilna kiselina (1 ekvivalent) je otopljena u diklormetanu (100 mL). Dodani su reagensi za peptidno vezanje (TBTU/HOBt, HATU ili DCC; 1 ekvivalent) i DIPEA (2 ekvivalenta) i miješanje je nastavljeno 1 h na sobnoj temperaturi (TBTU/HOBt, HATU). Polaganim, kontinuiranim dodavanjem vrlo malih dodataka uz miješanje, dodani su aminokiselina (0,5 ekvivalenta) i aminoalkohol (0,5 ekvivalenta) te je miješanje nastavljeno 24 sata. Postupak dodavanja reagensa za peptidno vezanje, DIPEA i amina je zatim ponovljen na isti način kao što je gore navedeno i miješanje je nastavljeno još 24 sata. Nakon toga je reakcijska smjesa isprana sa zasićenom vodenom otopinom NaHCO₃ (3 × 100 ml), 10%-tnom vodenom otopinom limunske kiseline (3 × 100 mL) i zasićenom vodenom otopinom NaCl (100 ml). Otopina produkta je sušena na bezvodnom Na₂SO₄, filtrirana i uparena pod sniženim tlakom čime se dobio sirovi produkt. Sirovi produkt je zatim pročišćavan klasičnom kolonskom ili automatskom *flash* kromatografijom.

Opći postupak sinteze diamida u dimetilformamidu, one-pot sinteza II. Izoftalna kiselina (1 ekvivalent), aminokiselina (1 ekvivalent), aminoalkohol (1 ekvivalent) i diizopropiletilamin (DIPEA, 4 ekvivalenta) otopljeni su u dimetilformamidu (15 mL) i reakcijska smjesa ohlađena na 0 °C u ledenoj kupelji. Reagens za peptidno vezanje (pyAOP ili COMU; 2 ekvivalenta) dodan je polaganim, kontinuiranim dodavanjem vrlo malih dodataka uz miješanje. Miješanje je nastavljeno preko noći. Reakcijska smjesa je zatim razrijeđena etilacetatom (100 mL) i isprana sa zasićenom otopinom NaHCO₃ (3 × 100 ml), 10%-tnom vodenom otopinom limunske kiseline (3 × 100 mL) i zasićenom vodenom otopinom NaCl (100 ml). Otopina produkta je sušena na bezvodnom Na₂SO₄, filtrirana i uparena pod sniženim tlakom čime se dobio sirovi produkt. Sirovi produkt je zatim pročišćavan klasičnom kolonskom ili automatskom *flash* kromatografijom.

Napomena: Ovisno o reagensu za peptidno vezanje koji je korišten u sintezi amidnih spojeva, tragovi tetrametilureje (TMU) ili tri(pirolidin-1-il)fosfin oksida (TPYRPO) mogu biti prisutni u smjesi s prekursorima nakon kromatografije, δ (TMU)/ppm: 2,80 i δ (TPYRPO)/ppm: 3,16,

1,81 u ¹H NMR (CDCI₃). Ako je u uzorcima prekursora bila prisutna značajna količina TMU ili TPYRPO, odgovarajuća iskorištenja prekursora izračunata su iz njihovih NMR spektara.

Opći postupak sinteze oksazolina. Dietilaminosumpor trifluorid (1,5 ekvivalenta) dodan je kap po kap u ohlađenu otopinu (-78 °C) aminoalkoholnog prekursora (1 ekvivalent) u suhom CH₂Cb₂ (14 mL). Nakon miješanja 1 sat, dodan je bezvodni K₂CO₃ (2 ekvivalenta) u jednom obroku i smjesa je ostavljena da se zagrije na sobnu temperaturu uz miješanje. Reakcijska smjesa se zatim razrijedi s 40 mL EtOAc i pomiješa sa zasićenom vodenom otopinom NaHCO₃ (20 mL). Dvofazna smjesa je ekstrahirana s EtOAc (2 x 40 mL). Kombinirani organski ekstrakti su isprani s vodom (100 mL) i NaCl (zas. aq., 100 mL), osušeni nad bezvodnim Na₂SO₄ i upareni pod sniženim tlakom kako bi se dobio sirovi produkt.¹³¹

Opći postupak sinteze metalnih kompleksa Zn(II), Cd(II) i Co(II). Metalni prekursor je izvagan u staklenoj bočici i otopljen u 2,5 mL CH₂Cl₂ ili smjesi otapala CH₂Cl₂ i CH₃CN ili CH₃OH (2:1) (kadmij i nehalogenidni prekursori). Dodana je otopina liganda u CH₂Cl₂ (2,5 mL) i sve je miješano 4 sata. Otopine su filtrirane preko filter papira s plavom vrpcom, a otapalo je upareno pod sniženim tlakom. Krutine su isprane tri puta nepolarnom smjesom otapala kako bi se uklonio višak liganda (8 : 2 = heksan : EtOAc za **B1**_H i **B1**_F, 1 : 1 = heksan : EtOAc za sve ostale ligande), osušene te ponovno otopljene u CH₂Cl₂. Bez daljnjeg pročišćavanja, heksan (5 mL) je nadslojen na otopinu kompleksa i ostavljen djelomično zatvoren radi sporog isparavanja. Monokristali su dobiveni tijekom nekoliko dana ili tjedana.

Opći postupak sinteze prekatalitičkih Rh(I) i Ir(I) kompleksa. Pripravljene su otopine poznatih koncentracija metalnih prekursora [Rh(COD)₂]BF₄ i [Ir(COD)₂]BArF te liganada u suhom CH₂Cl₂ pod argonom (ili CD₂Cl₂ za NMR mjerenja). Svi kompleksi su sintetizirani *in situ* pod argonom ubrizgavanjem i razrjeđivanjem željenih omjera prekursora u viale sa septom uz miješanje 1 sat prije provođenja željenih mjerenja ili eksperimenata. Sva spektroskopska mjerenja su provođena ubrizgavanjem otopine kompleksa pod argonom uz pomoć Hamilton[®] injekcija u argonom propuhanim kivetama sa septom ili Youngovim NMR cijevčicama.

3.5. Sinteza prekursora A

3.5.1. One-pot sinteze prekursora A3

Reakcije 1-21, navedene u nastavku, provedene su korištenjem procedure one-pot sinteze I.

Reakcija 1. Korišteni su izoftalna kiselina (2,5 mmol), HOBt (5,0 mmol), TBTU (5,0 mmol), H-Ala-OMe·HCl (2,5 mmol), AMP (2,5 mmol) i DIPEA (10 mmol). Kromatografija: 30 g silikagela, početni omjer heksan : etil-acetat = 1 : 1, postupno promijenjen do 1:9. Izolirana su bezbojna ulja $A2_{m1}$ (8,0 mg, 1%) i $A6_{m1}$ (55,5 mg, 4%). Frakcije koje sadrže smjese od $A7_{m1}$ i $A8_{m1}$ su spojene, uparene i odvojene drugom kromatografijom na stupcu u 4% CH₃OH u CH₂Cb sustavu otapala. Izolirana su bezbojna ulja $A7_{m1}$ (94,4 mg, 4%) i $A8_{m1}$ (22,6 mg, 2%).

Reakcija 2. Korišteni su izoftalna kiselina (1,0 mmol), DCC (2 mmol), H-Ala-OMe·HCl (1,0 mmol), AMP (1,0 mmol) i DIPEA (4,0 mmol). TLC analizom reakcijske smjese potvrđeno je da nije dobiven $A3_{m1}$.

Reakcija 3. Korišteni su izoftalna kiselina (1,0 mmol), pyAOP (2 mmol), H-Ala-OMe·HCl (1,0 mmol), AMP (1,0 mmol) i DIPEA (4,0 mmol). Kromatografija: 30 g silikagela, 3% CH₃OH u CH₂Cl₂. Izolirano je bezbojno ulje $A3_{m1}$ (54,2 mg, 17%).

Reakcija 4. Korišteni su izoftalna kiselina (1,0 mmol), COMU (2,0 mmol), H-Ala-OMe·HCl (1,0 mmol), AMP (1,0 mmol) i DIPEA (4 mmol). Kromatografija: 30 g silikagela, 3% CH₃OH u CH₂Ch. Izolirana su bezbojna ulja $A2_{m1}$ (83,0 mg, 25%), $A3_{m1}$ (42,3 mg, 13%) i $A7_{m1}$ (24,4 mg, 4%).

Reakcija 5. Korišteni su izoftalna kiselina (2,0 mmol), HATU (4,0 mmol), H-Ala-OMe·HCl (2,0 mmol), AMP (2,0 mmol) i DIPEA (8 mmol). Kromatografija: 30 g silikagela, heksan : etil-acetat = 2 : 8. Izolirano je bezbojno ulje $A2_{m1}$ (130,4 mg, 20 %) i bijeli čvrsti spoj $A3_{m1}$ (97,0 mg, 15 %).

Reakcija 6. Izoftalna kiselina (0,5 mmol), HATU (1,0 mmol), DIPEA (2,0 mmol) i AMP (1,0 mmol). Nakon dodavanja prvog 0,5 ekvivalenta AMP-a, bijeli prah se odmah istaložio. Nakon

što je reakcija završena, bijeli talog je odfiltriran preko filter papira (plava vrpca) pod vakuumom i ispran s diklormetanom. Izolirana je bijela krutina $A4_{m1}$ (41,8 mg, 27%).

Reakcija 7. Korišteni su tereftalna kiselina (4,0 mmol), HATU (8,0 mmol), H-Ala-OMe·HCl (4,0 mmol), AMP (4,0 mmol) i DIPEA (16,0 mmol). Kromatografija: 30 g silikagela, heksan : etil-acetat = 25 : 75. Izolirani su bijeli prah $A2_p$ (434,2 mg, 17%), te bijelo-žuta praškasta smjesa $A3_p$ i $A7_p$ (184,2 mg, 9 % spoja $A3_p$ i 5% spoja $A7_p$ procijenjeno prema NMR podacima).

Reakcija 8. Korišteni su izoftalna kiselina (4,0 mmol), HATU (8,0 mmol), H-Phe-OMe·HCl (4,0 mmol), ETA (4,0 mmol) i DIPEA (16,0 mmol). Nakon završetka miješanja reakcije bijeli talog je odfiltriran, a uparavanjem filtrata dobiven je sirovi produkt. Kromatografija: 30 g silikagela, $1,5\% \rightarrow 5\%$ CH₃OH u CH₂Cl₂. Izolirana je bijela krutina A3_{m2} (329,8 mg, 22%).

Reakcija 9. Korišteni su izoftalna kiselina (4,0 mmol), HATU (8,0 mmol), H-Ala-OMe·HCl (4,0 mmol), Val[#] (4,0 mmol) i DIPEA (8 mmol). Automatska *flash* kromatografija: $0\% \rightarrow 1\%$ CH₃OH u CH₂Cl₂. Izolirana je bijela krutina **A3**_{m3} (236,0 mg, 16%). Spoj **A2**_{m1} je opažen prilikom obrade reakcijske smjese, ali nije izoliran.

Reakcija 10. Korišteni su izoftalna kiselina (4,0 mmol), HATU (8,0 mmol), H-Ala-OMe·HCl (4,0 mmol), Phe[#] (4,0 mmol) i DIPEA (16 mmol). Automatska *flash* kromatografija: $0\% \rightarrow 1\%$ CH₃OH u CH₂Cl₂. Izolirana je bijela krutina $A3_{m4}$ (395,1 mg, 26%). Spoj $A2_{m1}$ je opažen prilikom obrade reakcijske smjese, ali nije izoliran.

Reakcija 11. Korišteni su izoftalna kiselina (4,0 mmol), HATU (8,0 mmol), H-Ala-OMe·HCl (4,0 mmol), Phg[#] (4,0 mmol) i DIPEA (16 mmol). Kromatografija: 30 g silikagela, $1\% \rightarrow 10\%$ CH₃OH u CH₂Cl₂. Izolirana je bezbojna krutina s gumenom konzistencijom A3_{m5} (185,2 mg, 13%). Spoj A2_{m1} je opažen prilikom obrade reakcijske smjese, ali nije izoliran.

Reakcija 12. Korišteni su izoftalna kiselina (2,4 mmol), HATU (4,8 mmol), H-Gly-Val-Phe-OMe (2,4 mmol, pripremljen prema poznatom postupku),⁵² Phg[#] (2,4 mmol) i DIPEA (9,2 mmol). Kromatografija: 60 g silikagela, 5% \rightarrow 10% CH₃OH u CH₂Cl₂. Utvrđeno
je da je bezbojna krutina s gumenom konzistencijom, $A3_{m6}$ (753,6 mg, <52%) kontaminirana spojem $A4_{m5}$. Spoj $A2_{m6}$ je opažen prilikom obrade reakcijske smjese, ali nije izoliran.

Reakcija 13. Korišteni su 1,4-naftalen dikarboksilna kiselina (2,5 mmol), HATU (5,0 mmol), H-Ala-OMe·HCl (2,5 mmol), AMP (2,5 mmol) i DIPEA (10,0 mmol). Kromatografija: 30 g silikagela, heksan : etil-acetat = 4 : 6, omjer se postupno mijenja do 3 : 7. Izolirane su bijele praškaste krutine $A2_{n1}$ (189,6 mg, 8%) i $A3_{n1}$ (333,0 mg, 36%).

Reakcija 14. Korišteni su 1,4-naftalen dikarboksilna kiselina (2,0 mmol), HATU (4,0 mmol), H-Gly-OMe·HCl (2,0 mmol), AMP (2,0 mmol) i DIPEA (8 mmol). Kromatografija: 40 g silikagela, heksan : etil-acetat = 2 : 8, omjer je postupno mijenjan do čistog etil-acetata. Izolirane su bijele praškaste krutine $A2_{n2}$ (117,6 mg, 17%) i $A3_{n2}$ (134,2 mg, 18%).

Reakcija 15. Korišteni su 1,5-naftalen dikarboksilna kiselina (2,0 mmol), HATU (4,0 mmol), H-Ala-OMe·HCl (2,0 mmol), AMP (2,0 mmol) i DIPEA (8 mmol). Nakon dodavanja drugog 0,5 ekvivalenta AMP-a, nakon nekog vremena istaložio se bijeli prah. Kada je reakcija završena, bijeli talog je odfiltriran preko filter papira (plava vrpca) pod vakuumom i ispran s CH₂Ch. NMR spektroskopijom je potvrđeno da je bijeli talog spoj $A4_{n3}$ (41,8 mg, 17%). Automatska *flash* kromatografija: 2% CH₃OH u CH₂Ch, omjer je postupno mijenjan do 3% CH₃OH. Izolirane su bijele praškaste krutine $A2_{n3}$ (119,9 mg, 16%) i $A3_{n3}$ (113,7 mg, 15%).

Reakcija 16. Korišteni su 2,6-naftalen dikarboksilna kiselina (2,0 mmol), HATU (4,0 mmol), H-Ala-OMe·HCl (2,0 mmol), AMP (2,0 mmol) i DIPEA (8 mmol). Nakon dodavanja drugog 0,5 ekvivalenta AMP-a, nakon nekog vremena istaložio se bijeli prah. Kada je reakcija završena, bijeli talog je filtriran preko filter papira s plavom vrpcom pod vakuumom i ispran s CH₂Cl₂. NMR spektroskopijom je potvrđeno da je bijeli talog A4_{n4} (245,9 mg, 38%). Kromatografija: 2% CH₃OH u CH₂Cl₂, omjer je postupno mijenjan do 10% CH₃OH. Izolirane su bijele praškaste krutine A2_{n4} (34,3 mg, 5%), A3_{n4} (247,1 mg, 33%) i A4_{n4} (31,9 mg, 5%).

Reakcija 17. Korišteni su 2,7-naftalen dikarboksilna kiselina (2,0 mmol), HATU (4,0 mmol), Ala-OMe·HCl (2,0 mmol), AMP (2,0 mmol) i DIPEA (8 mmol). Kromatografija: 30 g

silikagela, heksan : etil-acetat = 1 : 1, omjer je postupno mijenjan do 2 : 8. Izolirani su žuti $A2_{n5}$ (136,2 mg, 18%) i bijeli $A3_{n5}$ (31,9 mg, 23%) praškasti uzorci.

Reakcija 18. Korišteni su 9,10-antracen dikarboksilna kiselina (1,9 mmol) i HATU. Amini su dodani odmah nakon vidljivog otapanja HATU. Kromatografija: 30 g silikagela, 2% CH₃OH u CH₂Cl₂. Izolirani su žuti prahovi $A2_a$ (150,1 mg, 19%) i $A3_a$ (127,1 mg, 16%).

Reakcija 19. Trimesinska kiselina (2,0 mmol), HATU (dodatak prvi dan: 2,8 mmol, dodatak drugi dan: 3,5 mmol), TEA (dodatak prvi dan: 12,0 mmol, dodatak drugi dan: 12 mmol), H-Ala-OMe·HCl (dodatak prvog dana: 3,0 mmol), AMP (dodatak drugog dana: 3,5 mmol). Kromatografija: 50 g silikagela, $3,5\% \rightarrow 5\%$ CH₃OH u CH₂Cl₂. Izolirane su žute krutine A2_{tl} (159,7 mg, 6%), A3_{tl} (244,8 mg, 27%) i A4_{tl} (87,7 mg, 10%).

Reakcija 20. Trimesinska kiselina (2,0 mmol), HATU (dodatak prvi dan: 2,8 mmol, dodatak drugi dan: 3,5 mmol), TEA (dodatak prvi dan: 12,0 mmol, dodatak drugi dan: 12 mmol), H-Gly-OMe·HCl (dodatak prvog dana: 3,0 mmol), Val[#] (dodatak drugog dana: 3,5 mmol). Kromatografija: 50 g silikagela, 5% \rightarrow 8% CH₃OH u CH₂Cl₂. Izolirane su svijetložute krutine A2_{t2} (17,7 mg, 2%), A3_{t2} (138,96 mg, 16%) i A4_{t2} (56,2 mg, 6%).

Reakcija 21. Trimesinska kiselina (2,0 mmol), COMU (dodatak prvi dan: 1,0 mmol, dodatak drugi dan: 2,2 mmol), TEA (dodatak prvi dan: 4,0 mmol, dodatak drugi dan: 8 mmol), H-Phe-OMe·HCl (dodatak prvog dana: 1,0 mmol), Phg[#] (dodatak drugog dana: 2,2 mmol). Kromatografija: 50 g silikagela, $3\% \rightarrow 5\%$ CH₃OH u CH₂Cb. Izolirane su bijele krutine A3_{t5} (59,0 mg, 5%), A4_{t5} (324,4 mg, 26%) i A5_{t5} (51,9 mg, 5%).

MeO-Ala-*m***C**₆**H**₄**-Ala-OMe** (**A2**_{m1}). Reakcije 1, 4 i 5. Mr(C₁₆H₂₀N₂O₆) = 336,13. ESI-MS (*m*/*z*): 337,3 (M + H⁺), 673,6 (2M + H⁺). Kristali prikladni za rendgensku difrakciju na monokristalu dobiveni su iz smjese diklorometana i vođe nakon mjesec dana. ¹H NMR (600 MHz, CDC1₃) δ /ppm: 8,22 (s, 1H), 7,95 (d, *J* = 7,7 Hz, 2H), 7,52 (t, *J* = 7,7 Hz, 1H), 6,87 (d, *J* = 7,0) Hz, 2H), 4,82 (kvin., *J* = 7,2 Hz, 2H), 3,80 (s, 6H), 1,54 (d, *J* = 7,2 Hz, 6H). ¹³C NMR (151 MHz, CDC1₃) δ /ppm: 172,88, 165,24, 133,20, 129,57, 128,06, 124,42, 51,75, 47,76, 17,33.

MeO-Ala-*m***C**₆**H**₄**-AMP** (A3_{m1}). Reakcije 3, 4 i 5. Mr(C₁₆H₂₀N₂O₆) = 322,15. ESI-MS (*m/z*): 323,1 (M + H⁺), 645,2 (2M + H⁺), 667,2 (2M + Na⁺). ¹H NMR (600 MHz, CDC1₃) δ /ppm: 8,11 (s, 1H), 7,87 (d, *J* = 7,8 Hz, 2H), 7,45 (t, *J* = 7,7 Hz, 1H), 7,04 (d, *J* = 7,1) Hz, 1H), 6,38 (s, 1H), 4,80 (kvin., *J* = 7,2 Hz, 1H), 4,48 (t, *J* = 6,2 Hz, 1H), 3,81 (s, 3H), 3,76 - 3,67 (m, 2H), 1,53 (d, *J* = 7,2 Hz, 3H), 1,43 (s, 5H). ¹³C NMR (151 MHz, CDC1₃) δ /ppm: 174,, 167,, 166,, 135,5, 133,7, 130,5, 130,0, 129,0, 125,3, 70,3, 56,7, 52,8, 48,79, 24,6, 24,5, 18,2.

AMP-*m***C**₆**H**₄**-AMP** (**A**4_{**m**1}). Reakcija 6. ¹H NMR (600 MHz, DMSO) δ /ppm: 8,46 – 8,41 (m, 1H), 7,89 (dd, *J* = 7,5, 1,6 Hz, 3H), 7,29 (t, *J* = 7,5 Hz, 2H), 3,34 (s, 4H), 1,15 (s, 13H). ¹³C NMR (151 MHz, DMSO) δ /ppm: 170,24, 137,45, 130,39, 130,05, 126,56, 67,43, 53,58, 23,19.

MeO-Ala-*m***C**₆**H**₄**-AMP-***m***C**₆**H**₄**-Ala-OMe** (A6_{m1}). Reakcija 1. Mr(C₄₀H₄₆N₄O₁₂) = 555,22. ESI-MS (*m*/*z*): 556,4 (M + H⁺), 1111,9 (2M + H⁺). ¹H NMR (600 MHz, CDC1₃) δ /ppm: 8,45 (s, 1H), 8,19 - 8,08 (m, 2H), 8,03 - 7,96 (m, 1H), 7,90 - 7,80 (m, 2H), 7,48 (t, *J* = 7,8 Hz, 1H), 7,42 (t, *J* = 7,7 Hz, 1H), 7,07 - 6,96 (m, 2H), 6,64 (s, 1H), 4,82 - 4,71 (m, 2H), 4,57 (s, 2H)), 3,76 (t, *J* = 5,0 Hz, 6H), 1,58 (d, *J* = 3,3 Hz, 6H), 1,52-1,46 (m, 6H). ¹³C NMR (151 MHz, CDC1₃) δ /ppm: 173,7, 173,6, 166,5, 166,2, 166,2, 165,9, 132,7, 132,1, 130,, 130,3, 130,1, 129,0, 129 0,0, 128,3, 125,3, 70,4, 54,6, 52,7, 48,7, 48,7, 24,3, 24,2, 18,4.

AMP-mC₆H₄-AMP-mC₆H₄-Ala-OMe (A7_{m1}). Reakcija 1. Mr(C₂₈H₃₅N₃O₈) = 541,24. ESI-MS (m/z): 542,4 (M + H⁺), 1105,9 (2M + Na⁺). ¹H NMR (600 MHz, CDC1₃) δ /ppm: 8,48 (s, 1H), 8,18 (d, J = 7,8 Hz, 1H), 8,07 (s, 1H), 8,02 (d, J = 7,8 Hz, 1H), 7,90-7,86 (m, 2H), 7,56-7,47 (m, 2H), 6,93 (d, J = 7,2 Hz, IH), 6,66 (s, 1H), 6,38 (s, 1H), 4,79 (kvin., J IH = 7,2 Hz, 1H), 4,58 (s, 2H), 3,79 (s, 3H), 3,70 (s, 2H), 1,61-1,59 (m, 6H).

AMP-*m***C**₆**H**₄**-AMP***(***A8**_{m1}**)**. Reakcija 1. Mr(C₂₈H₃₇N₃O₇) = 527,26. ESI-MS (*m*/*z*): 528,4 (M + H⁺), 1077,9 (2M + Na⁺). ¹H NMR (600 MHz, CDC1₃) δ /ppm: 8,33 (s, 1H), 8,08 (d, *J* = 7,7 Hz, 1H), 8,00 (s, 1H), 7,90 (d, *J* = 7,8 Hz, 1H), 7,78 (d, *J* = 7,7 Hz, 1H), 7,73 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, IH), 7,34 (t, *J* = 7,7 Hz, 1H), 6,76 (s, 1H), 6,60 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, IH), 7,34 (t, *J* = 7,7 Hz, 1H), 6,76 (s, 1H), 6,60 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,34 (t, *J* = 7,7 Hz, 1H), 6,76 (s, 1H), 6,60 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,34 (t, *J* = 7,7 Hz, 1H), 6,76 (s, 1H), 6,60 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,34 (t, *J* = 7,7 Hz, 1H), 6,76 (s, 1H), 6,60 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,34 (t, *J* = 7,7 Hz, 1H), 6,76 (s, 1H), 6,60 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,34 (t, *J* = 7,7 Hz, 1H), 6,76 (s, 1H), 6,60 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,34 (t, *J* = 7,7 Hz, 1H), 6,76 (s, 1H), 6,60 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,34 (t, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,44 (t, *J* = 7,7 Hz, 1H), 6,76 (s, 1H), 6,60 (d, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,43 (t, *J* = 7,7 Hz, 1H), 7,44 (t, *J* = 7,7 Hz, 1H), 7,44 (t, *J* = 7,7 Hz, 1H), 7,44 (t, *J* = 7,7 Hz, 1H), 7,45 (t, J = 7,7 Hz, 1H), 7,45 (t,

2,2 Hz, 2H), 4,68 (s, 2H), 4,53 (s, 2H), 3,66-3,60 (m, 4H), 1,55 (s, 6H), 1,39-1,36 (m, *J* = 4,0 Hz, 12H).

MeO-Ala-*p***C**₆**H**₄**-Ala-OMe** (**A2**_p). Reakcija 7. Mr(C₁₆H₂₀N₂O₆) = 336,13. ESI-MS (*m/z*): 337,1 (M + H⁺, 55%). ¹H NMR (300 MHz, CDC1₃) δ /ppm: 7,86 (s, 4H), 6,87 (d, *J* = 7,1 Hz, 2H), 4,80 (kvin., *J* = 7,2 Hz, 2H), 3,80 (s, 6H), 1,54 (d, *J* = 7,2 Hz, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 174,7, 169,1, 138,0, 128,7, 52,8, 50,1, 38,8, 17,1.

AMP-*p***C**₆**H**₄**-Ala-OMe** (**A3**_p). Reakcija 7. Mr(C₁₆H₂₀N₂O₆) = 322,15. ESI-MS (*m/z*) dobiven iz smjese **A3**_{p1} i **A7**_{p1}: 323,1 (M + H⁺, 33%), 345,1 (M + Na⁺, 78%), 667,3 (2M+Na⁺, 32%). ¹H NMR (300 MHz, CDC1₃) δ /ppm dobiveno iz **A3**_{p1} i **A7**_{p1} smjese: 7,95 – 7,60 (m, 4H), 6,83 (d, 1H), 6,29 (s, 1H), 4,80 (kvin., 1H), 4,34 5 (s, 1H), 3,81 (s, 3H), 3,71 (s, 2H), 1,54 (d, 3H), 1,44 (s, 6H). ¹³C NMR (75 MHz, CD₃OD) δ /ppm: dobiveno iz **A3**_{p1} i **A7**_{p1} smjese: 174,7, 169,2, 166,9, 137,5, 134,0, 130,6, 128,7, 128,6, 128,5, 70,1, 55,1, 5 2,8, 50,1, 24,6, 17,1.

AMP-*p***C**₆**H**₄**-AMP-***p***C**₆**H**₄**-Ala-OMe** (**A7**_p). Reakcija 7. Mr(C₂₈H₃₅N₃O₈) = 541,24. ESI-MS (*m*/*z*) dobiven iz **A3**_p i **A6**_p smjese: 564,2 (M + Na⁺), 1105,5 (2M + Na⁺, 5%). ¹H NMR (300 MHz, CDCl₃) δ /ppm dobiveno iz **A3**_{p1} i **A7**_{p1} smjese: 8,13 - 8,00 (m, 2H), 7,95 - 7,60 (m, 6H), 6,83 (s, 1H), 6,53 (d, 1H), 6,29 (s, 1H), 4,80 (kvin., 1H), 4,59 (s, 2H), 4,34 (s, 1H), 3,81 (s, 3H), 3,71 (s, 2H), 1,60 (s, 6H), 1,54 (d, 3H), 1,44 (s, 6H).

ETA-*m***C**₆**H**₄**-Phe-OMe** (**A3**_{m2}). Reakcija 8. ¹H NMR (600 MHz, CDC1₃) δ /ppm: 8,09 (t, J = 1,9 Hz, 1H), 7,91 (ddd, J = 7,7, 1,8, 1,1 Hz, 1H), 7,74 – 7,69 (m, 1H) , 7,40 (t, J = 7,7 Hz, 1H), 7,34 – 7,24 (m, 3H) 7,20 – 7,12 (m, 2H), 6,92 (d, J = 7,3 Hz, 2H), 5,07 (dt, J = 7,6) , 6,0 Hz, 1H), 3,84 (dd, J = 5,9, 2,7 Hz, 2H), 3,79 (s, 3H), 3,67-3,59 (m, 2H), 3,49 (t, J = 1,9 Hz, 2H), 3,26 (ddd, J = 54,3, 13,9, 6,0 Hz, 2H), 2,87 (s, 1H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 173,5, 169,6, 169,4, 138,4, 136,1, 135,6, 131,4, 131,2, 130,2, 129,8, 129,5, 127,9, 127,4, 61,5, 55,9, 52,7, 43,6, 38,1.

Val[#]-mC₆H₄-Ala-OMe (A3_m₃). Reakcija 9. ¹H NMR (300 MHz, CDC1₃) δ /ppm: 8,15 (d, J = 1,9 Hz, 1H), 7,83 (dd, J = 7,8, 1,7 Hz, 2H), 7,40 (t, J = 7,7 Hz,1H), 7,19 (d, J = 7,4 Hz, 1H),

6,78 (d, *J* = 8,8 Hz, 1H), 4,80 (s, 1H), 4,09-3,94 (m, 1H), 3,81 (s, 5H), 2,96 (t, *J* = 5,6 Hz, IH), 2,00 (dt, *J* = 13,8, 7,0 Hz, 1H), 1,55 (d, *J* = 7,2 Hz, 3H), 1,02 (dd, *J* = 6,8, 4,5 Hz, 6H).

Phe[#]-mC₆H₄-Ala-OMe (A3_{m4}). Reakcija 10. ¹H NMR (300 MHz, CDC1₃) δ /ppm: 8,07 (t, J = 1,8 Hz, 1H), 7,78 (ddt, J = 26,5, 7,8, 1,4 Hz, 2H), 7,46 – 7,19 (m, 5H) 7,12 (d, J = 7,4 Hz, 1H), 6,79 (d, J = 7,9 Hz, 1H), 4,81 (t, J = 7,3 Hz, 1H), 4,42 (dd, J = 11,0, 5,9 Hz, 1H). 3,89-3,64 (m, 5H), 3,08-2,95 (m, 2H), 1,54 (d, J = 7,2 Hz, 3H).

Phg[#]-mC₆H₄-Ala-OMe (A3_{m5}). Reakcija 11. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,18 (s, 1H), 7,80 (d, J = 6,3 Hz, 2H), 7,56 – 7,21 (m, 8H), 5,35 (s, 1H), 4,82 (s, 1H), 4,01 (s, 2H), 3,82 (s, 3H), 3,36 (t, J = 6,3 Hz, 1H).

 $(Phg^{\#})_2 - mC_6H_4$ (A4_{m5}). Reakcija 11. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,03 (s, 1H), 7,82 (d, J = 7,7 Hz, 2H), 7,48 – 7,11 (m, 12H), 6,85 (t, J = 7,7 Hz, 1H), 5,30 (q, J = 4,6 Hz, 2H), 4,44 (s, 2H), 3,96 (d, J = 19,7 Hz, 4H).

Phe[#]-mC₆H₄-Gly-Val-Phe-OMe-OMe ($\mathbf{3}_{m6}$). Reakcija 12. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,22 (s, 1H), 7,84 (dt, J = 26,5, 7,9 Hz, 2H), 7,53 (s, 1H), 7,47 – 7,11 (m, 5H), 7,07 (d, J = 7,0 Hz, 2H), 6,79 (s, 1H), 5,32 (d, J = 13,5 Hz, 1H), 4,78 (d, J = 6,8 Hz, 1H), 4,30 (t, J = 7,3 Hz, 1H), 4,22 – 3,83 (m, 5H), 3,65 (s, 3H), 3,01 (d, J = 7,6 Hz, 2H), 2,07 (q, J = 6,8 Hz, 1H), 0,97 – 0,79 (m, 6H).

MeO-Ala-1,4-Nph-Ala-OMe (2_{n1}). Reakcija 13. M_r(C₂₀H₂₂N₂O₆) = 386,15. ESI-MS (*m/z*): 387,2 (M + H⁺, 50%), 409,0 (M + Na⁺, 39%), 773,3 (2M + H⁺, 78%), 795,1 (2M + Na⁺, 49%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,31 (dd, *J* = 6,5, 3,3 Hz, 2H), 7,62 - 7,53 (m, 4H), 6,62 (d, *J* = 7,4 Hz, 2H), 4,89 (kvin., *J* = 7,2 Hz, 2H), 3,82 (s, 6H), 1,58 (d, *J* = 7,2 Hz, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 174,6, 171,8, 137,4, 131,6, 128,3, 126,7, 125,2, 52,8, 50,1, 17,0.

AMP-1,4-Nph-Ala-OMe ($\mathbf{3}_{n1}$). Reakcija 13. M_r(C₂₀H₂₄N₂O₅) = 372,14. ESI-MS (m/z): 373,2 (M + H⁺), 395,1 (M + Na⁺, 22%), 745,3 (2M + H⁺, 83%), 767,2 (2M + Na⁺, 26%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,31 - 8,23 (m, 1H), 8,18 - 8,11 (m, 1H), 7,59 - 7,52 (m, 2H),

7,50 (d, J = 7,2 Hz, 1H), 7,43 (d, J = 7,1 Hz, 1H), 6,68 (d, J = 7,4 Hz, 1H), 6,28 (s, 1H), 4,86 (kvin., J = 7,2 Hz, 1H), 4,51 (s, 1H), 3,81 (d, J = 9,0 Hz, 3H), 3,74 (s, 2H), 1,56 (d, J = 6,8 Hz, 3H), 1,45 (s, 6H). ¹³C NMR (75 MHz, CD₃OD) δ /ppm: 174,6, 172,0, 171,8, 138,9, 136,9, 131,6, 131,5, 128,2, 128,2, 126,8, 126,6, 125,4, 124,8, 68,9, 57,1, 52,8, 49,8, 24,1, 17,1.

MeO-Gly-1,4-Nph-Gly-OMe (A2_{n2}). Reakcija 14. M_r(C₁₈H₁₈N₂O₆) = 358,12. ESI-MS (*m/z*): 359,1 (M + H⁺, 40%), 717,1 (2M + H⁺, 22%). ¹H NMR (300 MHz, CD₃CN) δ /ppm: 8,38 – 8,26 (m, 2H), 7,69 – 7,59 (m, 4H), 7,39 – 7,26 (m, 2H), 4,16 (d, *J* = 6,0 Hz, 4H), 3,77 (s, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 172,3, 171,7, 137,5, 131,6, 128,4, 126,8, 125,3, 52,7, 42,3.

AMP-1,4-Nph-Gly-OMe (A3_{n2}). Reakcija 14. $M_r(C_{19}H_{22}N2O_5) = 358,15$. ESI-MS (*m/z*): 359,1 (M + H⁺), 717,1 (2M + H⁺). ¹H NMR (600 MHz, CD₃CN) δ /ppm: 8,35 – 8,28 (m, 1H), 8,24 – 8,18 (m, 1H), 7,64 – 7,60 (m, 3H), 7,57 (d, *J* = 7,1 Hz, 1H), 7,31 (s, 1H), 6,78 (s, 1H), 4,15 (d, *J* = 6,0 Hz, 2H), 3,97 (t, *J* = 6,1 Hz, 1H), 3,76 (s, 3H), 3,67 (d, *J* = 6,1 Hz, 2H), 1,40 (s, 6H). ¹³C NMR (75 MHz, DMSO) δ /ppm: 170,3, 168,8, 168,3, 138,0, 135,2, 129,8, 129,7, 126,7, 125,6, 124,1, 123,5, 67,1, 55,3, 51,8, 41,1, 23,6.

MeO-Ala-1,5-Nph-Ala-OMe (A2_{n3}). Reakcija 15. $M_r(C_{20}H_{22}N_2O_6) = 386,15$. ESI-MS (*m/z*): 387,2 (M + H⁺, 24%), 773,3 (2M + H⁺, 7%). ¹H NMR (600 MHz, CDCl₃) δ /ppm:8,47 (d, J = 8,6 Hz, 2H), 7,70 (d, J = 6,9 Hz, 2H), 7,55 (dd, J = 8,4,7,1 Hz, 2H), 6,55 (d, J = 7,3 Hz, 2H), 4,95 – 4,86 (m, 2H), 3,83 (s, 6H), 1,60 – 1,57 (m, 6H). ¹³C NMR (151 MHz, DMSO) δ /ppm: 173,1, 168,5, 134,5, 129,8, 127,3, 125,6, 125,5, 51,9, 48,2, 16,6.

AMP-1,5-Nph-Ala-OMe (A3_{n3}). Reakcija 15. $M_r(C_{20}H_{24}N_2O_5) = 372,17$. ESI-MS (*m/z*): 373,1 (M + H⁺), 745,2 (2M + H⁺). ¹H NMR (600 MHz, CDCl₃) δ /ppm:8,42 (d, J = 8,6 Hz, 1H), 8,34 (d, J = 8,6 Hz, 1H), 7,69 (dd, J = 7,0, 1,0 Hz, 1H), 7,59 (dd, J = 7,0, 1,0 Hz, 1H), 7,56 – 7,47 (m, 2H), 6,59 (d, J = 7,4 Hz, 1H), 6,11 (s, 1H), 4,89 (kvin., J = 7,3 Hz, 1H), 4,59 (s, 1H), 3,82 (s, 3H), 3,77 (d, J = 3,9 Hz, 2H), 1,58 (d, J = 7,2 Hz, 3H), 1,47 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm:172,5, 169,5, 167,9, 134,0, 133,1, 129,4, 129,2, 127,0, 127,0, 125,0, 124,9, 124,8, 124,3, 69,6, 56,1, 51,7, 47,7, 23,7, 17,4.

AMP-1,5-Nph-AMP (A4_{n3}). Reakcija 15. $M_r(C_{20}H_{26}N_2O_4) = 358,19$. ESI-MS (*m/z*): 359,1 (M + H^{+,} 59 %), 717,2 (2M + H⁺, 31 %), ¹H NMR (600 MHz, DMSO) δ /ppm: 8,19 – 8,16 (m, 2H), 7,87 (s, 2H), 7,56 – 7,53 (m, 2H), 4,91 (s, 2H), 3,60 – 3,55 (m, 4H), 1,37 (s, 12H). ¹³C NMR (75 MHz, DMSO) δ /ppm: 168,7, 136,3, 129,8, 126,6, 125,5, 124,8, 67,3, 55,2, 23,6.

MeO-Ala-2,6-Nph-Ala-OMe (A2_{n4}). Reakcija 16. $M_r(C_{20}H_{22}N_2O_6) = 386,15$. ESI-MS (*m/z*): 387,1 (M + H⁺, 42%), 773,1 (2M + H⁺, 11%). ¹H NMR (600 MHz, CD₃OD) δ /ppm: 8,47 (s, 2H), 8,13 - 8,04 (m, 2H), 8,03 - 7,94 (m, 2H), 4,75 - 4,61 (m, 2H), 3,77 (s, 6H), 1,55 (d, J = 7,3 Hz, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 174,8, 169,7, 135,4, 134,2, 130,4, 128,8, 125,9, 52,8, 50,2, 17,2.

AMP-2,6-Nph-Ala-OMe (A3_{n4}). Reakcija 16. $M_r(C_{20}H_{24}N_2O_5) = 372,42$. ESI-MS (*m/z*): 373,1 (M + H⁺). ¹H NMR (600 M Hz, CD₃OD) δ /ppm: 8,45 (s, 1H), 8,37 (s, 1H), 8,05 (t, *J* = 8,3 Hz, 2H), 7,98 - 7,95 (m, *J* = 8,5, 1,7 Hz, 1H), 7,93 - 7,89 (m, *J* = 8,5, 1,7 Hz, 1H), 4,72 - 4,64 (m, 1H), 3,77 (s, 3H), 3,75 (s, 2H), 1,55 (d, *J* = 7,3 Hz, 3H), 1,46 (s, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm:174,8, 170,2, 169,8, 136,0, 135,4, 135,1, 133,9, 130,3, 130,3, 128,7, 128,3, 126,0, 125,8, 69,1, 56,9, 52,8, 50,2, 24,0, 17,2.

AMP-2,6-Nph-AMP (A4_{n4}). Reakcija 16. $M_r(C_{20}H_{26}N_2O_4) = 358,19$. ESI-MS (*m/z*): 359,1 (M + H⁺). ¹H NMR (600 MHz, CD₃OD) δ /ppm: 8,35 (s, 2H), 8,03 (s, 2H), 7,90 (s, 2H), 3,75 (s, 4H), 1,45 (s, 12H). ¹³C NMR (75 MHz, DMSO) δ /ppm:166,2, 134,1, 132,8, 128,3, 126,7, 124,9, 67,1, 54,9, 23,3.

MeO-Ala-2,7-Nph-Ala-OMe (A2_{n5}). Reakcija 17. $M_r(C_{20}H_{22}N_2O_6) = 386,15$. ESI-MS (*m/z*): 387,1 (M + H⁺), 773,2 (2M + H⁺). Kristali primjereni za snimanje difrakcije rendgenskih zraka na monokristalu dobiveni su iz otopine u NMR cijevčici nakon nekoliko mjeseci. ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,39 – 8,29 (m, 2H), 7,94 – 7,89 (m, 2H), 7,88 – 7,82 (m, 2H), 7,05 (d, *J* = 7,2 Hz, 2H), 4,88 (kvin., *J* = 7,2 Hz, 2H), 3,83 (s, 6H), 1,59 (d, *J* = 7,2 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm:174,0, 136,1, 132,0, 131,7, 128,5, 128,2, 125,7, 52,8, 48,8, 18,6. **AMP-2,7-Nph-Ala-OMe** (A3_{n5}). Reakcija 17. $M_r(C_{20}H_{24}N_2O_5) = 372,42$. ESI-MS (*m/z*): 373,1 (M + H⁺), 745,2 (2M + H⁺, 85%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,31 (s, 1H), 8,15 (s, 1H), 7,90 - 7,70 (m, 4H), 7,11 (d, *J* = 7,3 Hz, 1H), 6,59 (s, 1H), 4,89 (kvin., *J* = 7,2 Hz, 1H), 4,62 (t, *J* = 6,2 Hz, 1H), 3,84 (s, 3H), 3,76 (d, *J* = 6,0 Hz, 2H), 1,59 (d, *J* = 7,2 Hz, 3H), 1,50 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 174,3, 168,4, 167,0, 135,7, 133,2, 131,3, 131,2, 128,3, 128,0, 127,8, 125,9, 125,4, 70,8, 56,7, 52,8, 48,8, 24,5, 24,5, 18,3.

MeO-Ala-9,10-Anth-Ala-OMe (A2_{a1}). Reakcija 18. Mr(C₂₄H₂₄N₂O₆) = 436,16. ESI-MS (m/z): 437,1 (M + H⁺, 18%), 873,3 (2M + H⁺, 26%). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,43 – 7,87 (m, 4H), 7,60 – 7,49 (m, 4H), 6,55 (d, J = 7,4 Hz, 2H), 5,06 (kvin., 2H), 3,86 (s, 6H), 1,65 (d, J = 7,2 Hz, 6H). ¹³C NMR (75 MHz, CD₃OD) δ /ppm: 174,6, 129,1, 128,7, 127,7, 126,9, 126,4, 52,9, 50,3, 17,0.

AMP-9,10-Anth-Ala-OMe (A3_{a1}). Reakcija 18. Mr(C₂₄H₂₆N₂O₅) = 422,18. ESI-MS (*m/z*): 423,1 (M + H⁺), 845,3 (2M + H⁺). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,38 – 8,04 (m, 4H), 7,59 – 7,55 (m, 4H), 6,54 (s, 1H), 6,08 (s, 1H), 5,06 (kvin., *J* = 7,2 Hz, 1H), 4,56 (s, 1H), 3,91 (d, *J* = 6,1 Hz, 2H), 3,86 (s, 3H), 1,65 (d, *J* = 7,2 Hz, 3H), 1,53 (s, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 174,6, 171,9, 171,7, 135,6, 134,0, 129,2, 128,7, 128,6, 128,5, 127,8 – 127,5 (4C), 127,0, 126,6, 126,4, 126,3, 68,9, 57,6, 52,8, 50,2, 24,2, 16,99.

1,3,5-C₆H₃-(Ala-OMe)₃ (A2_{t1}). Reakcija 19. ¹H NMR (300 MHz, CD₃CN) δ /ppm: 8,39 (s, 3H), 7,51 (d, J = 7,0 Hz, 3H), 4,60 (kvin., J = 7,2 Hz, 3H), 3,71 (s, 9H), 1,48 (d, J = 7,3 Hz, 9H).

AMP-1,3,5-C₆H₃-(Ala-OMe)₂ (**A3**_{t1}). Reakcija 19. ¹H NMR (300 MHz, CD₃CN) δ /ppm: 8,37 (t, J = 1,7 Hz, 1H), 8,32 (d, J = 1,7 Hz, 2H), 7,50 (d, J = 6,8 Hz, 2H), 6,87 (s, 1H), 4,60 (kvin., J = 7,2 Hz, 2H), 3,71 (s, 6H), 3,62 (s, 2H), 1,48 (d, J = 7,3 Hz, 6H), 1,38 (s, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 174,7, 168,9, 168,5, 137,9, 135,9, 130,3, 130,1, 68,8, 57,0, 52,8, 50,2, 24,0, 17,2.

(AMP)₂-1,3,5-C₆H₃-Ala-OMe (A4_{t1}). Reakcija 19. ¹H NMR (300 MHz, CD₃CN) δ /ppm: 8,30 (s, 2H), 8,25 (s, 1H), 7,49 (s, 1H), 6,86 (s, 2H), 4,59 (kvin., J = 7,3 Hz, 1H), 3,87 (t, J = 6,2 Hz, 2H), 3,70 (s, 3H), 3,62 (d, J = 6,2 Hz, 4H), 1,48 (d, J = 7,3 Hz, 3H), 1,38 (s, 12H).

1,3,5-C₆H₃-(Gly-OMe)₃ (2_{t2}). Reakcija 20. ¹H NMR (300 MHz, CD₃CN) δ /ppm: 8,40 (s, 3H), 7,64 (s, 3H), 4,11 (d, J = 5,9 Hz, 6H), 3,72 (s, 9H).

Val[#]-1,3,5-C₆H₃-(Gly-OMe)₂ (A3_{t2}). Reakcija 20. ¹H NMR (300 MHz, CD₃CN) δ /ppm: 8,37 (s, 3H), 7,66 (s, 2H), 7,05 (d, J = 9,1 Hz, 1H), 4,11 (d, J = 5,9 Hz, 4H), 3,99 – 3,83 (m, 1H), 3,72 (s, 6H), 3,64 (dt, J = 9,7, 4,1 Hz, 2H), 0,97 (dd, J = 7,8, 6,8 Hz, 6H).

(Val[#])₂-1,3,5-C₆H₃-Gly-OMe (A4_{t2}). Reakcija 20. ¹H NMR (300 MHz, CD₃CN) δ /ppm: 8,37 (s, 3H), 7,71-7,49 (m, 1H), 7,03 (d, *J* = 9,0 Hz, 2H), 4,11 (d, *J* = 5,9 Hz, 2H), 4,02 – 3,82 (m, 2H), 3,72 (s, 3H), 3,69 – 3,60 (m, 4H), 2,97 (t, *J* = 6,0 Hz, 2H), 0,98 (dd, *J* = 8,1, 6,8 Hz, 12H).

Phg[#]-1,3,5-C₆H₃-(Phe-OMe)₂ (A3_{t5}). Reakcija 21. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,16 (s, 1H), 8,02 (s, 0H), 7,58 (dd, J = 25,6, 7,9 Hz, 3H), 7,48 – 7,14 (m, 15H), 5,40 – 5,31 (m, 1H), 5,13 – 5,00 (m, 2H), 4,07 – 3,92 (m, 1H), 3,81 (s, 3H), 3,33 – 3,12 (m, 2H).

(**Phg**[#])₂-1,3,5-C₆H₃-Phe-OMe (A4_{t5}). Reakcija 21. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,09 (s, 1H), 8,00 (s, 2H), 7,71 (d, J = 7,7 Hz, 3H), 7,48 – 7,06 (m, 15H), 5,36 (q, J = 6,9, 5,3 Hz, 2H), 5,05 (q, J = 7,2 Hz, 1H), 4,55 – 4,40 (m, 2H), 4,14 – 3,99 (m, 2H), 3,85-3,75 (m, 5H), 3,33 – 3,10 (m, 2H).

(**Phg**[#])₃-1,3,5-C₆H₃ (A5_{t5}). Reakcija 21. ¹H NMR (300 MHz, CD₃OD) δ /ppm: 8,49 (s, 2H), 8,36 (s, 1H), 7,51 – 7,18 (m, 15H), 5,23 (t, *J* = 6,6 Hz, 3H), 3,87 (d, *J* = 6,8 Hz, 6H).

3.5.2. Linearna sinteza prekursora $A3_{m1}$

Dimetil-izoftalat ($A9_{m1}$). Izoftalna kiselina (1,6 g, 10 mmol) je otopljena u CH₃OH (100 mL) i u otopinu su dodana 2 mL koncentrirarne vodene otopine H₂SO₄. Reakcijska smjesa je refluksirana na 75°C uz kontinuirano miješanje preko noći. CH₃OH je uparen pod sniženim

68

tlakom. Reakcijska smjesa je otopljena u etil-acetatu (100 mL) i isprana s vodom (100 mL), zasićenom vodenom otopinom NaHCO₃ (100 mL), vodom (100 mL), osušena na bezvodnom Na₂SO₄, filtrirana i uparena pod sniženim tlakom. Nije bilo potrebno daljnje pročišćavanje. Iskorištenje: 1,8 g (9,23 mmol, 92%), bijeli prah. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,69 (t, J = 1,5 Hz, 1H), 8,23 (dd, J = 7,8, 1,7 Hz, 2H), 7,53 (t, J = 7,8 Hz, 1H), 3,95 (s, 6H).

HOOC-mC₆H₄-COOMe (A10_{m1}). Dimetil-izoftalat (9 ml) (1,8 g, 9,23 mmol) je otopljen u CH₃OH (20 mL) korištenjem ultrazvučne kupelji. Vodena otopina NaOH (368,0 mg, 9,23 mmol u 10 mL destilirane vode) je dodana u smjesu i reakcijska smjesa je zagrijavana u CEM mikrovalnom reaktoru (20 min, 150 W, 50 °C). Reakcijskoj smjesi dodana je vodena otopina HC1 (284 μ L konc., 9,23 mmol u 10 mL destilirane vode), te nastali bijeli talog ekstrahiran etil-acetatom (3 x 40 mL). Kombinirani organski ekstrakti su isprani vodenom otopinom 10%-tne limunske kiseline (100 mL), zasićenom vodenom otopinom NaCl (100 mL), sušeni na bezvodnom Na₂SO₄, filtrirani i upareni pod sniženim tlakom. Kromatografija: 38 g silikagela, 3% CH₃OH u CH₂Cl₂. Iskorištenje: 0.9 g (5,06 mmol, 55%), bijeli prah. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,81 – 8,74 (m, 1H), 8,34 – 8,26 (m, 2H), 7,59 (t, *J* = 7,8 Hz, 1H), 3,97 (s, 3H).

AMP-*m*C₆H₄-COOMe (A11_{m1}). Sinteza prema proceduri za peptidno vezanje s HATU HOOC-*m*C₆H₄-COOMe (A10_{m1}) (360,3 mg, 2,0 mmol), HATU (836,5 mg, 2,2 mmol), DIPEA (1,360 mL, 8,0 mmol), AMP (222,9 mg, 2,5 mmol). NMR spektar pokazao je značajan sadržaj tetrametil-ureje (maseni omjer *w*(produkt) = 84 %). Spoj je korišten bez daljnjeg pročišćavanja. Iskorištenje: 421,5 mg (iskorištenje prema NMR spektru: 84%), bezbojno ulje. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,33 (s, 1H), 8,17 (d, *J* = 7,8 Hz, 1H), 8,00 (d, *J* = 7,8 Hz, 1H), 7,54 (t, *J* = 7,8 Hz, 1H), 6,23 (s, 1H), 3,95 (s, 3H), 3,72 (s, 2H), 1,44 (s, 7H).

AMP- mC_6H_4 -COOH (A12_{m1}). AMP- mC_6H_4 -COOMe (A11_{m1}) (421,5 mg, 1,68 mmol) je otopljen u CH₃OH (20 mL) korištenjem ultrazvučne kupelji. Vodena otopina NaOH (80,0 mg, 2,00 mmol u 10 mL destilirane vode) je dodana u smjesu i reakcijska smjesa je zagrijavana u CEM mikrovalnom reaktoru (20 min, 150 W, 50 °C). Reakcijskoj smjesi dodana je vodena otopina HCl (62 μ L konc., 2,0 mmol u 10 mL destilirane vode), a nastali bijeli talog

ekstrahiran etil-acetatom (3 x 40 mL). Kombinirani organski ekstrakti su isprani vodenom otopinom 10%-tne limunske kiseline (100 mL), zasićenom vodenom otopinom NaCl (100 mL), sušeni na bezvodnom Na₂SO₄, filtrirani i upareni pod sniženim tlakom. NMR spektar pokazao je značajan sadržaj tetrametil ureje i vode (maseni omjer *w*(produkt) = 72 %). Spoj je korišten bez daljnjeg pročišćavanja. Iskorištenje: 387,0 mg (iskorištenje prema NMR spektru: 97%). ¹H NMR (300 MHz, CD₃OD) δ /ppm: 8,43 (s, 1H), 8,17 (d, *J* = 7,8 Hz, 1H), 8,00 (d, *J* = 7,9 Hz, 1H), 7,57 (t, *J* = 7,8 Hz, 1H), 3,73 (s, 2H), 1,44 (s, 6H).

AMP- mC_6H_4 -Ala-OMe (A3_{m1}). AMP- mC_6H_4 -COOH (A11_{m1}) (387,0 mg, 1,63 mmol), HATU (762,47 mg, 2,0 mmol), DIPEA (1,360 mL, 8,0 mmol), H-Ala-OMe·HCl (222,9 mg, 2,5 mmol) Kromatografija: 30 g silikagel, 3% CH₃OH u CH₂Cl₂. Iskorištenje: 147,3 mg (0,46 mmol, 28%), bezbojno ulje. Snimljeni spektri su analogni prethodno dobivenim spektrima za spoj A3_{m1}.

3.5.3. Linearna sinteza prekursora $A3_{t3}$ i $A3_{t4}$

1,3,5-C₆H₃-(COOMe)₃ (A13_{t3}). Trimesinska kiselina (1,4 g, 6,9 mmol) je otopljena u CH₃OH (100 mL) i u otopinu su dodana 2 mL koncentrirane vodene otopine H₂SO₄ (2 mL). Reakcijska smjesa je refluksirana na 75°C uz kontinuirano miješanje preko noći. CH₃OH je uparen pod sniženim tlakom. Reakcijska smjesa je otopljena u etil-acetatu (100 mL) i isprana s vodom (100 mL), zasićenom vodenom otopinom NaHCO₃ (100 mL), vodom (100 mL), te osušena na bezvodnom Na₂SO₄, filtrirana i uparena pod sniženim tlakom. Nije bilo potrebno daljnje pročišćavanje. Iskorištenje: 1,6 g (6,5 mmol, 95%), bijela krutina. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,86 (s, 3H), 3,98 (s, 9H).¹³C NMR (151 MHz, CD₃OD) δ /ppm: 164,6, 133,2, 130,7, 51,3.

HOOC-1,3,5-C₆H₃-(COOMe)₂ (A14_{t3}). 1,3,5-C₆H₃-(COOMe)₃ (A13t₃) (1,6 g, 6,5 mmol) je otopljen u CH₃OH (20 mL) korištenjem ultrazvučne kupelji. Vodena otopina NaOH (259,9 mg, 6,5 mmol u 10 mL destilirane vode) je dodana u smjesu i reakcijska smjesa je zagrijavana u CEM mikrovalnom reaktoru (20 min, 150 W, 50 °C). Reakcijskoj smjesi dodana je vodena otopina HCl (62 μ L konc., 2,0 mmol u 10 mL destilirane vode), a nastali bijeli talog ekstrahiran etil-acetatom (3 x 40 mL). Kombinirani organski ekstrakti su isprani vodenom otopinom 10%-tne limunske kiseline (100 mL), zasićenom vodenom otopinom NaCl (100

mL), sušeni na bezvodnom Na₂SO₄, filtrirani i upareni pod sniženim tlakom. Dobivena smjesa vrlo polarnih produkata nije se mogla pročistiti kromatografijom, stoga je korištena bez pročišćavanja u sljedećem koraku. Masa smjese: 945,0 mg, bijeli prah.

Phg[#]-l,3,5-C₆H₃-(COOMe)₂ (A15_{t3}). Spoj je sintetiziran prema proceduri za peptidno vezanje s HATU. HOOC-1,3,5-C₆H₃-(COOMe)₂ (A14_{t3}) (571,5 mg, 2,4 mmol), HATU (912,6 mg, 2,4 mmol), DIPEA (1,666 mL, 9,6 mmol), Phg[#] (329,2 mg, 2,4 mmol). Kromatografija: 30 g silikagela, 3% CH₃OH u CH₂Cl₂. Iskorištenje: 497,1 mg (1,39 mmol, 58%), bijela krutina. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,79 (t, *J* = 1,7 Hz, 1H), 8,65 (d, *J* = 1,6 Hz, 2H), 7,39 (d, *J* = 4,3 Hz, 5H), 7,09 (d, *J* = 7,3 Hz, 1H), 5,32 (dt, *J* = 7,2, 4,8 Hz, 1H), 4,04 (t, *J* = 5,4 Hz, 2H), 3,97 (s, 6H), 2,47 (t, *J* = 6,1 Hz, 1H).

Phg[#]-I,3,5-C₆H₃-(Phe-OMe)₂ (A3_{t3}). Phg[#]-I,3,5-C₆H₃-(COOMe)₂ (**A15**_{t3}) (556,5 mg, 1,6 mmol) je otopljen u CH₃OH (20 mL) korištenjem ultrazvučne kupelji. Vodena otopina NaOH 200,0 mg, 5,0 mmol u 10 mL destilirane vode) je dodana u smjesu i reakcijska smjesa je zagrijavana u CEM mikrovalnom reaktoru (20 min, 150 W, 50 °C). Reakcijskoj smjesi postupno je dodavana vodena otopina HCl (422 μ L konc., 5,0 mmol u 10 mL destilirane vode) dok se nije postigla neutralizacija. Voda je uparena iz smjese i krutina je suspendirana u CH₂Cl₂. Suspenzija je korištena u sljedećem koraku bez daljnje obrade. U sljedećem koraku, korištena je procedura za peptidno vezanje s HATU. HATU (1 901,2 mg, 5,0 mmol), DIPEA (2,318 mL, 12,4 mmol), H-Phe-OMe·HCl (1 078,4 mg, 5 mmol). Kromatografija: 50 g silikagela, 2% CH₃OH u CH₂Cl₂. Iskorištenje: 505,8 mg (0,78 mmol, 50%), bijela krutina. Ukupno iskorištenje produkta linearnom sintezom je 28%. ¹H NMR spektar spoja pokazuje velike količine TMU i velike količine neidentificiranih spojeva koji se nisu mogli pročistiti dodatnom kromatografijom, stoga je spoj korišten u sljedećem koraku bez daljnjeg pročišćavanja.

Phg[#]-1,3,5-C₆H₃-(DPhe-OMe)₂ (A3_{t4}). Phg[#]-1,3,5-C₆H₃-(COOMe)₂ (A15_{t3}) (504,0 mg, 1,4 mmol) je otopljen u CH₃OH (20 mL) korištenjem ultrazvučne kupelji. Vodena otopina NaOH 200,0 mg, 5,0 mmol u 10 mL destilirane vode) je dodana u smjesu i reakcijska smjesa je zagrijavana u CEM mikrovalnom reaktoru (20 min, 150 W, 50 °C). Reakcijskoj smjesi postupno je dodavana vodena otopina HCl (422 μ L konc., 5,0 mmol u 10 mL destilirane

vode) dok se nije postigla neutralizacija. Voda je uparena iz smjese i krutina je suspendirana u CH_2Cb_2 . Suspenzija je korištena u sljedećem koraku bez daljnje obrade. U sljedećem koraku, korištena je procedura za peptidno vezanje s COMU. COMU (2 141,3 mg, 5,0 mmol), TEA (1,868 mL, 13,4 mmol), H-D-Phe-OMe·HCl (1 078,4 mg, 5 mmol) Kromatografija: 60 g silikagela, 3% CH₃OH u CH₂Cb₂. ¹H NMR spektar spoja **A3**_{t4} pokazao je velike količine neidentificiranih spojeva koji se nisu mogli pročistiti dodatnom kromatografijom, stoga je spoj korišten u sljedećem koraku bez daljnjeg pročišćavanja. Masa smjese: 819,3 mg, bijela krutina.

3.5.4. Sinteza derivata $A3_b$

Phg[#]-*m*C₆H₄-COOMe (A11_{m5}). Korišten je isti protokol kao za spoj A11_{m1}. HOOC-*m*C₆H₄-COOMe (10 m1) (360,3 mg, 2,0 mmol), TBTU (642,2 mg, 2,0 mmol), HOBt (300,2 mg, 2,0 mmol), DIPEA (1,360 mL, 8,0 mmol), Phg[#] (274,4 mg, 2,0 mmol). Kromatografija: 30 g silikagela, 3% CH₃OH u CH₂Cl₂. NMR spektar pokazao je značajan udio TMU (maseni udio *w*(produkt) = 89%). Iskorištenje: 489,1 mg (1,6 mmol, 73%), bijela krutina. ¹H NMR (300 MHz, CDC1₃) *δ*/ppm: 8,43 (t, J = 1,8 Hz, 1H), 8,18 (dt, J = 7,8, 1,5 Hz, 1H), 8,07 (ddd, J = 7,8, 1,9, 1,3 Hz), 1H), 7,60-7,48 (m, 1H), 7,46-7,22 (m, 6H), 6,96 (d, J = 7,1 Hz, 1H), 5,30 (dt, J = 7,2, 4,8 Hz, 1H), 4,03 (dd, J = 6,1, 4,8 Hz, 2H), 3,95 (s, 3H). ¹³C NMR (75 MHz, DMSO) *δ*/ppm: 165,8, 165,2, 141,1, 135,1, 132,2, 131,6, 129,7, 128,8, 128,1, 128,0, 127,0, 126,8, 6, 4, 56,1, 52,3, 38,2.

Phg[#]-mC₆H₄-COOH (A12_{m5}). Phg[#]-mC₆H₄-COOMe (A11_{m5}) (440,4 mg, 1,47 mmol) je otopljen u CH₃OH (20 mL) korištenjem ultrazvučne kupelji. Vodena otopina NaOH (117,7 mg, 2,94 mmol u 10 mL destilirane vode) dodana je u smjesu i reakcijska smjesa je zagrijavana u CEM mikrovalnom reaktoru (20 min, 150 W, 50 °C). Reakcijskoj smjesi dodana je vodena otopina HCl (247 μ L konc., 2,94 mmol u 10 mL destilirane vode). Voda je uparena pod sniženim tlakom, preostala čvrsta smjesa otopljena je u CH₂Ch₂ i korištena u sljedećem koraku.

(Boc-Val-NH-CH₂CH₂)₂ (A17). Korišten je standardni postupak priprave amidne veze s TBTU/HOBt. Boc-Val-OH (912,5 mg, 4,20 mmol), TBTU (1348,5 mg, 4,20 mmol), HOBt (643,3 mg, 4,20 mmol), DIPEA (2,926 mL, 16,80 mmol), 1,4-diaminobutan (176,3 mg, 2,0 mmol). Kromatografija: 30 g silikagela, 3% CH₃OH u CH₂Cl₂. Iskorištenje: 808,0 mg (1,7 mmol, 83%), bezbojno ulje. ¹H NMR (300 MHz, CDC1₃) δ /ppm: 6,88 (s, 2H), 5,18 (s, 2H), 3,88 (t, J = 8,0 Hz, 2H), 3,45 (s, 2H), 3,02 (s, 2H) 2,03 (s, 2H), 1,75-1,55 (m, 4H), 1,43 (s, 18H), 0,96 (d, J = 6,7 Hz, 12H). ¹³C NMR (75 MHz, CD₃OD) δ /ppm: 174,4, 80,5, 61,7, 39,8, 32,0, 28,7, 27,6, 19,7, 18,5.

 $(H_2N-Val-NH-CH_2CH_2)_2$ (A18). (Boc-Val-NH-CH_2CH_2)_2 (A17) (364,98 mg, 0,75 mmol) otopljen je u 10 mL otopine CH_2Cb : F₃C-COOH = 1 : 1 i reakcijska smjesa miješana 2 sata na sobnoj temperaturi. Otapalo je zatim upareno pod atmosferskim tlakom, a preostala TFA je neutralizirana s DIPEA-om (približno 1,5 mL). Dobivena smjesa je korištena u sljedećem koraku bez daljnjeg pročišćavanja.

(**Phg**[#]-*m*C₆H₄-Val-NH-CH₂CH₂)₂ (A3_b). Korišten je standardni postupak amidnog vezanja s HATU. Phg[#]-*m*C₆H₄-COOH (A12_{m5}), (H₂N-Val-NH-CH₂CH₂)₂ (18), HATU (870,35 mg, 1,5 mmol), DIPEA (1,041 mL, 6,0 mmol). Kromatografija: 30 g silikagela, 5% CH₃OH u CH₂CL₂. Iskorištenje: 131,3 mg (0,16 mmol, 21%), bijela krutina. ¹H NMR (300 MHz, CD₃OD) 5/ppm: 8,33 (s, 2H), 8,06 - 7,94 (m, 4H), 7,56 (t, J = 7,8 Hz, 2H), 7,46 - 7,31 (m, 10H), 5,22 (t, J = 6,6 Hz, 2H), 4,59 (s, 2H), 4,29 (d, J = 8,3 Hz, 2H), 3,87 (d, J = 6,6 Hz, 4H), 2,21 - 2,08 (m, 2H) 1,58 (s, 4H), 1,00 (dd, J= 8,0, 6,7 Hz, 12H).

3.6. Sinteza prekursora B

Phg[#]-C₆H₅. Benzojeva kiselina (2,0 mmol, 244,2 mg), TBTU (2,0 mmol, 642,2 mg), HOBt (2,0 mmol, 306,2 mg), (*S*)-fenilglicinol (Phg[#], 2,0 mmol, 274,4 mg), DIPEA (8 mmol, 1,394) mL). Automatska *flash* kromatografija, 3% CH₃OH u CH₂Cb. Iskorištenje: 465,7 mg (1,93 mmol, 97%), bezbojno ulje. Mr(C₁₅H₁₅NO₂) = 241,11. ESI-MS (*m/z*): 242,15 (M+H⁺, 99%), 264,10 (M+Na⁺, 53%), 505,15 (2M+Na⁺, 100%). ¹H NMR (600 MHz, CDC1₃) *δ*/ppm: 7,84 - 7,80 (m, 2H), 7,56 - 7,30 (m, 8H), 6,82 (s, 1H), 5,33 - 5,26 (m, 1H), 4,03 (m, 2H). ¹³C NMR (151 MHz, CD₃OD) *δ*/ppm: 170,3, 141,4, 135,8, 132,6, 129,5, 128,4, 128,4, 128,0, 66,0, 57,7.

Phg[#]-*p***C₆H₄-F**. *p*-fluorobenzojeva kiselina (2,0 mmol, 280,2 mg), TBTU (2,0 mmol, 642,2 mg), HOBt (2,0 mmol, 306,2 mg), (*S*)-fenilglicinol (Phg[#], 2,0 mmol, 274,4 mg), DIPEA (8 mmol, 1,394 mL). Automatska *flash* kromatografija, 3% CH₃OH u CH₂Cl₂. Iskorištenje: 447,0 mg (1,73 mmol, 86%), bijela krutina. Mr(C₁₅H₁₄FNO₂) =259,10. ESI-MS (*m/z*): 260,10 (M+H⁺, 100%), 282,20 (M+Na⁺, 71%), 541,15 (2M+Na⁺, 41%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 7,86 – 7,81 (m, 2H), 7,44 – 7,30 (m, 5H), 7,18 – 7,07 (m, 2H), 6,77 (s, 1H), 5,27 (dt, *J* = 7,2, 4,7 Hz, 1H), 4,02 (s, 2H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 169,1, 167,0, 165,3, 141,3, 132,1, 131,1, 131,0, 129,5, 128,4, 128,0, 128,0, 116,3, 116,2, 66,0, 57,9.

Phg[#]-*p*C₆H₄-NMe₂. *p*-(*N*, *N*-dimetilamino)benzojeva kiselina (2,0 mmol, 330,4 mg), TBTU (2,0 mmol, 642,2 mg), HOBt (2,0 mmol, 306,2 mg), (*S*)-fenilglicinol (Phg[#], 2,0 mmol, 274,4) mg), DIPEA (8 mmol, 1,394 mL). Automatska *flash* kromatografija 3% CH₃OH u CH₂Cl₂. Iskorištenje: 470,6 mg (1,7 mmol, 82%), bijela krutina. M_r(C₁₇H₂₀N₂O₂) =284,15. ESI-MS (*m*/*z*): 285,11 (M+H⁺, 100%), 591,20 (2M+Na⁺, 20%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 7,75 – 7,69 (m, 2H), 7,38 (d, *J* = 5,0 Hz, 4H), 7,34 – 7,29 (m, 1H), 6,69 – 6,64 (m, 2H), 6,62 (d, *J* = 6,7 Hz, 1H), 5,25 (td, *J* = 6,3, 3,7 Hz, 1H), 4,07 – 3,91 (m, 2H), 3,02 (s, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 170,3, 154,3, 141,7, 129,9, 129,4, 129,4, 128,2, 128,0, 128,0, 121,9, 112,1, 66,1, 57,4, 40,2.

Phg[#]-C₁₆H₉. 1-pirenkarboksilna kiselina (2,0 mmol, 492,52 mg), TBTU (2,0 mmol, 642,2 mg), HOBt (2,0 mmol, 306,2 mg), (S)-fenilglicinol (Phg[#], 2,0 mmol, 274,4 mg), DIPEA (8,0 mmol, 1,394 mL). Automatska *flash* kromatografija, 3% CH₃OH u CH₂Cl₂. Iskorištenje:

477,7 mg (1,31 mmol, 65%), žuta krutina. ¹H NMR (600 MHz, CD₃CN) δ /ppm: 8,50 (d, J = 9,2 Hz, 1H), 8,34 – 8,27 (m, 3H), 8,25 – 8,16 (m, 4H), 8,10 (t, J = 7,6 Hz, 1H), 7,55 (s, 1H), 7,53 – 7,48 (m, 2H), 7,43 (dd, J = 8,5, 6,9 Hz, 2H), 7,37 – 7,31 (m, 1H), 5,35 (td, J = 7,8, 5,0 Hz, 1H), 4,09 – 3,75 (m, 2H), 3,19 (t, J = 5,9 Hz, 1H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 141,4, 133,8, 132,7, 132,6, 132,1, 129,6, 129,6, 129,5, 128,6, 128,2, 128,2, 127,5, 126,9, 126,7, 126,0, 125,7, 125,5, 125,4, 66,2, 58,0.

Phg[#]-*m*C₆H₄-(Ala-OMe)₂. Trimesinska kiselina (2,0 mmol, 420,28 mg), HATU (dodatak prvog dana: 3,0 mmol, 1 140,71 mg; dodatak drugog dana: 3,1 mmol, 1 178,7 mg), DIPEA (dodatak prvog dana: 10,0 mmol, 1,743 mL); dodatak drugog dana: 14,4 mmol, 2,509 mL), H-Ala-OMe·HCl (3,1 mmol, 405,2 mg), (*S*)-fenilglicinol (3,1 mmol, 425,3 mg). Automatska *flash* kromatografija, 2% → 10% CH₃OH u CH₂Cl₂. Iskorištenje: 181,8 mg (0,36 mmol, 23%), bijela krutina. ¹H NMR (600 MHz, CDCl₃) *δ*/ppm: 8,09 (d, *J* = 1,6 Hz, 2H), 8,07 (t, *J* = 1,6 Hz, 1H), 7,74 (d, *J* = 7,6 Hz, 2H), 7,68 (d, *J* = 7,6 Hz, 1H), 7,45 – 7,40 (m, 2H), 7,38 (dd, *J* = 8,5, 6,9 Hz, 2H), 7,32 – 7,26 (m, 1H), 5,30 (td, *J* = 7,8, 3,2 Hz, 1H), 4,78 (p, *J* = 7,4 Hz, 2H), 3,99 (d, *J* = 34,5 Hz, 3H), 3,80 (s, 6H), 1,56 (d, *J* = 7,4 Hz, 6H). ¹³C NMR (151 MHz, CD₃OD) *δ*/ppm: 168,5, 141,1, 136,8, 136,0, 130,4, 130,3, 129,5, 128,5, 128,0, 66,0, 58,0, 52,8, 50,2, 17,2.

3.7. Sinteza prekursora C

Ph₂P-m-C₆H₄-COOH.⁸ Aparatura se prvo propuhuje dušikom kroz dulje vrijeme i također tijekom izvođenja reakcije. U tikvicu se doda 50 mL acetonitrila (degaziran tijekom 40 minuta) i DIPEA (2,68 mL, 15,4 mmol) i cijeli aparatura se omota aluminijskom folijom. U reakcijsku tikvicu doda se 3-jodobenzojeva kiselina (2,00 g, 8,1 mmol), difenilfosfin (1,50 g, 8,1 mmol) i katalitička količina paladij(II) acetata (mala količina koja stane na sam vrh špatule). Reakcijska smjesa je refluksirana 64 h. Nakon toga, otapalo je upareno pod sniženim tlakom, a ulini ostatak pretvoren u sol s 40 mL vodene otopine NaOH (1 g NaOH). Otopina je isprana dva puta s eterom. Vodeni sloj je zakiseljen s 20 mL vodene otopine HCl, koncentracije c(HCI) = 2 M. Vodeni sloj je zatim ekstrahiran 3 puta s eterom, organski ekstrakti su spojeni, osušeni na bezvodnom Na₂SO₄ i upareni. Preostala krutina je otopljena u CH₃OH, a zatim je kap po kap dodavana destilirana voda dok nije postignut omjer 2 : 7 (CH₃OH : H₂O). Dobivena je smjesa bijele otopine sa smeđom krutinom/uljem i svijetlosmeđim uljem. Smjesa je ohlađena u hladnjaku i zatim filtrirana. Filtrirana smjesa produkta otopljena je u CH₃OH i zagrijana na 80 °C u uljnoj kupelji, a zatim je kap po kap dodavana destilirana voda dok se nije postigao omjer 2 : 1 (CH₃OH : H₂O) (ili 1 : 1 ako je potrebno). Svijetlo žuta krutina je filtrirana pod dušikom preko G4 frita sita, isprana s vrlo malim količinama hladnog CH3OH/H2O i osušena u kontinuiranoj struji dušika. Produkt je korišten u sljedećem koraku bez dalinjeg pročišćavanja. Iskorištenje: 1,94 g (6,3 mmol, 79%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,10 – 8,03 (m, 2H), 7,54 – 7,47 (m, 1H), 7,47 – 7,41 (m, 1H), 7,36 – 7,27 (m, 10H). ³¹P NMR (243 MHz, CDCl₃) δ /ppm: -5,35.

AMP-C₆H₅ (**C3a**). Spoj je sintetiziran prema proceduri za peptidno vezanje s TBTU. Benzojeva kiselina (168,18 mg, 1,5 mmol), HOBt (229,71 mg, 1,5 mmol), TBTU (481,5 mg, 1,5 mmol), DIPEA (1,05 mL, 6 mmol), AMP (133,71 mg, 1,5 mmol). Automatska *flash* kromatografija, EtOAc : heksan = 2 : 8 → čisti EtOAc. Iskorištenje: 193,23 mg (0,68 mmol, 45%), žuto ulje. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 7,80 – 7,66 (m, 2H), 7,57 – 7,37 (m, 3H), 6,19 (s, 1H), 3,70 (s, 2H), 1,42 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ /ppm: 168,5, 134,9, 131,7, 128,7, 127,0, 77,5, 77,1, 76,7, 70,8, 56,5, 24,8. AMP- mC_6H_4 -Ala-OMe (C3b) odgovara spoju $A3_{m1}$ i pripravljen je prema istoj proceduri. Phg[#]- mC_6H_4 -Ala-OMe (C3c) odgovara spoju $A3_{m5}$ i pripravljen je prema istoj proceduri. Phe[#]- mC_6H_4 -Ala-OMe (C3d) odgovara spoju $A3_{m4}$ i pripravljen je prema istoj proceduri.

(*R*)-Phg[#]-*m*C₆H₄-Ala-OMe (C3c*). Izoftalna kiselina (498,40 mg, 3,0 mmol), HATU (2,28 g, 6,0 mmol), DIPEA (4,18 mL, 24 mmol), (*R*)-fenilglicinol ((*R*)-Phg[#]) (411,54 mg, 3,0 mmol), H-Ala-OMe·HCl (418,74 mg, 3,0 mmol). Automatska *flash* kromatografija, EtOAc : heksan = 1 : 1 → čisti EtOAc. Iskorištenje: 328,8 mg (0,9 mmol, 30%), bijela krutina. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,21 (t, *J* = 1,8 Hz, 1H), 7,84 (dddd, *J* = 21,8, 7,8, 1,8, 1,2 Hz, 2H), 7,45 – 7,31 (m, 7H), 5,35 – 5,23 (m, 1H), 4,79 (kvin., 1H), 4,03 – 4,01 (m, 2H), 3,73 (s, 3H), 1,51 (d, J = 7,3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ /ppm: 174,5, 167,1, 166,6, 139,3, 134,7, 133,1, 131,2, 130,4, 129,0, 128,8, 127,7, 126,9, 124,9, 65,9, 60,5, 56,5, 52,9, 48,9, 21,1, 17,7, 14,3.

3.8. Karakterizacija liganada A

(Me₂-ox)-*m*C₆H₄-Ala-OMe (Al_{m1}). AMP-*m*C₆H₄-Ala-OMe (A3_{m1}) (1,0 mmol). Kromatografija: 30 g silikagela, heksan : etil-acetat = 7 : 3. Iskorištenje: 173,3 mg (0,6 mmol, 57%), bezbojno ulje. $M_r(C_{16}H_{20}N_2O_4) = 304,14$. ESI-MS (*m*/*z*): 305,2 (M + H⁺). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,29 (s, 1H), 8,07 (d, *J* = 7,8 Hz, 1H), 7,99 (d, *J* = 7,8 Hz, 1H), 7,50 (t, *J* = 7,8 Hz, 1H), 6,77 (d, *J* = 6,6 Hz, 1H), 4,82 (kvin., *J* = 7,2 Hz, 1H), 4,14 (s, 2H), 3,79 (s, 3H), 1,53 (d, *J* = 7,2 Hz, 3H), 1,40 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 173,6, 166,1, 161,4, 134,2, 131,4, 130,6, 128,9, 128,5, 126,2, 79,4, 67,9, 52,7, 48,7, 28,5, 28,5, 18,7. ESI-HRMS (*m*/*z*): očekivano 305,15, 327,13 (C₁₆H₂₀N₂O₄ + H⁺, C₁₆H₂₀N₂O₄ + Na⁺), opaženo 305,1492, 327,1307. IR (KBr): 3344 (w), 2970 (w), 1745 (m), 1650 (s), 1166 (m), 1540 (m), 1213 (m), 1064 (w), 973 (w), 712 (m).

(Me₂-ox)- pC_6H_4 -Ala-OMe (A1_p). AMP- pC_6H_4 -Ala-OMe (A3_{p1}) (0,4 mmol). Kromatografija: 30 g silikagela, heksan : etil-acetat = 3 : 7. Iskorištenje: 62,1 mg (0,2 mmol, 57%), žuti prah. M_r(C₁₆H₂₀N₂O₄) =

304,14. ESI-MS (*m*/*z*): 305,1 (M + H⁺). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,01 (d, *J* = 8,5 Hz, 2H), 7,83 (d, *J* = 8,5 Hz, 2H), 6,76 (d, *J* = 6,5 Hz, 1H), 4,81 (kvin., *J* = 7,2 Hz, 1H), 4,13 (s, 2H), 3,80 (s, 3H), 1,54 (d, *J* = 7,1 Hz, 3H), 1,40 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ /ppm: 173,7, 166,1, 161,5 – 161,0 (m), 136,2, 131,3, 128,6, 127,1, 79,4, 68,0, 52,7, 48,7, 28,5, 18,8. ESI-HRMS (*m*/*z*): očekivano 305,15, 327,13, 631,27 (C₁₆H₂₀N₂O₄ + H⁺, C₁₆H₂₀N₂O₄ + Na⁺, 2(C₁₆H₂₀N₂O₄) + Na⁺), opaženo 305,1492, 327,1307, 631,2725. IR (KBr): 3273 (s), 3195 (m), 1654 (s), 1858 (m), 1534 (s), 1455 (m), 1368 (m), 1296 (m), 1038 (m), 759 (m), 608 (w), 533 (w), 442 (w).

(H₂-ox)-*m*C₆H₄-Phe-OMe (A1_{m2}). ETA-*m*C₆H₄-Phe-OMe (A3_{m2}) (0,8 mmol). Kromatografija: 30 g silikagela, heksan : etil-acetat = 2 : 8. Iskorištenje: 197,8 mg (0,6 mmol, 68%), bijela krutina. M_r(C₂₀H₂₀N₂O₄) = 352,14. ESI-MS (*m/z*): 353,10 (M + H⁺, 100%), 705,25 (2M + H⁺, 13%), 727,20 (2M + Na⁺, 9%). ¹H NMR (600 MHz, CDCl₃) δ /pm: 8,27 (t, *J* = 1,8 Hz, 1H), 8,09 (dt, *J* = 7,8, 1,4 Hz, 1H), 7,89 (dt, *J* = 7,7, 1,5 Hz, 1H), 7,49 (t, *J* = 7,8 Hz, 1H), 7,34 – 7,21 (m, 3H), 7,18 – 7,10 (m, 2H), 6,63 (d, *J* = 7,6 Hz, 1H), 5,16 – 5,03 (m, 1H), 4,54 – 4,32 (m, 2H), 4,09 (t, *J* = 9,5 Hz, 2H), 3,76 (s, 3H), 3,36 – 3,16 (m, 2H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 173,5, 169,2, 166,1, 138,4, 135,8,

132,2, 131,5, 130,2, 129,8, 129,5, 128,2, 127,8, 69,3, 55,9, 55,2, 52,7, 38,1. MALDI-HRMS (m/z): očekivano 353,15 ($C_{20}H_{20}N_2O_4 + H^+$), opaženo 353,1704. IR (ATR): 3273 (w), 2954 (m), 1759 (w), 1737 (m), 1646 (m), 1541 (m), 1439 (m), 1275 (m), 1256 (m), 1183 (m), 950 (m), 702 (m).

(*i*-Pr-ox)- mC_6H_4 -Ala-OMe (A1_{m3}). Val[#]- mC_6H_4 -Ala-OMe (A3_{m3})(0,5 mmol). Kromatografija: 40 g silikagela, heksan : etilacetat = 7 : 3. Iskorištenje: 74,3 mg (0,2 mmol, 47%), bijela krutina.

 $M_r(C_{17}H_{22}N_2O_4) = 318,16$. ESI-MS (*m*/*z*): 319,15 (M + H⁺, 100%). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,32 (s, 1H), 8,04 (ddt, J = 31,8, 7,7, 1,5 Hz, 2H), 7,50 (t, J = 7,8 Hz, 1H), 6,80 (d, J = 7,3 Hz, 1H), 4,82 (kvin., J = 7,2 Hz, 1H), 4,44 (td, J = 7,3, 2,1 Hz, 1H), 4,23 – 4,00 (m, 2H), 3,79 (s, 3H), 1,87 (quin, J = 6,6 Hz, 1H), 1,54 (d, J = 7,2 Hz, 3H), 1,04 (d, J = 6,7 Hz, 3H), 0,94 (d, J = 6,7 Hz, 3H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 174,7, 169,2, 165,2, 135,7, 132,3, 131,6, 131,6, 129,9, 129,1, 128,4, 73,2, 71,5, 52,8, 50,1, 33,8, 18,8, 18,1, 17,2. MALDI-HRMS (*m*/*z*): očekivano 637,32 (2(C₁₆H₂₀N₂O₄) + H⁺), opaženo 637,3234. IR (ATR): 3312 (w), 2961 (w), 1741 (m), 1644 (m), 1536 (m), 1448 (m), 1213 (m), 1169 (m), 967 (m), 788 (m), 704 (m).

Bn (J) (Bzn-ox)-*m*C₆H₄-Ala-OMe (A1_{m4}). Phe[#]-*m*C₆H₄-Ala-OMe (A3_{m4}) (0,9 mmol). Kromatografija (silika 40 g), EtOAc : heksan = 3 : 7 \rightarrow EtOAc : heksan = 1 : 1. Iskorištenje: 226,2 mg (0,6 mmol, 67%), bijela krutina. Mr (C₂₁H₂₂N₂O₄) =366,16. ESI-MS (*m*/*z*): 367,15 (M + H⁺, 100%), 733,25 (2M + H⁺, 11%). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,31 (t, *J* = 1,8 Hz, 1H), 8,04 (ddt, *J* = 26,5, 7,9, 1,5 Hz, 2H), 7,51 (t, *J* = 7,8 Hz, 1H), 7,40 – 7,19 (m, 5H), 6,80 (d, *J* = 7,3 Hz, 1H), 4,82 (kvin., *J* = 7,2 Hz, 1H), 4,70 – 4,53 (m, 1H), 4,27 (dt, 2H), 3,79 (s, 3H), 3,32 – 2,65 (m, 2H), 1,54 (d, *J* = 7,2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 173,6, 166,2, 163,4, 137,8, 134,3, 131,5, 130,7, 129,3, 128,9, 128,8, 128,7, 128,2, 126,7, 126,4, 72,2, 68,0, 52,7, 48,7, 41,8, 18,6. MALDI-HRMS (*m*/*z*): očekivano 367,1658, 389,1469 (C₂₁H₂₂N₂O₄ + H⁺, C₂₁H₂₂N₂O₄ + Na⁺), opaženo 367,1649, 389,1469. IR (ATR): 3317 (w), 2960 (w), 1735 (m), 1649 (m), 1528 (m), 1265 (m), 1210 (m), 1165 (m), 972 (m), 734 (m), 700 (s).

(Ph-ox)- mC_6H_4 -Ala-OMe (A1_{m5}). Phg[#]- mC_6H_4 -Ala-OMe (A3_{m5}) (0,5 mmol). Automatska *flash* kromatografija, EtOAc : heksan = 1 : 1 \rightarrow čisti EtOAc. Iskorištenje: 66,6 mg (0,2 mmol, 36%), bezbojno

ulje. $M_r(C_{20}H_{20}N_2O_4) = 352,14$. ESI-MS (*m*/*z*): 353,10 (M + H⁺, 100%), 705,25 (2M + H⁺, 17%), 727,20 (2M + Na⁺, 9%). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,43 (t, *J* = 1,8 Hz, 1H), 8,10 (ddt, *J* = 38,6, 7,8, 1,5 Hz, 2H), 7,54 (t, *J* = 7,8 Hz, 1H), 7,42 – 7,18 (m, 5H), 6,85 (d, *J* = 7,4 Hz, 1H), 5,41 (dd, *J* = 10,2, 8,2 Hz, 1H), 4,93 – 4,76 (m, 2H), 4,32 (t, *J* = 8,3 Hz, 1H), 3,78 (s, 3H), 1,53 (d, *J* = 7,2 Hz, 3H), 1,26 (t, 2H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 173,6, 166,1, 164,1, 142,1, 134,3, 131,6, 130,9, 129,0, 128,9, 127,9, 127,9, 126,9, 126,8, 126,5, 75,2, 70,3, 52,6, 48,7, 48,7, 18,6. MALDI-HRMS (*m*/*z*): očekivano 353,1501, 375,1315 (C₂₀H₂₀N₂O₄ + H⁺, C₂₀H₂₀N₂O₄ + Na⁺), opaženo 353,1493, 375,1316. IR (ATR): 3291 (w), 2954 (w), 1737 (m), 1638 (s), 1536 (m), 1265 (m), 1211 (m), 1169 (m), 699 (s).

(Ph-ox)-mC₆H₄-Gly-Val-Phe-OMe (A1_{m6}). Gly-Val-Phe-OMe Phg[#]- mC_6H_4 -Gly-Val-Phe-OMe (A3_{m6}) (3m6) (1,0 mmol). Kromatografija (silikagel 50 g), $2\% \rightarrow 5\%$ CH₃OH u CH₂Ch. Iskorištenje: 276,5 mg (0,5 mmol, 47%), bijela krutina. $M_{f}(C_{33}H_{36}N_{4}O_{6}) = 584,26$. ESI-MS (m/z): 585,2 (M + H⁺, 100%), $1169,5(2M + H^+, 4\%)$. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,46 (t, J = 1,8 Hz, 1H), 8,21 – 8,10 (m, 1H), 8,08 – 7,98 (m, 1H), 7,52 (t, J = 7,8 Hz, 1H), 7,45 – 7,15 (m, 9H), 7,09 (dd, J = 7,9, 1,7 Hz, 2H), 6,67 (d, J = 8,7 Hz, 1H), 6,55 (d, J = 8,0 Hz, 1H), 5,39 (dd, J = 10,1,8,2 Hz, 1H), 4,92 - 4,74 (m, 2H), 4,37 - 4,23 (m, 2H), 4,08 (dd, J = 8,8, 5,2 Hz, 2H), 3,68 (s, 3H), 3,19 - 2,98 (m, 2H), 2,17 - 2,00 (m, 1H), 0,88 (dd, J = 16,0, 6,8 Hz, 6H). ¹H NMR (600 MHz, DMSO) δ /ppm: 8,95 (t, J = 6,0 Hz, 1H), 8,48 (m, 2H), 8,11 – 8,03 (m, 2H), 7,81 (d, J =9,1 Hz, 1H), 7,63 (t, J = 7,8 Hz, 1H), 7,43 – 7,15 (m, 10H), 5,45 (dd, J = 10,1, 8,1 Hz, 1H), 4,92 - 4,84 (m, 1H), 4,45 (ddd, J = 8,8,7,2,6,2 Hz, 1H), 4,25 (m, 2H), 3,93 (d, J = 6,0 Hz, 2H), 3,54 (s, 3H), 3,06 – 2,88 (m, 2H), 1,94 (h, J = 6,8 Hz, 1H), 0,81 (dd, J = 28,8, 6,8 Hz, 6H). ¹³C NMR (75 MHz, CD₃OD) δ/ppm: 173,4, 173,1, 171,5, 169,4, 166,3, 143,3, 138,1, 135,7, 132,5, 132,2, 132,0, 131,9, 130,2, 130,0, 129,9, 129,5, 129,5, 128,9, 128,8, 128,5, 128,4, 128,0, 127,8, 76,6, 70,9, 59,8, 57,9, 55,2, 52,5, 44,1, 38,3, 32,0, 19,6, 18,4. MALDI-HRMS (m/z): očekivano 585,27 (C₃₃H₃₆N₄O₆ + H⁺), opaženo 585,2736. IR (KBr): 3408 (m), 3304 (m), 3065 (m), 2966 (m), 1745 (m), 1650 (s), 1538 (s), 1270 (m), 1235 (m), 1216 (m), 1075 (m), 957 (m), 762 (m), 701 (s), 544 (w).

Ph-(,) (Ph-ox)₂-mC₆H₄ (A1_{m7}). (Phg[#])₂-mC₆H₄ (A4_{m4}) (0,3 mmol). Kromatografija (silikagel 20 g), 2% \rightarrow 5% CH₃OH u CH₂Cl₂. Iskorištenje: 24,3 mg (0,1 mmol, 22%), bijela krutina. M_r (C₂₄H₂₀N₂O₂) =368,15. ESI-MS (*m*/*z*): 369,15 (M + H⁺, 100%), 737,25 (2M + H⁺, 15%). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,69 (d, *J* = 1,8 Hz, 1H), 8,20 (dd, *J* = 7,8, 1,7 Hz, 2H), 7,52 (t, *J* = 7,8 Hz, 1H), 7,42 – 7,24 (m, 10H), 5,41 (dd, *J* = 10,1, 8,2 Hz, 2H), 4,82 (dd, *J* = 10,2, 8,5 Hz, 2H), 4,30 (t, *J* = 8,3 Hz, 2H).¹³C NMR (151 MHz, CD₃OD) δ /ppm: 166,1, 143,2, 132,7, 130,2, 129,9, 129,4, 129,0, 128,9, 127,8, 76,6, 70,9. MALDI-HRMS (*m*/*z*): očekivano 369,15 (C₂₄H₂₀N₂O₂ + H⁺), opaženo 369,1810. IR (ATR): 2904 (w), 1649 (m), 1456 (m), 1347 (m), 1267 (m), 1236 (m), 1079 (m), 980 (m), 958 (m), 760 (m), 695 (s).

(Me₂-ox)-1,4-Nph-Ala-OMe (A1_{n1}). AMP-1,4-Nph-Ala-OMe (A3_{n1}) (0,5 mmol). Kromatografija: 35 g silikagela, heksan : etil-acetat = 1 : 1. Iskorištenje: 74,3 mg (0,2 mmol, 42%), bijeli prah. $M_r(C_{20}H_{22}N_2O_4) =$ 354,16. ESI-MS (*m*/*z*): 355,2 (M + H⁺), 709,4 (2M + H⁺). ¹H NMR

(600 MHz, CDCl₃) δ /ppm: 9,08 (d, J = 8,2 Hz, 1H), 8,33 (d, J = 7,9 Hz, 1H), 8,01 (d, J = 7,4 Hz, 1H), 7,66 – 7,56 (m, 3H), 6,53 (d, J = 7,3 Hz, 1H), 4,92 (kvin., J = 7,2 Hz, 1H), 4,17 (s, 2H), 3,83 (s, 3H), 1,61 – 1,57 (m, 3H), 1,49 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 173,4, 168,7, 161,4, 136,9, 131,5, 130,4, 127,8, 127,6, 127,6, 127,4, 126,8, 125,7, 123,9, 78,5, 68,7, 52,7, 48,7, 28,6, 18,6. ESI-HRMS (m/z): očekivano 355,17, 377,15, 393,12 (C₂₀H₂₂N₂O₄ + H⁺, C₂₀H₂₂N₂O₄ + Na⁺, C₂₀H₂₂N₂O₄ + K⁺), opaženo 355,1643, 377,1463, 393,1202.

(Me₂-ox)-1,4-Nph-Gly-OMe (A1_{n2}). AMP-1,4-Nph-Gly-OMe (A3_{n2}) (1,0 mmol). Kromatografija: 40 g silikagela, heksan : etil-acetat = 1 : 1. Iskorištenje: 119,9 mg (0,4 mmol, 35%), bijeli prah. $M_r(C_{19}H_{20}N_2O_4) =$ 340,14. ESI-MS (*m*/*z*): 341,1 (M + H⁺). ¹H NMR (300 MHz, CDCl₃)

 δ /ppm: 9,12 – 9,01 (m, 1H), 8,41 – 8,28 (m, 1H), 8,01 (d, J = 7,4 Hz, 1H), 7,69 – 7,55 (m, 3H), 6,55 (t, J = 5,0 Hz, 1H), 4,34 (d, J = 5,4 Hz, 2H), 4,17 (s, 2H), 3,83 (s, 3H), 1,49 (s, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 172,3, 171,6, 164,5, 138,6, 132,3, 131,6, 128,6, 128,5, 128,3, 127,1, 127,0, 125,0, 80,2, 69,2, 52,7, 42,2, 28,5. ESI-HRMS (m/z): očekivano 341,15, 363,13, 379,11 (C₁₉H₂₀N₂O₄ + H⁺, C₁₉H₂₀N₂O₄ + Na⁺, C₁₉H₂₀N₂O₄ + K⁺), opaženo 341,1488, 363,1305, 379,1045. IR (KBr): 3447 (w), 3300 (m), 2970 (w), 1736 (s), 1643 (m), 1528 (m), 1324 (w), 1276 (m), 1246 (m), 1113 (w), 1008 (w), 1004 (w), 865 (w), 778 (w).

(Me₂-ox)-1,5-Nph-Ala-OMe (A1_{n3}). AMP-1,5-Nph-Ala-OMe (A3_{n3}) (1,0 mmol). Kromatografija: 35 g silikagela, heksan : etil-acetat = 35:65. Iskorištenje: 147,1 mg (0,4 mmol, 42%), bijeli prah.

 $M_r(C_{20}H_{22}N_2O_4) = 354,16.$ ESI-MS (*m*/*z*): 355,1 (M + H⁺). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 9,19 (d, *J* = 8,6 Hz, 1H), 8,47 (d, *J* = 8,6 Hz, 1H), 8,11 – 8,04 (m, 1H), 7,72 – 7,65 (m, 1H), 7,61 – 7,52 (m, 2H), 6,56 (d, *J* = 7,3 Hz, 1H), 4,91 (kvin., *J* = 7,2 Hz, 1H), 4,16 (s, 2H), 3,82 (s, 3H), 1,59 (d, 3H), 1,48 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ /ppm: 134,2, 131,5, 130,5, 129,4, 129,3, 128,9, 126,0, 126,0, 125,5, 125,4, 78,5, 68,6, 52,7, 48,7, 28,6, 18,6. ESI-HRMS (*m*/*z*): očekivano 355,17, 377,15, 731,31 (C₂₀H₂₂N₂O₄ + H⁺, C₂₀H₂₂N₂O₄ + Na⁺, 2(C₂₀H₂₂N₂O₄) + Na⁺), opaženo 355,1642, 377,1461, 731,3026. IR (KBr): 3421 (w), 3341 (w), 2969 (w), 1745 (m), 1642 (m), 1528 (w), 1215 (w), 1197 (w), 1160 (w), 1040 (w), 797 (w).

(Me₂-ox)-2,6-Nph-Ala-OMe (A1_{n4}). AMP-2,6-Nph-Ala-OMe (A3_{n4}) (0,5 mmol). Kromatografija: 30 g silikagela, heksan : etilacetat = 6 : 4, omjer je postupno mijenjan do 1 : 1. Iskorištenje: 76,3 mg (0,2 mmol, 43%), bijeli prah. $M_r(C_{20}H_{22}N_2O_4) = 354,16$.

ESI-MS (*m*/*z*): 355,2 (M + H⁺), 709,3 (2M + H⁺). Kristali prikladni za rendgensku difrakciju monokristala dobiveni su iz otopine u NMR cijevčici nakon nekoliko mjeseci. ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,47 (s, 1H), 8,32 (s, 1H), 8,09 (d, *J* = 8,6 Hz, 1H), 7,95 (t, *J* = 8,4 Hz, 2H), 7,89 (d, *J* = 8,4 Hz, 1H), 6,89 (d, *J* = 6,8 Hz, 1H), 4,87 (kvin., *J* = 7,1 Hz, 1H), 4,18 (s, 2H), 3,82 (s, 3H), 1,57 (d, *J* = 7,1 Hz, 3H), 1,43 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 173,8, 166,7, 161,9, 134,3, 133,9, 132,6, 129,5, 129,1, 128,4, 127,4, 127,3, 125,9, 124,4, 79,4, 67,9, 52,7, 48,7, 28,5, 18,8. ESI-HRMS (*m*/*z*): očekivano 355,17, 377,15, 731,31 (C₂₀H₂₂N₂O₄ + H⁺, C₂₀H₂₂N₂O₄ + Na⁺, 2(C₂₀H₂₂N₂O₄) + Na⁺), opaženo 355,1642, 377,1464, 731,3038. IR (KBr): 3474 (w), 3358 (w), 2973 (w), 1752 (m), 1639 (s), 1523 (m), 1207 (m), 1188 (m), 1161 (m), 1062 (m), 979 (w), 912 (w), 823 (w), 758 (w), 717 (w), 483 (w).

(Me₂-ox)-2,7-Nph-Ala-OMe $(A1_{n5}).$ AMP-2,7-Nph-Ala-OMe (A3_{n5}) (1,0 mmol). Kromatografija: 35 g silikagela, heksan : etilacetat = 1 : 1. Iskorištenje: 48,8 mg (0,1 mmol, 14%), bijeli prah. $M_r(C_{20}H_{22}N_2O_4) = 354,16$. ESI-MS (m/z): 355,2 (M + H⁺). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,50 (d, J = 1,3 Hz, 1H), 8,37 (s, 1H), 8,17 – 8,09 (m, 1H), 7,94 – 7,86 (m, 3H), 6,88 (d, J = 7,3 Hz, 1H), 4,86 (kvin., J = 7,2 Hz, 1H), 4,18 (s, 2H), 3,82 (s, 3H), 1,57 (d, J = 7,1Hz, 3H), 1,43 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ/ppm: 173,8, 166,6, 161,9, 136,1, 132,1, 131,9, 129,6, 128,5, 128,5, 128,0, 127,0, 126,5, 125,2, 79,4, 67,9, 52,7, 48,7, 28,5, 18,8. ESI-HRMS (m/z): očekivano 355,17, 377,15, 731,31 $(C_{20}H_{22}N_2O_4 + H^+, C_{20}H_{22}N_2O_4 + Na^+, C_{20}H_{22}N_2O_4 + N$ $2(C_{20}H_{22}N_2O_4) + Na^+)$, opaženo 355,1645, 377,1464, 731,3037. IR (KBr): 3444 (w), 3260 (w), 3045 (w), 2978 (w), 1740 (s), 1658 (s), 1637 (m), 1544 (m), 1316 (m), 1228 (m), 1168 (m), 1076 (m), 959 (w), 867 (w), 710 (w).

(Me₂-ox)-9,10-Anth-Ala-OMe $(A1_{a1}).$ AMP-9,10-Anth-Ala-OMe (A3a1) (0,4 mmol), DAST (0,8 mmol). Kromatografija: 20 g silikagela, 1,5% CH₃OH u CH₂Ch. Iskorištenje: 138,7 mg (0,3 mmol, 87%), bijeli prah. $M_r(C_{24}H_{24}N_2O_4) = 404,17$. ESI-MS (*m*/*z*): 405,1 (M + H⁺). ¹H

NMR (600 MHz, CDCl₃) δ /ppm: 8,32 – 7,95 (m, 4H), 7,57 – 7,52 (m, 4H), 6,51 (d, J = 7,4Hz, 1H), 5,08 (kvin., J = 7,3 Hz, 1H), 4,37 (s, 2H), 3,87 (s, 3H), 1,66 (d, J = 7,3 Hz, 3H), 1,64 (s, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 174,6, 171,5, 164,1, 135,9, 130,6, 130,6, 129,0, 128,5, 128,2, 128,1, 127,8, 127,7, 127,2, 126,6, 126,2, 126,0, 125,3, 80,9, 69,6, 52,9, 50,3, 28,8, 17,0. ESI-HRMS (m/z): očekivano 405,18, 427,16, 831,31 ($C_{24}H_{24}N_2O_4 + H^+$, $C_{24}H_{24}N_2O_4 + Na^+$, $2(C_{20}H_{22}N_2O_4) + Na^+$), opaženo 405,1802, 427,1621, 831,3346. IR (KBr): 3416 (m), 3229 (m), 3052 (w), 2971 (m), 2926 (w), 1745 (s), 1653 (s), 1541 (s), 1445 (m), 1329 (s), 1529 (m), 1217 (s), 1195 (m), 1160 (m), 1113 (m), 1051 (m), 994 (s), 863 (m), 773 (m), 664 (m), 605 (w).

 $(Me_2-ox)-1,3,5-C_6H_3-(Ala-OMe)_2(A1_{t1}).$

AMP-1,3,5-C₆H₃-(Ala-OMe)₂ (A3_{t1}) (0,7 mmol). Kromatografija: 35 g silikagela, 1% CH₃OH u CH₂Ch. Iskorištenje: 266,0 mg (0,6 mmol, MeO-Ala 86%), bezbojno ulje. $M_r(C_{21}H_{27}N_3O_7) = 433,18$. ESI-MS (*m/z*): 434,2 (M + H⁺), 867,3 (2M + H⁺, 19%). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,43 (d, J = 1,7 Hz, 2H), 8,38 (d, J = 1,7 Hz, 1H), 7,01 (d, J = 7,4 Hz, 2H), 4,82 (kvin., J = 7,2 Hz, 2H), 4,16 (s, 2H), 3,79 (s, 3H), 1,54 (d, J = 7,2 Hz, 6H), 1,41 (d, J = 2,8 Hz, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 174,6, 168,3, 163,1, 136,3, 131,0, 130,4, 129,7, 80,7, 68,8, 52,8, 50,2, 28,4, 17,2. MALDI-HRMS (m/z): očekivano 434,18 (C₂₁H₂₇N₃O₇ + H⁺), opaženo 434,2037. IR (KBr): 3393 (m), 2971 (w), 1742 (s), 1656 (s), 1540 (s), 1455 (m), 1213 (m), 1164 (m), 1096 (w), 1054 (w), 979 (m), 721 (m).

Gly-OMe MeO-Gly

$(i-Pr-ox)-1,3,5-C_6H_3-(Gly-OMe)_2$ (A1_{t2}).

 $Val^{\#}-1,3,5-C_{6}H_{3}-(Gly-OMe)_{2}$ (A3_{t2}) (0,5 mmol). Kromatografija: 30 g silikagela, heksan : etil-acetat = 2 : 8. Iskorištenje: 28,3 mg (0,1 mmol, 13%), žuta krutina. ¹H NMR (300 MHz, CD₃CN)

 δ /ppm: 8,46 (d, J = 1,7 Hz, 2H), 8,38 (s, 1H), 7,93 (s, 1H), 7,62 (s, 2H), 4,50 (s, 1H), 4,27 -4,02 (m, 6H), 3,71 (s, 6H), 1,11 – 0,87 (m, 6H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 171,7, 171,7, 169,0, 168,9, 168,7, 164,3, 137,3, 136,1, 135,9, 132,6, 131,0, 130,4, 130,3, 130,0, 129,8, 73,5, 71,8, 63,3, 63,1, 59,1, 52,7, 52,7, 42,4, 42,4, 33,8, 30,3, 20,0, 19,3, 18,8, 18,3. MALDI-HRMS (m/z): očekivano 420,19 (C₂₀H₂₅N₃O₇ + H⁺), opaženo 420,1796. IR (ATR): 3315 (w), 2961 (w), 2930 (w), 1741 (m), 1655 (m), 1534 (m), 1219 (m), 1088 (m), 734 (s), 704 (m).

$(Ph-ox)-1,3,5-C_6H_3-(Phe-OMe)_2$ $(A1_{t3}).$

Phg[#]-1,3,5-C₆H₃-(Phe-OMe)₂ (A3_{t3}) (0,7 mmol). Kromatografija: 20 g silikagela, heksan : etil-acetat = 1 : 1. Iskorištenje: 168,6 mg (0,3 mmol, 38%), bezbojno ulje. Mr $(C_{37}H_{35}N_3O_7) = 633,25$. ESI-MS (m/z): 634,1 (M + H⁺), 1267,3 (2M + H⁺, 11%). ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,47 (d, J = 1,7 Hz, 2H), 8,27 (s, 1H) 7,47 – 7,03 (m, 15H), 6,74 (d, J = 7,7 Hz, 2H), 5,42 (d, J = 1,8 Hz, 1H), 5,09 (dt, J = 7,8, 6.0 Hz, 2H), 4.85 (dd, J = 10.2, 8.5 Hz, 1H), 4.33 (t, J = 8.4 Hz, 1H), 3.75 (s, 6H), 3.25 (qd, J = 13.9, 6.0 Hz, 4H). ¹³C NMR (75 MHz, (CD₃)₂CO) δ/ppm: 172,8, 166,2, 163,7, 143,7, 138,4, 135,9, 130,4, 130,2, 130,1, 129,5, 129,4, 129,3, 128,4, 127,7, 127,6, 76,0, 71,0, 55,5, 52,5, 38.0. MALDI-HRMS (m/z): očekivano 634,26 (C₃₇H₃₅N₃O₇ + H⁺), opaženo 634,2578. IR (ATR): 3312 (w), 3032 (w), 2954 (w), 1737 (m), 1655 (s), 1524 (m), 1215 (m), 1100 (m), 980 (m), 734 (m), 699 (s).

$(Ph-ox)-1,3,5-C_6H_3-(DPhe-OMe)_2$ $(A1_{t4}).$

Phg[#]-1,3,5-C₆H₃-(pPhe-OMe)₂ (A3_{t4}) (1,0 mmol). Kromatografija: 30 g silikagela, heksan : etil-acetat = 1 : 1. Iskorištenje: 363,0 mg (0,6 mmol, 57%), bijela krutina. $Mr(C_{37}H_{35}N_3O_7) = 633.25$. ESI-MS (m/z): 634.2 (M + H⁺), 1267,4 (2M + H⁺, 13%). ¹H NMR (300 MHz, CD₃CN) δ /ppm: 8,42 (d, J = 1,7 Hz, 2H), 8,21 (t, J = 1.8 Hz, 1H), 7,50 (d, J = 8.0 Hz, 2H), 7,45 – 7,11 (m, 15H), 5,43 (dd, J = 10.1, 8.1 Hz, 1H), 4,92-4,85 (m, 3H), 4,27 (t, J = 8,3 Hz, 1H), 3,69 (s, 6), 3,39 – 3,00 (m, 4H). ¹³C NMR (151 MHz, CD₃OD) δ/ppm: 173,4, 168,4, 165,4, 143,2, 138,3, 136,3, 131,1, 130,7, 130,2, 129,9, 129,5, 129,3, 128,9, 127,9, 127,8, 76,7, 71,0, 56,0, 52,8, 38,2. IR (KBr): 3419 (m), 3030 (w), 2953 (w), 2493 (w), 1742 (s), 1660 (s), 1600 (m), 1455 (s), 1435 (s), 1410 (m), 1357 (m), 1234 (m), 1204 (m), 1180 (m), 1100 (m), 983 (m), 758 (m), 701 (s).

$(Ph-ox)_2-1,3,5-C_6H_3-(Phe-OMe)$ (A1_{t5}).

 $(Phg^{\#})_2$ -1,3,5-C₆H₃-Phe-OMe (A4_{t5}) (0,5 mmol). Kromatografija: 20 g silikagela, heksan : etil-acetat = 1 : 1. Iskorištenje: 97,9 mg (0,2 mmol, 34%), bijela krutina. Mr(C₃₅H₃₁N₃O₅) = 573,23. ESI-MS (m/z): 574,1 (M + H⁺), 1147,4 (2M + H⁺, 13%). ¹H NMR

(300 MHz, CD₃CN) δ /ppm: 8,63 (d, J = 1,6 Hz, 1H), 8,45 (d, J = 1,6 Hz, 2H), 7,54 (d, J = 8,1Hz, 1H), 7,45 - 7,07 (m, 15H), 5,44 (dd, J = 10,1, 8,3 Hz, 2H), 4,89 (dd, J = 10,2, 8,5 Hz, 3H), 4,28 (t, J = 8,4 Hz, 2H), 3,69 (s, 3H), 3,38 – 2,95 (m, 2H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 173,4, 168,3, 165,4, 143,2, 138,4, 136,7, 131,9, 131,4, 130,2, 129,9, 129,5, 129,5, 128,9, 127,9, 127,8, 76,7, 71,0, 56,0, 52,8, 38,2. MALDI-HRMS (m/z): očekivano 574,23 (C₃₅H₃₁N₃O₅ + H⁺), opaženo 574,2406. IR (ATR): 3312 (w), 3066 (w), 3032 (w), 2954 (w), 2904 (w), 1737 (m), 1655 (m), 1541 (m), 1269 (m), 1215 (m), 980 (m), 734 (m), 697 (s).

 $(Ph-ox)_2-1,3,5-C_6H_3$ $(A1_{t6})^{.268}$ $(Phg^{\#})_3-1,3,5-C_6H_3$ $(A5_{t5})$ (0,5) mmol). Kromatografija: 30 g silikagela, heksan : etil-acetat = 6 : 4. Iskorištenje: 52,8 mg (0,2)mmol, 34%), bijela krutina. $Mr(C_{33}H_{27}N_{3}O_{3}) = 513,21$. ESI-MS (*m*/*z*): 514,20 (M + H⁺, 100%), 1027,4 (2M + H⁺, 19%). ¹H NMR (300 MHz, CDCl₃) δ /ppm. 8,84

85

(s, 3H), 7,59 – 6,88 (m, 15H), 5,43 (dd, J = 10,2, 8,3 Hz, 3H), 4,83 (dd, J = 10,2, 8,5 Hz, 3H), 4,31 (t, J = 8,4 Hz, 3H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 165,3, 143,2, 132,1, 129,8, 129,8, 128,9, 127,8, 76,8, 71,1. MALDI-HRMS (m/z): očekivano 514,21 (C₃₃H₂₇N₃O₃ + H⁺), opaženo 514,2167. IR (ATR): 2963 (w), 2919 (m), 2851 (m), 1649 (m), 1269 (m), 1236 (m), 965 (m), 915 (m), 699 (s).

$((Ph-ox)-mC_6H_4-Val-NH-CH_2CH_2)_2$ (A1_b).

(Phg[#]-*m*C₆H₄-Val-NH-CH₂CH₂)₂ (**A3**_b) (0,16 mmol). Kromatografija: 20 g silikagela, 5% CH₃OH u CH₂Cl₂. Iskorištenje: 43,5 mg (0,05 mmol, 34%), bijela krutina. Mr(C₄₆H₅₂N₆O₆) =784,39. ESI-MS (*m/z*): 393,4 (1/2M + H⁺, 100%), 785,3 (M + H⁺, 30%). ¹H NMR (300 MHz, CD₃OD) δ /ppm: 8,46 (s, 2H), 8,15 (d, *J* = 7,9 Hz, 2H), 8,03 (d, *J* = 7,8 Hz, 2H), 7,60 (t, *J* = 7,9 Hz, 2H), 7,43 – 7,27 (m, 10H), 5,49 – 5,37

(m, 2H), 4,94 (d, J = 8,7 Hz, 2H), 4,32 (dd, J = 14,9, 8,2 Hz, 4H), 2,14 (d, J = 14,7 Hz, 2H), 1,57 (s, 4H), 1,29 (s, 8H), 1,06 – 0,95 (m, 12H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 179,4, 176,0, 173,6, 169,2, 143,3, 136,1, 132,4, 132,0, 130,0, 129,9, 128,9, 128,7, 128,5, 127,8, 76,6, 70,9, 61,4, 39,9, 31,8, 27,6, 19,8, 19,3. MALDI-HRMS (m/z): očekivano 785,40 (C₄₆H₅₂N₆O₆ + H⁺), opaženo 785,4015. IR (ATR): 3288 (m), 2963 (w), 2930 (w), 2874 (w), 1630 (m), 1523 (m), 1234 (m), 1070 (m), 960 (m), 697 (m).

3.9. Karakterizacija liganada B

(**Ph-ox**)- C_6H_5 (**B1**_H).^{7,269} Phg[#]- C_6H_5 (1,93 mmol, 465,7 mg). Automatska *flash* kromatografija, EtOAc : heksan = $2: 8 \rightarrow 3: 7$. Iskorištenje: 329,9 mg (1,5 mmol, 77%), bezbojno ulie. $M_r(C_{15}H_{13}NO) = 223,10$. ESI-MS (m/z): 224,10 (M+H⁺, 100%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,08 – 8,01 (m, 2H), 7,55 -7,27 (m, 8H), 5,39 (dd, J = 10,1, 8,1 Hz, 1H), 4,80 (dd, J = 10,1, 8,4 Hz, 1H), 4,28 (t, J = 10,1, 8,48,3 Hz, 1H). 1H NMR (300 MHz, CD₃CN) δ/ppm: 8,08 – 7,93 (m, 2H), 7,60 – 7,44 (m, 3H), 7,42 - 7,24 (m, 4H), 5,38 (dd, J = 10,1, 8,1 Hz, 1H), 4,82 (dd, J = 10,1, 8,5 Hz, 1H), 4,22 (t, J = 8.3 Hz, 1H).¹³C NMR (151 MHz, CDCb) δ /ppm: 164.8, 142.5, 131.6, 128.8, 128.6, 128.5, 127,7, 127,7, 126,8, 75,0, 70,3. MALDI-HRMS (m/z): očekivano 224,11 (M+H⁺), 246,09 (M+Na⁺); opaženo 224,1068, 246,0887. IR (ATR): 3063 (w), 3032 (w), 2967 (w), 2898 (w), 1646 (s), 1495 (m), 1450 (m), 1357 (m), 1066 (m), 1025 (m), 950 (m), 789 (m), 691 (s), 678 (s). UV–Vis [CH₂Cb, c (**B1**_H) = 0.03 mM; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 247 (12333). UV–Vis $[CH_2Cb, c (B1_H) = 0.15 \text{ mM}; \lambda_{maks}, \text{ nm} (\varepsilon_{UV}, M^{-1} \text{ cm}^{-1})]: 247 (10884). CD [CH_2Cb, c (B1_H)]$ = 0,03 mM; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 249 (-3,94), 257 (-3,78), 283 (0,62). CD [CH₂Cb, c $(\mathbf{B1}_{\mathbf{H}}) = 0.15 \text{ mM}; \ \theta_{\text{maks}}, \text{nm} \ (\varepsilon_{CD}, \text{ M}^{-1} \text{ cm}^{-1})]: 283 \ (0,67), 290 \ (11).$

(**Ph-ox**)- pC_6H_4 -F (**B1**_F). Phg[#]- pC_6H_4 F (1,93 mmol, 509,1 mg). Automatska *flash* kromatografija, EtOAc : heksan = 2 : 8 \rightarrow 3:7. Iskorištenje: 324,6 mg (1,35)mmol, 70%), bijela krutina. $M_r(C_{15}H_{12}FNO) = 241,10$. ESI-MS (*m/z*):.242,15 (M+H⁺, 100%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,11 – 7,97 (m, 2H), 7,41 – 7,27 (m, 5H), 7,12 (t, J = 8,7 Hz, 2H), 5,38 (dd, J= 10,1, 8,2 Hz, 1H), 4,80 (dd, J = 10,1, 8,3 Hz, 1H), 4,28 (t, J = 8,3 Hz, 1H). ¹³C NMR (151) MHz, CDCl₃) δ/ppm: 165,8, 164,1, 163,9, 142,4, 130,9, 130,8, 128,9, 127,8, 126,8, 123,9, 123,9, 115,7, 115,5, 75,1, 70,3. ¹MALDI-HRMS (m/z): očekivano 242,10 (M+H⁺); opaženo 242,0971. IR (ATR): 3071 (w), 3034 (w), 2971 (w), 2907 (w), 1646 (s), 1601 (m), 1506 (s), 1497 (m), 1474 (m), 1457 (m), 1411 (m), 1364 (m), 1349 (m), 1316 (m), 1219 (m), 1146 (m), 1071 (s), 952 (s), 846 (s), 813 (m), 759 (s), 736 (m), 697 (s), 671 (s). UV-vis [CH₂Cb, c $(\mathbf{B1}_{\mathbf{F}}) = 0.03 \text{ mM}; \lambda_{\text{maks}}, \text{ nm} (\varepsilon_{UV}, \text{ M}^{-1} \text{ cm}^{-1})]: 246 (12697). UV-Vis [CH₂Cl₂, c ($ **B1**_F) = 0.15]mM; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 246 (10929). CD [CH₂Cb, c (**B1**_F) = 0.03 mM; θ_{maks} , nm $(\varepsilon_{CD}, M^{-1} \text{ cm}^{-1})$]: 249 (-3,69), 257 (-3,65).

(**Ph-ox**)- pC_6H_4 -NMe₂ (**B1**_N). Phg[#]- pC_6H_4 -NMe₂ (1,75 mmol, 497,7 mg). Automatska *flash* kromatografija, EtOAc:heksan = 2:8 \rightarrow 3:7. Iskorištenje: 331,7 mg (1,25 mmol, 71%), bijela krutina.

M_r(C₁₇H₁₈N₂O) = 266,12. ESI-MS (*m*/*z*): 267,15 (M+H⁺, 100%). ¹H NMR (300 MHz, CDCl₃) δ/ppm: 8,01 – 7,71 (m, 2H), 7,52 – 7,10 (m, 5H), 6,85 – 6,43 (m, 2H), 5,33 (dd, *J* = 9,9, 7,8 Hz, 1H), 4,73 (dd, *J* = 10,0, 8,3 Hz, 1H), 4,21 (t, *J* = 8,1 Hz, 1H), 3,03 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ/ppm: 165,2, 152,5, 143,2, 129,9, 128,7, 127,5, 126,9, 114,7, 111,2, 74,7, 70,1, 40,3. ¹MALDI-HRMS (*m*/*z*): očekivano 267,15 (M+H⁺); opaženo 267,1813. IR (ATR): 2989 (w), 2892 (w), 2822 (w), 1634 (m), 1605 (m), 1523 (m), 1359 (m), 1182 (m), 1075 (m), 975 (m), 950 (m), 818 (m), 755 (m), 742 (m), 699 (m), 669 (m). UV–Vis [CH₂Cl₂, *c* (**B1**_N) = 0,03 mM; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 232 (7725), 309 (28743). UV–Vis [CH₂Cl₂, *c* (**B1**_N) = 0,15 mM; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 233 (13223). CD [CH₂Cl₂, *c* (**B1**_N) = 0,03 mM; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 256 (-0,31), 262 (0,69), 269 (0,95), 318 (-0,93).

(**Ph-ox**)-**C**₁₆**H**₉ (**B1**_P). Phg[#]-**C**₁₆H₉ (1,22 mmol, 450,0 mg). Automatska *flash* kromatografija, EtOAc : heksan = $2 : 8 \rightarrow 3:7$. Iskorištenje: 293,5 mg (0,84 mmol, 71%), bijela krutina. M_r(C₂₅H₁₇NO) = 347,13. ESI-

MS (*m*/*z*): 348,10 (M+H⁺, 100%), 695,1 (2M+H⁺). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 9,55 (d, J = 9,4 Hz, 1H), 8,66 (d, J = 8,0 Hz, 1H), 8,26 (ddd, J = 7,4,5,9,1,1 Hz, 2H), 8,22 (d, J = 8,7 Hz, 2H), 8,19 – 8,09 (m, 2H), 8,06 (t, J = 7,6 Hz, 1H), 7,50 – 7,45 (m, 2H), 7,42 (dd, J = 8,5,6,9 Hz, 2H), 7,37 – 7,31 (m, 1H), 5,66 (dd, J = 10,2,8,3 Hz, 1H), 4,94 (dd, J = 10,2,8,1 Hz, 1H), 4,40 (t, J = 8,2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 165,4, 142,8, 133,6, 131,2, 130,7, 130,6, 129,2, 129,1, 128,9, 128,0, 127,7, 127,3, 126,9, 126,3, 126,1, 126,0, 125,8, 125,0, 124,4, 124,4, 121,2, 74,2, 71,2. MALDI-HRMS (m/z): očekivano 348,14 (M+H⁺); opaženo 348,1556. IR (ATR): 3055 (w). 2924 (w), 1659 (w), 1646 (w), 1623 (w), 1610 (w), 1606 (w), 1588 (w), 1567 (w), 1536 (w), 1517 (w), 1463 (w), 1413 (w), 1359 (w), 1295 (w), 1275 (w), 1264 (w), 1219 (w), 1155 (w), 1107 (w), 1047 (m), 868 (m), 779 (m), 721 (m). UV–Vis [CH₂Cl₂, c (**B1**_P) = 0,03 mM; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 242 (51808), 274 (sh, 31382), 352 (37033), 384 (11025). CD [CH₂Cl₂, c (**B1**_P) = 0,03 mM; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 248 (0,67), 259 (-0,08), 285 (-0,62), 333 (0,25), 339 (0,25), 370 (0,25), 384 (0,18).

(Ph-ox)- mC_6H_4 -Ala-OMe (B1_{mA}) odgovara spoju A1_{m5} i pripravljen je prema istoj proceduri.

((R)-Ph-ox)- mC_6H_4 -Ala-OMe (B1_{mA*}).

(*R*)-Phg[#]- mC_6H_4 -Ala-OMe (298,2 mg, 0,8 mmol). Automatska *flash* kromatografija, EtOAc : heksan = 1 : 1 \rightarrow čisti EtOAc. Iskorištenje:

232,8 mg (0,7 mmol, 83%), bezbojno ulje. ¹H NMR (300 MHz, CDCl₃) δ /ppm: 8,44 (td, J = 1,8, 0,5 Hz, 1H), 8,10 (ddt, 2H), 7,54 (td, J = 7,8, 0,6 Hz, 1H), 7,45 – 7,26 (m, 5H), 6,87 (d, J = 7,4 Hz, 1H), 5,42 (dd, J = 10,1, 8,2 Hz, 1H), 4,95 – 4,74 (m, 2H), 4,33 (t, J = 8,4 Hz, 1H), 3,78 (s, 3H), 1,52 (d, J = 7,2 Hz, 3H). ¹³C NMR (151 MHz, CD₂Cl₂) δ /ppm: 173,8, 166,2, 164,1, 142,7, 134,7, 131,7, 130,7, 129,2, 129,1, 128,4, 128,0, 127,1, 127,1, 126,9, 75,4, 70,5, 52,7, 49,0, 18,5. MALDI-HRMS (m/z): očekivano 353,1501, 375,1315 (C₂₀H₂₀N₂O₄), opaženo 353,1492, 375,1312. UV-Vis [$c(\mathbf{B1}_{\mathbf{mA}*}) = 0,06$ mM, CH₂Cl₂; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 235 (18271), 249 (sh, 13063). CD [$c(\mathbf{B1}_{\mathbf{mA}*}) = 0,38$ mM, CH₂Cl₂; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 267 (10,02).

(**Ph-ox**)- mC_6H_4 -(Ala-OMe)₂ (B1_{m2A}). Phg[#]- mC_6H_4 -(Ala-OMe)₂ (0,30 mmol, 149,86 mg). Automatska *flash* kromatografija, EtOAc : heksan = 1 : 1 \rightarrow čisti EtOAc. Iskorištenje: 138,6 mg (0.29 mmol, 96%), bezbojno ulje. M_r(C₂₅H₂₇N₃O₇) = 481,18. ESI-MS (m/z):

482,20 (M+H⁺, 87%), 963,3 (2M+H⁺, 100%). ¹H NMR (600 MHz, CDCl₃) δ/pm: 8,54 (d, J = 1,7 Hz, 2H), 8,41 (t, J = 1,7 Hz, 1H), 7,40 – 7,29 (m, 5H), 6,99 (d, J = 7,4 Hz, 2H), 5,42 (dd, J = 10,1, 8,4 Hz, 1H), 4,87 (dd, J = 10,2, 8,4 Hz, 1H), 4,82 (p, J = 7,2 Hz, 2H), 4,35 (t, J = 8,4 Hz, 1H), 3,79 (s, 6H), 1,52 (d, J = 7,2 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ/pm: 173,7, 165,5, 163,8, 141,8, 134,8, 129,8, 129,0, 129,0, 128,5, 128,0, 127,1, 75,5, 70,5, 60,5, 52,7, 48,8, 18,0. MALDI-HRMS (m/z): očekivano 482,19 (M+H⁺); opaženo 482,2140. IR (ATR): 3271 (w), 3068 (w), 3032 (w), 2989 (w), 2954 (w), 2905 (w), 2851 (w), 2085 (w), 1741 (m), 1649 (m), 1595 (w), 1530 (m), 1450 (m), 1439 (m), 1377 (w), 1357 (w), 1338 (w), 1319 (w), 1269 (m), 1207 (m), 1159 (m), 1099 (m), 1049 (m), 982 (sh m), 967 (m), 021 (m), 906 (w), 876 (w), 841 (w), 762 (w), 701 (m). UV–Vis [CH₂Cl₂, c (**1**_{m2A}) = 0,03 mM; λ_{max} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 256 (sh, 13445). CD [CH₂Cl₂, c (**1**_{m2A}) = 0,03 mM; θ_{max} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 237 (-3,90), 252 (2,04), 280 (-1,01).

3.10. Karakterizacija liganada C

PhpP:m-C₆H₄-Ala-OMe (C1p). Spoj je sintetiziran prema proceduri za peptidno vezanje s TBTU. PhpP:m-C₆H₄-COOH (612,60 mg 2,0 mmol), HOBt (382,80 mg 2,5 mmol), TBTU (802,7 mg 2,5 mmol) i DIPEA (1,36 mL, 8,0 mmol) Automatska *flash* kromatografija, 46 = EtOAc : EtOH smjesi otapala koja je postupno promijenjena u 1:1 = EtOAc : EtOH. Iskorštenje: 609,08 mg (1,6 mmol, 78%), bezbojno ulje. ¹H NMR (300 MHz, CD₂C_b) δ /ppmr 7,82 – 7,67 (m, 2H), 7,51 – 7,24 (m, 12H), 6,59 (d, *J* = 7,3 Hz, 1H), 4,68 (kvin, *J* = 7,2 Hz, 1H), 3,74 (s, 3H), 1,46 (d, *J* = 7,2 Hz, 3H). ³¹P NMR (122 MHz, CD₂C_b) δ /ppmr -5,51. ¹³C NMR (75 MHz, CD₂C_b) δ /ppmr 173,7, 166,5, 139,0, 138,8, 137,1, 137,0, 137,0, 136,9, 136,8, 134,7, 134,7, 134,2, 134,0, 132,7, 132,4, 129,4, 129,1, 129,1, 129,0, 128,9, 127,7, 52,7, 48,9, 18,6. MALDI-HRMS (*m*/z): očekivano 392,1415 (C₂₃H₂₂NO₃P), opaženo 392,1407. UV-Vis [*c*(**C1p**) = 0,06 mM, CH₂C_b; λ_{maks} , nm (ϵ , M⁻¹ cm⁻¹)]: 233 (17727), 260 (sh, 10547). CD [*c*(**C1p**) = 0,38 mM, CH₂C_b; θ_{maks} , nm (ϵ_{CD} , M⁻¹ cm⁻¹)]: 266 (-2,66).

(Me₂-ox)-C₆H₅ (C1a). AMP-C₆H₅ (C3a) (130,50 mg, 0,7 mmol). Automatska *flash* kromatografija, EtOAc : heksan = 2 : 8 \rightarrow EtOAc : heksan = 1 : 1. Iskonštenje: 110,13 mg (0,6 mmol, 92%), bezbojno ulje. ¹H NMR (300 MHz, CD₂Cb) δ /ppmr 7,95 – 7,85 (m, 2H), 7,53 – 7,40 (m, 3H), 4,09 (s, 2H), 1,34 (s, 6H). ¹³C NMR (75 MHz, CDCb) δ /ppmr 162,1, 131,3, 128,3, 128,3, 128,1, 79,2, 67,6, 28,5. MALDI-HRMS (*m/z*): očekivano 176,1075 (C₁₁H₁₃NO), opaženo 176,1074.

 $(Me_2$ -Ph-ox)- mC_6H_4 -Ala-OMe (C1b) odgovara spoju $A1_{m1}$ i pripravljen je prema istoj proceduri.

(Ph-ox)- mC_6H_4 -Ala-OMe (C1c) odgovara spoju $A1_{m5}$ i pripravljen je prema istoj proceduri.

((R)-Ph-ox)- mC_6H_4 -Ala-OMe (C1c*) odgovara spoju $B1_{mA}$ * i pripravljen je prema istoj proceduri.

 $(Bn-ox)-mC_6H_4$ -Ala-OMe (C1d) odgovara spoju $A1_{m4}$ i pripravljen je prema istoj proceduri.

3.11. Karakterizacija metalnih kompleksa B

[**Zn(B1_H)₂Br**₂]. (Ph-ox)-C₆H₅ (**B1**_H) (0,10 mmol, 22,3 mg), ZnBr₂ (0,049 mmol, 11,0 mg). Bezbojni romboidni monokristali dobiveni su nakon 2 dana. Iskorištenje: 26,7 mg (0,04 mmol, 82%). M_r(C₃₀H₂₆Br₂N₂O₂Zn) = 667,97. ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,07 (d, *J* = 7,6 Hz, 2H), 7,66 (s, 1H), 7,51 (t, J = 7,6 Hz, 2H), 7,38 – 7,26 (m, 5H), 5,86 (s, 1H), 4,67-4,01 (m, 2H). ¹H NMR (300 MHz, CD₃CN) δ /ppm: 8,06 – 8,00 (m, 1H), 7,67 – 7,61 (m, 1H), 7,57 – 7,26 (m, 7H), 5,55 (s, 1H), 4,90 – 4,53 (m, 1H), 4,30 (dd, J = 8,7, 6,9 Hz, 1H). ¹³C NMR (151 MHz, CD₃CN) δ /ppm: 165,3, 133,3, 129,3, 128,8, 128,3, 128,3, 127,4, 127,2, 126,5, 75,1, 54,6. IR (ATR): 3062 (w), 2372 (w), 2346 (w), 1720 (w), 1703 (w), 1616 (m), 1601 (m), 1573 (m), 1497 (w), 1474 (w), 1451 (m), 1385 (m), 1275 (w), 1237 (m), 1120 (m), 943 (m), 759 (m), 695 (s). UV–Vis [CH₂Cl₂, *c* ([Zn(**B1**_H)₂Br₂]) = 0,015 mM; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 241 (18639). CD [CH₂Cl₂, *c* ([Zn(**B1**_H)₂Br₂]) = 0,015 mM; λ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 250 (-5,10), 257 (-4,83), 282 (0,73), 287 (0,41). CD [CH₂Cl₂, *c* ([Zn(**B1**_H)₂Br₂]) = 0,075 mM; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 283 (1,12), 290 (sh, 0,77).

[**Zn(B1**_{F)2}**Br**₂]·**CH**₃**CN**. (Ph-ox)-C₆H₄F (**B1**_F) (0,10 mmol, 24,1 mg), ZnBr₂ (0,049 mmol, 11,0 mg). Bezbojni monokristali u obliku štapića dobiveni su nakon 2 dana. Monokristali se raspadnu u bijeli prah nakon isparavanja otapala. Iskorištenje: 24,7 mg (0,035 mmol, 71%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,09 (dd, J = 8,7, 5,3 Hz, 2H), 7,39 – 7,29 (m, 5H), 7,17 (t, J = 8,5 Hz, 2H), 5,84 (s, 1H), 4,67 – 4,28 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 166,8, 165,1, 129,1, 129,1, 128,6, 127,0, 115,9, 115,7, 76,1, 68,6. IR (ATR): 3067 (w), 2367 (w), 2346 (w), 1616 (m), 1604 (s), 1509 (s), 1470 (m), 1416 (m), 1377 (m), 1305 (m), 1236 (s), 1266 (s), 1161 (s), 1100 (m), 945 (s), 928 (m), 851 (s), 813 (m), 759 (s), 749 (s), 732 (s), 699 (s), 690 (s). UV–Vis [CH₂Cl₂, *c* ([Zn(**B1**_F)₂Br₂]) = 0,015 mM; λ_{maks}, nm (ε_{UV}, M⁻¹ cm⁻¹)]: 245 (24467). UV–Vis [CH₂Cl₂, *c* ([Zn(**B1**_F)₂Br₂]) = 0,015 mM; λ_{maks}, nm (ε_{UV}, M⁻¹ cm⁻¹)]: 246 (21702). CD [CH₂Cl₂, *c* ([Zn(**B1**_F)₂Br₂]) = 0,015 mM; λ_{maks}, nm (ε_{UV}, M⁻¹ cm⁻¹)]: 246 (21702). CD [CH₂Cl₂, *c* ([Zn(**B1**_F)₂Br₂]) = 0,015 mM; λ_{maks}, nm (ε_{UV}, M⁻¹ cm⁻¹)]: 249 (-5,78), 257 (-5,58).

 $[\mathbf{Zn}(\mathbf{B1}_N)_2\mathbf{Br}_2]$ ·CH₂Cl₂. (Ph-ox)-C₆H₄NMe₂ (**B1**_N)(0,10 mmol, 26,6 mg), ZnBr₂ (0,049 mmol, 11,0 mg). Bezbojni monokristali u obliku štapića dobiveni su nakon 2 dana. Monokristali se

raspadnu u bijeli prah nakon isparavanja otapala. Iskorištenje: 29,1 mg (0,038 mmol, 78%). ¹H NMR (600 MHz, CDCl₃) δ/ppm: 7,97 (d, J = 8,5 Hz, 2H), 7,39 – 7,28 (m, 4H), 7,26 – 7,21 (m, 1H), 6,69 (d, J = 8,9 Hz, 2H), 5,93 (s, 1H), 4,31 (s, 1H), 4,07 (s, 1H), 3,09 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ/ppm: 152,6, 131,4, 130,5, 127,7, 126,9, 125,7, 109,7, 109,2, 74,3, 66,1, 39,2. IR (ATR): 2900 (w), 2367 (w), 2346 (w), 1608 (sh), 1590 (s), 1579 (s), 1521 (s), 1439 (m), 1374 (s), 1236 (m), 1196 (s), 1172 (m), 1109 (m), 943 (m), 924 (m), 820 (m), 749 (m), 736 (m), 693 (s). UV–Vis [CH₂Cl₂, *c* ([Zn(**B1**_N)₂Br₂]) = 0,015 mM; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 233 (14704), 319 (42821), 338 (sh, 35199), 373 (5105). UV–Vis [CH₂Cl₂, *c* ([Zn(**B1**_N)₂Br₂]) = 0,015 mM; λ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 234 (15629). CD [CH₂Cl₂, *c* ([Zn(**B1**_N)₂Br₂]) = 0,015 mM; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 246 (7,30), 268 (-1,19), 318 (9,26), 347 (-10,48). CD [CH₂Cl₂, *c* ([Zn(**B1**_N)₂Br₂]) = 0,075 mM; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 356 (-4,59)

[**Zn(B1_P)₂Br**₂]. (Ph-ox)-C₁₆H₉ (**B1**_P) (0,10 mmol, 34,9 mg), ZnBr₂ (0,049 mmol, 11,0 mg). Iskorištenje: 22,9 mg (0,025 mmol, 51%), žuta krutina. ¹H NMR (600 MHz, CDCl₃) δ /ppm: 9,16 (s, 1H), 8,21 (d, *J* = 7,5 Hz, 1H), 8,13 (dd, *J* = 14,7, 8,4 Hz, 2H), 7,99 (d, *J* = 8,7 Hz, 1H), 7,91 (t, *J* = 7,6 Hz, 1H), 7,47 (d, *J* = 7,5 Hz, 2H), 7,39 (t, *J* = 7,5 Hz, 2H), 7,33 (t, *J* = 7,3 Hz, 1H), 7,11 – 6,31 (m, 3H), 6,13 (s, 1H), 4,74 (s, 1H), 4,58 (t, *J* = 6,6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 130,8, 130,3, 129,3, 129,2, 129,0, 127,5, 127,0, 126,7, 126,6, 126,6, 124,2, 123,7, 119,1, 108,6, 31,7, 22,8, 14,3. IR (ATR): 3073 (w), 2928 (w), 1620(w), 1603 (w), 1588 (w), 1567 (w), 1536 (w), 1517 (w), 1498 (w), 1483 (w), 1478 (w), 1446 (w), 1401 (w), 1325 (w), 1310 (w), 1269 (w), 1262 (w), 1234 (w), 1210 (w), 1157 (w), 1116 (w), 1072 (w), 1025 (w), 970 (w), 882 (w), 885 (w), 775 (m), 729 (m). UV–Vis [CH₂Cl₂, *c* ([Zn(**B1**_P)₂Br₂]) = 0,015 mM; *λ*_{maks}, nm (*ε*_{UV}, M⁻¹ cm⁻¹)]: 233 (14704), 319 (42821), 338 (sh, 35199), 373 (5105). UV–Vis [CH₂Cl₂, *c* ([Zn(**B1**_P)₂Br₂]) = 0,015 mM; *λ*_{maks}, nm (*ε*_{CD}, M⁻¹ cm⁻¹)]: 234 (15629). CD [CH₂Cl₂, *c* ([Zn(**B1**_P)₂Br₂]) = 0,015 mM; *θ*_{maks}, nm (*ε*_{CD}, M⁻¹ cm⁻¹)]: 246 (7,30), 268 (-1,19), 318 (9,26), 347 (-10,48). CD [CH₂Cl₂, *c* ([Zn(**B1**_P)₂Br₂]) = 0,075 mM; *θ*_{maks}, nm (*ε*_{CD}, M⁻¹ cm⁻¹)]: 356 (-4,59)

[**Zn**(**B1**_{mA})₂**Br**₂]. (Ph-ox)-*m*C₆H₄-Ala-OMe (**B1**_{mA})(0,10 mmol, 35,2 mg), ZnBr₂ (0,049 mmol, 11,0 mg). Tanki, duguljasti, pločasti monokristali dobiveni su nakon 1 dan. Iskorištenje: 31,9 mg (0,034 mmol, 69%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 9,23 (s, 1H), 8,53 (d, *J* = 7,9 Hz, 1H), 8,14 (d, *J* = 6,4 Hz, 1H), 7,59 (t, *J* = 7,8 Hz, 1H), 7,43 – 7,28 (m,

7H), 6,24 (dd, J = 9,7, 4,3 Hz, 1H), 4,77 – 4,69 (m, 1H), 4,53 (dd, J = 9,2, 4,4 Hz, 1H), 4,46 – 4,39 (m, 1H), 3,78 (s, 3H), 1,73 (d, J = 7,4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 174,7, 165,2, 164,4, 139,3, 135,0, 133,6, 132,6, 129,4, 129,0, 128,6, 127,7, 127,2, 77,5, 68,1, 52,5, 49,8, 29,8, 17,3. IR (ATR): 3412 (w), 3382 (w), 2984 (w), 1776 (m), 1759 (m), 1698 (m), 1692 (m),1638 (w), 1599 (w), 1547 (m), 1483 (w), 1463 (w), 1398 (w), 1381 (w), 1329 (w), 1256 (m), 1198 (w), 1165 (m), 1107 (w), 1081 (w), 1010 (w), 984 (w), 967 (w), 846 (w), 781 (m), 740 (m), 727 (m). UV–Vis [CH₂Cl₂, $c([Zn(1_{mA})_2Br_2]) = 0,015$ mM; λ_{max} , nm (ε_{UV} , M⁻¹ cm⁻¹)] 255 (sh, 18663. CD [CH₂Cl₂, $c([Zn(1_{mA})_2Br_2]) = 0,015$ mM; θ_{max} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 236 (13,22), 290 (2,24).

[**Zn**(**B1**_{mA}*)₂**Br**₂].((*R*)-Ph-ox)-*m*C₆H₄-Ala-OMe (**B1**_{mA}*)(0,07 mmol, 24,65 mg), ZnBr₂ (0,035 mmol, 7,82 mg). Iskorištenje: 15,65 mg (0,017 mmol, 48%), bijela krutina. ¹H NMR (600 MHz, CDCl₃) δ 8,84 (s, 1H), 8,22 (s, 1H), 7,85 (d, *J* = 7,6 Hz, 2H), 7,59 (t, *J* = 7,8 Hz, 1H), 7,42 – 7,29 (m, 5H), 5,87 (t, *J* = 6,8 Hz, 1H), 4,71 (kvin., *J* = 7,2 Hz, 2H), 4,56 (s, 1H), 3,74 (s, 3H), 1,56 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ/ppm: 173,2, 166,3, 166,1, 134,3, 133,7, 133,2, 129,5, 129,3, 128,9, 127,1, 76,7, 67,5, 52,9, 49,2, 16,9. IR (ATR): 3330 (w), 3056 (w), 2954 (w), 2851 (w), 2107 (w), 1736 (m), 1638 (m), 1625 (m), 1579 (m), 1528 (m), 1493 (m), 1454 (m), 1377 (m), 1349 (m), 1302 (m), 1237 (sh m), 1211 (m), 1169 (m), 1135 (m), 1081 (m), 1049 (m), 984 (m), 962 (m), 937 (m), 883 (w), 846 (w), 822 (w), 757 (sh m), 731 (m), 714 (m), 697 (m). UV–Vis [CH₂Cl₂, *c*([Zn(**1**_{mA}*)₂Br₂]) = 0,015 mM; λ_{max} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 254 (sh, 19049). CD [CH₂Cl₂, *c*([Zn(**1**_{mA}*)₂Br₂]) = 0,015 mM; θ_{max} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 250 (6,38), 292 (-0,95).

[**Zn**(**B1**_{m2A})₂**Br**₂]. (Ph-ox)-*m*C₆H₄-(Ala-OMe)₂ (**B1**_{m2A})(0,10 mmol, 48,2 mg), ZnBr₂ (0,049 mmol, 11,0 mg). Tanki pločasti bezbojni monokristali dobiveni su nakon skladištenja na -5°C tijekom 2 dana. Iskorištenje: 33,2 mg (0,027 mmol, 56%).¹H NMR (600 MHz, CDCl₃) *z*/ppm: 8,94 (s, 1H), 8,77 – 8,40 (s, 2H), 8,21 – 7,89 (s, 2H), 7,58 – 7,30 (m, 5H), 6,11 (s, 1H), 4,81 (p, J = 7,2 Hz, 2H), 4,51 (dd, J = 9,1, 4,7 Hz, 1H), 4,27 (s, 1H), 3,80 (s, 6H), 1,65 (d, J = 7,3 Hz, 6H). ¹³C NMR (151 MHz, CD₃CN) δ /ppm: 173,9, 166,0, 165,3, 135,3, 131,8, 129,6, 128,1, 67,4, 55,7, 52,6, 49,7, 17,2. IR (ATR): 3356 (w), 3319 (w), 2948 (w), 2363 (w), 1744 (m), 1672 (m), 1638 (m), 1543 (m), 1519 (m), 1450 (w), 1388 (w), 1347 (w), 1303 (w), 1265 (w), 1211 (m), 1163 (m), 1057 (w), 980 (w), 939 (w), 762 (w), 697 (m). UV–Vis [CH₂Cl₂, *c*

 $([Zn(\mathbf{1_{m2A}})_2Br_2]) = 0,015 \text{ mM}; \lambda_{max}, \text{ nm } (\varepsilon_{UV}, \text{ M}^{-1} \text{ cm}^{-1})]: 254 \text{ (sh, 24896). CD } [CH_2Cb, c]$ $([Zn(\mathbf{1_{mA}})_2Br_2]) = 0,03 \text{ mM}; \theta_{max}, \text{ nm } (\varepsilon_{CD}, \text{ M}^{-1} \text{ cm}^{-1})]: 258 (-13,87), 292 (2,05).$

[**Zn**(**B1**_H)₂**I**₂]. (Ph-ox)-C₆H₅ (**B1**_H)(0,15 mmol, 33,5 mg), ZnI₂ (0,075 mmol, 23,9 mg). Tanki igličasti bezbojni monokristali dobiveni su nakon 2 dana. Iskorištenje: 49,5 mg (0,065 mmol, 86%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,08 (d, *J* = 7,7 Hz, 2H), 7,67 (t, *J* = 7,5 Hz, 1H), 7,50 (t, *J* = 7,8 Hz, 2H), 7,39 – 7,29 (m, 5H), 6,00 (s, 1H), 4,66 – 4,17 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 166,2, 133,9, 133,6, 131,0, 130,0, 129,1, 128,7, 128,6, 128,4, 127,4, 124,7, 76,2, 68,7. UV–Vis [CH₂Cl₂, *c* ([Zn(**B1**_H)₂I₂].) = 0,075 mM; λ _{maks}, nm (ε _{UV}, M⁻¹ cm⁻¹)]: 240 (21237). CD [CH₂Cl₂, *c* ([Zn(**B1**_H)₂I₂]) = 0,075 mM; θ _{maks}, nm (ε _{CD}, M⁻¹ cm⁻¹)]: 287 (1,52). IR (ATR): 1965 (w), 2366 (w), 2346 (w), 1614 (m), 1597 (m), 1571 (m), 1495 (m), 1472 (m), 1452 (m), 1381 (m), 1237 (m), 1120 (m), 1077 (m), 1027 (m), 943 (m), 803 (m), 759 (m), 695 (s).

[Zn(B1_H)₂(NO₃)₂]·CH₂Cl₂. (Ph-ox)-C₆H₅ (B1_H) (0,10 mmol, 22,3 mg), Zn(NO₃)₂·4H₂O (0,049 mmol, 12,8 mg). Iskorištenje: 31,24 mg (0,044 mmol, 89%), bijela vlaknasta krutina slična pamuku. ¹H NMR (600 MHz, CD₃OD) δ /ppm: 8,11 – 8,07 (m, 2H), 7,68 – 7,61 (m, 1H), 7,58 – 7,45 (m, 7H), 4,80 (dd, *J* = 7,8, 4,7 Hz, 1H), 4,72 – 4,61 (m, 2H). ¹³C NMR (151 MHz, CD₃OD) δ /ppm: 167,3, 135,1, 134,7, 130,8, 130,8, 130,4, 129,6, 128,4, 66,4, 64,3, 55,3. UV–Vis [CH₃CN; λ_{maks} , nm (ε , M⁻¹ cm⁻¹)]: 194 (95693), 227 (26369), 274 sh (2780). CD [CH₃CN; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 205 (-2,56), 226 (1,23), 259 (-0,56). IR (ATR): 3325 (b sh), 2907 (b), 2363 (w), 2344 (w), 1715 (s), 1602 (w), 1543 (m), 1390 (s), 1319 (s), 1256 (s), 1251 (sh), 1211 (m), 1180 (m), 1096 (m), 1070 (m), 1027 (m), 997 (m), 971 (m), 820 (m), 751 (m), 710 (s), 695 (s).

[Cd(B1_H)₂Br₂]. (Ph-ox)-C₆H₅ (B1_H) (0,20 mmol, 44,7 mg), CdBr₂ (0,099 mmol, 27,2 mg). Tanki igličasti bezbojni monokristali dobiveni su nakon 2 dana. Iskorištenje: 47,32 mg (0,065 mmol, 66%). ¹H NMR (600 MHz, CD₃CN) δ/ppm: 8,01 (dd, J = 8,3, 1,3 Hz, 2H), 7,60 (ddt, J = 8,8, 7,0, 1,3 Hz, 1H), 7,55 – 7,46 (m, 2H), 7,41 – 7,27 (m,5H), 5,45 (dd, J = 10,1, 7,7 Hz, 1H), 4,82 (dd, J = 10,1, 8,6 Hz, 1H), 4,27 (dd, J = 8,6, 7,7 Hz, 1H). ¹³C NMR (151 MHz, CD₃CN) δ/ppm: 142,6, 133,4, 129,7, 129,6, 129,6, 129,6, 128,8, 127,8, 127,4, 76,5, 69,8. UV–Vis [CH₃CN; λ_{maks} , nm (ε , M⁻¹ cm⁻¹)]: 191 (5580), 209 sh (3148). CD [CH₃CN; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 206 (-3,97), 324 (-0,77). IR (ATR): 3064 (w), 3030 (w), 2974 (w), 2909 (w), 2369 (w), 2346 (w), 1620 (m), 1602 (m), 1579 (m), 1497 (m), 1474 (m), 1452 (m), 1381 (m), 1325 (m), 1277 (m), 1245 (m), 1183 (m), 1116 (m), 1077 (m), 1027 (m), 982 (m), 943 (m), 760 (s), 693 (s).

[Cd(B1_H)₂I₂]. (Ph-ox)-C₆H₅ (B1_H)(0,10 mmol, 22,3 mg), CdI₂ (0,049 mmol, 18,3 mg). Tanki igličasti bezbojni monokristali dobiveni su nakon 2 dana. Iskorištenje: 37,35 mg (0,045 mmol, 92%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,03 (dd, *J* = 8,3, 1,3 Hz, 2H), 7,57 (t, *J* = 7,5 Hz, 1H), 7,47 (dd, *J* = 8,4, 7,0 Hz, 2H), 7,41 – 7,32 (m, 2H), 7,35 – 7,28 (m, 3H), 5,56 (dd, *J* = 10,2, 7,2 Hz, 1H), 4,80 (t, *J* = 9,3 Hz, 1H), 4,37 (dd, *J* = 8,5, 7,2 Hz, 1H). ¹³C NMR (151 MHz, CD₃CN) δ /ppm: 168,4, 142,3, 133,6, 129,9, 129,6, 129,6, 129,5, 128,8, 128,4, 127,9, 127,2, 76,5, 69,8. UV–Vis [CH₃CN; λ_{maks} , nm (ε , M⁻¹ cm⁻¹)]: 194 (98249), 206 sh (61262), 243 (23914). CD [CH₃CN; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 193 (-0,24), 211 (-11,08), 227 (6,86), 255 (-5,23), 282 (0,79). IR (ATR): 3063 (w), 3030 (w), 3012 (w), 2973 (w), 2913 (w), 2367 (w), 2346 (w), 1620 (m), 1603 (m), 1579 (m), 1497 (m), 1474 (m), 1452 (m), 1383 (m), 1325 (w), 1245 (m), 1116 (m), 1077 (w), 1026 (w), 984 (w), 943 (m), 760 (s), 693 (s).

[Cd(B1_{mA})₂I₂]. (Ph-ox)-C₆H₄-Ala-OMe (B1_{mA})(0,10 mmol, 35,2 mg), CdI₂ (0,049 mmol, 11,0 mg). Tanki štapićasti bezbojni monokristali dobiveni su nakon 3 dana. Iskorištenje: 31,9 mg (0,034 mmol, 69%). ¹H NMR (600 MHz, CDCl₃) δ /ppm: 8,69 – 8,59 (m, 1H), 8,35 – 8,26 (m, 1H), 7,63 – 7,56 (m, 1H), 7,51 (t, *J* = 7,8 Hz, 2H), 7,41 – 7,29 (m, 5H), 5,93 (s, 1H), 4,80 (kvin., *J* = 7,3 Hz, 1H), 4,74 (t, *J* = 9,5 Hz, 1H), 3,79 (s, 3H), 1,68 (d, *J* = 7,3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ /ppm: 173,5, 165,1, 133,4, 132,9, 129,2, 129,1, 128,5, 127,5, 126,5, 76,4, 69,2, 52,6, 49,4, 18,1. IR (ATR): 3383 (w), 3006 (w), 1763 (m), 1744 (w), 1726 (w), 1698 (m), 1681 (m), 1646 (m). 1603 (w), 1588 (w), 1567 (w), 1543 (m), 1536 (m), 1517 (w), 1483 (w), 1463 (w), 1379 (w), 1245 (m), 1191 (w), 1163 (w), 1137 (w), 1077 (w), 1018 (w), 982 (w), 962 (w), 933 (w), 874 (w), 848 (w), 783 (m), 773 (m), 753 (w), 736 (m), 727 (m).

 $[Co(B1_H)_2Br_2]$. (Ph-ox)-C₆H₅ (B1_H)(0,225 mmol, 50,23 mg), CoBr₂ (0,113 mmol, 24,61 mg). Tanki igličasti plavi monokristali dobiveni su nakon 2 dana. Iskorištenje: 69,46 mg (0,105 mmol, 93%), plavi prah. IR (ATR): 3411 (w), 3060 (w), 2995 (w), 2950 (w), 2134 (w), 1746
(w), 1636 (m), 1626 (m), 1603 (w), 1519 (m), 1476 (m), 1407 (m), 1241 (w), 1263 (m), 1144 (w), 1101 (w), 1053 (w), 1021 (w), 969 (w), 768 (w), 721 (s). UV–Vis [CH₂Cl₂; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 236 (21 649), 279 (-4,07), 314 (2,36), 606 (sh, 306), 621 (sh, 383), 640 (sh, 544), 663 (681). CD [CH₂Cl₂; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 253 (2,19), 530 (0,02), 535 (0,02), 585 (-0,026), 652 (0,31), 693 (0,06).

[Co(B1_F)₂Br₂]. (Ph-ox)-*p*C₆H₄-F (B1_F)(0,225 mmol, 54,29 mg), CoBr₂ (0,113 mmol, 24,61 mg). Iskorištenje: 70,88 mg (0,102 mmol, 90%), plavi prah. IR (ATR): 3091 (w), 2928 (w), 1756 (w), 1644 (m), 1629 (m), 1605 (w), 1536 (m), 1497 (w), 1480 (w), 1441 (w), 1416 (w), 1403 (w), 1341 (w), 1329 (w), 1295 (w), 1260 (m), 1252 (m), 1186 (m), 1135 (w), 1126 (m), 1079 (w), 1053 (w), 1038 (w), 1019 (w), 1003 (w), 971 (w), 952 (w), 878 (m), 846 (w), 839 (m), 785 (m), 775 (m), 760 (m), 725 (m), 716 (m).UV–Vis [CH₂Cl₂, λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 248 (23 356), 356 (134), 605 (sh, 241), 622 (sh, 338), 641 (sh, 449), 666 (592), 699 (sh, 333). CD [CH₂Cl₂; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 282 (-1,04), 311 (2,25), 603 (0,07), 620 (0,10), 654 (0,21), 693 (0,05).

[Co(B1_N)₂Br₂]. (Ph-ox)-*p*C₆H₄-NMe₂ (B1_N)(0,225 mmol, 59,92 mg), CoBr₂ (0,113 mmol, 24,61 mg). Zeleni, obli, pločasti monokristali dobiveni su nakon 2 dana. Iskorištenje: 75,23 mg (0,102 mmol, 89%). IR (ATR): 3062 (w), 2932 (w), 2678 (w), 2139 (w), 1618 (s), 1606 (s), 1551 (s), 1547 (s), 1502 (m), 1457 (m), 1396 (s), 1371 (m), 1252 (m), 1334 (w), 1308 (w), 1256 (w), 1221 (s), 1200 (s), 1146 (m), 1139 (m), 1088 (m), 1021 (w), 969 (m), 952 (m), 924 (m), 850 (m), 773 (m), 721 (s). UV–Vis [CH₂Cl₂; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 316 (sh, 20032), 365 (6 650), 433 (sh, 141), 606 (sh, 165), 621 (sh, 238), 642 (sh, 364), 667 (542), 700 (517), 726 (sh, 306). CD [CH₂Cl₂; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 255 (2,01), 271 (-1,24), 335 (6,41), 372 (2,99), 426 (0,14), 596 (-0,06), 605 (-0,05), 652 (0,13).

 $[Co(B1_P)_2Cl_2]$ ·CH₃CN. (Ph-ox)-C₁₆H₉ (B1_P) (0,113 mmol, 39,31 mg), CoCl₂·6H₂O (0,056 mmol, 13,33 mg) Nekoliko zelenih monokristala sličnih dodekaedru izdvojeno je iz bijele, vlaknaste krutine nakon 2 dana.

 $[Co(B1_P)_2Br_2]$. (Ph-ox)-C₁₆H₉ (B1_P)(0,113 mmol, 39,31 mg), CoBr₂ (0,056 mmol, 12,30 mg). Zeleni igličasti monokristali dobiveni su nakon 2 dana. Iskorištenje: 49,14 mg (0,53 mmol, 95%). IR (ATR): 3323 (w), 3062 (w), 2984 (w), 2954 (w), 2924 (w), 2147 (w), 1618 (m), 1599 (m), 1588 (m), 1567 (w), 1536 (w), 1519 (w), 1476 (w), 1401 (w), 1323 (w), 1210 (w), 1262 (w), 1234 (w), 1210 (w), 1169 (w), 1157 (w), 1116 (w), 1108 (w), 1072 (w), 1053 (w), 1025 (w), 1001 (w), 971 (w), 876 (m), 855 (m), 826 (w), 775 (m), 747 (w), 7267 (s). UV–vis [CH₂Cb; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 239 (sh, 85244), 243 (87812), 274 (sh, 48451), 284 (63251), 352 (54705), 363 (sh, 44786), 384 (sh, 17633), 601 (sh, 371), 638 (sh, 624), 660 (773), 700 (sh, 208). CD [CH₂Cb; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 246 (11,83), 260 (-6,12), 273 (4,49), 285 (-12,29), 298 (1,71), 352 (16,92), 365 (sh, 14,73), 384 (3,24), 406 (-4,47), 532 (0,03), 601 (0,48), 616 (0,49), 657 (0,77).

[Co(B1_{mA})₂Br₂]. (Ph-ox)-*m*C₆H₄-Ala-OMe (B1_{mA}) (0,113 mmol, 39,61 mg), CoBr₂ (0,056 mmol, 12,30 mg). Plavi štapićasti monokristali dobiveni su nakon 2 dana. Iskorištenje: 42,57 mg (0,46 mmol, 82%), plavi prah. IR (ATR): 3356 (w), 3319 (w), 2948 (w), 2363 (w), 1744 (m), 1672 (m), 1638 (m), 1543 (m), 1519 (m), 1450 (w), 1388 (w), 1347 (w), 1303 (w), 1265 (w), 1211 (m), 1163 (m), 1057 (w), 980 (w), 939 (w), 762 (w), 697 (m). UV–Vis [CH₂Cl₂; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 248 (sh, 24 013), 602 (sh, 313), 637 (sh, 550), 662 (693). CD [CH₂Cl₂; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 239 (24,65), 280 (-4,89), 309 (4,15), 664 (0,66).

[Co(B1_{mA}*)₂Br₂]. ((*R*)-Ph-ox)-*m*C₆H₄-Ala-OMe (B1_{mA}*) (0,07 mmol, 24,65 mg), CoBr₂ (0,035 mmol, 8,66 mg). Iskorištenje: 32,48 mg (0,034 mmol, 98%), plavi prah. IR (ATR): 3541 (w), 3319 (w), 3030 (w), 2954 (w), 2936 (w), 2924 (w), 2855 (w), 2376 (w), 1737 (m), 1643 (m), 1620 (sh m), 1579 (w), 1528 (m), 1454 (m), 1439 (m), 1377 (w), 1347 (w), 1301 (w), 1213 (m), 1167 (m), 1133 (m), 1049 (m), 980 (m), 960 (m), 937 (m), 883 (w), 846 (w), 820 (w), 759 (m), 731 (m), 697 (s). UV–Vis [CH₂Cb; λ_{max} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 248 (sh, 22683), 600 (sh, 171), 620 (sh, 234), 639 (sh, 322), 664 (406), 696 (sh, 216). CD [CH₂Cb; θ_{max} , nm (ε_{CD} , M⁻¹ cm⁻¹)]:252 (5,14), 591 (0,08), 655 (-0,37).

 $[Co(B1_{m2A})_2Br_2]$. (Ph-ox)- mC_6H_4 -(Ala-OMe)₂ ($B1_{m2A}$) (0,07 mmol, 33,71 mg), CoBr₂ (0,035 mmol, 8,66 mg). Plavi igličasti monokristali dobiveni su nakon 2 dana. Iskorištenje: 29,57 mg (0,025 mmol, 71%), plavi prah. IR (ATR): 3537 (w), 3355 (w), 3314 (w), 2961 (w), 2365 (w), 2085 (w), 1744 (m), 1671 (m), 1646 (m), 1618 (w), 1586 (m), 1543 (m), 1521 (m), 1450 (m), 1437 (m), 1387 (m), 1347 (m), 1301 (m), 1260 (m), 1211 (s), 1161 (m), 1096 (m), 1047 (m),

1018 (m), 980 (m), 939 (m), 798 (s), 762 (m), 697 (m). UV–Vis [CH₂Cb; λ_{max} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 254 (sh, 19 000), 602 (sh, 174), 642 (sh, 314), 664 (386), 698 (sh, 207), 727 (sh, 122). CD [CH₂Cb; θ_{max} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 241 (4,14), 278 (-1,41), 314 (0,99), 596 (-0,13), 657 (0,72).

[Co(BOX1)Br₂]. (-)-2,2'-izopropilidenbis[(4*S*)-4-fenil-2-oksazolin] (BOX1) (0,009 mmol, 3,00 mg), CoBr₂ (0,009 mmol, 1,96 mg). Tamnoplavi igličasti kristali dobiveni su iz otopine CH₂Cl₂ za CD spektroskopiju nakon 5 dana. UV–Vis [CH₂Cl₂; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 228 (10 327), 298 (2 607), 546 (sh, 170), 571 (295), 648 (582). CD [CH₂Cl₂; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 246 (1,89), 261 (1,94), 291 (2,51), 311 (-0,34), 335 (0,41), 543 (0,30), 566 (0,42), 637 (-0,26).

[Co(BOX2)Br₂]. (+)-2,2'-izopropilidenbis[(4R)-4-benzil-2-oksazolin] (BOX2) (0,009 mmol, 3,26 mg), CoBr2 (0,009 mmol, 1,96 mg). Tamnoplavi romboidni kristali dobiveni su iz otopine CH₂Cl₂ za CD spektroskopiju nakon 5 dana. UV–Vis [CH₂Cl₂; λ_{maks} , nm (ε_{UV} , M⁻¹ cm⁻¹)]: 362 (36), 549 (sh, 146), 572 (263), 644 (263). CD [CH₂Cl₂; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 541 (-0,17), 566 (-0,25), 624 (0,27).

3.12. Karakterizacija metalnih kompleksa C

Rh: C1p = 1 : 2 otopina. [Rh(COD)₂]BF₄ (4,87 mg, 0,012 mmol), C1p ligand (9,79 mg, 0,025 mmol), 0,5 mL deuteriranog diklorometana. ¹H NMR (600 MHz, CD₂Cb) δ/ppm: 7,85 (s, 2H), 7,77 (d, J = 7,2 Hz, 2H), 7,68 (m, 6H), 7,60 – 7,54 (m, 2H), 7,51 – 7,44 (m, 6H), 7,39 (m, 8H), 7,36 – 7,26 (m, 2H), 7,13 (m, 2H), 5,55 (m, 2H), 4,79 – 4,72 (m, 2H), 4,66 (kvin, J = 7,3 Hz, 2H), 4,48 (m, 2H), 3,82 (s, 6H), 2,61 (m, 2H), 2,53 – 2,43 (m, 2H), 2,28 – 2,19 (m, 2H), 1,50 (d, J = 7,4 Hz, 6H). ³¹P NMR (243 MHz, CD₂Cb) δ/ppm: 27,08 (d, J = 145,4 Hz). ¹³C NMR (151 MHz, CD₂Cb) δ/ppm: 175,0, 165,5, 136,1, 136,1, 136,0, 135,5, 135,5, 135,4, 134,6, 134,6, 134,5, 133,8, 133,1, 132,4, 132,3, 131,7, 131,4, 130,9, 130,6, 130,0, 129,7, 129,3, 129,3, 129,2, 129,2, 129,1, 128,9, 128,8, 128,7, 128,7, 128,6, 100,9, 99,6, 53,0, 49,2, 31,6, 30,2, 28,3, 17,4. UV-Vis [*c*(Rh) = 0,03 mM, CH₂Cb; λ_{maks} , nm (ε , M⁻¹ cm⁻¹)]: 236 (41895), 267 (sh, 22217), 442 (140). CD [*c*(Rh) = 0,03 mM, CH₂Cb; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 274 (-4,26), 304 (-2,45), 373 (-0,96), 434 (0,42), 449 (0,59).

Rh : C1p : C1c^{*} = 1 : 1 : 1 otopina. $[Rh(COD)_2]BF_4$ (9,74 mg, 0,024 mmol), C1p ligand (9,79 mg, 0,025 mmol), C1c* ligand (8,08 mg, 0,025 mmol), 0,5 mL deuteriranog diklorometana. ¹H NMR (600 MHz, CD₂Cl₂) δ /ppm: 10,30 (s, 1H), 8,47 (d, J = 7,8 Hz, 1H), 8.33 (d, J = 11.2 Hz, 1H), 8.17 (dd, J = 7.9, 1.4 Hz, 1H), 7.99 – 7.92 (m, 2H), 7.89 (dq, J = 1.007,8, 1,4 Hz, 1H), 7,68 (t, J = 7,9 Hz, 2H), 7,61 (td, J = 7,8, 2,1 Hz, 2H), 7,56 – 7,32 (m, 13H), 7,29 - 7,24 (m, 1H), 4,90 - 4,81 (m, 2H), 4,71 - 4,61 (m, 2H), 4,50 - 4,40 (m, 2H), 4,00 - 4,20 (m, 2H), 4,00 (m, 2H), 4,00 - 4,20 (m, 2H), 4,00 (m, 2H), 4,00 - 4,20 3,93 (m, 1H), 3,83 (s, 3H), 3,75 (s, 3H), 3,54 (q, J = 6,1, 3,9 Hz, 1H), 3,49 - 3,42 (m, 1H), 2,71 – 2,54 (m, 2H), 2,32 – 2,20 (m, 2H), 2,15 – 2,04 (m, 2H), 1,61 (d, J = 7,2 Hz, 3H), 1,66 -1,59 (m, 2H), 1,53 (d, J = 7,3 Hz, 3H). ³¹P NMR (243 MHz, CD₂Cb) δ /ppm: 25,47, 24,85. ¹³C NMR (151 MHz, CD₂Cb) δ/ppm: 173,8, 173,8, 167,9, 166,2, 165,8, 140,5, 136,2, 136,1, 135,6, 135,5, 134,9, 134,7, 134,6, 134,6, 133,7, 133,7, 133,6, 133,5, 133,0, 132,5, 132,1, 131,6, 131,6, 130,7, 130,6, 130,3, 130,2, 130,2, 130,1, 129,7, 129,7, 129,5, 129,4, 129,4, 129,3, 129,2, 129,1, 128,9, 128,9, 128,1, 127,8, 127,7, 124,6, 108,0, 107,9, 105,9, 102,4, 102,3, 81,8, 81,8, 78,9, 78,8, 77,3, 76,2, 71,9, 71,3, 52,9, 52,7, 49,4, 49,2, 34,8, 30,8, 30,0, 29,2, 28,3, 27,0, 18,0, 17,9. UV-Vis [c(Rh) = 0.03 mM, CH₂Ch₂; λ_{maks} , nm (ϵ , M⁻¹ cm⁻¹)]: 236 (40006), 291 (sh, 8804), 407 (1948). CD [c(Rh) = 0.03 mM, CH₂Cb; θ_{maks} , nm (ε_{CD} , M⁻¹ cm^{-1}]: 248 (5,63), 271 (6,65), 297 (6,61), 350 (-4,47), 422 (-0,59).

Rh: C1c* = **1** : **2 otopina**. [Rh(COD)₂]BF₄ (4,87 mg, 0,012 mmol), **C1c*** ligand (8,08 mg, 0,025 mmol), 0,5 mL deuteriranog diklorometana. Kristali [Rh(**C1c***)₂COD]BF₄ pogodni za snimanje redgenske difrakcije na monokristalu dobiveni su nakon 3 dana, naslojavanjem CH₂Cb otopine kompleksa s toluenom, te sporom difuzijom toluena u CH₂Cb sloj. ¹H NMR (600 MHz, CD₂Cb) δ /ppm: 10,08 (s, 2H), 9,06 (d, *J* = 7,6 Hz, 2H), 8,47 – 8,35 (m, 2H), 7,93 (t, *J* = 7,7 Hz, 2H), 7,59 (d, *J* = 7,1 Hz, 2H), 7,31 – 7,25 (m, 6H), 6,95 (dd, *J* = 7,5, 2,1 Hz, 4H), 4,79 (kvin., *J* = 7,2 Hz, 2H), 4,05 (dd, *J* = 8,8, 3,2 Hz, 2H), 3,97 (dd, *J* = 9,4, 3,1 Hz, 2H), 3,86 – 3,79 (m, 4H), 3,78 (s, 6H), 3,69 (t, *J* = 9,0 Hz, 2H), 2,70 (dddd, *J* = 15,3, 10,2, 8,6, 6,7 Hz, 2H), 2,14 (dddd, *J* = 13,8, 10,6, 7,8, 3,9 Hz, 2H), 1,84 – 1,73 (m, 2H), 1,64 (d, *J* = 7,3 Hz, 6H), 1,39 – 1,28 (m, 2H). ¹³C NMR (151 MHz, CD₂Cb₂) δ /ppm: 173,6, 170,9, 166,1, 139,5, 136,0, 133,4, 133,0, 130,7, 130,1, 129,5, 129,4, 129,4, 128,9, 126,5, 82,8, 82,7, 80,1, 80,0, 77,3, 71,4, 52,7, 49,6, 31,6, 28,9, 28,3, 17,9. UV-Vis [c(Rh)= 0,03 mM, CH₂Cb₂; λ_{maks} , nm (ε , M⁻¹ cm⁻¹)]: 235 (34802), 348 (2174). CD [c(Rh)= 0,03 mM, CH₂Cb₂; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 245 (2,98), 283 (-2,97), 319 (-2,18), 354 (-1,08), 388 (0,34).

Ir : **C1p** = **1** : **2** otopina. [Ir(COD)₂]BArF (15,88 mg, 0,012 mmol), **C1p** ligand (9,79 mg, 0,025 mmol), 0,5 mL deuteriranog diklorometana. Mogu se opaziti signali slobodnih liganda. ¹H NMR (300 MHz, CD₂Cl₂) *δ*/ppm: 7,88 (d, *J* = 6,8 Hz, 2H), 7,81 – 7,24 (m, 37H), 7,09 (s, 3H), 4,67 (kvin., *J* =7,2 Hz, 2H), 4,51 (s, 2H), 4,00 (s, 2H), 3,84 (s, 6H), 2,56 – 2,13 (m, 4H), 1,76 (q, *J* = 1,6 Hz, 4H), 1,46 (d, *J* = 7,3 Hz, 6H). ³¹P NMR (122 MHz, CD₂Cl₂) *δ*/ppm: 18,1. ¹³C NMR (75 MHz, CD₂Cl₂) *δ*/ppm: 175,8, 165,0, 163,1, 162,5, 161,8, 161,1, 136,1, 135,9, 135,8, 135,2, 135,0, 134,9, 132,7, 132,1, 129,5, 129,4, 129,3, 129,2, 129,1, 128,4, 126,8, 122,8, 119,4, 117,9, 117,9, 96,6, 93,5, 93,1, 90,7, 87,2, 53,2, 52,0, 49,8, 49,1, 32,9, 32,1, 30,7, 29,9, 28,3, 28,0, 22,9, 17,3. UV-Vis [*c*(Ir) = 3,49 mM, CH₂Cl₂; *λ*_{maks}, nm (*ε*, M⁻¹ cm⁻¹)]: 395 (422,75), 494 (378,23), 578 (75,58). CD [*c*(Ir) = 0,03 mM, CH₂Cl₂; *θ*_{maks}, nm (*ε*_{CD}, M⁻¹ cm⁻¹)]: 262 (-8,57), 313 (-3,53), 400 (0,61), 493 (0,72), 583 (0,09).

Ir : C1p : C1c* = 1 : 1 : 1 otopina. [Ir(COD)₂BArF] (35,62 mg, 0,028 mmol), C1p ligand (10,96 mg, 0,028 mmol), C1c* ligand (9,86 mg, 0,028 mmol), 0,5 mL deuteriranog diklorometana. ¹H NMR (300 MHz, CD₂Cl₂) δ /ppm: 9,70 (s, 1H), 8,46 (dd, J = 7,7, 1,6 Hz, 1H), 8,08 (dt, J = 7,8, 1,4 Hz, 1H), 7,92 – 6,97 (m, 31H), 7,21 (COSY-asignirani signal amidnog vodikovog atoma), 6,91 (COSY-asignirani signal amidnog vodikovog atoma), 4,94 –

4,87 (m, 2H), 4,46 – 4,41(m, 1H), 4,39 – 4,35 (m, 2H), 3,84 (s, 3H), 3,76 (s, 3H), 3,52 (t, J = 4,1 Hz, 1H), 3,39 (q, J = 5,9 Hz, 1H), 3,09 (t, J = 6,4 Hz, 1H), 2,36 (COSY -asignirani signal COD vodikovog atoma), 2,14 (COSY-asignirani signal COD vodikovog atoma), 1,58 (d, J = 7,2 Hz, 3H), 1,51 (d, J = 7,2 Hz, 3H), 1,45 (COSY-asignirani signal COD vodikovog atoma), 1,31(COSY-asignirani signal COD vodikovog atoma). UV-Vis [c(Ir) = 0,03 mM, CH₂Cl₂; λ_{maks} , nm (ε , M⁻¹ cm⁻¹)]: 237 (48700), 269 (sh, 19553), 385 (1508), 449 (810), 492 (923), 583 (327). CD [c(Ir) = 0,03 mM, CH₂Cl₂; θ_{maks} , nm (ε_{CD} , M⁻¹ cm⁻¹)]: 245 (4,49), 318 (-2,43).

Ir : C1c* = 1 : 2 otopina. [Ir(COD)₂BArF] (17,81 mg, 0,014 mmol), C1c ligand (10,96 mg, 0,028 mmol), 0,5 mL deuteriranog diklorometana. ¹H NMR (600 MHz, CD₂Cl₂) δ /ppm: 10,08 (s, 1H), 8,55 (d, *J* = 7,8 Hz, 1H), 8,24 (d, *J* = 7,7 Hz, 1H), 7,82 (t, *J* = 7,8 Hz, 1H), 7,73 (dt, *J* = 5,1, 2,3 Hz, 8H), 7,57 (s, 4H), 7,40 – 7,15 (m, 6H), 7,02 (d, *J* = 7,3 Hz, 2H), 7,00 – 6,96 (m, 4H), 4,97 – 4,85 (m, 3H), 4,59 – 4,51 (m, 1H), 4,13 – 4,05 (m, 1H), 3,84 (s, 3H), 3,82 – 3,77 (m, 2H), 3,71 – 3,65 (m, 1H), 3,35 (t, *J* = 9,0 Hz, 1H), 2,50 – 2,41 (m, 2H), 2,34 – 2,22 (m, 2H), 2,02 – 1,92 (m, 1H), 1,81 – 1,74 (m, 2H), 1,62 (d, *J* = 7,2 Hz, 3H), 1,03 – 0,96 (m, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ /ppm: 172,1, 165,6, 162,6, 162,3, 162,0, 161,6, 138,6, 136,2, 135,2, 133,6, 132,7, 131,9, 130,3, 130,0, 129,8, 128,3, 126,2, 125,9, 125,6, 124,5, 122,3, 117,9, 117,8, 96,7, 93,5, 93,1, 90,9, 90,7, 77,2, 72,4, 68,3, 66,5, 53,0, 49,5, 32,9, 32,5, 32,0, 30,7, 28,8, 28,4, 28,0, 22,9, 18,5. UV-Vis [*c*(Ir) = 0,03 mM, CH₂Cl₂; λ_{maks} , nm (ε , M⁻¹ cm⁻¹)]: 276 (-3,85), 355 (-2,26), 430 (0,54), 475 (-0,87).

3.13. Katalitička reakcija hidrogenacije

Opća procedura katalitičkih hidrogenacija. Sve katalitičke hidrogenacije provedene su u autoklavu od nehrđajućeg čelika s umetnutim nosačem prikladnim za do 8 reakcijskih bočica sa septom (4 mL) s malim teflonskim magnetima za miješanje. U tipičnom eksperimentu, otopine poznatih koncentracija svih spojeva pripremaju se pod inertnim uvjetima, te se u reakcijsku smjesu ubrizgava metalni prekursor i ligand otopljen u suhom otapalu pomoću Hamiltonovih injekcija u atmosferi argona; otopinu se miješa 1 h u odgovarajućem otapalu. Željeni supstrat dodaje se u reakcijsku smjesu otapanjem u maloj količini reakcijskog otapala i ubrizgavanjem u posudu, koja se zatim stavlja u autoklav. Autoklav se zatim stavlja u termalni blok na mješalici i naizmjence se napuni dva puta dušikom i tri puta vodikom. Konačno, hidrogenacija se provodi pod tlakom od 20 bara i na sobnoj temperaturi, kontroliranoj termalnim blokom. Na kraju reakcije, plin se ispušta iz autoklava i reakcijske smjese pripremi za daljnju obradu. Reakcijske smjese se četverostruko razrijede s EtOAc i filtriraju kroz kratki stupac silikagela (5 cm). Konverzija je određena GC i GC-MS mjerenjima, a enantiomerni viškovi na kiralnoj GC koloni. Apsolutna konfiguracija produkta određena je u skladu s poznatim redoslijedom eluiranja u danim uvjetima.²⁷⁰ Informacije o koloni za GC-MS: HP5-MS kolona (190915-433), dimenzije kolone 30 m x 0,25 mm x 0,25 µm, temperaturni raspon od -60°C do 325°C. Informacije o koloni za kiralni GC: CP Chirasil Dex CB kolona (CP27503), dimenzija kolone 25 m x 0,32 mm x 0,25 µm, temperaturni raspon 20°C-200°C.

§ 4. REZULTATI I RASPRAVA

4.1. Uvod

U ovoj disertaciji pripravljeni su i karakterizirani kiralni monodentatni oksazolinski ligandi A1, B1 i C1 konjugirani s aminokiselinama (shema 6) te njihovi metalni kompleksi (Cd(II), Co(II), Ir(I), Rh(I), Zn(II)), s ciljem detaljne karakterizacije i dizajna odgovarajućih supramolekulski bidentatnih metalnih kompleksa te u hetero kombinaciji s trifenil fosfinskim ligandima za primjenu u selektivnoj hidrogenaciji. Pritom se razmatrao utjecaj elektron odvlačećih i donirajućih skupina, utjecaj sterički zahtjevnih skupina, utjecaj kiralnih skupina ugrađenih neposredno blizu i daleko od metalnog atoma na svojstva pripravljenih metalnih kompleksa. Također je ispitivana njihova stereokemija, sposobnost ostvarivanja inter- i intramolekulskih interakcija te doprinosi indukciji kiralnosti metala u metalnim kompleksima u otopini i čvrstom stanju.

$$\begin{pmatrix}
\mathsf{R}_{1} & \mathsf{O} \\
\mathsf{R}_{2}^{\mathsf{W}} & \mathsf{N}
\end{pmatrix} \mid \mathsf{Ar}_{1}^{\mathsf{H}} (\mathsf{R})_{\mathsf{m}}$$

<i>n</i> = 1	<i>m</i> = 1				· · · / n	n			
A1 _p ,	R₁=Me,	R ₂ =Me,	$Ar = pC_6H_4$,	R=OC-AlaOMe	B1 _н ,	R₁=Ph,	$R_2=H$,	$Ar = pC_6H_4$,	R=H
A1 _{m1} ,	R₁=Me,	R ₂ =Me,	Ar=mC ₆ H ₄ ,	R=OC-AlaOMe	B1 _F ,	R₁=Ph,	$R_2=H$,	$Ar = pC_6H_4$	R=F
A1 _{m2} ,	R₁=H,	R ₂ =H,	Ar=mC ₆ H ₄ ,	R=OC-PheOMe	B1 _Ν ,	R₁=Ph,	$R_2=H$,	$Ar = pC_6H_4$,	R=NMe ₂
A1 _{m3} ,	R ₁ = <i>i</i> -Pr,	$R_2=H$,	Ar=mC ₆ H ₄ ,	R=OC-AlaOMe	В1 _Р ,	R₁=Ph,	R ₂ =H,	Ar=1-piren	R=H
A1 _{m4} ,	R₁=Bn,	$R_2=H$,	Ar=mC ₆ H ₄ ,	R=OC-AlaOMe	B1 _{mA} (=A1 _{m5}),	R₁=Ph,	R ₂ =H,	$Ar=mC_6H_4$,	R=OC-AlaOMe
A1 _{m5} ,	R₁=Ph,	R ₂ =H,	Ar= <i>m</i> C ₆ H ₄ ,	R=OC-AlaOMe	В1 _{mA} *,	R₁=H,	R ₂ =Ph,	$Ar=mC_6H_4$,	R=OC-AlaOMe
A1 _{m6} ,	R₁=Ph,	R ₂ =H,	$Ar = mC_6H_4$,	R=OC-Gly-Val -PheOMe					
A1 _{n1} ,	R₁=Me,	R ₂ =Me,	Ar=1,4-Nph,	R=OC-AlaOMe	C1a,	R ₁ =Me,	R ₂ =Me,	$Ar=mC_6H_4$,	R=H
A1 _{n2} ,	R₁=Me,	R ₂ =Me,	Ar=1,4-Nph,	R=OC-GlyOMe	C1b (=A1 _{m1}),	R₁=Me,	R ₂ =Me,	$Ar=mC_6H_4$,	R=OC-AlaOMe
A1 _{n3} ,	R₁=Me,	R ₂ =Me,	Ar=1,5-Nph,	R=OC-AlaOMe	C1c (=A1 _{m5}),	R₁=Ph,	R ₂ =H,	$Ar=mC_6H_4$,	R=OC-AlaOMe
A1 _{n4} ,	R₁=Me,	R ₂ =Me,	Ar=2,6-Nph,	R=OC-AlaOMe	C1c*(=B1 _{mA} *),	R₁=H,	R ₂ =Ph,	$Ar=mC_6H_4$,	R=OC-AlaOMe
A1 _{n5} ,	R₁=Me,	R ₂ =Me,	Ar=2,7-Nph,	R=OC-AlaOMe	C1d (=A1 _{m4}),	R₁=Bn,	R₂=H,	$Ar=mC_6H_4$,	R=OC-AlaOMe
A1 _a ,	R₁=Me,	$R_2=Me$,	Ar=9,10-Ant,	R=OC-AlaOMe					
<i>n</i> = 1	<i>m</i> = 2								
Δ1.4	R ₄ -M _P	R-Me	Δr-Tmk	R-OC-AlaOM	B1	Ro-H 4	\r_Tmk	R = (-m - A a)	
Δ1	$R_{4}-i_{-}Pr$	R_{2} -H	Ar–Tmk	R-OC-GWOMe		, 112-11, 7	u — 11111,		
A1 ₁₃ .	$R_1=Ph$.	$R_2=H_1$	Ar=Tmk.	R=OC-PheOMe					
A1+4.	R₁=Ph.	R ₂ =H.	Ar=Tmk.	R=OC-p-PheOMe					
	,								
<i>n</i> = 2	<i>m</i> = 1				<u>n = 3 m = </u>	= 0			
A1 _{t5} ,	R₁=Ph,	R ₂ =H,	Ar=Tmk,	R=OC-PheOMe	A1 _{t6} , R ₁ =	=Ph,	R ₂ =F	l, Ar=	ſmk
Ostali	ligandi:	Ph				Pr 0		Ph	
					Δ1.				

Shema 1. Ligandi pripravljeni u ovoj disertaciji. Nph-naftalen, Ant-antracen, Tmk-1,3,5-C₆H₃.

4.2. Analiza supramolekulskih interakcija aminokiselinskih biokonjugata oksazolina (A)

Aminokiselinski biokonjugati oksazolina A1 pripravljeni u sklopu ovog istraživanja imaju sposobnost ostvarivanja supramolekulskih interakcija. Tri su glavna građevna bloka biokonjugata A1 (shema 7), oksazolinski prsten (plavo), središnja aromatska jedinica (sivo) i aminokiselinski supstituent (crveno); koji mogu sudjelovati u raznim supramolekulskim interakcijama: dušikov atom oksazolinskog prstena može biti akceptor vodikove veze; središnji aromatski prsten može sudjelovati u aromatskom slaganju, a aminokiselinski supstituent sadrži i akceptore i donore vodikovih veza. Monodentatni oksazolinski spojevi su općenito slabo istraživani, a njihovi sintetski biokonjugati i sposobnost sudjelovanja u supramolekulskim interakcijama sa i bez prisutnosti metala istraživani su još manje. U tu 20 aminokiselinskih biokonjugata oksazolina različitog broja, svrhu sintetizirano ie voluminoznosti i motiva supstituenata na središnjoj aromatskoj jedinici različitih veličina, te je optimizirana njihova sinteza. U nastavku se detaljno analizira utjecaj strukturne varijacije navedenih oksazolinskih derivata na njihovu sposobnost sudjelovanja u supramolekulskim interakcijama u čvrstom stanju, pomoću difrakcije rendgenskih zraka na monokristalu, te u otopini pomoću NMR i CD spektroskopije. Potaknuti dobivenim eksperimentalnim rezultatima, odabrani derivat $A1_{t1}$ je dodatno računski analiziran, te su iz dobivenih rezultata izvedene Gibbsove energije stvaranja, ΔG , i NMR parametri za proučavanje potencijalnih supramolekulskih interakcija.

4.2.1. Sinteza prekursora A3

Opći pristup sintezi aminokiselinskih biokonjugata oksazolina A1 uključuje međuprodukte A3, koji se mogu pripraviti iz aromatskih dikarboksilnih kiselina P (shema 7). Derivati aminokiselina A2 i derivati aminoalkohola A4 dobiveni su kao sporedni produkti one-pot sinteze. Osim disupstituiranih aromatskih karboksilnih kiselina, trimesinska kiselina korištena je kao prekursor za dobivanje trisuptituiranih derivata A1-A4 (shema 7, $R_3 \neq H$). Razmotrena su dva pristupa međuproduktima A3; one-pot sinteza i linearna sinteza uz zaštitne skupine. U proceduri one-pot sinteze, dikiselina P reagira istovremeno s dva različita amina. U reakciji se teoretski očekuje omjer glavnih produkata 1:2:1, s najvećim udjelom za miješani produkt A3, koji sadrži oba dva amina. Međutim, ovaj se omjer rijetko dobiva eksperimentalno zbog različite reaktivnosti i topljivosti korištenih amina.^{42,131,237}

Sinteze međuprodukata A3 one-pot i linearnim metodama podijeljene su u nekoliko potpoglavlja u nastavku. Svi dobiveni međuprodukti karakterizirani su ¹H i ¹³C NMR spektroskopijama i ESI masenom spektrometrijom. Dodatno, dvije bis-aminokiseline (A2_{m1} i A2_{n5}), jedan bis-amino alkohol (A4_{m5}) i jedan miješani derivat (A3_{t3}) karakterizirani su difrakcijom rendgenskih zraka na monokristalu.

4.2.2. Sinteza prekursora $A3_{m1}$

Za početnu optimizaciju one-pot sinteze, kao prekursori su odabrani izoftalna kiselina, alanin metil ester i 2-amino-2-metil-propan-1-ol (AMP). U prvom pokušaju sinteze osnovnog spoja $A3_{m1}$, reakcija je provedena s benzotriazolnim reagensima TBTU/HOBt (tablica 12, reakcija 1).²⁷¹ Međutim, analiza izoliranih produkata pokazala je da je nastao bis-alaninski spoj $A2_{m1}$, dok spojevi $A3_{m1}$ i $A4_{m1}$ nisu detektirani. Umjesto toga, sporedni produkti ester-amida $A6_{m1}$, $A7_{m1}$ i $A8_{m1}$ nastali su u tragovima (shema 8). Očigledno tijekom reakcije slobodne alkoholne skupine u $A3_{m1}$ i $A4_{m1}$ mogu se dalje derivatizirati TBTU/HOBt protokolom. Slično, korištenjem DCC-a kao reagens za peptidno vezanje nije dobiven željeni derivat $A3_{m1}$ (tablica 12, reakcija 2).

Shema 7. Shema retrosinteze oksazolina A1, intermedijera A2, A3 i A4 i prekursora P. $R_3 = H$, aminokiselina ili aminoalkohol. $R_4 = H$ ili – COOH.

Shema 8. Potencijalni međuprodukti one-pot reakcije sinteze $A3_{m1}$, dobiveni esterifikacijama.

Kako bi se dobio spoj $A3_{m1}$ te spriječilo nastajanje esterskih međuprodukata, ispitani su drugi reagensi za peptidno vezanje (tablica 12, reakcije 3-5). Reakcije s pyAOP i COMU provedene su u dimetilformamidu, dok je diklormetan korišten kao otapalo za reakciju s HATU. Uzimajući u obzir sličnost iskorištenja spoja $A3_{m1}$ dobivenih sa sva tri uspješna reagensa za peptidno vezanje (~ 15%), HATU je korišten u sljedećim reakcijama kako bi se izbjegla izolacija produkta iz dimetilformamida.

Reakcija	Reagens	Otapalo	η (spoj) / %
1	TBTU/HOBt	CH ₂ Ch ₂	$1 (A2_{m1}) 8 (A6_{m1}) 4 (A7_{m1}) 2 (A8_{m1})$
2	DCC	CH_2Cl_2	
3	руАОР	DMF	17 (A3 _{m1})
4	COMU	DMF	25 $(A2_{m1})$ 13 $(A3_{m1})$
5	HATU	CH ₂ Ch ₂	$\begin{array}{ccc} 20 & ({\bf A2_{m1}}) \\ 15 & ({\bf A3_{m1}}) \end{array}$
6 ^a	HATU	CH ₂ Cl ₂	27 (A4 _{m1})

Tablica 12. One-pot reakcije s izoftalnom kiselinom, H-Ala-OMe i AMP, različitim reagensima za peptidno vezanje i otapalima.

^a samo AMP je korišten za sintezu.

Budući da produkt bis-amino alkohola $A4_{m1}$ nije izoliran u niti jednoj od reakcija 1-5, provedena je direktna sinteza s izoftalnom kiselinom i dva ekvivalenta AMP-a, koristeći isti postupak s HATU (tablica 12, reakcija 6). U ovoj reakciji je izoliran $A4_{m1}$ s iskorištenjem od 27%. Spoj $A4_{m1}$ je slabo topljiv u većini organskih otapala osim u polarnijim otapalima poput CH₃OH i DMSO te se može odfiltrirati iz reakcijske otopine. Navedeno taloženje nije uočeno niti u jednoj od reakcija 1-5.

Linearni pristup dobivanju međuprodukta $A3_{m1}$ istražen je uz korištenje zaštitnih skupina (shema 9). Ukupno iskorištenje nakon pet koraka bilo je 9%, uključujući dvije izolacije kolonskom kromatografijom, što je niže od iskorištenja dobivenog one-pot sintezom (15%). Uzimajući u obzir uloženu količinu vremena i materijala u usporedbi s one-pot sintezom, linearna sekvenca sinteze nije se dalje provodila za jednostavne disupstituirane derivate.

Shema 9. Reakcijski uvjeti. i) H₂SO₄ (konc.), CH₃OH, 75 °C, miješanje preko noći; ii) CH₃OH : H₂O (2 : 1), NaOH, mikrovalno zračenje, 50 W, 150 °C, 20 min, HCl (konc.); iii) AMP, HATU, DIPEA, CH₂Cl₂, 1 dan; iv) CH₃OH : H₂O (2 : 1), NaOH, mikrovalno zračenje, 50 W, 150 °C, 20 min, HCl (konc.); v) H-Ala-OMe, HATU, DIPEA, CH₂Cl₂, 1 dan.

4.2.3. One-pot sinteza drugih bis-prekursora A3

Prvo su sintetizirani izomeri ftalne kiseline kao središnje aromatske jedinice (tablica 13). Korištene su varijacije tipa i broja aminokiselina i aminoalkohola kao i tipa i supstitucijskog motiva središnje aromatske jedinice. U reakciji 7, *para*-supstituirana tereftalna kiselina korištena je kao središnja aromatska jedinica (tablica 13). U ovoj reakciji, unatoč upotrebi reagensa HATU, bio je prisutan sporedni ester-amidni produkt $A6_p$ (shema 7, b). Štoviše, nije bilo moguće odvojiti željeni miješani produkt $A3_p$ od spoja $A6_p$ kromatografijom na stupcu silikagela. Međutim, $A6_p$ uspješno je odstranjen nakon ciklizacije $A3_p$ u odgovarajući oksazolin (vidi potpoglavlje 4.2.6.).

Tablica 13. One-pot reakcija aminokiselina i aminoalkohola s izomerima ftalne kiseline (Ar) pomoću HATU reagensa u diklormetanu.

Reakcija	Ar	Aminokiselina	Aminoalkohol	η (Spoj) /%
7 ^a	pC ₆ H ₄	H-Ala-OMe	2-amino-2-metil propanol (AMP)	$<13^{b} (A3_{p})$
8	mC ₆ H ₄	H-Phe-OMe	2-amino-1-etanol (ETA)	22 (A3 _{m2})
9	mC_6H_4	H-Ala-OMe	valino1 (Val [#])	$16 (A3_{m3})$
10	mC_6H_4	H-Ala-OMe	fenilalaninol (Phe#)	$26 (A3_{m4})$
11°	mC_6H_4	H-Ala-OMe	fenilglicinol (Phg#)	13 (A3 _{m5})
12	mC ₆ H ₄	H-Gly-Val-Phe-OMe	fenilglicinol (Phg#)	$<52^{d} (A3_{m6})$

^a iskorištenje produkta **A2**_p je 7%, ^b produkt je sadržavao značajne količine spoja **A6**_p, ^c iskorištenje produkta **A4**_{m5} je 3%, ^d produkt je sadržavao značajne količine spoja **A4**_{m5}

U reakcijama 8-12 izoftalna kiselina je korištena kao središnja aromatska jedinica, dok su različite kombinacije korištenih aminokiselina i aminoalkohola navedene u tablici 13. Usporedbom sinteze spojeva $A3_{m1}$ i $A3_p$ sa spojevima $A3_{m2}$ - $A3_{m6}$, primijećeno je da zamjena ili alaninske aminokiseline i/ili AMP amino alkohola s derivatima s voluminoznijim, hidrofobnijim skupinama omogućuje lakšu kromatografiju i izolaciju ciljnih spojeva. Za spoj $A3_{m6}$, odgovarajući bis-fenilglicinolni produkt $A4_{m5}$ nije uspješno odvojen kromatografijom zbog prevelike sličnosti kromatografiskih svojstava. Spoj $A3_{m6}$ je pročišćen na sličan način kao i $A3_p$, odnosno odvajanje je provedeno nakon ciklizacije u odgovarajuće oksazoline (vidi potpoglavlje 4.2.6.). Sastav i redoslijed aminokiselina za derivat $A3_{m6}$ odabran je prema prethodno objavljenim spojevima koji sadrže isti tripeptid.^{52,272}

Nadalje, sintetizirani su prekurosori s većim središnjim aromatskim jedinicama, odnosno s naftalenskim ili antracenskim prstenima (reakcije 13-18, tablica 14). Konkretno, pripravljeno je pet derivata naftalena (s 1,4-; 1,5-; 2,6-; odnosno 2,7- supstitucijskim motivima) i jedan

derivat antracena (s 9,10-supstitucijom). Bis-amino alkoholni spojevi $A4_{n3}$ i $A4_{n4}$ su se istaložili u reakcijama 11 i 12, te ih se moglo odfiltrirati iz reakcijske otopine. Najviša iskorištenja dobivena su za međuprodukte $A3_{n1}$ i $A3_{n4}$, 36% odnosno 33%. Fokus je bio na sintezi međuprodukta A3, stoga nisu poduzeti daljnji pokušaji sinteze drugih derivata A4.

Tablica 14. One-pot reakcija H-Ala-OMe i AMP s naftalenskim (Nph) i antracenskim (Ant) dikiselinama pomoću HATU reagensa u diklormetanu.

Reakcija	Ar	η (spo	oj) /%
13	1,4 - Nph	$8 (A2_{n1})$	$36 (A3_{n1})$
14 a	1,4 - Nph	17 (A2 _{n2})	$18 (A3_{n2})$
15 ^b	1,5 - Nph	31 ($A2_{n3}$)	15 (A3 _{n3})
16 ^c	2,6-Nph	$5 (A2_{n4})$	33 (A3 _{n4})
17	2,7 - Nph	18 (A2 _{n5})	$23 (A3_{n5})$
18	9,10-Ant	19 (A2 _a)	16 (A3 _a)

^a korišten je H-Gly-OMe, ^b iskorištenje produkta $A4_{n3}$ je 17%, ^c iskorištenje produkta $A4_{n4}$ je 38%

4.2.4. Sinteza tris-prekursora $A3_t$

Pripremljen je niz 1,3,5-supstituiranih derivata benzena (tablica 15). Inicijalno je predviđana veća složenost pročišćavanja one-pot smjese produkata ovih spojeva te je prvo istražen linearni pristup uz zaštitne skupine (shema 10). Derivati $A3_{t3}$ i $A3_{t4}$ sintetizirani su s aminokiselinama L-fenilalaninom i D-fenilalaninom te fenilglicinolom kao aminoalkoholom korištenjem zaštitnih skupina, na sličan način kao linearna sinteza spoja $A3_{m1}$. Međutim, zbog značajnih poteškoća s izolacijom međuprodukata sa slobodnom karboksilnom skupinom, pokazalo se efikasnijim preskočiti izolaciju spojeva $A14_{t3}$ i $A16_{t3}$, te, slično kao kod spojeva $A3_p$ i $A3_{m6}$, izolirati odgovarajuće oksazoline nakon ciklizacije (vidi potpoglavlje 4.2.6.).

Shema 10. Reakcijski uvjeti. i) H₂SO₄ (konc.), CH₃OH, 75 °C, miješanje preko noći; ii) CH₃OH: H₂O (2:1), NaOH, mikrovalno zračenje, 50 W, 150 °C, 20 min, HCl (konc.); iii) (*S*)-(+)-fenilglicinol, HATU, DIPEA, CH₂Cl₂, 1 dan; iv) CH₃OH : H₂O (2 : 1), NaOH, mikrovalno zračenje, 50 W, 150 °C, 20 min, HCl (konc.); v) H-Ala-OMe, HATU, DIPEA, CH₂Cl₂, 1 dan.

Zbog teže izolacije međuprodukata u linearnom pristupu sintezi, provedena je one-pot sinteza trisupstituiranih derivata $A3_{t1}$, $A3_{t2}$ i $A3_{t5}$ korištenjem procedure u dva koraka (shema 11, tablica 15). Za razliku od sinteza disupstituiranih derivata, u proceduri za sintezu trisupstituiranih derivata, aminokiselina je dodana u prvom koraku, dok je aminoalkohol dodan u drugom koraku, kako bi se izbjeglo stvaranje ester-amidnih sporednih produkata. Omjer dodanih reagensa u postupku u dva koraka pokazao se ključnim u sintezi željenog ciljnog spoja s najvećim iskorištenjem. U reakcijama 19 i 20 (tablica 15), korištenjem omjera 1:1 aminokiseline i aminoalkohola, ciljni spojevi $A3_{t1}$ i $A3_{t2}$ uspješno su sintetizirani s većim iskorištenjima od ostalih one-pot produkata. S druge strane, korištenje omjera 1 : 2 omogućilo je pripravu spoja $A4_{t5}$ s većim iskorištenjem (tablica 15, reakcija 21).

Shema 11. One-pot sinteza A2t-5t derivata. Reakcijski uvjeti i) aminokiselina, HATU, DIPEA, CH₂Cl₂, 1 dan; ii) aminoalkohol, HATU, DIPEA, 1 dan.

Tablica 15. One-pot reakcija aminokiselina i aminoalkohola s trimesinskom kiselinom pomoću HATU reagensa u diklormetanu.

Reakcija	Aminokiselina	Aminoalkohol		Iskor. (s	poj.) /%	
19	H-Ala-OMe	AMP	$6(2_{t1})$	27 (3 _{t1})	10 (4 _{t1})	-
20	H-Gly-OMe	Val [#]	$2(2_{t2})$	$16 (\mathbf{3_{t2}})$	$6(4_{t2})$	-
21ª	H-Phe-OMe	Phg [#]	-	$5(3_{t5})$	$26 (\mathbf{4_{t5}})$	$5(5_{t5})$

4.2.5. Sinteza prekursora A3b

Provedena je priprava C_2 -simetričnog derivata A3b, u kojem su dva jednostavna derivata slična spojevima A3_m povezana 1,4-diaminobutanom kao razmaknicom (shema 12). Uzimajući u obzir složenost ciljanog produkta i sve moguće sporedne produkte i njihove polarnosti, nije pokušan one-pot pristup sintezi. Prekursor A11_{m5} lako je sintetiziran prateći slijed linearne sinteze po uzoru na sintezu spoja A11_{m1} (vidi shemu 9). Metil-esterska skupina je zatim odcijepljena kako bi se dobio spoj A12_{m5} i reakcijska smjesa je korištena u sljedećem koraku bez pročišćavanja. Spoj A17 je pripravljen iz Boc-Val-OH i 1,4-diaminobutana s visokim iskorištenjem. U sljedećem koraku, izvedeno je cijepanje Boc-zaštitne skupine i dobiveni produkt je korišten u sljedećem koraku bez izolacije. Peptidno vezanje spojeva A12_{m5} i A18 s HATU uspješno je dalo derivat A3_b.

Shema 12. Uvjeti reakcije. i) Phg[#], TBTU/HOBt, DIPEA, CH₂Cl₂, 1 dan; ii) CH₃OH: H₂O (2:1), NaOH, mikrovalno zračenje, 50 W, 150 °C, 20 min, HCl (konc.); iii) Val[#],
1,4-diaminobutan, TBTU/HOBt, DIPEA, CH₂Cl₂, 1 dan; iv) TFA : CH₂Cl₂ = 1 : 1, 2h, s.t., DIPEA; v) HATU, DIPEA, CH₂Cl₂, 1 dan.

4.2.6. Sinteza oksazolina A1

Sintetizirano je ukupno 20 oksazolina, podijeljenih u pet skupina, korištenjem metode koju su prethodno opisali Gang Xu *et al.*,¹³¹ koristeći dietilaminosumpor trifluorid (DAST) u CH₂Cl₂ na -78 °C (slika 27). Prilikom provođenja ovih sinteza, nađeno je da se iskorištenje može povećati dodavanjem suviška DAST-a u smjesu (do dva ekvivalenta). To se odražava u rezultatima za dva pokušaja sinteze $A1_a$, gdje je s 1 ekvivalentom DAST reagensa dobiveno iskorištenje 36% produkta, dok je s 2 ekvivalenta dobiveno 87%. Iskorištenje za spoj $A1_{n5}$ manje je od očekivanog zbog poteškoća u odvajanju oksazolina $A1_{n5}$ i početnog materijala $A3_{n5}$. Kao što je prethodno bilo navedeno, nekoliko intermedijera je podvrgnuto ciklizaciji bez pročišćavanja ($A3_p$, $A3_{m6}$, $A14_{t3}$ i $A16_{t3}$), što je rezultiralo nižim iskorištenjima izolacije odgovarajućih oksazolina. Svi sintetizirani oksazolini karakterizirani su IR, ¹H i ¹³C NMR spektroskopijom, ESI-MS i ESI-HRMS spektrometrijom.

112

§ 4. Rezultati i ras prava

Slika 27. Reakcija ciklizacije oksazolina. i) DAST, CH₂Cl₂, K₂CO₃, -78 °C (suhi led u acetonu). R₃, R₄ = H, aminokiselina ili oksazolin. *nije kromatografski pročišćeno u prethodnom koraku.

4.2.7. Rendgenska kristalografija A

Monokristali sedam aminokiselinskih biokonjugata oksazolina dobiveni su difuzijom iz otopina diklormetana, nadslojenih heksanom. Dobiveni su monokristali dva oksazolina s disupstituiranim središnjim benzenskim prstenom ($A1_p$ i $A1_{m6}$), tri oksazolina s naftalenskom ($A1_{n2}$, $A1_{n4}$ i $A1_{n5}$) i jedan s antracenskom središnjom aromatskom jedinicom ($A1_a$), te jedan trisupstituirani derivat ($A1_{t4}$). Rendgenska difrakcija dala je uvid u molekulsku strukturu i supramolekulske interakcije u čvrstom stanju; ORTEP dijagrami²⁷³ prikazani su na slici 28, eksperimentalni podaci za mjerenja s difrakcijom rendgenskog zračenja navedeni su u tablicama 3 i 4.

Analiza pakiranja oksazolina u snimljenim kristalnim strukturama daje uvid u intermolekulske interakcije u čvrstom stanju. Najčešća intermolekulska interakcija među dobivenim strukturama je vodikova veza; stoga će se u daljnoj raspravi koristiti Bernsteinova notacija za motive vodikovih veza (slika 6).⁴⁰ U svim analiziranim strukturama svaka pojedinačna molekula oksazolina sudjeluje u vodikovim vezama tvoreći beskonačne supramolekulske polimerne lance,²⁷⁴ s oksazolinom $A1_{t4}$ kao djelomičnom iznimkom (vidi dolje). Od svih amidnih vodikovih atoma u ovim strukturama, samo glicinski amidni vodikov atom u tripeptidnom oksazolinu $A1_{m6}$ ne sudjeluje u vodikovim vezama. U nekoliko slučajeva, oksazolinski prsten također sudjeluje u vodikovim vezama. Međutim, samo atomi dušika u oksazolinu sudjeluju u vodikovim vezama, dok oksazolinski atomi kisika gotovo nikada nisu dio vodikovih veza.²⁷⁵

Dodatno, u snimljenim kristalnim strukturama nema atoma estera koji sudjeluju u vodikovim vezama te nema vodikovih veza između susjednih supramolekulskih polimernih lanaca. Nekoliko karakterističnih sekundarnih struktura vodikovih veza su nađene u snimljenim strukturama oksazolina A1. Konkretno, četiri unitarna graf-set motiva (N₁) vodikovih veza se pojavljuju u dobivenim strukturama; beskonačni lančani motivi C(4) (A1_{m6}, A1_{n2}, A1_{n4}, A1_{n5}, A1_{t4}) i C(9) (A1_{p1}, A1_a), konačni motiv D(A1_{m6}) i prstenasti uzorak $R_2^2(16)$ (A1_{t4}); te jedan dodatni binarni graf-set motiv $R_2^2(12)$ (A1_{m6}). Sve strukture, osim struktura većih oksazolina A1_{m6} i A1_{t4}, imaju samo jedan unitarni graf-set motiv. U prikazanim strukturnim motivima, u C(4) i $R_2^2(12)$ vodikovim vezama sudjeluju samo aminokiseline, dok u C(9) i $R_2^2(16)$ sudjeluju aminokiseline i oksazolini. Nadalje, motiv D opisuje vodikovu vezu između oksazolina i molekule metanola u kristalnoj strukturi oksazolina A1_{m6}.

Slika 28. ORTEP-III²⁷³ strukture oksazolina A1_p, A1_{m6}, A1_{n2}, A1_{n4} i A1_{n5}, A1_ai A1_{t4} s 30%-tnom vjerojatnošću elipsoida za strukture određene difrakcijom rendgenskih zraka na monokristalima.

115

U kristalnim strukturama oksazolina A nema π - π interakcija između središnjih aromatskih jedinica unutar polimernih lanaca; odnosno središnje aromatske jedinice su međusobno posmaknute, ili na okomit (A1_p, A1_{n2}, A1_{t4}) ili na paralelan način (A1_{m6}, A1_{n4}, A1_{n5}, A1_a). Međutim, π - π interakcije²⁷⁶ prisutne su u dva slučaja, kod oksazolina A1_{n2} i A1_{t4}. U oksazolinu A1_{n2}, dvije molekule iz susjednih polimernih lanaca su aromatski složene s nasuprotnom orijentacijom oksazolina i aminokiselinskih supstituenata. Udaljenost između središta dva aromatski složena naftalenska prstena je 3,7019(6) Å, dok je udaljenost između dviju ravnina naftalenskih prstena 3,5021(5) Å. Nadalje, interakcija aromatskog slaganja prisutna je i u strukturi oksazolina A1_{t4}. Središnji aromatski prsten jedne molekule je u aromatskom slaganju s (4*S*)-fenilnom skupinom oksazolina iz susjedne molekule. Udaljenost između središta dvaju benzenskih prstenova je 3,720(2) Å, najkraći kontakt je 3,130(3) (HAr-ox---CAr-t), te kut između ravnina dvaju benzenskih prstenova je 15,7(2) °.

4.2.8. Supramolekulske interakcije oksazolina A1 u otopini

Odabrano je šest modelnih oksazolina za ispitivanje supramolekulskih interakcija pomoću NMR i CD spektroskopije u otopini, na temelju njihovih strukturnih varijacija: A1_{m1}, A1_p, A1_{m5}, A1_{m6}, A1_{n4}, A1_{t1} i A1_{t5}. Mjereni su njihovi ¹H NMR spektri pri koncentracijama od 6 mM i 60 mM u CDC1₃ i 6 mM d₆-DMSO-u; te njihovi CD spektri pri 0,06 mM i 0,6 mM u CH₂Cb. Rezultati CD spektroskopije su pokazali da nema značajnih intermolekulskih interakcija u otopini pri koncentracijama ispod $c \approx 0,6$ mM, dok su pri koncentracijama višim od c $\approx 0,6$ mM vrijednosti signala bile prevelike za osjetljivost detektora (250-320 nm). Nadalje, odgovarajuće vrijednosti kiselosti vodikove veze, A_{NMR},^{277–279} izvedene su iz ¹H NMR podataka (sablica 16); dobiveni rezultati potvrđuju da u razrijeđenim otopinama nema prisutnosti značajnih vodikovih veza (sve dobivene vrijednosti A_{NMR} su > 0,15).

Međutim, u ¹H NMR spektrima pri 60 mM, kemijski pomaci N-H spojeva $A1_{m6}$ i $A1_{t1}$ su se pomakli prema nižem polju za > 0,40 ppm odnosno 0,36 ppm (tablica 16), što ukazuje na ovisnost vodikovih veza o koncentraciji u CDCl₃. Iz tog razloga, oksazolini $A1_{m6}$ i $A1_{t1}$ su analizirani temperaturno ovisnom NMR spektroskopijom, pri c = 60 mM. Spektri su prikupljani svakih 20 °C u rasponu od -40 °C do 40 °C (slika 29).

CALTD/

	∂(N-	·H)/ppm				
Spoj	DMSO	CDCb	$\Delta\delta$ dmso-cdci3	ANMR	CDCl ₃ (konc.)	$arDelta \delta_{conc.}$ -razrj.
$A1_{m1}$	9,02	6,80	2,22	0,30	6,85	0,05
A1 _p	8,94	6,75	2,19	0,30	6,78	0,03
A1 _{m5}	9,04	6,79	2,25	0,31	6,87	0,08
	8,95(Gly)	7,28 (Gly)	1,67 (Gly)	0,23	7,82 (Gly)	0,54 (Gly)
A1 _{m6}	7,81 (Val)	6,65 (Val)	1,16 (Val)	0,16	7,03 (Val)	0,38 (Val)
	8,48 (Phe)	6,48 (Phe)	2,00 (Phe)	0,27	7,01 (Phe)	0,53 (Phe)
$A1_{n4}$	9,01	6,88	2,13	0,29	6,94	0,06
$A1_{t1}$	9,20	6,95	2,25	0,31	7,31	0,36
A1 _{t5}	9,35	6,70	2,65	0,36	6,78	0,08

Tablica 16. Vrijednosti kiselosti vodikove veze (A_{NMR}) i razlika kemijskih pomaka, $\Delta \delta_{konc.-razrj.}$ signala amidnih protona odabranih liganada.

Na temperaturama -40 °C i 40 °C, pojedini signali amidnih vodikovih atoma razlikuju se u kemijskom pomaku za približno 1 ppm, s izuzetkom valinskog amidnog protona spoja $A1_{m6}$, gdje je razlika $\approx 0,7$ ppm. Izračunati koeficijenti ovisni o temperaturi pokazuju da svi analizirani amidni vodikovi atomi sudjeluju u vodikovim vezama na koje značajno utječe temperatura, s vrijednostima $\Delta \delta / \Delta T$ znatno nižim od -2,4 ppb K⁻¹ (slika 29).²⁸⁰

Slika 29. Temperaturna ovisnost ¹H NMR kemijskih pomaka amidnih vodikovih atoma u CDCl₃ i odgovarajući temperaturni koeficijenati ¹H NMR amidnih vodikovih atoma (ppb K⁻¹, u gornjem desnom kutu).

Zanimljivo je da se nekoliko alifatskih signala biokonjugata A1 također pomiče sa snižavanjem temperature. ¹H NMR signal A1_{m6}(Val) α -vodikovog atoma pomaknuo se prema nižem polju sa sniženjem temperature od 40 °C do -40 °C za 0,34 ppm. Značajnije promjene mogu se vidjeti u temperaturno ovisnim ¹H NMR spektrima oksazolina A1_{t1}. Dva aromatska signala vodikovih atoma trimesinskog benzenskog prstena postupno se pomiču prema višem polju i mijenjaju položaje s padom temperature, što ukazuje na slabe π - π interakcije. Također se može vidjeti značajna promjena u signalima oksazolinskih metila, gdje signali pokazuju da oksazolinski metili nisu kemijski ekvivalentni (slika 30, Hb).

Slika 30.¹H NMR spektri A1_{t1} oksazolina u CHCl₃ pri 40 °C i -40 °C, c = 60 mM.

Ovaj nedostatak ekvivalencije je sve izraženiji sa snižavanjem temperature, od $\Delta \delta = 0,02$ ppm do $\Delta \delta = 0,11$ ppm. Važno je napomenuti da ova pojava nije prisutna ni u jednom drugom ¹H NMR spektru oksazolina s dimetilnom skupinom na oksazolinu. Dodatno, razlika u kemijskom pomaku metilnih signala spoja **A1**_{t1} još je manja pri c = 6 mM, s odgovarajućom vrijednošću $\Delta \delta < 0,01$ ppm. Multiplicitet oksazolinske metilenske skupine također se mijenja od singletnog do snažno spregnutog AB spinskog sustava sa snižavanjem temperature (slika 30, Ha). Navedena opažanja pokazuju da oksazolinske strane prstena nisu ekvivalentne. Nadalje, u svim spektrima postoji samo jedna skupina alaninskih signala, čak i pri -40°C, što ukazuje na očuvanje pseudo- C_2 -simetrije u supramolekulskoj strukturi u otopini.

4.2.9. Računalna strukturna analiza $A1_{t1}$

Oksazolinski biokonjugat $A1_{t1}$ odabran je za detaljnu računsku strukturnu analizu s obzirom na eksperimentalno opažene supramolekulske interakcije u otopini. Strukturni ansambli (SA) $A1_{t1}$ konformera, i monomera i dimernih supramolekulskih agregata, dobiveni su primjenom CREST/CENSO protokola na odabrane početne geometrije, prema Grimme-ovoj proceduri za nekrute molekule (detalji su navedni u poglavlju 3.2. Računalne metode).^{253,257} Analiza dvaju ansambla pokazuje da je među dobivenim konformerima, 29 monomernih i 27 dimernih $A1_{t1}$ konformera statistički populirano unutar svojih ansambla (tj. $\Delta G < 2$ kcal mol⁻¹). Kartezijeve koordinate pojedinačnih konačnih $A1_{t1}$ konformera iz svakog dobivenog monomera i dimera skupljene su u dvije odvojene datoteke (calc_mono_1t1.xyz, calc_dimer_1t1.xyz) dostupne u dodatku objavljenog rada,²⁴⁹ čitljive s besplatnim programom Mercury CCDC-a.²⁸¹

Unutar ansambla dimernih konformera, utvrđeno je da su dominantne supramolekulske interakcije vodikove veze koje uključuju sva četiri amidna vodikova atoma i aromatsko slaganje središnjih aromatskih jedinica. Motivi vodikovih veza pronađenih u dimeru mogu se podijeliti u pet različitih skupina: (a) vodikove veze s oksazolinskim dušikom, (b) semi-Herrickova konformacija, (c) Herrickova konformacija, (d) vodikove veze s metoksi kisikom esterske skupine i (e) van Staverenova konformacija. (slika 31).

Slika 31. Motivi vodikovih veza: a) s oksazolinom, b) semi-Herrick, c) Herrick, d) s metoksi kisikom, e) van Staveren. Vrh strelice označava smjer donacije amidnog protona (svaki vrh strelice predstavlja jedan amidni proton). Ox = oksazolinski prsten, Aa = aminokiselina.

119

Svi razmatrani konformeri dimera u ansamblu čine 97% ukupne populacije prema Boltzmannovoj raspodjeli (slika 32). S obzirom na pronađene motive vodikovih veza i relativne položaje supstituenata u aromatski složenim benzenskim prstenovima, mogu se uočiti dva glavna tipa dimera I i II unutar ansambla s pojedinačnom populacijom $\geq 10\%$ (slika 32). Ostale vrste dimera doprinose preostaloj populaciji od 25%. U statistički najzastupljenijem tipu I dimera su prisutna dva motiva vodikovih veza, vodikove veze amid-oksazolin (a) i dvije polu-Herrickove vodikove veze (b). Zanimljivost je da konformeri koji populiraju konformacije s van Staverenovim vodikovim vezama čine samo oko 8% populacije.

Prosječne Gibbsove energije skupa monomera i dimera izračunate su usrednjavanjem u skladu s dobivenom Boltzmannovom distribucijom kroz odgovarajuće ansamble za nekoliko temperatura (233, 253, 273, 293, 298 i 313 K). Odgovarajući podaci prikupljeni su u tablicama 17 i 18. Korištena razina teorije predviđa da su dimerne strukture stabilnije od monomera na svih šest temperatura za $\geq 4,3$ kcal mol⁻¹ prema odgovorajućim vrijednostima

Gibbsove energije stvaranja, ΔG , izračunate iz dobivenih podataka (tablica 19). Štoviše, Gibbsove energije stvaranja postupno opadaju u vrijednosti (tj. povećavaju apsolutnu vrijednost) s padom temperature, što sugerira da su dimerne strukture sve stabilnije na nižim temperaturama.

T / K	$<\!\!E_{\rm gas}\!\!>$ / E_h	$< G_{mRRHO} > / E_h$	$< G_{solv} > / E_h$	$\langle G \rangle / E_h$
233	-1507,1118680	0,4091322	-0,0414216	- 1506,7441574
253	-1507,1117665	0,4034176	-0,0414428	-1506,7497917
273	-1507,1116754	0,3974478	-0,0414598	-1506,7556874
293	-1507,1115927	0,3912264	-0,0414738	-1506,7618401
298	-1507,1115732	0,3896321	-0,0414769	-1506,7634180
313	-1507,1115171	0,3847563	-0,0414854	-1506,7682461

Tablica 17. Uprosječena Gibbsova energija G ansambla od 47 A1_{t1} monomera.

Tablica 18. Uprosječena Gibbsova energija G ansambla od 41 A1_{t1} dimera.

T/K	$<\!\!E_{\rm gas}\!>$ / E_h	$< G_{mRRHO} > / E_h$	$< G_{solv} > / E_h$	$\langle G \rangle / E_h$
233	-3014,2977470	0,8458926	-0,0506042	-3013,5024586
253	-3014,2975688	0,8363840	-0,0506951	-3013,5118799
273	-3014,2974074	0,8263455	-0,0507776	-3013,5218394
293	-3014,2972638	0,8157857	-0,0508500	-3013,5323280
298	-3014,2972306	0,8130652	-0,0508666	-3013,5350319
313	-3014,2971361	0,8047120	-0,0509137	-3013,5433377

Tablica 19. Gibbsova energija stvaranja, izračunata prema jednadžbi $\Delta G = G(\text{dimer})-2xG(\text{monomer}).$

<i>T /</i> K	$\Delta G / E_h$	$\Delta G / \text{kcal}$ mol ⁻¹
233	0,014144	8,88
253	0,012297	7,72
273	0,010465	6,57
293	0,008648	5,43
298	0,008196	5,14
313	0,006846	4,30

Za konformere s Boltzmannovom populacijom > 2% u svakom ansamblu, ¹H-¹H *J* sprezanja i ¹H i ¹³C zasjenjenja su izračunata korištenjem GIAO pristupa.²⁵⁰ Za sve pojedinačne metilne skupine na svim temperaturama i za oksazolinsku metilensku skupinu na višim temperaturama (298K, 313K) izračunat je prosjek zasjenjenja i konstanti sprega svih vodikovih atoma tih skupina (tri vodika za metilne skupine, odnosno dva vodika za

metilensku skupinu). Budući da su na nižim temperaturama (233, 253 i 273 K) eksperimentalno utvrđena dva signala za metilensku skupinu, izračunata zasjenjenja i konstante sprege za metilenske vodikove atome na tim temperaturama su ostavljeni neuprosječeni. Iz navedenih uprosječenih vrijednosti zasjenjena i konstanti sprega za metilne i metilenske skupine, kao i za sve ostale vodikove i ugljikove atome, izračunate su prosječen vrijednosti zasjenjenja (σ_i^c) i konstanti sprega upotrebljavajući Boltzmannovu raspodjelu konformera unutar odgovarajućeg ansambla.

Nadalje, izračunate su korelacije Boltzmannovih uprosječenih zasjenjenja (σ_i^c) i eksperimentalnih kemijskih pomaka (δ_i^o), za skupove monomera i dimera. Za svaku korelaciju je određena MAE (srednja apsolutna pogreška)²⁵⁴ vrijednost definirana prema jednadžbi (3) (tablica 20). U sumi jednadžbe (3), u izračunu korelacije i za ¹H korelacije, korišteni su samo ¹H signali koji pripadaju vodikovim atomima vezanim na atomima ugljika.

Tablica 20. Srednje vrijednosti apsolutne pogreške (MAE) svake korelacije izračunate iz Boltzmannovih prosječnih zasjenjenja (σ_i^c) i eksperimentalnih kemijskih pomaka (δ_i^o).

T /	K MA	AE (monomer)	MAE (dimer)
23	3	0,13881	0,0818
25	3	0,13778	0,08488
27	3	0,13402	0,08862
29	3	0,13506	0,09311
29	8	0,13488	0,0932
31	3	0,13024	0,10213

Iz podataka u tablici 20 može se uočiti suprotan trend u MAE vrijednostima korelacija monomera i dimera s povišenom temperaturom, odnosno ovaj model predviđa sve bolju podudarnost dimernog modela pri sve nižim temperaturama, dok model predviđa sve nižu podudarnost monomernog modela sa sve nižim temperaturama. Štoviše, vrijednosti MAE za monomerne korelacije općenito su većih vrijednosti od njihovih dimernih analoga na svim temperaturama. Navedeni rezultat je u skladu s izračunatim Gibbsovim energijama stvaranja, s kojima je prethodno pokazano da predviđaju veću stabilnost dimera u odnosu na monomerne strukture pri svim razmatranim temperaturama.

4.3. Inducirana helikalna kiralnost u tetraedarskim kompleksima prijelaznih metala s monodentatnim 2-aril-(4*S*)-fenil oksazolinskim aminokiselinskim ligandima (B)

Pregled skupa tetraedarskih metalnih kompleksa prijelaznih metala i monodentatnih liganada s peteročlanim prstenovima u bazi literaturnih kristalnih struktura CSD nije pokazao da postoji sklonost nastajanja određene geometrije kod kompleksa sličnih liganada. Nasuprot tome, među objavljenim kristalnim strukturana cink(II) halogenida i akiralnih oksazolina gotovo isključivo pronalazimo samo jednu geometriju metalnog kompleksa koja sadrži helikalnu kiralnost, kod kojih su obje moguće helikalne kiralnosti podjednako zastupljene. Zajednička strukturna karakteristika analiziranog skupa navedenih kompleksa je da svi sadrže oksazolinske ligande s 2-fenilnim supstituentom.

U ovom poglavlju opisani su rezultati priprave i karakterizacije kompleksa, opće formule [ML₂(anion)₂], sa Zn(II), Cd(II) i Co(II) i sedam kiralnih, monodentatnih liganda **B1** sa supstituentima na 2-arilnoj skupini oksazolina, različitih elektrondonorskh i steričkih svojstava. Poseban naglasak je na ispitivanju utjecaja različitih R skupina, tipa metala i aniona na poticanje stvaranja nekovalentnih interakcija u navedenim metalnim kompleksima. Svi kompleksi su karakterizirani UV-Vis, CD i IR spektroskopijom, kao i difrakcijom rendgenskih zraka na praškastim uzorcima, a dijamagnetski kompleksi dodatno NMR spektroskopijom. Nadalje, inducirana helikalna kiralnost oko metalnog atoma u kompleksima proučavana je difrakcijom rendgenskih zraka na monokristalu i CREST/DFT izračunima, a za kobaltove komplekse dodatno CD spektroskopijom u vidljivom području valnih duljina.

4.3.1. Sinteza liganada **B** i tetraedarskih metalnih kompleksa **B**

Sintetiziran je skup oksazolinskih liganada **B1** sa supstituentima različite elektronegativnosti, voluminoznosti i sposobnosti za nekovalentne interakcije na 2-arilnoj skupini prema istoj proceduri kao što je prikazana u poglavlju 4.2. (shema 13). U svim slučajevima, R skupina je 2-fenil, s *para* (**B1**_H, **B1**_F, **B1**_N) ili *meta* (**B1**_{mA}, **B1**_{mA}*, **B1**_{m2A}) supstituentima, osim za ligand **B1**_p koji sadrži nesupstituiranu poliaromatsku 1-pirensku skupinu. Ligandi **B1**_H, **B1**_F i **B1**_N razlikuju se u mjeri kojom *para* supstituenti odvlače ili doniraju elektronsku gustoću, odnosno supstituenti su redom neutralni atom vodika (**B1**_H), elektronodvlačeći atom fluora (**B1**_F) i elektrondonorska dimetilamino skupina (**B1**_N). S druge strane, ligandi **B1**_{mA}, **B1**_{mA}* i **B1**_{m2A} i sadrže jednu (**B1**_{mA} i **B1**_{mA}*) ili dvije (**B1**_{m2A}) voluminozne alanin metil-esterske skupine s potencijalom za sudjelovanje u vodikovim vezama, *meta* supstituirane na 2-fenilnom prstenu.

Svi ligandi su sintetizirani iz (S)-fenilglicinola, dok je ligand označen zvjezdicom ($B1_{mA}^*$) sintetiziran korištenjem (R)-fenilglicinola za usporedbu. Oksazolinski ligandi $B1_F$, $B1_N$, $B1_P$ i $B1_{m2A}$ pripremljeni su u dva koraka s dobrim iskorištenjima u skladu s prethodno objavljenim postupcima (shema 13),^{131,249} dok su ligandi $B1_H$, $B1_{mA}$ i $B1_{mA}^*$ prethodno opisani u literaturi.^{7,249,269}

Metalni kompleksi sintetizirani su in situ miješanjem liganda i metalnog prekursora u omjeru 2 : 1 u CH₂Ch₂ ili CH₂Ch₂/CH₃CN smjesi otapala (shema 13, a; pregled opsega provedenih sinteza prikazan je u tablici D3). Sinteze metalnih kompleksa provedene su s različitim prijelaznim metalima. Sinteze su prvo rađene s modelnim ligandom $B1_{\rm H}$, nakon čega je provedena sinteza metalnih kompleksa s ligandima B1_F, B1_N i B1_P samo s bezvodnim ZnBr₂ i nehalogenidnim prekursorima cinka, te CoCl₂·4H₂O i bezvodnim CoBr₂. Derivati kobaltovog(II) klorida pokazali su se slabije topljivima u manje polarnim organskim otapalima i manje stabilnima na zraku u usporedbi s njihovim bromidnim analozima. Dodatno su istim postupkom pripravljeni modelni kompleksi kobalta(II) s komercijalno dostupnim bisoksazolinskim ligandima 2,2'-izopropilidenbis[(4S)-4-fenil-2-oksazolin] (BOX1) i (+)-2,2'izopropilidenbis[(4R)-4-benzil-2-oksazolin] (BOX2), u svrhu usporedbe S derivatima kompleksa monodentatnih oksazolina (shema 13, b). Kod svih spojeva kod kojih nisu dobiveni monokristali, dobiveni su ili praškasti ili ulini uzorci, pri čemu su se kod dijela uzoraka mogli primjetiti tragovi degradacije. Od dvadeset metalnih kompleksa monodentatnih oksazolina pripremljenih in situ, za osamnaest spojeva su uspješno pripravljeni monokristali pogodni za rendgensku strukturnu analizu.

Shema 13. Reakcijski uvjeti: [MA₂], M = Zn²⁺, Cd²⁺ili Co²⁺, A = Cl⁺, Br⁺, I⁻ili NO₃⁻; CH₂Cl₂, s.t. Sinteza kompleksa a) monodentatnih oksazolina i b) komercijalno dostupnih bisoksazolina. Kiralnost ugljikovog atoma, na položaju 4 oksazolinskog prstena monodentatnih oksazolina je (S) u svim slučajevima osim za ligande označene zvjezdicom (*), koji sadrže (4R) kiralnost, dodatno označenu s "(4R)" u shemi.

4.3.2. NMR spektroskopska analiza B

¹H i ¹³C NMR spektri snimljeni su za sve sintetizirane ligande i jedanaest dijamagnetskih metalnih kompleksa. ¹H NMR spektri mogu se snimiti u CDCl₃ za većinu halogenidnih kompleksa, dok su se za [Cd(**B1**_H)₂Br₂] i [Zn(**B1**_H)₂(NO₃)₂] morali koristiti CD₃CN ili CD₃OD zbog manje topljivosti pri c \approx 6 mM. Svi kompleksi cinkovih i kadmijevih halogenida s navedenim ligandima pokazuju značajan kemijski pomak signala vodikovog atoma vezanog na kiralni C4 oksazolinski atom ugljika nakon kompleksiranja, pri čemu je odsjenjivanje izraženije za komplekse snimane u CDCl₃ u usporedbi s CD₃CN. Signali liganada **B1**_H, **B1**_F, **B1**_N i **B1**_P su prošireni u spektrima njihovih metalnih kompleksa snimanih na sobnoj temperaturi, što ukazuje na mogućnost postojanja više od jedne vrste u otopini pri navedenim uvjetima. S druge strane, postoji samo jedan set oštrih signala u ¹H NMR spektru nitratnog derivata snimanog u CD₃CN. U spektrima metalnih kompleksa s alaninskim supstituentima se dodatno može opaziti prisutnost vodikovih veza, što se očituje pomakom signala amidnih vodikovih atoma prema nižem polju za više od 0,45 ppm za $B1_{mA}$ i 1,09 ppm za $B1_{m2A}$.

Kako bi se potvrdilo događa li se proširenje signala zbog istovremene prisutnosti i koordiniranih i nekoordiniranih liganada, snimani su ¹H NMR spektri $[Zn(B1_H)_2Br_2]$, $[Zn(B1_N)_2Br_2]$ i $[Zn(B1_P)_2Br_2]$ u CDCl₃ svakih 20 °C u temperaturnom rasponu od -40 °C do 40 °C, a za $[Zn(B1_H)_2Br_2]$ spektri ovisni o temperaturi dodatno su snimljeni u CD₃CN (slika 33, slike D1-D8).

Slika 33. ¹H NMR spektri [Zn(**B1**_H)₂Br₂] snimljeni u CDCl₃, pri 40 °C, 0 °C i -40 °C, c = 6 mM.

U dobivenim spektrima može se uočiti postupno povećanje intenziteta jednog seta NMR signala i postupno smanjenje intenziteta drugog seta signala s temperaturom, što potvrđuje postojanje više od jedne vrste u otopini u svim proučavanim slučajevima. Međutim, nijedan od promatranih signala u spektrima snimljenim na bilo kojoj od zabilježenih temperatura ne odgovara signalima slobodnog liganda. Dodatno, integrali svakog seta alifatskih signala odgovaraju trima alifatskim vodikovim atomima oksazolina u ¹H NMR spektrima svih proučavanih kompleksa, što ukazuje na C_2 -simetriju vrsta prisutnih u otopini, osim u slučaju [Zn(**B1**_P)₂Br₂] na nižim temperaturama.

4.3.3. CD spektroskopska analiza B

Snimljeni su UV-Vis i CD spektri za sve ligande i odgovarajuće komplekse u CH₂Cl₂ pri odabranim koncentracijama u rasponu c = 0,015 mM - 2,775 mM, te dodatno u CH₃CN ili CH₃OH za ligand **B1**_H i odgovarajuće cink(II) i kadmij(II) komplekse. CD spektri su prikazani na slici 34. U CD spektrima proučavanih liganada i odgovarajućih kompleksa snimanih u CH₃CN ili CH₃OH se vidi da navedeni spojevi imaju iste maksimume i minimume, s minimalnim razlikama u intenzitetima, osim za [Zn(**B1**_H)₂(NO₃)₂] i [Cd(**B1**_H)₂Br₂] (slika 34, a i b).

S druge strane, CD spektri liganada i kompleksa nisu usporedivi u CH₂Cl₂ (slika 34, c). U preklopljenim CD spektrima liganada i odgovarajućih cinkovih kompleksa, snimanim pri koncentracijama $c(\mathbf{B1}) = 0,15$ mM i c(kompleks) = 0,075 mM, može se uočiti novi signal za svaki kompleks, osim za cinkov kompleks $\mathbf{B1}_{\mathbf{F}}$. Konkretno, novi, široki signal na 287 nm u spektrima [Zn($\mathbf{B1}_{\mathbf{H}}$)₂Br₂] i [Zn($\mathbf{B1}_{\mathbf{H}}$)₂I₂] se preklapa s oštrim signalom liganda nižeg intenziteta pronađenim na 283 nm u pozitivnom području spektra nekoordiniranog liganda (slika 34, c). Preklopljeni spektri liganda $\mathbf{B1}_{\mathbf{F}}$ i kompleksa [Zn($\mathbf{B1}_{\mathbf{F}}$)₂Br₂] pokazuju da nema novih signala, te se u manjoj mjeri razlikuju u intenzitetima signala. Za [Zn($\mathbf{B1}_{\mathbf{N}}$)₂Br₂] i [Zn($\mathbf{B1}_{\mathbf{P}}$)₂Br₂] komplekse postoji signal u negativnom području spektra na oko 350 nm, odnosno 405 nm, koji se pojavljuje samo u spektrima metalnih kompleksa pri c = 0,075 mM.

Slika 34. CD spektri: a) liganda $\mathbf{B1}_{\mathbf{H}}$ (c = 0,030 mM) i odgovarajućih Zn(II) i Cd(II) kompleksa (c = 0,015 mM) u CH₃CN i b) slabije topljivih Zn(II) i Cd(II) kompleksa u CH₃OH ($c(\mathbf{B1}_{\mathbf{H}}) = 0,045 \text{ mM}$, c (M) = 0,023 mM), c) liganda $\mathbf{B1}_{\mathbf{H}}$ (c = 0,030 mM) i odgovarajućih Zn(II) i Co(II) kompleksa (c = 0,015 mM) u CH₂Cb, d) Co(II) kompleksa (c = 1,125 mM) u CH₂Cb s ligandima $\mathbf{B1}_{\mathbf{H}}$, $\mathbf{B1}_{\mathbf{F}}$, $\mathbf{B1}_{\mathbf{N}}$ i $\mathbf{B1}_{\mathbf{P}}$, e) Co(II) kompleksa (c = 1,125 mM) u CH₂Cb s ligandima $\mathbf{B1}_{\mathbf{H}}$, $\mathbf{B1}_{\mathbf{mA}}$ * i $\mathbf{B1}_{\mathbf{m2A}}$, f) Co(II) kompleksa (c = 2,250 mM) u CH₂Cb s ligandima $\mathbf{B1}_{\mathbf{H}}$, $\mathbf{B1}_{\mathbf{mA}}$, $\mathbf{B1}_{\mathbf{m}}$, $\mathbf{B1}_{\mathbf{m}}$, $\mathbf{B1}_{\mathbf{M}}$ i $\mathbf{B1}_{\mathbf{M}}$.

128

Za daljnje proučavanje utjecaja R supstituenata pripremljenih liganada na spektre njihovih metalnih kompleksa, kompleksi kobalt bromida sintetizirani su *in situ* analogno njihovim derivatima cinka, a njihovi UV-Vis i CD spektri snimljeni su u rasponu koncentracija 0,015 - 2,775 mM (slika 34, c i d; slike D9-D17). Na slikama D9-D16 prikazani su rezultati titracija za kobaltove komplekse s ligandima $B1_H$, $B1_F$, $B1_N$ i $B1_P$, kojima se promatrao utjecaj razrjeđenja na navedene spojeve u CH₂Cl₂. Rezultati pokazuju linearnu ovisnost za većinu ispitivanih koncentracija u sva četiri slučaja, što ukazuje da nema pojave dodatne agregacije ili disocijacije s promjenom koncentracije pri ispitivanim uvjetima za ove spojeve.

Nekoliko jasnih razlika može se uočiti kada se ti spektri usporede sa spektrima odgovarajućih nekoordiniranih liganada. Prvo, svi UV-Vis spektri kompleksa kobalta pri svim koncentracijama ili pokazuju izražen rep na krajnjem desnom signalu u 233-450 nm prodručju valnih duljina, ili za $[Co(B1_N)_2Br_2]$ potpuno novi maksimum u istom području. Osim navedenoga, karakteristični signali kompleksiranog kobalta(II) pojavljuju se na oko 650-665 nm s nekoliko "ramenih" signala (*eng.* shoulder peaks) ovisno o ligandu u kompleksu. UV-Vis spektar i kristalna struktura sličnog kompleksa kobalta(II) objavljeni su u literaturi s akiralnim 2-(*p*-etoksifenil)oksazolin ligandom.¹³⁵ Osim karakterističnog položaja signala kobalta(II) na oko 650 nm, UV spektar navedenog spoja je u velikoj mjeri neusporediv sa spektrima spojeva opisivanih u ovom poglavlju.

CD spektri kompleksa kobalta(II) također se mogu podijeliti na područje valnih duljina sa signalima liganda i područje sa signalima kompleksa kobalta(II). U svim slučajevima pojavljuje se novi signal između 275 i 425 nm pri c = 0,075 mM (slike D9, D11, D13 i D15) i široki signal u vidljivom području valnih duljina s maksimumom u rasponu 653-657 nm pri višim koncentracijama (slika 34, d i e). Signali u vidljivom području CD spektra potvrđuju indukciju kiralnosti oko metalnog atoma za sve proučavane komplekse kobalta. Štoviše, mogu se uočiti dodatni signali u vidljivom području valnih duljina CD spektra za nekoliko ispitivanih kompleksa. Zanimljivo je da su signali na oko 653 nm u CD spektrima spojeva B1_{mA} i B1_{m2A} vrlo slični u intenzitetu i profilu, te da su odgovarajući intenziteti veći otprilike dva puta u usporedbi s B1_H derivatom (slika 34, e). S druge strane, analozi izvedeni iz (*R*)-fenilglicinola imaju signal na istoj valnoj duljini kao i (*S*)-derivati, ali suprotnog predznaka i dva puta manju vrijednost eliptičnosti, što dijelom daje privid enantiomernog odnosa s eliptičnosti (*S*)-derivata. To ukazuje da je glavni doprinos indukciji kiralnosti oko metala

utjecaj oksazolinskih C4 kiralnih centara, premda nedostatak savršenog preklapanja također sugerira prisutnost i drugih utjecaja.

Za dalinju usporedbu, snimljeni su CD spektri u CH₂Ch₂ pri c = 2,25 mM za dva kobalt(II) kompleksa s komercijalno dostupnim bisoksazolinskim ligandima, 2,2'-izopropilidenbis[(4S)-4-fenil-2-oksazolin] (BOX1) i (+)-2,2'-izopropilidenbis[(4R)-4-benzil-2-oksazolin] (BOX2), sintetiziranih istim metodama kao za monodentatne oksazolinske ligande (slika 34, f). CD spektri dvaju bisoksazolinskih kobaltovih(II) kompleksa pokazuju približno enantiomeran odnos njihovih eliptičnosti pri danim uvjetima. Međutim, može se primijetiti zanimljiva pojava kada se ova dva rezultata usporede s rezultatima dobivenim za spoj $[Co(B1_H)_2Br_2]$. Dok kompleksi bisoksazolina pokazuju visoke vrijednosti eliptičnosti signala u području od 500-600 nm, monodentatni derivat uopće nema signale u navedenom području. To se može objasniti razlikom u strukturnoj rigidnosti kompleksa bisoksazolina i monooksazolina, pri čemu se očekuje da monooksazolinski ligandi imaju manje definirano kiralno okruženje oko metala zbog veće konformacijske slobode. Međutim, iznenađujuće opažanje jest da spoj $[Co(BOX1)Br_2]$ nema široki maksimum na oko 653 nm kao spoj $[Co(B1_H)_2Br_2]$. Umjesto toga se može uočiti široki minimum jednakog intenziteta u ovoj regiji, unatoč činjenici da oba liganda BOX1 i $B1_{H}$ imaju (4*S*)-fenilne supstituente. Tetraedarski bisoksazolinski metalni kompleksi pronađeni u literaturi većinom imaju gotovo koplanarne oksazolinske prstene i definirana kiralna okruženja oko atoma metala, inducirana kiralnim (4S)-supstituentima. S druge strane, ovi rezultati pokazuju da u analognim halogenidnim mono-oksazolinskim kompleksima (4S)-supstituenti potiču preferirano nastajanje geometrije kompleksa koja ima dodatnu kiralnost, (M)-helikalnost, koja izravno uključuje 2-fenilne skupine, oksazolinske prstenove i atom metala (dalinji detalji su navedeni u potpoglavlju 4.3.4. i 4.3.5). Broj, profil i intenzitet signala u vidljivom području CD spektra [Co(B1_H)₂Br₂] je rezultat indukcije kiralnosti oko metalnog atoma i najvjerojatnije je rezultat zbroja doprinosa kiralnih (4S)supstituenata i (M)-helikalnosti, uprosječenih preko svih prisutnih konformacija u danim uvjetima u otopini.

4.3.4. Rendgenska kristalografija **B**

U svrhu proučavanja utjecaja izbora metala, elektrondonorskog karaktera skupina, nekovalentnih interakcija i odabira dijastereoizomera, provedene su priprave monokristala raznih kompleksa cinka(II), kadmija(II) i kobalta(II) s ligandima **B1**_H, **B1**_F, **B1**_N, **B1**_P, **B1**_{mA},

B1_{mA}* i **B1**_{m2A}, a snimljeno je osamnaest kristalnih struktura difrakcijom rendgenskih zraka na monokristalu metalnih kompleksa; eksperimentalni podaci za mjerenja s difrakcijom rendgenskog zračenja navedeni su u tablicama 6-10. Torzijski kutovi α, odabrane duljine veza i kutovi prikupljeni su u tablici 21. Dodatno, svim kristalnim strukturama je određen strukturni parametar τ'4,^{282,283} čija vrijednost opisuje u kojoj mjeri se koordinacijska geometrija oko metala poklapa s pravom tetraedarskom ili kvadratno-planarnom koordinacijom oko metala. Vrijednosti τ'4 su određene prema jednadžbi modificiranoj s korekcijama za razlikovanje dvaju najvećih kutova između koordinacijskih veza.²⁸³

$$\tau'_{4} = \frac{\beta - \alpha}{360^{\circ} - \theta} - \frac{180^{\circ} - \beta}{180^{\circ} - \theta}$$
(5)

pri čemu su α i β najveći kutovi između koordinacijskih veza s odnosom veličina $\alpha < \beta$, a θ je $\approx 109.5^{\circ}$. Za vrijednosti $\tau'_4 \approx 0$, smatra se da je metalni atom kvadratno-planarno koordiniran, a za vrijednosti $\tau'_4 \approx 1$, smatra se da je metalni atom tetraedarski koordiniran.

Zanimljivo je istaknuti da su sve kristalne strukture halogenidnih metalnih kompleksa analogne, odnosno imaju strukturni parametar $\tau'_4 \approx 0.90$, imaju C_2 -simetriju s IIa geometrijom s naslaganim 2-feniloksazolinskim skupinama na posmaknuti, "prekriženi" način (tablica 21, slika 35), bez obzira na elektrondonorska svojstva ili steričku prirodu supstituenta na 2arilnim skupinama, te bez obzira na veličinu kationa i halogenidnog aniona. Stoga, nisu provedene sinteze derivata cink(II) jodida i kadmij(II) halogenida s drugim ligandima osim **B1**_H. Izuzetak je priprava [Cd(**B1**_{mA})₂I₂]) kompleksa, koja je provedena kako bi se potvrdilo dobivanje IIa geometrije u kadmij(II) jodidnom kompleksu čak i kad korišteni ligand ima alaninski supstituent.

Dodatno, ove komplekse karakteriziraju gotovo koplanarni položaji 2-fenilnog i oksazolinskog prstena, s odstupanjima od koplanarnosti u rasponu od 12° do 36°. Oksazolinski prsten jednog liganda unutar kompleksa gotovo je paralelan s fenilnim prstenom drugog liganda unutar kompleksa (i obrnuto), s odstupanjima od paralelnog rasporeda u rasponu od 14° do 31°. Najbliža dva kontakta između dva liganda su između orto vodikovog atoma 2-fenilne skupine i 4-oksazolinskog atoma vodika, u rasponu 2,644-2,801 Å. Nadalje, najkraće udaljenosti utvrđene su za derivate cink bromida, a najveće udaljenosti za derivate kadmij jodida. Ovi parametri odgovaraju parametrima prethodno objavljenih struktura halogenidnih kompleksa cinka(II) s 2-feniloksazolinima.¹³³
Metalni	Tin	(1) (0)	≰(N1–M–N2)	≰(X1–M–X2)	T ' 4	o-H _{Ar} -X1
kompleks	пp	$u_1, u_2/()$	(°)	(°)	ι4	(Å)
$[Zn(\mathbf{B1}_{\mathbf{H}})_2Br_2]$	IIa	324,27, 338,83	106,77	112,47°	0,93	2,792
$[Zn(\mathbf{B1}_{\mathbf{H}})_2I_2]$	IIa	324,65, 340,18	107,64	111,53	0,94	2,952
$[Zn(B1_H)_2(NO_3)_2]$	IVa	128,96, 303,44	106,35	130,52	0,77	2,511
		326,27, 333,67	104,46	114,80	0,94	2,751
$[Zn(\mathbf{B1}_{\mathbf{F}})_2Br_2]$	IIa	326,11, 335,98	105,44	115,48	0,93	2,763
		324,64, 332,15	102,28	114,54	0,94	2,711
		334,72, 337,41	104,18	113,39	0,94	2,826
$[Zn(\mathbf{B1}_N)_2Br_2]$	IIa	336,42, 337,03	105,19	115,85	0,91	2,844
		332,15, 335,69	102,88	111,99	0,92	2,883
$[Zn(\mathbf{B1}_{\mathbf{mA}})_2Br_2]$	IIa	329,67, 335,67	106,88	118,20	0,91	2,811
$[Zn(\mathbf{B1_{m2A}})_2Br_2]$	IIa	324,62, 328,47	103,05	116,38	0,93	2,795
$[Cd(\mathbf{B1}_{\mathbf{H}})_2Br_2]$	IIa	341,94, 344,70	104,30	117,82	0,89	2,886
$[Cd(\mathbf{B1}_{\mathbf{H}})_{2}I_{2}]$	IIa	325,68, 343,16	104,95	117,87	0,89	2,935
$[Cd(\mathbf{B1}_{\mathbf{mA}})_2I_2]$	IIa	324,59, 336,68	101,26	119,79	0.89	3,156
$[Co(\mathbf{B1}_{\mathbf{H}})_2Br_2]$	IIa	339,12, 323,35	106,33	110,27	0,92	2,793
$[Co(\mathbf{B1}_{N})_{2}Br_{2}]$	IIa	332,00, 339,59	108,76	113,22	0,95	2,941
$[Co(\mathbf{B1}_{\mathbf{P}})_2Cb_2]$	IIa	327,04, 326,14	108,61	114,50	0,93	2,761
		326,19, 332,89	108,61	112,53	0,93	2,814
		327,80, 328,57	106,12	111,66	0,92	2,773
$[Co(\mathbf{B1}_{\mathbf{P}})_2Br_2]$	Па	324,28, 326,44	107,39	111,95	0,94	2,771
		324,06, 328,54	102,21	110,06	0,91	2,837
		324,31, 334,12	108,67	112,39	0,93	2,799
$[Co(\mathbf{B1}_{\mathbf{mA}})_2Br_2]$	IIa	326,14, 331,96	106,98	113,26	0,96	2,829
$[Co(\mathbf{B1_{m2A}})_2Br_2]$	IIa	327,23, 332,76	105,91	114,24	0,95	2,803
[Co(BOX1)Br ₂]	Ι	26,67, 346,60	90,85	113,16	0,84	-
[Co(BOX2)Br ₂]	Ι	352,76, 359,30	91,40	113,83	0,91	-

Tablica 21. Tetraedarski kutovi α , strukturni parametar τ'_4 i veličine odabranih kutova u dobivenim kristalnim strukturama oksazolinskih metalnih kompleksa.

Štoviše, u kristalnim strukturama halogenidnih metalnih kompleksa s aminokiselinskim skupinama, $[Zn(B1_{mA})_2Br_2]$, $[Cd(B1_{mA})_2I_2]$, $[Co(B1_{mA})_2Br_2]$ i $[Co(B12_{mA})_2Br_2]$, amidni vodikovi atomi dva alaninska supstituenta konzistentno su usmjereni prema halogenidnim anionima, suprotno od početnih očekivanja da će se pod utjecajem brojnih mogućih strukturnih motiva vodikovih veza u kompleksu dobiti različite strukture u kristalima. U slučaju $[Zn(B1_{m2A})_2Br_2]$, pored prethodno spomenutog motiva vodikovih veza, druge dvije alaninske skupine sudjeluju u van Staveren vodikovim vezama.¹ U toj su strukturi susjedne molekule kompleksa posmaknuto naslagane na način da su iste alaninske skupine također i

dio van Staveren vodikovih veza sa susjednim molekulama kompleksa, tvoreći beskonačne supramolekulske polimerne lance u čvrstom stanju.

Slika 35. ORTEP-III²⁷³ strukture kompleksa [Zn(**B1**_H)₂Br₂], [Cd(**B1**_{mA})₂I₂], [Zn(**B1**_H)₂(NO₃)₂] i [Co(**B1**_{m2A})₂Br₂] s 30%-tnom vjerojatnošću elipsoida za strukture određene difrakcijom rendgenskih zraka na monokristalima

Na početku ovog potpoglavlja je bilo napomenuto da halogenidni metalni kompleksi u svim dobivenim kristalnim strukturama imaju istu, IIa, konformaciju, čak i u strukturama u kojima je u kristalnoj rešetci bilo više od jedne kompleksne molekule ($[Zn(B1_F)_2Br_2]$ i $[Zn(B1_N)_2Br_2]$) te neovisno o prirodi supstituenata. Na sličan način na koji se helikalna kiralnost određuje za (*M*)- i (*P*)-[7]helicen, (*M*) ili (*P*) helikalna kiralnost može se pripisati i IIa konformaciji metalnih kompleksa u ovim kristalnim strukturama (slika 36). Uzimajući u obzir da se očekuju veća sterička odbijanja u podtipu IIa* (slika 36, desno) između (4*S*)-fenila jednog liganda i 2-fenila drugog liganda nego u podtipu IIa, više je vjerojatno da će ugradnja

(4*S*)-suptituenta na oksazolinskom prstenu poticati stvaranje podtipa IIa s (*M*) helikalnom kiralnošću (vidi detaljnije u potpoglavlju 4.3.5.). S druge strane, očekuje se da će ugradnja (4*R*)-supstituenta poticati stvaranje IIa* s (*P*) helikalnom kiralnošću, što je u skladu s rezultatima CD spektroskopije (vidi prethodno potpoglavlje 4.3.3.). Ovu tvrdnju dodatno potvrđuje konformacija nađena u kristalnoj strukturi rodij(I) ciklooktadienskog kompleksa, [Rh(**B1**_{mA}*)₂COD]BF4</sub> (vidi potpoglavlje 4.4.4.). Iako kompleks koordinira na kvadratno-planaran način, (*P*) helikalna kiralnost se može jasno pripisati kompleksu na sličan način na koji je (*M*)- helikalna kiralnost dodijeljena strukturama u ovom poglavlju.

Slika 36. Određivanje helikalne kiralnosti u podtipovima IIa i IIa* na sličan način kao za (*M*)i (*P*)-[7]helicen (slika 7). Dva podtipa su dijastereoizomerna za komplekse u ovom poglavlju zbog ugrađene (4*S*)-fenilne skupine (slika 14).

Svi pokušaji priprave metalnih kompleksa cinka, kadmija i kobalta koji nisu halogenidni derivati, rezultirali su ili amorfnim, vlaknastim ili uljastim produktima, ili su pokazivali znakove degradacije. Monokristali neizreagiranih metalnih prekursora (kadmija) ili liganda izolirani su u više ponovljenih priprava. Međutim, monokristal nitratnog derivata, $[Zn(B1_H)_2(NO_3)_2]$ uspješno je dobiven iz otopine $CH_2Cl_2 : CH_3CN :$ heksan = 2 : 1: 3 na rubovima vlaknaste krutine nakon nekoliko tjedana. Nadalje, kompleks $[Zn(B1_H)_2(NO_3)_2]$ ima potpuno drugačiji tip geometrije kompleksa u usporedbi s halogenidnim analozima. Odstupanja koplanarnosti 2-fenilne skupine i oksazolinskog prstena značajno su veća, 42°

odnosno 63°. Nitratni kompleks također ima najkraće udaljenosti M—N i M—X veza (tablica 21), kao i najveći kut X1—M—X2. Navedena činjenica nije iznenađujuća kada se uzme u obzir potreba za prostornim smještanjem većih nitratnih aniona u navedenoj strukturi. Ovo je jedini primjer kristalne strukture kompleksa cinka(II) s koordiniranim nitratnim anionom i s monodentatnim oksazolinskim ligandom u CSD bazi kristalnih struktura.

4.3.5. Računalna strukturna analiza B

Kako bi se računalno analizirale najstabilnije geometrije derivata u otopini i čvrstom stanju metalnih kompleksa 2-feniloksazolina, geometrije derivata koje odgovaraju tipovima II-IV i podtipovima a-d (prikazanih na slikama 12 i 13) kompleksa cink(II) i kobalt(II) bromida s **B1**_H, **B1**_F i **B1**_N, kao i [Zn(**B1**_H)₂(NO₃)₂], analizirani su u vakuumu, te u CHCl₃ i CH₃CN otapalima. Početne [Zn(**B1**_H)₂(NO₃)₂] geometrije su konstruirane primjenom CREST/CENSO protokola na geometriju dobivenu iz kristalne strukture [Zn(**B1**_H)₂(NO₃)₂], prema Grimme-ovoj proceduri^{253,257} i u skladu s našim prethodno objavljenim radom, opisanim u poglavlju 4.2.²⁴⁹ Početne geometrije bromidnih analoga izvedene su iz CENSO struktura zamjenom R supstituenata te nitratnih aniona s bromidima i postavljanjem duljina M–X veza na duljine eksperimentalno određene u njihovim odgovarajućim kristalnim strukturama. Sve pripremljene geometrije ponovno su optimizirane u vakuumu i implicitnim SMD otapalima (CHCl₃ i CH₃CN) pomoću modela M05-2X/6-31+G(d) s dodatnim LANL2DZ funkcijama za teške atome,²⁶⁰ prema metodologiji navedenoj u prethodno objavljenim radovima za slične sustave.^{261.284} U tablicama D4-D8 su dati podaci o *a* parametrima pojedinih optimiziranih konformera i njihove relative Gibbsove energije.

Gibbsove energije stvaranja su negativne za sve izračunate konformacije kompleksa, što potvrđuje da je njihovo nastajanje termodinamički povoljno. Konformeri istog podtipa, ali značajno različite strukture, dodatno su označeni brojem (npr. IIa1, IIa2). Nije bilo moguće postići uspješnu optimizaciju svih predviđenih konformera sa slike 13, što nije iznenađujuće s obzirom da se očekuje da je dio geometrija interkonvertibilno jednostavnom rotacijom oko jednostrukih veza.

Najstabilniji konformer za svaki od razmatranih izračunatih halogenidnih kompleksa je konzistentno podtip IIa(1), koji se u potpunosti slaže s dobivenom kristalnom strukturom, bez obzira na kation, elektrondonorska svojstva R skupine ili korišten medij (sa ili bez SMD solvacijskih modela). Štoviše, svi ostali konformeri su manje stabilni za 2,0 kcal mol⁻¹ ili više,

energiju unutar okvira od 2 kcal mol⁻¹, posebno za rezultate sa SMD modelom acetonitrila. Iznenađujuće, konformer koji odgovara geometriji pronađenoj u dobivenoj kristalnoj strukturi nitratnog derivata nije uspješno optimiziran, niti su slične, uspješno dobivene geometrije najstabilnije za sva tri medija, te ne postoji bilo kakva jasna pristranost prema jednom konformeru kao kod derivata halogenida.

Kako bi se dalje istražile očekivane razlike u stabilnosti IIa i IIa* dijastereoizomernih podtipova, pripremljene su odgovarajuće geometrije kompleksa cink(II) bromida s ligandima $B1_E$ i $B1_H$. Ligand $B1_E$ ima istu strukturu kao ligand $B1_H$, ali bez (4S)-fenilnog supstituenta. IIa početne geometrije konstruirane su iz dobivene kristalne strukture [Zn(B1_H)₂Br₂], a IIa* početne geometrije konstruirane su iz kristalne strukture $[Zn(B1_E)_2Br_2]$ kompleksa (CSD kod ETUVIY).¹³³ Kao što se očekivalo, optimizirane IIa i IIa* konformacije su ekvivalentne za kompleks $[Zn(B1_{F})_2Br_2]$, dok je za $[Zn(B1_{H})_2Br_2]$ kompleks dobiven konformer čija geometrija odstupa od primarno zamišljene geometrije IIa* te je manje stabilna za 8,7 kcal mol⁻¹ (tablica D9). Očito, sterička odbijanja koju stvaraju (4S)-fenilne skupine drastično destabiliziraju ovu geometriju. Ovi rezultati su u skladu s eksperimentalno dobivenim halogenidnim kristalnim strukturama striktno podtipa IIa. Dodatno je opaženo da se geometrija dobivena nakon optimizacije [Zn(B1_H)₂Br₂] s IIa* geometrijom gotovo savršeno preklapa s geometrijom metalnog kompleksa pronađenom u prethodno objavljenoj kristalnoj strukturi kompleksa cinka(II) bromida s akiralnim 4,4'-dimetil-2-feniloksazolinima (CSD kod: ETUVUK, slika 37).¹³³ Zanimljivo je da u ovoj kristalnoj strukturi, 4,4-dimetilne skupine podjednako sterički ometaju nastajanje geometrija IIa i IIa*, no čak i u ovoj strukturi, helikalna kiralnost može biti formalno pripisana (iako se očekuje da će tip dobivene helikalne kiralnosti biti proizvoljan za ovaj spoj, te će obje geometrije vjerojatno biti jednako zastupliene u otopini).

Slika 37. Preklopljene strukture konformera [Zn(**B1**_H)Br₂] (zeleno), dobivene nakon optimizacije s IIa* geometrijom, i kristalne strukture cink(II) bromid kompleksa s 4,4'dimetil-2-feniloksazolinima (plavo).

4.4. Supramolekulsko bidentatni rodij(I) ili iridij(I) fosfinski i oksazolinski aminokiselinski biokonjugati kao selektivni katalizatori za enantioselektivne reakcije hidrogenacije (C)

U ovom poglavlju opisana je priprava supramolekulski bidentatnih rodijevih i iridijevih kompleksa s P,Pili P.N- monodentatnim ligandima, dizajniranih prema svojstvima prethodno opisanih supramolekulski bidentatnih rodijevih kompleksa trifenilfosfina i helikalno kiralnih kompleksa monodentatnih oksazolina opisanih u prošlom poglavlju. U tu svrhu je pripremljen set liganada, monodentatnih trifenilfosfinskih i oksazolinskih liganada s udalienim kiralnim aminokiselinama, te odgovarajući Rh(I) i Ir(I) kompleksi homo- i heterokombinacija pripremljenih liganada. Svi spojevi su sintetizirani i karakterizirani korištenjem spektroskopskih metoda, ¹H, ¹³C, ³¹P, COSY, HSQC NMR, UV-VIS i CD, uz difrakciju redgenskih zraka na monokristalu jednog kompleksa rodija. Kompleksi rodija i iridija pripravljenih monodentatnih liganada s posrednom indukcijom kiralnosti korišteni su kao katalizatori u enantioselektivnoj hidrogenaciji trisupstituiranih derivata olefina pri raznim reakcijskim uvjetima, te su svojstva rodijevih i iridijevih kompleksa uspoređena sukladno dobivenim rezultatima. U nastavku teksta će se na komplekse s homo-kombinacijom pripravljenih liganada referirati s "C1-homo kompleks", a na komplekse s heterokombinacijom pripravljenih liganada s "C1-hetero kompleks".

4.4.1. Sinteza liganada C

Kako bi se istražila i usporedila selektivnost C1-homo i C1-hetero kompleksa rodija i iridija s posrednom indukcijom kiralnosti, pripremljeni su biokonjugati aminokiselina za sintezu supramolekulski bidentantnih kompleksa. Sintetiziran je jedan fosfinski i pet oksazolinskih derivata korištenjem prethodno objavljenih postupaka, pri čemu su ligandi C1b, C1d i C1p prethodno opisani u literaturi.^{8,249} Prednosti liganada konjugiranih s aminokiselinama jest da su njihovi prekursori lako dostupni. Ligand C1a je akiralan i nema aminokiselinskih supstituenata, ligandi C1b i C1p sadrže kiralnost nekoliko veza udaljenu od koordinirajućih atoma, a ligandi C1c, C1c* i C1d sadrže kiralnost i blizu i nekoliko veza udaljenu od koordinirajućih atoma (slika 38).

Slika 38. Ligandi korišteni za pripravu C1-homo i C1-hetero metalnih kompleksa.

Biokonjugirani ligandi **C1b-C1d** i **C1p** sastavljeni su od tri strukturne jedinice, kao i u poglavlju 4.2. (shema 7); koordinirajuća jedinica (slika 38, plava boja), središnja aromatska jedinica (slika 38, crna boja) i aminokiselinska jedinica (slika 38, crvena boja). Ligandi su dizajnirani s ciljem da induciraju kiralnost oko metala u metalnom kompleksu stvaranjem supramolekulskih interakcija između liganada (slika 39), koncept koji su prvi uspješno upotrijebili Reek i Breit.^{56,57,233}

Slika 39. Pretpostavljene Herrick strukture ML₂ metalnih kompleksa homo- i heterokombinacija trifenilfosfina **C1p** i oksazolina **C1a-d** u otopini. Drugi koordinirani ligandi (COD ili otapalo) nisu prikazani zbog jasnoće prikaza.

Ovisno o nastalom motivu vodikovog vezanja, moguće su tri strukture, koje su prethodno opisane na 1,n'-aminokiselinom disupstituiranim ferocenima (slika 7).¹ Glavna razlika između ovih struktura je u motivu intramolekulske vodikove veze i prisutnosti ili odsutnosti

konformacijske kiralnosti. Analogni motivi vodikovih veza mogu se dobiti u metalnim kompleksima s **C1** ligandima, aromatskim slaganjem dva disupstituirana fenilna prstena (slika 9).

4.4.2. NMR spektroskopska analiza C

In situ priprava i prisutnost supramolekulskih interakcija u prekatalitičkim kompleksima $[Rh(COD)_2]BF_4$ i $[Ir(COD)_2]BArF$ homo- i hetero-kombinacija liganada **C1p** i **C1c*** u CD₂Cb proučavana je pomoću ¹H, ¹³C, ³¹P, COSY i HSQC NMR spektroskopija.

Za nekoordinirane ligande, NMR spektri ne ukazuju na značajne supramolekulske interakcije u otopini (ni vodikove veze ni π - π interakcije) u danim uvjetima, budući da se signali amidnih vodikovih atoma pojavljuju ispod 7,00 ppm, odnosno aromatski signali iznad 7,00 ppm (CD₂Cl₂). U prekatalitičkim kompleksima, broj ekvivalenata liganda u metalnom kompleksu određen je usporedbom integrala signala integralima signala liganda s koordiniranog ciklooktadiena (COD), pri čemu je određeno da je dominantna vrsta $[M(COD)L_2]^+$ (slike 40 i 41). Dodatno, prisutnost signala vodikovih atoma nekoordiniranog ciklooktadiena potvrđuje da dva liganda doista zamjene mjesto s jednim ciklooktadienom u prekatalitičkom kompleksu. Pritom je potrebno naglasiti da in situ sintezom C1-hetero prekatalitičkih kompleksa ne mora nastati isključivo C1-hetero produkt (slika 39), zbog čega će u nastavku prvo biti analizirani NMR spektri C1-homo kompleksa, a zatim odgovarajući C1-hetero kompleksi. Kemijski pomaci vodikovih atoma esterskog metila i alifatskih metilnih skupina alanina, kao i kemijski pomak izoliranog vodikovog atoma središnje aromatske jedinice oksazolina, ključni su u spektralnoj asignaciji signala.

S druge strane, ³¹P NMR spektroskopija korištena je za karakterizaciju kompleksa koji sadrže **C1p** ligand, i s rodijem i s iridijem. U ³¹P NMR spektrima s rodijem, pojavljuju se dubletni signali s *J* sprezanjem, (¹⁰³Rh, ³¹P) \approx 145 Hz, što je u skladu s *C*₂-simetričnim cis-izomerom kompleksa s RhL₂ stehiometrijom.^{9,285} U slučaju iridija, međutim, dobiven je samo singlet.

Velike razlike u kemijskim pomacima u ¹H NMR spektrima **C1p**-homo i **C1c***-homo rodijevih kompleksa snažno ukazuju na kompleksiranje (Rh : **C1p** = 1 : 2 i Rh : **C1c*** = 1 : 2, slika 40, prvi i treći red). U oba slučaja, postoji samo jedan set signala liganda, u skladu s C_2 -simetričnim kompleksima, što je i dodatno pojednostavilo analizu. Spektri pokazuju značajne pomake signala alaninskih amidnih vodikovih atoma prema nižem polju ($\Delta\delta$ (**C1p**) \approx

1,18 ppm i $\Delta\delta(\mathbf{C1c^*}) \approx 0,74$ ppm), što sugerira prisutnost značajnih vodikovih veza u kompleksima [Rh(COD)(C1p)₂]⁺ i [Rh(COD)(C1c^{*})₂]⁺ u otopini.¹ Zanimljivo je da se u spektrima C1c^{*}-homo kompleksa može vidjeti vrlo jak utjecaj kompleksiranja. Signali vodikovih atoma na središnjoj aromatskoj jedinici pomaknuti su prema nižem polju, do $\Delta\delta =$ 1,67 ppm, a signal vodikovog atoma vezan na kiralni atom ugljika oksazolina pomaknut je prema višem polju za 1,43 ppm. Signali oksazolinskih metilenskih vodikovih atoma

Slika 40. ¹H NMR spektri (CD₂Cb) otopina prekursora [Rh(COD)₂]BF₄ i homo- i heterokombinacija **C1p** liganda (narančasto) ili/i **C1c*** liganda (zeleno): a) aromatska regija, b) regija funkcionalne skupine, c) alifatska regija. d) ³¹P NMR spektri. Signali **C1**-homo kompleksa označeni su zvjezdicom (*), a signali **C1**-hetero kompleksa označeni su znakom ljestvice (#). Kratice: hom. = **C1p**-homo kompleks; het. = **C1p/C1c***-hetero kompleks.

Rodijev **C1c***-homo kompleks pokazao se neočekivano stabilnim; ¹H NMR spektar istog uzorka snimljenog nakon 7 dana ne pokazuje gotovo nikakve promjene u spektru. Stabilnost kompleksa [Rh(**C1c***)₂]BF₄ dodatno je potvrđena uspješnom kristalizacijom i rendgenskom

analizom monokristala (vidi potpoglavlje 4.4.4.). S namjerom priprave [RhC1c*]BF4 kompleksa *in situ*, snimljen je NMR spektar otopine s omjerom prekursora Rh : C1c* = 1 : 1 i s koncentracijom liganda $c(C1c^*) = 8$ mM, što je 6,25 puta manja koncentracija liganda C1c* nego u otopini korištenoj za dobivanje NMR spektra Rh : C1c* = 1 : 2. U spektru se mogao uočiti samo jedan set signala oksazolina s kemijskim pomacima koji su gotovo u potpunosti odgovarali signalima u spektru Rh : C1c* = 1 : 2 kompleksa, s omjerom integrala prema koordiniranom ciklooktadienu C1c* : koord. COD = 2 : 1. Štoviše, u spektru se mogu opaziti i signali ciklooktadiena iz neizreagiranog metalnog prekursora sa značajnim intenzitetom dodatno potvrđujući nastajanje Rh : C1c* = 1 : 2 metalnog kompleksa pri ovim uvjetima.

¹H NMR spektar rodijevog **C1p/C1c***-hetero kompleksa (Rh : **C1p** : **C1c*** = 1 : 1 : 1, slika 40, drugi red) pokazuje različite kemijske pomake signala svih vodikovih atoma u usporedbi s odgovarajućim **C1**-homo kompleksima kao i slobodnim ligandima. Kemijski pomaci amidnih signala u odnosu na analogne signale u spektrima slobodnih liganada pomaknuti su prema nižem polju za $\Delta\delta(C1p) \approx 0,69$ ppm odnosno $\Delta\delta(C1c^*) \approx 0,68$ ppm. Izolirani atomi aromatskog vodika *meta*-supstituirane središnje aromatske jedinice liganada **C1p** i **C1c*** pomaknuti su prema nižem polju u usporedbi s analognim signalima u odgovarajućim spektrima **C1**-homo kompleksa ($\Delta\delta(C1p) \approx 0,57$ ppm i $\Delta\delta(C1c^*) \approx 1,90$ ppm). Postotni omjer koordiniranog liganda **C1p** u **C1p**-homo i **C1p/C1c***-hetero kompleksima može se procijeniti usporedbom integrala **C1p** signala odgovarajućih kompleksa u kvantitati vnom ³¹P NMR spektru, pri čemu se dobiva omjer 13 : 87 ≈ 1: 9.

NMR spektri iridijevih **C1p**-homo i **C1p/C1c***-hetero kompleksa snimljeni su pri istim uvjetima kao i rodijevi analozi (slika 41). Analiza spektara iridijevih kompleksa pokazala se zahtjevnijom zbog nepotpune koordinacije vidljive u svim snimljenim spektrima, posebice u spektrima koji sadrže oksazoline. Stoga je prije izvođenja NMR analize određeno vrijeme potrebno za uspostavljanje ravnoteže *in situ* priprave iridijevih prekatalitičkih kompleksa pomoću UV-Vis spektroskopije. UV-Vis absorbancija je mjerena u CH₂Cl₂ u intervalima od 5 minuta, počevši odmah nakon dodatka jednog ekvivalenta prekursora iridija u otopinu liganda. U slučaju Ir : C1p = 1 : 2 bilo je potrebno približno 45 minuta da reakcija postigne plato, tj. da *in situ* priprava kompleksa postigne ravnotežu. Imajući ovo na umu, NMR spektri svih iridijevih kompleksa izmjereni su nakon miješanja otopine prekatalizatora 1 sat.

¹H NMR spektar iridijevog **C1p**-homo kompleksa (Ir : **C1p** = 1 : 2, slika 41, prvi red) pokazuje da reakcija kompleksacije ne ide do kraja, čak ni kada je reakcija provođena dulje

143

od vremena potrebnog da se uspostavi ravnoteža, određenog ranije navedenim UV mjerenjima. Postotni omjer koordiniranog prema nekoordiniranom ligandu, izveden iz integrala signala u kvantitativnom ³¹P NMR spektru je 59 : 23 \approx 3 : 1. Dodavanjem viška liganda u smjesu uglavnom se povećava intenzitet nekoordiniranih **C1p** pikova. Signali amidnih vodikovih atoma u spektru iridijevog **C1p**-homo kompleksa uveliko su pomaknuti prema nižem polju ($\Delta \delta \approx 1,30$ ppm) te je prisutan i manji pomak signala esterske metilne skupine prema nižem polju ($\approx 0,10$ ppm).

Slika 41. ¹H NMR spektri (CD₂Cl₂) otopina prekursora [IrCOD)₂]BArF i homo- i heterokombinacija C1p liganda (narančasto) ili/i C1c* liganda (zeleno): a) aromatska regija, b) regija funkcionalne skupine, c) alifatska regija. d) ³¹P NMR spektri. Signali C1-homo kompleksa označeni su zvjezdicom (*), signali C1-hetero kompleksa označeni su znakom ljestvice (#), signali nekoordiniranih liganada označeni su slovom (X). Kratice: hom. = C1phomo kompleks; het. = C1p/C1c*-hetero kompleks.

¹H NMR spektar iridijevog **C1c***-homo kompleksa (Ir : **C1c*** = 1 : 2, slika 41, treći red) također pokazuje nepotpuno kompleksiranje, s omjerom integrala 1 : 2 koordiniranog prema

nekoordiniranom ligandu, izračunatog na temelju vrijednosti integrala signala izoliranog atoma vodika središnje aromatske jedinice. Za razliku od rodijevog **C1c***-homo kompleksa, iridijev **C1c***-homo kompleks nije pokazao ekvivalentnu stabilnost stajanjem, tj. spektri istog uzorka snimljeni nakon 7 dana pokazuju potpuni gubitak signala kompleksiranih vrsta. Spektar iridijevog **C1c***-homo kompleksa pokazuje vrlo mali pomak amidnog signala prema nižem polju ($\Delta \delta \approx 0,15$ ppm) i pomak signala esterske metilne skupine prema nižem polju ($\Delta \delta \approx 0,08$ ppm), slično **C1p**-homo kompleksu. Iako je kemijski pomak signala amidnog vodikovog atoma usporedivo manji nego kod rodijevog analoga, svi aromatski i oksazolinski signali pokazuju vrlo slične promjene odgovarajućih signala kao u spektru rodijevog **C1c***-homo kompleksa.

U ¹H NMR spektru **C1p/C1c*-**hetero kompleksa (Ir : **C1p** : **C1c*** = 1 : 1 : 1, slika 41, drugi red), prisutno je preklapanje signala u velikoj mjeri te se ne mogu asignirati svi signali **C1p/C1c*-**hetero kompleksa. Usporedbom spektara na slici 41 vidljivo je da se svi signali pomiču u manjoj mjeri u usporedbi sa signalima odgovarajućih iridijevih **C1**-homo kompleksa, čak i manje od promjene pomaka signala kod njihovih rodijevih analoga. Unatoč vrlo visokom preklapanju signala u ¹H NMR spektru, postotni omjer liganda **C1p** u **C1p**-homo i **C1p/C1c*-**hetero kompleksu još uvijek se može procijeniti usporedbom integrala signala liganda **C1p** u odgovarajućim kompleksima u kvantitativnom ³¹P NMR spektru, dobivajući omjer od 4 : 3.

Do sada se raspravljalo o metalnim kompleksima liganda **C1c***, koji sadrže aminokiselinu i dodatni kiralni centar na oksazolinu. U ovom odlomku se opisuju metalni kompleksi s ligandom **C1b** (bez kiralnosti na oksazolinu), **C1a** (bez aminokiseline i bez kiralnosti na oksazolinu) kao i s PPh₃, pri čemu su razmatrane kombinacije **C1p**/PPh₃, **C1a**/PPh₃, **C1b**/PPh₃, **C1b**/C1p, **C1b**/C1b (slika 42). U spektru Ir : **C1p** : PPh₃ = 1 : 1 : 1 možemo vidjeti da je u otopini nastala smjesa **C1**-homo metalnih kompleksa s ligandima **C1p** i PPh₃ omjera 1 : 1, **C1p**/PPh₃-hetero kompleksa i raznih neidentificiranih spojeva čija je prisutnost utvrđena pojavom drugih signala u spektru. Zanimljiva promjena kemijskih pomaka može se vidjeti i u spektru Ir : **C1b** = 1 : 2 (slika 42, a, zadnji red). Dimetilne skupine nekoordiniranog **C1b** liganda su singletni signal u ¹H NMR spektru na 1,28 ppm, dok je u otopini metalnog kompleksa isti signal dublet, kemijskih pomaka 1,41 i 1,43 ppm. To ukazuje da strane oksazolinskog prstena u kompleksu nisu ekvivalentne. Slično zapažanje opisano je prethodno u poglavlju 4.2., gdje je prikazana detaljna analiza supramolekulskih interakcija

aminokiselinskih biokonjugata oksazolina.²⁴⁹ Međutim, u tom istraživanju nije bilo ovakvih opažanja za ligand **C1b**, čak ni pri povišenim koncentracijama od 60 mM. Kako bi se dalje potvrdilo da je ova pojava potaknuta stvaranjem supramolekulskih interakcija u kompleksu, snimljeni su dodatni spektri iridijevih prekatalitičkih **C1**-hetero kompleksa kiralnih/akiralnih kombinacija **C1b/C1p**, **C1a/C1p**, **C1a/PPh₃**, **C1b/PPh₃** s omjerom prekursora M : L1 : L2 = 1 : 1 : 1. Signal oksazolinske dimetilne skupine pokazuje gore navedeno razdvajanje signala samo kod **C1b/C1p**-hetero kompleksa, dok je u slučaju **C1b/PPh₃** proširenje signala vidljivo. Navedeni signal je najvjerojatnije uprosječeni rezultat signala **C1b**-homo i **C1b**-hetero kompleksa. Ovo naglašava važnost alaninskih supstituenata u oba liganda i njihovu ulogu u ostvarivanju supramolekulskih interakcija. Zanimljivo je napomenuti da se u eksperimentu s dodanim drugim ekvivalentom **C1b** (Ir : **C1b** : **C1p** = 1 : 2 : 1) pokazalo da ligand **C1b** može djelomično potisnuti nastajanje kompleksa s ligandom **C1p**.

prekursora [IrCOD)₂]BArF i homo- i hetero-kombinacija liganada C1p/PPh₃, C1a/PPh₃,

C1b/PPh₃, C1p/C1a, C1b/C1p, C1b/C1b.

4.4.3. CD spektroskopska analiza C

Provedena su CD spektroskopska mjerenja CH₂Cl₂ otopina *in situ* pripravljenih prekatalitičkih C1-homo i C1-hetero kompleksa $[Rh(COD)_2]BF_4$ i $[Ir(COD)_2]BArF$ s C1p, C1b, C1c i C1c* ligandima, pri koncentracijama metalnog prekursora c(M) = 0,38 mM (slika 43, a-f).

Slika 43. CD spektri (CH₂Cl₂) rodijevih(I) i iridijevih(I) kompleksa s C1p, C1b, C1c i C1c* ligandima, pri koncentraciji metalnog prekursora $c(M^+) = 0,38$ mM.

Pojava signala u vidljivom području spektara potvrđuje kompleksiranje i indukciju kiralnosti na metalnom atomu, bilo kao posljedica supramolekulskih interakcija (**C1p**-homo kompleksi) bilo zbog neposredne blizine oksazolinskih kiralnih skupina metalnom atomu (**C1**-homo i **C1**-hetero kompleksi C4-kiralnih oksazolina).

Za komplekse C1p/C1c* s rodijem i iridijem (slika 43, a i b), vidljiva je primjetna razlika između spektara dvaju C1-homo i C1-hetero kompleksa. Štoviše, CD spektri i rodijevih i iridijevih C1-hetero kompleksa očito nisu rezultat jednostavnog zbrajanja odgovarajućih CD spektara C1-homo kompleksa. Navedena pojava je izražena kada se usporede spektri dvaju C1-homo i C1-hetero kompleksa rodija, gdje se može uočiti gotovo četverostruko veća vrijednost intenziteta signala otopine C1p/C1c*-hetero kompleksa na 350 nm naspram otopina odgovarajućih C1-homo kompleksa (slika 43, a). S druge strane, u spektru otopine iridijevog C1-hetero kompleksa može se uočiti smanjenje intenziteta signala u usporedbi s njihovim C1-homo kompleksima (slika 43, b i d). Ovo opažanje je u skladu s NMR rezultatima, gdje se pokazalo da jedva 30% liganada tvori iridijev C1-hetero kompleks u otopini .

Glavni doprinos induciranoj kiralnosti u kompleksima koji sadrže oksazolin uvjetovan je kiralnošću oksazolina. O tome svjedoče CD spektri C1c i C1c* dijastereizomernih derivata koji približno odgovaraju spektrima koje bi imali dva enantiomera (slika 43, c i d). Nasuprot tome, CD spektri iridijevih C1p/C1c- i C1p/C1c*-hetero kompleksa ne pokazuju karakteristike slične spektrima enantiomera i imaju niže intenzitete signala. Nadalje, CD spektri s akiralnim oksazolinom C1b pokazuju, i u slučaju rodija, i u slučaju iridija, sve veći gubitak intenziteta signala sa sve manjim udjelom liganda C1p (slika 43, e i f). Činjenica da spektri C1b-homo kompleksa ne pokazuju indukciju kiralnosti na metalu je u skladu s teorijom da je kiralnost na metalu u metalnim kompleksima oksazolina diktirana s C4-kiralnim oksazolinskim skupinama. Dodatno, spektri otopina C1p/C1b-hetero kompleksa imaju sličan profil signala na istim valnim duljinama, ali umanjenog intenziteta kao i C1p-homo kompleksi, što sugerira da je u otopinama C1p/C1b-hetero kompleksa prisutan značajan udio C1p-homo kompleksa. Ovo opažanje je također u skladu s NMR rezultatima.

Za usporedbu, snimljeni su CD spektri prekatalitičkih rodijevih kompleksa s dva komercijalno dostupna bisoksazolinska liganda, (-)-2,2'-izopropilidenbis[(4S)-4-fenil-2-oksazolin] i (+)-2,2'-izopropilidenbis[(4R)-4-benzil-2-oksazolin] (BOX1 i BOX2, slika 44). Vrijednosti eliptičnosti za komplekse ovih liganada su ili isključivo pozitivne (BOX1) ili

negativne (BOX2) u vidljivom području spektra. Ovi spektri ne odgovaraju niti jednom spektru prikupljenom za monodentatne ligande u ovoj disertaciji, odnosno razlikuju se po predznaku, broju, profilu, intenzitetu i valnoj duljini signala, što ukazuje da kiralna koordinacijska sfera oko atoma rodija koju stvaraju bisoksazolinski ligandi nije analogna koordinacijskoj sferi koju stvaraju monodentatni oksazolinski ligandi. To se može objasniti činjenicom da su u bisoksazolinskim ligandima dva oksazolina gotovo koplanarna, dok monodentatni ligandi **C1b-C1d** ne mogu postići koplanarnost zbog voluminoznih 2-(*m*-alanil)fenilnih supstituenata.

Slika 44. CD spektri (CH₂Cl₂) rodijevih(I) kompleksa s C1p, C1c*, BOX1 i BOX2 ligandima, pri koncentraciji metalnog prekursora $c(M^+) = 0,38$ mM.

4.4.4. Rendgenska kristalografija C

Priređeni su žuti monokristali prekatalitičkog [Rh(C1c*)₂COD]BF₄ kompleksa nadslojavanjem toluena na CH₂Cl₂ otopinu kompleksa i sporom difuzijom toluena u otopinu kompleksa u periodu od nekoliko dana. Rendgenska difrakcija potvrđuje predloženu [ML₂COD]⁺ molekulsku strukturu u čvrstom stanju i daje uvid u supramolekulske interakcije u kristalnom uzorku; shema označavanja atoma i ORTEP dijagram²⁷³ prikazani su na slici 45, a eksperimentalni podaci mjerenja navedeni su u tablici 11.

Asimetrična jedinica dobivene kristalne strukture sadrži dijelove dviju kristalografski neovisnih molekula metalnog kompleksa, čiji relativni položaji odražavaju I₂ prostornu grupu kristalne rešetke (slika 45). Strukturni parametar τ '4, računat prema jednadžbi (5), je 0,00,

potvrđujući da je kvadratno-planarna koordinacija oko metalnog atoma pravilna. Obje 2-fenilne skupine u pojedinačnim ligandima istog metalnog kompleksa su pomaknute od koplanarnosti s njihovim izravno vezanim oksazolinima za 24,69°. Ova se vrijednost zanemarivo razlikuje od raspona torzijskih kutova od 5° do 22° pronađenih u kristalnim strukturama sličnih, prethodno pripravljenih nekoordiniranih biokonjugata oksazolina.²⁴⁹

Slika 45.ORTEP-3²⁷³ molekulska struktura [Rh(C1c*)₂COD]BF₄ sa shemom pobrojavanja atoma i elipsoidima 30%-tne vjerojatnosti. Asimetrična jedinica strukture se sastoji od 3 ostatka (dva C₂-simetrična [Rh(L)₂COD]⁺ kationa i [BF₄]- aniona) u kojoj su samo simetrijski-jedinstveni atomi označeni. C₂-simetrični ligandi, C1c*ⁱ, C1c*ⁱⁱ i COD atomi nisu označeni te su prikazani sa svijetlijim bojama.

Od supramolekulskih interakcija, unutar pojedinačnih molekula kompleksa prisutno je aromatsko slaganje između liganada, no ne i vodikove veze. Dva liganda su smještena na način da su dvije 2-feniloksazolinske skupine unutar kompleksa složene aromatskim π - π

interakcijama na C_2 -simetričan način, s kiralnim 4-fenilnim supstituentima okrenutima prema van i s njihovim centroidima u ravnini s kvadratno-planarnom koordinacijskom ravninom rodija. S druge strane, ravnine oksazolina nisu koplanarne s kvadratno-planarnom koordinacijskom ravninom atoma rodija, nego su obje odmaknute od koplanarnosti za 45,93° na C2-simetričan način, inducirajući (P)-helikalnu strukturu (slika 46). Iako se može zamisliti (M)-helikalni analog ove molekulske strukture, nastajanje istog nije vjerojatno zbog 4-fenilnih supstituenata usmjerenih prema nasuprotnom ligandu, što sterički destabilizira (M)-helikalni analog. Ova vrsta relativnog prostornog smještaja dvaju oksazolina se uvelike razlikuje od kvadratno-planarnim metalnim kompleksima struktura pronađenih S bisoksazolinskih liganada, gdje su dva oksazolina obično koplanarna ili nagnuta jedan prema drugome.^{128,129} Navedena činjenica je u skladu s rezultatima CD spektroskopije, gdje su dobivene eliptičnosti za komplekse mono- i bisoksazolinskih liganada drastično različite.

Slika 46. (*P*)- i (*M*)-helikalni izomeri $[Rh(C1c^*)_2COD]^+$ kompleksa. Alaninski supstituent i COD su izostavljeni zbog jasnoće. Točka prestavlja helikalnu os okomitu na ravninu slike.

Ravnina 2-fenilne skupine jednog liganda postavljena je pod kutom od 16,92° u odnosu na ravninu oksazolina drugog liganda, a najkraći kontakt je između dva C2O atoma ugljika oksazolina (3,289 Å, zbroj dva van der Waalsova radijusa atoma ugljika je 3,40 Å). Kao posljedica toga, alifatski vodikovi atomi oksazolina smješteni na unutarnjoj strani aromatski složenog oksazolinskog prstena, H4O i H5OB, usmjereni su prema središtu 2-fenilnog prstena. Ovo je u skladu sa značajnim kemijskim pomakom prema višem polju odgovarajućih ¹H NMR signala i neekvivalencijom strana oksazolinskih prstena opaženih u NMR spektrima. Dodatno, C2B1 atom ugljika 2-fenila i izravno vezani atom vodika H2B1 smješteni su u blizini rodija na udaljenostima od 3,29 odnosno 2,72 Å. Ove udaljenosti su manje za 0,41 i 0,48 Å od odgovarajućih 3,70 i 3,20 Å van der Waalsovih zbrojeva radijusa C–Rh i H–Rh. Ovo opažanje je također u skladu sa značajnim pomacima odgovarajućih signala prema nižem polju uočenih u odgovarajućim ¹H i ¹³C NMR spektrima.

U strukturi čvrstog stanja, složene molekule pakiraju se u supramolekulske beskonačne stupce poput (*M*)-heliksa. Svaki amidni atom vodika usmjeren je prema [BF₄]⁻ anionu, koji premošćuje amidne atome vodika susjednih molekula kompleksa, dok su amidni atomi kisika usmjereni prema šupljinama prisutnima u kristalu (slika 47). Dvije udaljenosti N–H···F–B iznose 2,16 Å odnosno 2,53 Å; pri čemu su obje udaljenosti manje od 2,57 Å zbroja van der Waalsovih radijusa atoma vodika i fluora, što ukazuje na karakter vodikove veze. Susjedni supramolekulski stupci, međutim, nisu gusto složeni, već stvaraju šupljine između beskonačnih stupaca, s najmanjim međuatomskim udaljenostima kroz šupljinu u dva okomita smjera od \approx 9 Å (slika 47). Treći okomiti smjer je beskonačan, što šupljinama daje karakteristike tunela.

Slika 47. Šupljine u kristalnom pakiranju [**Rh**(1c*)₂**COD**] **BF**₄.²⁸⁶ Elektronska gustoća unutar šupljina, populirana molekulama otapala u neredu, uzeta je u obzir u računatim strukturnim faktorima pomoću SQEEZE procedure programa PLATON.²⁶⁷

4.4.5. Enantioselektivna hidrogenacija C

C1-homo katalizator. Optimizacija reakcije provedena je hidrogenacijom standardnog supstrata, metil- α -acetamidocinamata, s *in situ* pripravljenim, rodijevim i iridijevim **C1p**-homo kompleksima. Podaci dobiveni variranjem molnog postotka katalizatora (0,05 - 1 mol %), omjera metala i liganda (1 : 0,5 - 1 : 3), otapala (tablica 22), temperature reakcije (-5 °C, 0

°C i sobna temperatura), tlaka vodika i vremena reakcije (20 min - 16 h) prikupljeni su u tablici 23.

U provedenim katalitičkim reakcijama, i rodijevi i iridijevi katalizatori pokazali su se učinkovitima i enantioselektivnima (tablica 23). Rodijev katalizator je uspješno katalizirao reakciju pri nižim molnim postotcima i temperaturama katalizatora, zadržavajući konverziju i enantioselektivnost (do 72 % e.e.; pri 0,05 mol %, -5 °C, 20 bar, 3h). Iridijev katalizator rezultirao je nešto većom enantioselektivnošću; do 84% e.e., ali se pokazao osjetljivijim na varijacije reakcijskih uvjeta. Konkretno, samo je djelomična konverzija postignuta pri 0,5 mol % katalizatora, na sobnoj temperaturi i 3 h provođenja reakcije. Razlika u osjetljivosti na reakcijske uvjete dodatno je naglašena potpunom konverzijom reakcija kataliziranih rodijem u svim ispitivanim otapalima (osim CH₃CN), dajući najveću enantioselektivnost u kloroformu (85 % e.e., tablica 22). S druge strane, iridijev katalizator je katalizirao reakciju sa značajnom konverzijom samo u CH₂Cl₂. Odabir otapala koje može poremetiti stvaranje vodikovih veza, poput tetrahidrofurana ili izopropanola, rezultiralo je gubitkom enantioselektivnosti u reakcijama kataliziranim rodijem (tablica 22).

Tablica 22. Ena	antioselektivna	hidrogenacija	metil-α-a	acetamidocinamata	u raznim	otapalima. ^a
-----------------	-----------------	---------------	-----------	-------------------	----------	-------------------------

	II O		U O			
Metalni prekursor:	[Ir(COD)2]BA	ArF	Rh(COD) ₂ BF ₄			
Otapalo	Konverzija / %	e.e. / %	Konverzija / %	e.e. / %		
CH ₂ Ch ₂	>99	84 (S)	>99	70 (S)		
<i>i</i> -PrOH	<5	-	>99	8 (S)		
toluen	7	64 (<i>S</i>)	>99	38 (S)		
THF	22	-	>99	0		
t-BuOAc	6	12 (S)	>99	10 (<i>S</i>)		
CH ₃ CN	0	-	4	4 (R)		
CF ₃ CH ₂ OH	<5	31 (S)	>99	58 (S)		
C ₆ H ₅ Cl	<5	-	>99	39 (<i>S</i>)		
CHCl ₃	<5	70 (S)	>99	85 (S)		

 $\begin{array}{c} 0 \\ HN \\ Ph \\ \end{array} \begin{array}{c} 0 \\ 0 \\ \end{array} \end{array} \xrightarrow{} \begin{array}{c} 0 \\ Ph \\ \end{array} \begin{array}{c} 0 \\ Ph \\ \end{array} \begin{array}{c} 0 \\ Ph \\ \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 0 \\ Ph \\ \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 0 \\ Ph \\ \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 0 \\ \end{array} \end{array} \xrightarrow{} \begin{array}{c} 0 \\ Ph \\ \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 0 \\ \end{array} \end{array}$

^a Reakcijski uvjeti: prekatalitički kompleksi pripravljeni su *in situ* u odabranom suhom otapalu (1 mol%) u atmosferi argona. Reakcijske smjese su zatim ubrizgane sa supstratima (c(S) = 6,7 mM u reakcijskoj smjesi) otopljenim u odabranom otapalu, pod tlakom od 20 bara vodika i miješane na sobnoj temperaturi 16 h. Koncentracija katalizatora u reakcijskoj smjesi bila je c(kat.) = 0,067 mM. ^b Konverzija i selektivnost određene su pomoću GC-MS odnosno kiralne GC metode.

Tablica 23. Enantioselektivne hidrogenacije metil- α -acetamidocinamata s različitim molnim postotkom katalizatora, temperaturama, tlakom vodika i vremenom provođenja reakcija.^a

	Metalni prekursor:]BArF	$Rh(COD)_2BF_4$	
M : C1p	mol. % kat.	T∕°C	p(H ₂) /bar	<i>t</i> / h	Konverzija / %	e.e. / %	Konverzija / %	e.e. / %
1:0,55	0,05	-5	20	3	n.o.	n.o.	18	66 (S)
	1	r.t.	20	16	>99	82 (S)	>99	74 (S)
	0,5	r.t.	20	3	61	82 (S)	n.o.	n.o.
1:1,1	0,2	r.t.	20	3	tragovi	-	>99	72 (S)
		0	20	3	n.o.	n.o.	>99	72 (S)
	0,05	-5	20	3	n.o.	n.o.	91	64 (<i>S</i>)
1.15	1	<i>a</i> t	20	16	>99	82 (S)	>99	66 (S)
1:1,5	1	r.t.	20	3	>99	80 (S)	n.o.	n.o.
	1	r.t.	20	16	>99	84 (S)	>99	70 (S)
		r.t.	10	16	>99	74 (S)	>99	55 (S)
1.22	0,5	r.t.	20	3	47	82 (S)	n.o.	n.o.
1:2,2	0,2	r.t.	20	3	tragovi	-	>99	72 (S)
		0	20	3	n.o.	n.o.	>99	70 (S)
	0,05	-5	20	3	n.o.	n.o.	96	68 (S)
1:3	1		20	16	21	82 (S)	>99	66 (S)
		r.t.	20	3	20	82(S)	>99	70(S)

^a Reakcijski uvjeti: prekatalitički kompleksi pripravljeni su *in situ* u suhom CH₂Cl₂ u atmosferi argona. Reakcijske smjese su zatim ubrizgane sa supstratima (c(S) = 6,7 mM u reakcijskoj smjesi) otopljenim u suhom CH₂Cl₂, pod tlakom od 20 bara vodika i miješane na sobnoj temperaturi 16 h. ^b Konverzija i selektivnost određene su pomoću GC-MS odnosno kiralne GC metode. ^c n.o. = nije određivano.

Međutim, djelomična retencija vrijednosti enantioselektivnosti (58% e.e.) neočekivano je dobivena u reakciji hidrogenacije u trifluoretanolu. Slična pojava je također prethodno zabilježena u literaturi u reakcijama hidrogenacije sa sličnim ligandima u metanolu.²³⁷ U skoro svim ispitivanim reakcijama tijekom optimizacije, pokazalo se da nema značajnih utjecaja varijacije reakcijskih uvjeta na dobivene vrijednosti enantioselektivnosti s rodijevim katalizatorom u CH₂Cl₂ (unutar granice pogreške; tablica 23). Jedina iznimka je gubitak enantioselektivnosti sa smanjenjem tlaka vodika od 20 na 10 bara u reakcijskoj smjesi. Retencija enantioselektivnosti sugerira da je katalitički aktivna vrsta ista u svim proučavanim slučajevima, te da samo količina katalitički aktivne vrste koja je nastala varira. Različiti

omjeri liganda i metala za *in situ* pripravljene katalizatore također su proučavani tijekom optimizacije reakcije s iridijem, te se pokazalo da korištenje manje ekvivalenata liganda od jednog ili više od dva značajno utječe na konverziju supstrata (tablica 23, slika 48).

Slika 48. Enantiose lektivna hidrogenacija metil- α -acetamidocinamata pri različitim M:L omjerima i duljini provođenja reakcija, u CH₂Cl₂ pri 1 mol %, sobnoj temperaturi i 20 bar.

Dobiveni rezultati s rodijem i iridijem pokazuju poboljšanje u usporedbi s prethodno objavljenim rezultatima s **C1p** ligandom, gdje je dobiveni rezultat s [Rh(COD)(CH₃CN)₂]BF₄ kao prekursorom katalizatora u CH₂Cl₂ dao produkt s 61% e.e.⁸ S obzirom da je ispitivanje otapala pokazalo da acetonitril uzrokuje potpuni gubitak enantioselektivnosti, razlika u rezultatima može se pripisati trovanju katalizatora malim količinama acetonitrila uvedenog kroz metalni prekursor. Rodijevi i iridijevi **C1p**-homo katalizatori su jedni od najmanjih supramolekulski bidentatnih katalizatora za enantioselektivnu hidrogenaciju s e.e. > 80%, koji u strukturi nemaju središnje ili aksijalne kiralnosti ugrađene neposredno blizu metalnog atoma, uz rezultate koje su objavili Wenz i suradnici.²³⁵

Dodatno, sintetizirana su četiri trisupstituirana, metil-dehidroaminokiselinska estera u skladu s prethodno opisanim postupkom,²⁷⁰ od kojih je poznato da se naftilni derivat može koristiti kao prekursor za analgetik SDZNKT343.²⁸⁷ Sva četiri supstrata su podvrgnuta hidrogenaciji i rodijevim i iridijevim **C1p**-homo katalizatorima (metal : ligand = 1 : 2, tablica 24). Gotovo potpune konverzije postignute su za sve navedene supstrate, osim za tiofen-2-ilni

derivat. Dobivena selektivnost s iridijem uglavnom je analogna rezultatima dobivenim za referentni fenilni supstrat (≈ 80% e.e.).

Tablica 24. Enantioselektivna hidrogenacija metil-dehidroaminokiselinskih estera.^a

 $R \xrightarrow{O}_{HN} O_{R} \xrightarrow{O}_{R} \xrightarrow{O}_{R} O_{R}$

Cupatrat	Metalni prekursor:							
Supsuar	Ir(COD)	2BArF	Rh(COD) ₂ BF ₄					
Л	Konverzija ^b	e.e.	Konverzija ^b	a a / 0/				
K	/ %	/ %	/ %	e.e. / %				
fenil	>99	84 (S)	>99	70 (S)				
4-Cl-fenil	>99	82 (S)	>99	64(S)				
tiofen-2-il	28	44 (S)	n.o.	n.o.				
tiofen-3-il	>99	82 (S)	>99	65 (<i>S</i>)				
naft-2-il	>99	78 (S)	>99	62 (S)				

^a Reakcijski uvjeti: prekatalitički kompleksi pripravljeni su *in situ* u suhom CH₂Cl₂ (1 mol%) u atmosferi argona. Reakcijske smjese su zatim ubrizgane sa supstratima (c(S) = 6,7 mM u reakcijskoj smjesi) otopljenim u suhom CH₂Cl₂, pod tlakom od 20 bara vodika i miješane na sobnoj temperaturi 16 h. Koncentracija katalizatora u reakcijskoj smjesi bila je c(kat.) = 0,067 mM. ^b Konverzija i selektivnost određene su pomoću GC-MS odnosno kiralne GC metode. ^c n.o. = nije određivano.

C1-hetero katalizatori. Ispitivanje smjesa liganada za *in situ* pripravu katalizatora koji su već na raspolaganju umjesto sinteze novih liganada čini potencijalno koristan pristup. U tu svrhu, pripremljen je set od 4-*m*-(alanil)oksazolinskih liganada, C1b-C1d, s ciljem promatranja njihovog utjecaja u asimetričnoj hidrogenaciji metil- α -acetamidocinamata korištenjem C1p/C1b-1d-hetero katalizatora, čiji kompleksi čine supramolekulski analog bidentatnog PHOX liganda, tj. SupraPHOX. Oksazolinske biokonjugirane ligande je lakše sintetizirati, relativno su manje voluminozni i nisu osjetljivi na oksidaciju pri izloženosti zraku u usporedbi s derivatima trifenilfosfina. Dobiveni rezultati prikupljeni su u tablici 25.

Tablica 25. Enantioselektivna hidrogenacija metil- α -acetamidocinamata korištenjem smjesa liganada.^a

						[Ir(COD)2]BArF		Rh(COD) ₂ BF ₄	
Ligandi	M:L1:L2	mol. % kat.	T / °C	p(H ₂) /bar	<i>t /</i> h	Konverzija / %	e.e. / %	Konverzija / %	e.e. / %
1b	1:2,2	1	r.t.	20	3	0	0	n.o.	n.o.
PPh ₃ , C1p	1:1,1:1,1	1	r.t.	20	3	>99	64 (S)	>99	56 (S)
PPh ₃ , C1b	1:1,1:1,1	1	r.t.	20	16	>99	-	n.o.	n.o.
		1	r.t.	20	16	72	70 (S)	>99	72 (S)
C1p, C1b	1 : 1,1 : 1,1	1	r.t.	10	16	90	70 (S)	>99	55 (S)
		0,5	r.t.	20	3	16	74 (S)	>99	70 (S)
		0,2	r.t.	20	3	traces	-	>99	72 (S)
		0,2	0	20	3	n.o.	n.o.	>99	72 (S)
		0,05	-5	20	3	n.o.	n.o.	86	64 (<i>S</i>)
	1 : 1,5 : 1,5	1	r.t.	20	16	89	80 (S)	>99	72 (S)
		1	r.t.	20	3	52	78 (S)	n.o.	n.o.
	1:1,1:2,2	1	r.t.	20	16	39	65 (S)	n.o.	n.o.
		1	r.t.	10	16	39	65 (S)	n.o.	n.o.
C1p, C1c	1:1,1:1,1	1	r.t.	20	16	92	64 (S)	>99	70 (S)
C1p, C1c	1:1,5:1,5	1	r.t.	20	16	>99	78 (S)	>99	68 (S)
C1p, C1c*	1:1,1:1,1	1	r.t.	20	5	71	85 (<i>S</i>)	>99	71 (<i>S</i>)
C1p, C1d	1:1,1:1,1	1	r.t.	20	16	91	62 (S)	>99	72 (S)
C1p, C1d	1:1,5:1,5	1	r.t.	20	16	>99	78 (S)	>99	68 (S)

^a Reakcijski uvjeti: prekatalitički kompleksi pripravljeni su *in situ* u suhom CH₂Cl₂ u atmosferi argona. Reakcijske smjese su zatim ubrizgane sa supstratima (c(S) = 6,7 mM u reakcijskoj smjesi) otopljenim u suhom CH₂Cl₂, pod tlakom od 20 bara vodika i miješane na sobnoj temperaturi 16 h. ^b Konverzija i selektivnost određene su pomoću GC-MS odnosno kiralne GC metode. ^c n.o. = nije određivano.

Kao što se i očekivalo prema saznanjima iz literature, oksazolinski ligandi ne tvore katalitički aktivne komplekse za enantioselektivnu hidrogenaciju (tablica 25, prvi red). Međutim, moguće je ispitati dodatak oksazolina za pripravu SupraPHOX **C1**-hetero katalizatora u svrhu modifikacije strukture katalizatora i utjecaja na njihovu učinkovitost. Analiza rezultata dobivenih rodijevim katalizatorom pokazuje da zamjena jednog ekvivalenta **C1p** liganda s bilo kojim sintetiziranim oksazolinom nema utjecaja na konverziju i enantioselektivnost reakcija. S druge strane, zamjena s jednim ekvivalentom trifenilfosfina uzrokuje zamjetni pad

vrijednosti enantioselektivnosti, i s rodijem i s iridijem. Usporedba rezultata iridijem i rodijem kataliziranih reakcija pokazuje da je iridij prikladniji za ispitivanje ovih vrsta katalizatora s obzirom da nije primijećen utjecaj dodatka oksazolinskih liganada u katalitičkim reakcijama s rodijem. Iridijem katalizirane reakcije s dodanim oksazolinima odvijale su se u svim slučajevima s nešto nižim konverzijama nego analogne reakcije s **C1p**-homo katalizatorom pri istim uvjetima. Selektivnost se također snizila za $\approx 20\%$ e.e. u svim slučajevima osim za **C1c***-hetero kompleks koji sadrži ligand izveden iz (*R*)-fenilglicinola. Ovo sugerira da postoji efekt podudaranja kiralnosti **C1p** i **C1c*** liganada u navedenom katalizatoru. Ovi rezultati pokazuju da oksazolini mogu tvoriti katalitički aktivne **C1**-hetero komplekse, pri čemu izbor supstituenata na oksazolinskom prstenu igra ulogu u utjecanju na koordinacijsku okolinu metalnog atoma, te posljedično utječe na konverziju i selektivnost.

§ 5. ZAKLJUČAK

U ovoj disertaciji pripravljeno je i karakterizirano ukupno 27 oksazolinskih liganada, od kojih je 22 liganda konjugirano s aminokiselinama. Navedeni ligandi se razlikuju po elektrondonirajućim svojstvima, steričkoj zahtjevnosti i supstitucijskim motivima supstituenata na središnjom aromatskom prstenu te broju i položaju kiralnih centara. U poglavlju 4.2. ispitivana je sklonost 20 oksazolinskih aminokiselinskih biokonjugata (spojevi A1) prema ostvarivanju supramolekulskih interakcija bez metala, eksperimentalno u otopini i čvrstom stanju te računalnim metodama. U poglavlju 4.3., od 6 novih, 1 odabranog, prethodno sintetiziranog i 2 komercijalno dostupna oksazolinska liganda, pripravljeno je i karakterizirano 20 tetraedarskih metalnih kompleksa (spojevi B1) te analizirana njihova stereokemija eksperimentalno u otopini i čvrstom stanju te računalnim metodama. U poglavlju 4.4. pripravljeni i karakterizirani su *in situ* prekatalitički kompleksi rodija(I) i iridija(I) s homo- i hetero-kombinacijama trifenilfosfina, trifenilfosfinskim aminokiselinskim biokonjugata te 1 novog i 5 odabranih, prethodno sintetiziranih oksazolinskih liganada (spojevi C1), s kojima su zatim provedene katalitičke reakcije hidrogenacije.

U prvom dijelu disertacije prikazana su dva sintetska puta za dobivanje derivata A2-A5, kojima je aminoalkoholni supstituent cikliziran kako bi se dobili novi aminokiselinski biokonjugati oksazolina A1. Općenito, one-pot sinteze su se pokazale boljim pristupom za dobivanje derivata A3, osim za derivat A3b, koji je pripravljen linearnom sintezom. Korišteni su različiti supstituenti i motivi supstitucije na središnjoj aromatskoj jedinici, kako bi se proučio njihov utjecaj na sposobnost slaganja A1 spojeva u otopini i čvrstom stanju. U svim kristalnim strukturama, dobivenih difrakcijom rendgenskih zraka na monokristalu, spojevi A1 sudjeluju u vodikovim vezama, tvoreći beskonačne supramolekulske polimerne lance.

S druge strane, ¹H NMR spektri u CDCl₃ pokazali su da nema značajnih intermolekulskih interakcija u disupstituiranim derivatima sa samo jednim aminokiselinskim ostatkom u otopini pri c = 6 mM bez obzira na varijaciju strukturnih elemenata. Za veće oksazoline A1_{m6} i A1_{t1}, međutim, NMR spektri na različitim temperaturama pokazali su da ti spojevi sudjeluju u supramolekulskim interakcijama koje su veoma ovisne o temperaturi pri c = 60 mM. Navedeni rezultati sugeriraju da je za ostvarivanje značajnijih supramolekulskih interakcija u

160

disupstituiranim spojevima A1 potrebno više od jedne aminokiseline u jednom peptidnom lancu. U slučaju tris-derivata, supstituiranih na dva *meta* položaja s po jednom aminokiselinom, korištenje aminokiselina s manjim supstituentima pokazalo se pogodnijim za ostvarivanje supramolekulskih interakcija u otopini.

U usporedbi sa spojevima tris-aminokiselina,^{232,288} za koje je poznato da sudjeluju u aromatskom slaganju, u ovom radu se pokazuje da se jedan aminokiselinski supstituent može zamijeniti s oksazolinskim supstituentom, uz očuvanje sposobnosti za sudjelovanje u supramolekulskim interakcijama u otopini. Provedene računalne analize također podupiru ove rezultate, tj. relativna slobodna energija interakcije pri svih šest proučavanih temperatura pokazuje da se očekuje da će modelirani ansambl dimera biti stabilniji od modeliranog ansambla monomera (≥ 4,3 kcal mol⁻¹). Dodatno, MAE vrijednosti izvedene iz izračunatih i izmjerenih NMR parametara i za monomer i za skupove dimera pokazuju suprotan trend, što ukazuje na bolju podudarnost modela dimera s eksperimentalnim podacima pri nižim temperaturama, te bolju podudarnost monomernog modela pri višim temperaturama. Međutim, ukupne MAE vrijednosti također sugeriraju da se model dimera općenito bolje podudara s eksperimentalnim podacima od modela monomera, dodatno podupirući rezultate molekule sudjeluju eksperimentalno uočene da $A1_{t1}$ u supramolekulskim interakcijama u otopini.

Nadalje, pripravljeno je šest novih kiralnih oksazolinskih liganada **B** i dvadeset novih kiralnih kompleksa **B** od kojih je osamnaest s monodentatnim oksazolinskim ligandima, a dva kompleksa su s komercijalno dostupnim bisoksazolinskim ligandima. Svi dobiveni kompleksi **B** dodatno su karakterizirani metodama NMR, UV-Vis, CD, IR i mjerenjima difrakcije rendgenskih zraka na monokristalu. NMR spektri potvrđuju da dolazi do kompleksiranja u otopini i pokazuju da su najmanje dvije *C*₂-simetrične vrste u ravnoteži u otopini na sobnoj temperaturi, od kojih nijedna nije nekoordinirani ligand. UV-Vis i CD spektroskopija potvrđuju kompleksiranje i indukciju kiralnosti oko metalnog atoma. Pritom se pokazalo da kobalt(II) kompleksi s monodentatnim oksazolinima ne daju analogne CD spektre bisoksazolinskim kobalt(II) kompleksima, odnosno, kod monodentatnih kompleksa nema signala u području 500-600 nm kao kod bisoksazolinskih kompleksa, te je karakteristični signal na oko 650 nm sličnog intenziteta ali suprotnog predznaka u usporedbi s kompleksom bisoksazolinskog liganda iste konfiguracije kiralnog C4-centra. Navedeni rezultat potvrđuje

pretpostavku da utjecaj (4S)-fenilnih skupina nije jedini doprinos indukciji kiralnosti oko metalnog atoma. Nadalje, kobalt(II) kompleksi monodentatnih oksazolina s alaninskim supstituentima imaju karakteristični signal na istoj valnoj duljini kao i kod kompleksa bez alaninskih supstituenata, ali S dva puta većim intenzitetom. Ovo potvrđuje da supramolekulske interakcije u kojoj sudjeluju alaninski supstituenti također imaju doprinos indukciji kiralnosti na metalnom atomu.

Kristalne strukture pokazuju da su svi dobiveni halogenidni kompleksi izostrukturni i imaju geometriju podtipa IIa, s parametrima usporedivim s kompleksima navedenima u literaturi. S druge strane, nitratni derivat je dao strukturu tipa IV u čvrstom stanju. Koliko je poznato, ovo je jedini primjer kristalne strukture tetraedarskog kompleksa cinka(II) s koordiniranim nitratnim anionom i monodentatnim mono-oksazolinskim ligandom S geometrijom tipa IV, dok su kadmijeve strukture jedini primjeri kristalnih struktura tetraedarskih kadmijevih kompleksa S monodentatnim monooksazolinskim ligandom. pripravljenih u sklopu ove disertacije i sličnih analiza kristalnih struktura Detaljna tetraedarskih kompleksa s cikličkim peteročlanim monodentatnim ligandima u literaturi pokazuje da nema sklonosti prema zauzimanju konformacije određenog tipa i podtipa u njihovim kristalnim strukturama. S druge strane, postoji sklonost prema konformaciji IIa(*) za metalne komplekse monodentatnih liganada koji imaju molekulski fragment sa sp² dušikovim atomom vezanim preko bilo kojeg atoma koji nije vodik na aromatsku skupinu. Dodatno, kristalne strukture pokazuju da (S) konfiguracija C4 ugljikovog atoma oksazolinskog prstena potiče preferirano nastajanje IIa konformacije u čvrstom stanju, posljedično inducirajući (M) helikalnu kiralnost oko atoma metala u navedenim kompleksima.

Računalni rezultati pokazali su da su halogenidni metalni kompleksi koji imaju IIa geometriju znatno stabilniji na izračunatoj razini teorije, bez obzira na korišteni SMD model. Suprotno tome, među optimiziranim nitratnim derivatima nije nađen konformer koji je konzistentno najstabilniji u svim korištenim medijima. Utvrđeno je da je geometrija IIa* značajno manje stabilna za (4*S*)-supstituirani oksazolin cink bromid kompleks, što dodatno podupire ideju da 4-supstituenti na oksazolinskom prstenu potiču stvaranje geometrije IIa ili IIa* u halogenidnim derivatima tetraedarskih metalnih kompleksa.

Asimetrična hidrogenacija je uspješno provedena korištenjem supramolekulskih metalnih kompleksa aminokiselinskog biokonjugata trifenilfosfina i oksazolinskih liganada **C** s

posrednom indukcijom kiralnosti. *In situ* generirani rodij(I) i iridij(I) C1-homo i C1-hetero kompleksi, kao i njihova sposobnost supramolekulskog slaganja, proučavani su NMR, UV-Vis i CD spektroskopijom, kao i difrakcijom rendgenskih zraka na monokristalu. NMR analize su pokazale da su konverzije prekatalitičkih [ML₂COD]⁺ kompleksa bile $\geq 9:1$ za C1-homo i C1-hetero derivate rodija, dok su nepotpune konverzije opažene s iridijem. U slučaju svih analiziranih prekatalitičkih metalnih kompleksa može se primijetiti djelovanje značajnih nekovalentnih interakcija na osnovu kemijskih pomaka amidnih, aromatskih i alifatskih signala liganada C1p i C1c* u svim povezanim kompleksima. Rodijevom C1c*-homo kompleksu uspješno je pripravljen monokristal za difrakciju rendgenskih zraka, te je kristalnom strukturom potvrđena [Rh(C1c*)₂COD]BF₄ struktura u čvrstom stanju. CD spektroskopija potvrdila je indukciju kiralnosti oko odgovarajućeg metalnog atoma u otopini. Štoviše, posredna indukcija kiralnosti potvrđena je za prekatalitičke C1p-homo komplekse. S druge strane, dobiveni rezultati za C1-hetero komplekse pokazali su izražene razlike u odnosu na njihove C1-homo analoge, dodatno potvrđujući stvaranje C1-hetero kompleksa u otopini.

Rodijev katalizator pokazao se vrlo učinkovitim u hidrogenaciji estera dehidroaminokiselina, čak i pri niskim korištenim količinama katalizatora od 0,05 mmol%. Također su s rodijevim katalizatorom postignute potpune konverzije u skoro svim drugim ispitivanim otapalima i enantioselektivnosti do 85% i 74% kloroformu, odnosno u diklormetanu. iridijev Analogni katalizator je sporiji u hidrogenaciji estera dehidroaminokiselina i pokazuje potpunu konverziju s enantioselektivnošću do 84% e.e. samo u diklorometanu. Usporedivi rezultati su dobiveni i prilikom hidrogenacije drugih metil estera dehidroaminokiselina. Rezultati pokazuju da oksazolini utječu samo na katalitičku konverziju i enantioselektivnost u reakcijama kataliziranim iridijem, dok nije bilo vidljivog utjecaja u reakcijama kataliziranim rodijem. Pritom se pokazalo da supstituent na položaju 4 oksazolinskog prstena ima utjecaj na katalizu, gdje je samo kombinacija s ligandom C1c* pokazala retenciju enantioselektivnosti (85% e.e.) u usporedbi s rezultatima C1p-homo kompleksa. Ovdje opisani rezultati daju jednostavnu usporedbu svojstava supramolekulskih rodijevih i iridijevih katalizatora za asimetričnu hidrogenaciju, te potvrđuju da su rodij(I) i iridij(I) kompleksi hetero-kombinacija fosfinskih i oksazolinskih liganada obećavajući kandidati za daljnji dizajn i primjenu kao katalizatori u reakcijama hidrogenacije.

§ 6. POPIS OZNAKÂ, KRATICÂ I SIMBOLÂ

Å – angstrem (10⁻¹⁰ m)

ALPB – analitički linearizirani Poisson-Boltzmann (eng. Analytical Linearized Poisson-Boltzmann)

AMP - 2-amino-2-metilpropan-1-ol

BArF - tetrakis[3,5-bis(triflorometil)fenil]borat

CENSO – energetsko sortiranje naredbenim redkom (*eng.* Commandline Energetic Sorting) CD – cirkularni dikroizam

CHCA – α -cijano-4-hidroksicimetna kiselina (*eng.* α -Cyano-4-hydroxycinnamic acid)

CSD-Cambridge strukturna baza podataka (eng. Cambridge Structural Database)

COMU – (1-cijano-2-etoksi-2-oksoetilidenaminooksi)dimetilamino-morfolino-karbenijev heksafluorofosfat

COSY NMR – homonuklearna korelacijska spektroskopska tehnika nuklearne magnetske rezonancije (*eng*. Correlation Spectroscopy *Nuclear Magnetic Resonance*)

CREST – alat za uzorkovanje ansambla konformera-rotamera (*eng*. Conformer-Rotamer

Ensemble Sampling Tool)

e.e. - enatiomerni višak (eng. Enantiomeric Excess)

DCC - N, N'-dicikloheksilkarbodiimid

DFT - teorija funkcionala gustoće (eng. Density Functional Theory)

DIPEA - diizopropiletilamin

DMF - dimetilformamid

DMSO - dimetil-sulfoksid

ECP - efektivni potencijali jezgre (eng. Effective Core Potentials)

ESI-MS – masena spektrometrija uz ionizaciju elektroraspršenjem (eng. Electrospray

Ionization Mass Spectrometry)

EtOAc-etil-acetat

FT-IR - infracrvena spektroskopija

GFN2-xTB – Geometrijom-, frekvencijom- i nekovalentnošću-proširena teorija čvrstog vezanja (*eng.* Geometry Frequency Noncovalent Extended Tight Binding theory)

GIAO – Londonove atomske orbitale ovisne o magnetskom polju (*eng*. Gauge-Including Atomic Orbital)

HATU – 1-[bis(dimetilamino)metilen]-1H-1,2,3-triazolo[4,5-b]piridinij 3-oksidheksa fluorofosfat

HOBt - 1-hidroksibenzotriazol

HPLC-MS - Tekućinska kromatografija visoke djelotvornosti-spektrometrija masa (eng.

High Performance Liquid Chromatography-Mass Spectrometry)

iMTD-GC – iterativna metadinamika-genetsko križanje (*eng.* Iterative Metadynamics-Genetic Crossing)

LANL2DZ – Los Alamos Nacionalni Laboratorij 2 dvostruki ζ (*eng.* Los Alamos National Laboratory 2 Double ζ)

MAE – srednja prosječna greška (eng. mean average error)

MALDI-MS – laserska desorpcija/ionizacija potpomognuta matriksom- spektrometrija masa (*eng.* Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry)

MALDI-TOF – laserska desorpcija/ionizacija potpomognuta matriksom uz analizator

vremena leta (eng.Matrix Assisted Laser Desorption/Ionization-Time of flight)

NMR - nuklearna magnetska rezonancija

PBE0-D4 - Perdew-Burke-Ernzerhof 0, D4-empirijska korekcija za disperziju

pcJ-0 – polarizacijski konzistentni osnovni set funkcija za izračun spin-spin konstante sprege

(J) (eng. Polarization Consistent basis set for spin-spin coupling constant calculations (J))

pcSseg-2 – polarizacijski konzistentni segmentirani i kontraktirani osnovni set funkcija (*eng.* Polarization Consistent Segmented contracted basis set)

pyAOP - (7-azabenzotriazol-1-iloksi)tripirolidinofosfonij heksafluorofosfat

SA-strukturni ansambl

SMD - solvatacijski model gustoće (eng. Solvation Model Density)

TBTU – O-(benzotriazol-1-il)-N,N,N',N'-tetrametiluronij tetrafluoroborate

- TFA-trifluoroctena kiselina
- TLC tankoslojna kromatografija (eng. thin layer chromatography)
- UFF Univerzalno polje sila (eng. Universal Force Field)
- UV/Vis ultraljubičasto/vidljivo

§ 7. LITERATURNI IZVORI

- 1. S. I. Kirin, H.-B. Kraatz i N. Metzler-Nolte, Chem. Soc. Rev. 35 (2006) 348–354.
- J. N. H. Reek, B. De Bruin, S. Pullen, T. J. Mooibroek, A. M. Kluwer i X. Caumes, Chem. Rev. 122 (2022) 12308–12369.
- 3. M. T. Reetz i G. Mehler, *Tetrahedron Lett.* 44 (2003) 4593–4596.
- D. Peña, A. J. Minnaard, J. A. F. Boogers, A. H. M. De Vries, J. G. De Vries i B. L. Feringa, Org. Biomol. Chem. 1 (2003) 1087–1089.
- 5. M. Gómez, G. Muller i M. Rocamora, Coord. Chem. Rev. 193–195 (1999) 769–835.
- 6. P. Braunstein i F. Naud, Angew. Chem. Int. Ed. 40 (2001) 680–699.
- S. Đaković, L. Liščić-Tumir, S. I. Kirin, V. Vinković, Z. Raza, A. Šuste i V. Šunjić, J. Mol. Catal. A 118 (1997) 27–31.
- Z. Kokan, Z. Glasovac, M. Majerić Elenkov, M. Gredičak, I. Jerić i S. I. Kirin, Organometallics 33 (2014) 4005–4015.
- S. Opačak, Z. Kokan, Z. Glasovac, B. Perić i S. I. Kirin, *Eur. J. Org. Chem.* 2019 (2019) 2115–2128.
- N. Pantalon Juraj, T. Tandarić, V. Tadić, B. Perić, D. Moreth, U. Schatzschneider, A. Brozovic, R. Vianello i S. I. Kirin, *Dalton Trans.* 51 (2022) 17008–17021.
- M. Durini, E. Russotto, L. Pignataro, O. Reiser i U. Piarulli, *Eur. J. Org. Chem.* 2012 (2012) 5451–5461.
- 12. S. Kitagaki, K. Sugisaka i C. Mukai, Org. Biomol. Chem. 13 (2015) 4833-4836.
- P. Braunstein, G. Clerc, X. Morise, R. Welter i G. Mantovani, *Dalton Trans.* (2003) 1601–1605.
- 14. R. Connon, B. Roche, B. V. Rokade i P. J. Guiry, Chem. Rev. 121 (2021) 6373–6521.
- S.Tilvi i K. S.Singh, *Current Organic Chemistry*, Vol. 20, Bentham Science, Budimpešta, 2016, str. 898–929.
- 16. E. Vedejs i J. W. Grissom, J. Am. Chem. Soc. 110 (1988) 3238–3246.
- D. Armesto, M. J. Ortiz, R. Pérez-Ossorio i W. M. Horspool, *Tetrahedron Lett.* 24 (1983) 1197–1200.
- 18. M. C. M. Sá i A. Kascheres, J. Org. Chem. 61 (1996) 3749–3752.
- 19. J. W. Bode i E. M. Carreira, J. Am. Chem. Soc. **123** (2001) 3611–3612.

- V. Jäger, W. Frey, Y. Bathich, S. Shiva, M. Ibrahim, M. Henneböhle, P.-Y. LeRoy i M. Imerhasan, Z. Naturforsch. B 65 (2010) 821–832.
- 21. J. P. Freeman, *Chem. Rev.* 83 (1983) 241–261.
- 22. S. Sakuda, A. Isogai, S. Matsumoto, A. Suzuki i K. Koseki, *Tetrahedron Lett.* 27 (1986) 2475–2478.
- 23. A. Markham i H. M. Bryson, Drugs 50 (1995) 317–333.
- M. Tsuda, M. Yamakawa, S. Oka, Y. Tanaka, Y. Hoshino, Y. Mikami, A. Sato, H. Fujiwara, Y. Ohizumi i J. Kobayashi, *J. Nat. Prod.* 68 (2005) 462–464.
- 25. A. B. Williams i R. S. Jacobs, *Cancer Lett.* 71 (1993) 97–102.
- 26. G. C. Hargaden i P. J. Guiry, Chem. Rev. 109 (2009) 2505–2550.
- D. A. Evans, K. A. Woerpel, M. M. Hinman i M. M. Faul, J. Am. Chem. Soc. 113 (1991) 726–728.
- 28. T. P. Yoon i E. N. Jacobsen, *Science* **299** (2003) 1691–1693.
- 29. R. Hoogenboom, Angew. Chem. Int. Ed. 48 (2009) 7978–7994.
- T. Lorson, M. M. Lübtow, E. Wegener, M. S. Haider, S. Borova, D. Nahm, R. Jordan, M. Sokolski-Papkov, A. V. Kabanov i R. Luxenhofer, *Biomaterials* 178 (2018) 204– 280.
- H. Wang, Z. Bai, T. Jiao, Z. Deng, H. Tong, G. He, Q. Peng i G. Chen, J. Am. Chem. Soc. 140 (2018) 3542–3546.
- 32. O. Chuzel, C. Magnier-Bouvier i E. Schulz, *Tetrahedron: Asymmetry* **19** (2008) 1010–1019.
- M. W. Chojnacka, J. A. Adjei, A. J. Lough, G. G. Sacripante i R. A. Gossage, Z. Naturforsch. B 75 (2020) 371–377.
- 34. C.-L. Liu, L.-P. Zhou, D. Tripathy i Q.-F. Sun, Chem. Commun. 53 (2017) 2459–2462.
- 35. Y.-Q. Huang i W.-Y. Sun, *CrystEngComm* **20** (2018) 6109–6121.
- M. Ruggeri, A. W. Dombrowski, S. W. Djuric i I. R. Baxendale, J. Org. Chem. 85 (2020) 7276–7286.
- D. Obrecht, C. Abrecht, M. Altorfer, U. Bohdal, A. Grieder, M. Kleber, P. Pfyffer i K. Müller, *Helv. Chim. Acta* **79** (1996) 1315–1337.
- 38. S. Dahiya i R. Dahiya, Eur. J. Med. Chem. 218 (2021) 113406.

- K. Arora, P. M. Sherilraj i S. L. Mudavath, *Comprhensive Analytical Chemistry*, Vol. 103, Elsivier, Indija, 2023, str. 1–28.
- 40. J. Bernstein, R. E. Davis, L. Shimoni i N. Chang, *Angew. Chem. Int. Ed. Engl.* **34** (1995) 1555–1573.
- 41. M. Simonyi, Advances in Drug Research, Elsevier, Budimpešta, vol. 30, 1997, str. 73–110.
- 42. S. I. Kirin, D. Wissenbach i N. Metzler-Nolte, New J. Chem. 29 (2005) 1168–1173.
- Z. Kokan, B. Kovačević, Z. Štefanić, P. Tzvetkova i S. I. Kirin, *Chem. Commun.* 54 (2018) 2094–2097.
- 44. C. Saavedra, R. Hernández, A. Boto i E. Álvarez, J. Org. Chem. **74** (2009) 4655–4665.
- 45. S. E. Snyder, B.-S. Huang, Y.-T. Chen, H.-S. Lin i J. R. Carey, Org. Lett. 14 (2012) 3442–3445.
- Z. Kokan, B. Perić, M. Vazdar, Ž. Marinić, D. Vikić-Topić, E. Meštrović i S. I. Kirin, Chem. Commun. 53 (2017) 1945–1948.
- X. Caumes, A. Baldi, G. Gontard, P. Brocorens, R. Lazzaroni, N. Vanthuyne, C. Troufflard, M. Raynal i L. Bouteiller, *Chem. Commun.* 52 (2016) 13369–13372.
- M. Raynal, Y. Li, C. Troufflard, C. Przybylski, G. Gontard, T. Maistriaux, J. Idé, R. Lazzaroni, L. Bouteiller i P. Brocorens, *Phys. Chem. Chem. Phys.* 23 (2021) 5207–5221.
- F. Perlitius, A. Walczak, M. Čonková, G. Markiewicz, J. Harrowfield i A. R. Stefankiewicz, J. Mol. Liq. 367 (2022) 120511.
- 50. B. Gong, C. Zheng i Y. Yan, J. Chem. Crystallogr. 29 (1999) 649–652.
- M. Pernar, Z. Kokan, J. Kralj, Z. Glasovac, L.-M. Tumir, I. Piantanida, D. Eljuga, I. Turel, A. Brozovic i S. I. Kirin, *Bioorg. Chem.* 87 (2019) 432–446.
- 52. Z. Kokan i S. I. Kirin, RSC Adv. 2 (2012) 5729–5737.
- 53. J. F. Scholtes i O. Trapp, Angew. Chem. Int. Ed. 58 (2019) 6306–6310.
- 54. J. F. Scholtes i O. Trapp, Chem. Eur. J. 25 (2019) 11707–11714.
- 55. S. Iba, K. Iwata, T. Sotani, T. Ishida, N. Sano, H. Sogawa i F. Sanda, *Organometallics*40 (2021) 3550–3559.
- 56. A. Ch. Laungani i B. Breit, Chem. Commun. 2008 (2008) 844-846.
- 57. A. J. Sandee, A. M. Van Der Burg i J. N. H. Reek, *Chem. Commun.* **2007** (2007) 864–866.
- 58. A. C. Laungani, J. M. Slattery, I. Krossing i B. Breit, *Chem. Eur. J.* **14** (2008) 4488–4502.
- M. Wang, D. Pan, Q. Zhang, Y. Lei, C. Wang, H. Jia, L. Mou, X. Miao, X. Ren i Z. Xu, J. Am. Chem. Soc. 146 (2024) 6675–6685.
- K. Liu, W.-X. Guo, X.-L. Hu, Y.-Y. Wang, Q. Yue i E.-Q. Gao, J. Solid State Chem. 273 (2019) 53–61.
- Y. Zhai, X. Zhao, Z. Cui, M. Wang, Y. Wang, L. Li, Q. Sun, X. Yang, D. Zeng, Y. Liu, Y. Sun, Z. Lou, L. Shang i Z. Yin, J. Med. Chem. 58 (2015) 9414–9420.
- 62. L.-H. Li, X.-C. Zeng i P.-R. Liu, Acta Crystallogr. E Struct. Rep. Online 62 (2006) 02106–02107.
- M. D. Sadar, D. E. Williams, N. R. Mawji, B. O. Patrick, T. Wikanta, E. Chasanah, H. E. Irianto, R. V. Soest i R. J. Andersen, *Org. Lett.* 10 (2008) 4947–4950.
- 64. T. S. Haque, J. C. Little i S. H. Gellman, J. Am. Chem. Soc. 118 (1996) 6975–6985.
- 65. Zheng, Wei-Feng, CSD komunikacija, DOI: 10.5517/CCDC.CSD.CC2D2DRN.
- 66. Maarouf, Nassim, CSD komunikacija, DOI: 10.5517/CCDC.CSD.CC2H2GKM.
- 67. M. Crisma, G. Valle, A. Bianco, F. Formaggio i C. Toniolo, Eds., Z. Kristallogr. Cryst. Mat. 211 (1996) 561–562.
- 68. F. Hong, T. P. Aldhous, P. D. Kemmitt i J. F. Bower, *Nat. Chem.* **16** (2024) 1125–1132.
- 69. F. M. Menger i K. L. Caran, J. Am. Chem. Soc. 122 (2000) 11679–11691.
- 70. Y. Hitotsuyanagi, T. Tsuchiya, M. Ohata, A. Yoshida, H. Fukaya, H. S. Park, K. Takeya i N. Kawahara, *Chem. Asian J.* **11** (2016) 3389–3397.
- W. Ji, H. Yuan, B. Xue, S. Guerin, H. Li, L. Zhang, Y. Liu, L. J. W. Shimon, M. Si, Y. Cao, W. Wang, D. Thompson, K. Cai, R. Yang i E. Gazit, *Angew. Chem. Int. Ed.* 61 (2022) e202201234.
- 72. A. Białońska i Z. Ciunik, Cryst. Growth Des. 13 (2013) 111-120.
- 73. A. Cholewiak, Ł. Dobrzycki, J. Jurczak i F. Ulatowski, Org. Biomol. Chem. 16 (2018) 2411–2420.
- S. E. Snyder, P. I. Volkers, D. A. Engebretson, W. Lee, W. H. Pirkle i J. R. Carey, Org. Lett. 9 (2007) 2341–2343.

- 75. T. Nanjo, A. Matsumoto, T. Oshita i Y. Takemoto, J. Am. Chem. Soc. 145 (2023) 19067–19075.
- 76. R. G. Vaswani i A. R. Chamberlin, J. Org. Chem. 73 (2008) 1661–1681.
- 77. M. Doi, H. Miyako, A. Asano i T. Ishida, Anal. Sci. 15 (1999) 109–110.
- 78. G. Valle, M. Crisma, C. Toniolo, E. M. Holt, M. Tamura, J. Bland i C. H. Stammer, *Int. J. Pep. Protein Res.* **34** (2009) 56–65.
- C. R. Kennedy, D. Lehnherr, N. S. Rajapaksa, D. D. Ford, Y. Park i E. N. Jacobsen, J. Am. Chem. Soc. 138 (2016) 13525–13528.
- L. Antolini, L. P. Battaglia, A. B. Corradi, L. Menabue, G. Micera i M. Saladini, *Inorg. Chem.* 25 (1986) 3301–3306.
- 81. Y. Hua, Y. Liu, C.-H. Chen i A. H. Flood, J. Am. Chem. Soc. 135 (2013) 14401– 14412.
- M. P. Feth, W. Heyse, B. Baumgartner, N. Nagel, C. Tappertzhofen, T. Olpp, J. Jurascheck, J. Ulrich, L. Helmdach i C. Petzoldt, *Eur. J. Pharm. Biopharm.* 83 (2013) 436–448.
- J. D. Kilburn, M. B. Hursthouse, E. Shepherd i T. Gelbrich, CSD komunikacija, DOI: 10.5258/ECRYSTALS/405.
- H. Fernández-Pérez, P. Lenartowicz, L. Carreras, A. Grabulosa, P. Kafarski i A. Vidal-Ferran, J. Org. Chem. 85 (2020) 14779–14784.
- S. Wang, Y. Otani, L. Zhai, A. Su, M. Nara, M. Kawahata, K. Yamaguchi, A. Sada, R. Ohki i T. Ohwada, *Org. Lett.* 21 (2019) 7813–7817.
- 86. N. C. Cohen, I. Ernest, R. Scartazzini, P. Wirz, H. Fritz, H. Fuhrer i G. Rihs, *Helv. Chim. Acta* **70** (1987) 1967–1979.
- 87. X. Wu, Z.-X. Xu, F. Wang i J. Zhang, Inorg. Chem. 55 (2016) 5095–5097.
- 88. X.-S. Tai, L.-L. Liu i J. Yin, J. Inorg. Organomet. Polym. 24 (2014) 1014–1020.
- 89. H. M. Tay i C. Hua, Crystal Growth & Design 20 (2020) 5843–5853.
- 90. Z. Zong, P. Li, A. Hao i P. Xing, J. Phys. Chem. Lett. 11 (2020) 4147–4155.
- 91. H. Zhang, Y. Kang, X. Qi, J. Wu, D. Liu, A. Fan, J. Huang i W. Lin, *Bioorg. Chem.*129 (2022) 106114.
- W. Ji, B. Xue, S. Bera, S. Guerin, Y. Liu, H. Yuan, Q. Li, C. Yuan, L. J. W. Shimon, Q. Ma, E. Kiely, S. A. M. Tofail, M. Si, X. Yan, Y. Cao, W. Wang, R. Yang, D. Thompson, J. Li i E. Gazit, ACS Nano 14 (2020) 10704–10715.

- 93. S. E. Snyder, B. Huang, Y. W. Chu, H. Lin i J. R. Carey, *Chem. Eur. J.* **18** (2012) 12663–12671.
- 94. G. Gasser, O. Brosch, A. Ewers, T. Weyhermüller i N. Metzler-Nolte, *Dalton Trans.*2009 (2009) 4310–4317.
- 95. A. Białońska i Z. Ciunik, CrystEngComm 15 (2013) 6448-6452.
- 96. A. D. Konar, CrystEngComm 15 (2013) 2466–2473
- 97. D. Moye-Sherman, M. B. Welch, J. Reibenspies i K. Burgess, *Chem. Commun.* (1998) 2377–2378.
- 98. I. L. Karle, D. Ranganathan i V. Haridas, J. Am. Chem. Soc. 120 (1998) 6903–6908.
- 99. F. Eißmann i E. Weber, J. Mol. Struct. 994 (2011) 392–402.
- J. Nachtigall, K. Schneider, C. Bruntner, A. T. Bull, M. Goodfellow, H. Zinecker, J. F. Imhoff, G. Nicholson, E. Irran, R. D. Süssmuth i H.-P. Fiedler, *J. Antibiot.* 64 (2011) 453–457.
- 101. G. Liu, L. Zhu, W. Ji, C. Feng i Z. Wei, Angew. Chem. Int. Ed. 55 (2016) 2411-2415.
- D. Rabaud, P. Dussart, G. Ducouret, P.-A. Albouy, J. Forté, B. Isare i L. Bouteiller, Soft Matter. 19 (2023) 6958–6967.
- 103. M. Y. Said, C. S. Kang, S. Wang, W. Sheffler, P. J. Salveson, A. K. Bera, A. Kang, H. Nguyen, R. Ballard, X. Li, H. Bai, L. Stewart, P. Levine i D. Baker, *Chem. Mater.* 34 (2022) 9736–9744.
- 104. J. F. Scholtes i O. Trapp, Organometallics 38 (2019) 3955–3960.
- 105. W. Ji, B. Xue, Y. Yin, S. Guerin, Y. Wang, L. Zhang, Y. Cheng, L. J. W. Shimon, Y. Chen, D. Thompson, R. Yang, Y. Cao, W. Wang, K. Cai i E. Gazit, *J. Am. Chem. Soc.* 144 (2022) 18375–18386.
- 106. K. Frydenvang, G. Hjelvang, B. Jensen i S. M. Martinho Do Rosario, Acta Crystallogr. C Cryst. Struct. Commun. 50 (1994) 617–623.
- P. Lenartowicz, B. Dziuk, B. Zarychta, M. Makowski i P. Kafarski, *Phosphorus Sulfur Relat. Elem.* 192 (2017) 706–712.
- S. Deolka, R. Govindarajan, S. Vasylevskyi, M. C. Roy, J. R. Khusnutdinova i E. Khaskin, *Chem. Sci.* 13 (2022) 12971–12979.
- C. G. Ágoston, K. Várnagy, A. Bényei, D. Sanna, G. Micera i I. Sóvágó, *Polyhedron* 19 (2000) 1849–1857.

- R. Diószegi, D. Bonczidai-Kelemen, A. Cs. Bényei, N. V. May, I. Fábián i N. Lihi, Inorg. Chem. 61 (2022) 2319–2332.
- 111. S. Bera, D. K. S. Ambast, B. Pal i D. Haldar, *Phys. Chem. Chem. Phys.* **17** (2015) 16983–16990.
- 112. M. S. Chambers, S. C. Hobbs, S. R. Fletcher, V. G. Matassa, P. J. Mitchell, A. P. Watt, R. Baker, S. B. Freedman, S. Patel i A. J. Smith, *Bioorg. Med. Chem. Lett.* 3 (1993) 1919–1924.
- M. Tabatabai, D. Schollmeyer i H. Ritter, CSD komunikacija, DOI: 10.5517/CCDC.CSD.CCYV430.
- 114. F. J. Urban, R. Breitenbach, D. Gonyaw i S. E. Kelly, Synth. Commun. 26 (1996) 2241–2247.
- N. B. Rashid Baig, R. N. Chandrakala, V. S. Sudhir i S. Chandrasekaran, J. Org. Chem. 75 (2010) 2910–2921.
- M. Tabatabai, D. Schollmeyer i H. Ritter, CSD komunikacija, DOI: 10.5517/CCDC.CSD.CCYV441.
- 117. Z.-H. Yan, D. Li i X.-B. Yin, Sci. Bull. 62 (2017) 1344–1354.
- 118. P. S. Steinlandt, L. Zhang i E. Meggers, Chem. Rev. 123 (2023) 4764-4794.
- 119. Z.-Y. Cao, W. D. G. Brittain, J. S. Fossey i F. Zhou, *Catal. Sci. Technol.* **5** (2015) 3441–3451.
- 120. J. Crassous, Chem. Commun. 48 (2012) 9684–9695.
- F. Freire, J. M. Seco, E. Quiñoá i R. Riguera, Advanced Polymer Science, Vol. 262, Springer International Publishing, Cham, 2013, str. 123–140.
- 122. R. Horikoshi i T. Mochida, Coord. Chem. Rev. 250 (2006) 2595–2609.
- 123. J. Dong, Y. Liu i Y. Cui, Acc. Chem. Res. 54 (2021) 194-206.
- 124. J. Crassous, Chem. Soc. Rev. 38 (2009) 830–845.
- 125. P. K. Pal, M. G. B. Drew i D. Datta, New J. Chem. 26 (2002) 24–27.
- 126. N. Pantalon Juraj i S. I. Kirin, Coord. Chem. Rev. 445 (2021) 214051.
- 127. N. Pantalon Juraj, M. Krklec, T. Novosel, B. Perić, R. Vianello, S. Raić-Malić i S. I. Kirin, *Dalton Trans.* 49 (2020) 9002–9015.
 128. G. L. Parker, S. Lau, B. Leforestier i A. B. Chaplin, *Eur. J. Inorg. Chem.* 2019 (2019) 3791–3798.

- 129. B. M. Schmidt, H.-A. Ho, K. Basemann, A. Ellern, T. L. Windus i A. D. Sadow, *Organometallics* **37** (2018) 4055–4069.
- 130. J. M. Lassaletta, *Atropisomerism and Axial Chirality*, World Scientific Publishing Europe Ltd., London, 2019, 1–98.
- G. Xu, Q. Luo, S. Eibauer, A. F. Rausch, S. Stempfhuber, M. Zabel, H. Yersin i O. Reiser, *Dalton Trans.* 40 (2011) 8800–8806.
- 132. J. F. Scholtes i O. Trapp, Synlett 32 (2021) 971–980.
- T. M. Barclay, I. Del Río, R. A. Gossage i S. M. Jackson, Can. J. Chem. 81 (2003) 1482–1491.
- R. A. Gossage, P. N. Yadav, T. D. MacInnis, J. W. Quail i A. Decken, *Can. J. Chem.* 87 (2009) 368–379.
- M.-G. Alexandru, T. Cirkovic Velickovic, M. Krstic, M.-M. Hrubaru i C. Draghici, J. Mol. Struct. 1041 (2013) 55–60.
- 136. R. Pattacini, S. Jie i P. Braunstein, Chem. Commun. 2009 (2009) 890-892.
- J.-M. Valk, F. Maassarani, P. Van Der Sluis, A. L. Spek, J. Boersma i G. Van Koten, Organometallics 13 (1994) 2320–2329.
- R. S. Prasad, C. E. Anderson, C. J. Richards i L. E. Overman, Organometallics 24 (2005) 77–81.
- I. P. Smoliakova, K. J. Keuseman, D. C. Haagenson, D. M. Wellmann, P. B. Colligan, N. A. Kataeva, A. V. Churakov, L. G. Kuz'mina i V. V. Dunina, *J. Organomet. Chem.* 603 (2000) 86–97.
- 140. R. A. Gossage, H. A. Jenkins i P. N. Yadav, Tetrahedron Lett. 45 (2004) 7689–7691.
- 141. R. A. Arthurs, D. L. Hughes i C. J. Richards, Organometallics 38 (2019) 4271–4279.
- A. Scrivanti, R. Sole, M. Bortoluzzi, V. Beghetto, N. Bardella i A. Dolmella, *Inorg. Chim. Acta* 498 (2019) 119129.
- R. Hassani, M. Jabli, Y. Kacem, J. Marrot, D. Prim i B. Ben Hassine, *Beilstein J. Org. Chem.* 11 (2015) 1175–1186.
- 144. R. A. Gossage, H. A. Jenkins, N. D. Jones, R. C. Jones i B. F. Yates, *Dalton Trans.* 2008 (2008) 3115–3122.
- 145. P. N. Yadav, R. A. Gossage i A. Decken, Anal. Sci. 24 (2008) X301-X302.
- U. Belluco, R. Bertani, F. Meneghetti, R. A. Michelin, M. Mozzon, G. Bandoli i A. Dolmella, *Inorg. Chim. Acta* 300–302 (2000) 912–921.

- 147. S. Schröder, W. Frey i G. Maas, Z. Naturforsch. B 71 (2016) 683-696.
- 148. G. Zhang, Y. Z. Zhang, W.-F. Lo, J. Jiang, J. A. Golen i A. L. Rheingold, *Polyhedron* 103 (2016) 227–234.
- 149. F. Belaj, C. Holzer i N. C. Mösch-Zanetti, CSD komunikacija, DOI: 10.5517/CCDC.CSD.CC2C42H3.
- R. A. Michelin, R. Bertani, M. Mozzon, G. Bombieri, F. Benetollo i R. J. Angelici, J. Chem. Soc., Dalton Trans. 1993 (1993) 959–966.
- 151. P. N. Yadav, R. E. Beveridge, J. Blay, A. R. Boyd, M. W. Chojnacka, A. Decken, A. A. Deshpande, M. G. Gardiner, T. W. Hambley, M. J. Hughes, L. Jolly, J. A. Lavangie, T. D. MacInnis, S. A. McFarland, E. J. New i R. A. Gossage, *Med. Chem. Commun.* 2 (2011) 274–277.
- 152. C. M. P. Ferreira, M. F. C. Guedes Da Silva, R. A. Michelin, V. Yu. Kukushkin, J. J. R. Fraústo Da Silva i A. J. L. Pombeiro, *Dalton Trans.* 2003 (2003) 3751–3756.
- R. A. Michelin, R. Bertani, M. Mozzon, G. Bombieri, F. Benetollo i R. J. Angelici, Organometallics 10 (1991) 1751–1757.
- D. C. Onwudiwe, C. A. Strydom i E. C. Hosten, Acta Crystallogr. E Struct. Rep. Online 68 (2012) m1309–m1309.
- 155. R. A. Gossage i H. A. Jenkins, Anal. Sci. 24 (2008) X155-X156.
- A. Decken, C. R. Eisnor, R. A. Gossage i S. M. Jackson, *Inorg. Chim. Acta* 359 (2006) 1743–1753.
- 157. T. Tsuno, D. Kato, H. Brunner i H. Ike, Inorg. Chim. Acta 392 (2012) 331-334.
- J. A. Cabeza, I. Da Silva, I. Del Río, R. A. Gossage, L. Martínez-Méndez i D. Miguel, J. Organomet. Chem. 692 (2007) 4346–4352.
- 159. S. Hiraoka, E. Okuno, T. Tanaka, M. Shiro i M. Shionoya, J. Am. Chem. Soc. 130 (2008) 9089–9098.
- Y. Zhao, L.-L. Zhai, G.-C. Lv, X. Zhou i W.-Y. Sun, *Inorg. Chim. Acta* 392 (2012) 38–45.
- M. Luo, J.-C. Zhang, H. Yin, C.-M. Wang, L. Xie, K.-P. Li, M. Goto, S. L. Morris-Natschke, K.-H. Lee, J.-H. Zhang, Y.-M. Zhang i X.-R. Zhang, J. Inorg. Biochem. 239 (2023) 112048.
- Y. Zhao, L. Luo, C. Liu, M. Chen i W.-Y. Sun, *Inorg. Chem. Commun.* 14 (2011) 1145–1148.

- 163. Y.-Q. Huang, G.-X. Liu, X.-Y. Zhou, T. Okamura, Z. Su, J. Fan, W.-Y. Sun, J.-Q. Yu i N. Ueyama, *New J. Chem.* **34** (2010) 2436–2444.
- 164. C.-W. Yeh, F.-C. Huang, S.-C. Lin, A. Jong i M.-C. Suen, Acta Crystallogr. E Struct. *Rep. Online* **68** (2012) m637–m638.
- D. A. Evans, K. A. Woerpel i M. J. Scott, Angew. Chem. Int. Ed. Engl. 31 (1992) 430–432.
- E. Murguly, T. B. Norsten i N. R. Branda, Angew. Chem. Int. Ed. 40 (2001) 1752– 1755.
- 167. H. Y. Lee, J. Park, M. S. Lah i J.-I. Hong, Chem. Commun. 2007 (2007) 5013–5015.
- E. Vega, E. De Julián, G. Borrajo, J. Díez, E. Lastra i M. P. Gamasa, *Polyhedron* 94 (2015) 59–66.
- Y. Zhao, K. Chen, J. Fan, T. Okamura, Y. Lu, L. Luo i W.-Y. Sun, *Dalton Trans.* 43 (2014) 2252–2258.
- C.-W. Yeh, Y.-W. Ho, H.-T. Lee, J.-C. Wang i M.-C. Suen, Acta Crystallogr. E Struct. Rep. Online 68 (2012) m1170–m1170.
- 171. S. Ma i S. Wu, New J. Chem. 25 (2001) 1337–1341.
- 172. P. Wipf, S. Venkatraman, C. P. Miller i S. J. Geib, Angew. Chem. Int. Ed. Engl. 33 (1994) 1516–1518.
- 173. C. Liu, Y. Zhao, L.-L. Zhai, G.-C. Lv i W.-Y. Sun, J. Coord. Chem. 65 (2012) 165–175.
- 174. Y.-Q. Huang, Z.-L. Shen, X.-Y. Zhou, T. Okamura, Z. Su, J. Fan, W.-Y. Sun, J.-Q. Yu
 i N. Ueyama, *CrystEngComm* 12 (2010) 4328–4338.
- 175. Y.-H. Wang, H.-T. Lee i M.-C. Suen, Polyhedron 27 (2008) 1177–1184.
- Y.-Q. Huang, Z.-L. Shen, T. Okamura, Y. Wang, X.-F. Wang, W.-Y. Sun, J.-Q. Yu i N. Ueyama, *Dalton Trans.* 2008 (2008) 204–213.
- 177. P. Braunstein, G. Clerc i X. Morise, New J. Chem. 27 (2003) 68-72.
- 178. M. Hatano, T. Asai i K. Ishihara, Chemistry Lett. 35 (2006) 172–173.
- 179. S. R. Neal, J. You, A. Ellern i A. D. Sadow, Polyhedron 29 (2010) 544–552.
- 180. M. Luo, CSD komunikacija, DOI: 10.5517/CCDC.CSD.CC21MTBV.
- M.-C. Suen, C.-W. Yeh, S.-C. Lin i Y.-F. Hsu, Acta Crystallogr. E Struct. Rep. Online 67 (2011) m1099–m1099.

- 182. W. Bauer, M. Prem, K. Polborn, K. Sünkel, W. Steglich i W. Beck, *Eur. J. Inorg. Chem.* 1998 (1998) 485–493.
- S. D. Jackson, Ed., *Hydrogenation: Catalysts i Processes*, Walter de Gruyter GmbH, Berlin/Boston, 2018, str. 1–18.
- 184. D. Wang i D. Astruc, Chem. Rev. 115 (2015) 6621–6686.
- 185. C. S. G. Seo i R. H. Morris, Organometallics 38 (2019) 47-65.
- P. Behera, D. S. Ramakrishna, M. M. Chandrasekhar i S. R. Kothakapu, *Chirality* 35 (2023) 477–497.
- H.-U. Blaser, B. Pugin i F. Spindler, Organometallics as Catalysts in the Fine Chemical Industry, vol. 42, Springer Berlin Heidelberg, Berlin, 2012, str. 65–102.
- 188. I. D. Gridnev i T. Imamoto, Acc. Chem. Res. 37 (2004) 633-644.
- 189. B. B. C. Peters i P. G. Andersson, J. Am. Chem. Soc. 144 (2022) 16252–16261.
- 190. J. A. Osborn, F. H. Jardine, J. F. Young i G. Wilkinson, J. Chem. Soc., A (1966) 1711–1732.
- 191. W. S. Knowles i M. J. Sabacky, Chem. Commun. (London) (1968) 1445-1446.
- 192. L. Horner, H. Siegel i H. Büthe, Angew. Chem. Int. Ed. Engl. 7 (1968) 942–942.
- 193. R. Crabtree, Acc. Chem. Res. 12 (1979) 331–337.
 194. A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi i R. Noyori, J. Am. Chem. Soc. 102 (1980) 7932–7934.
- 195. H. Brunner, U. Obermann i P. Wimmer, J. Organomet. Chem. 316 (1986) C1-C3.
- 196. P. Von Matt i A. Pfaltz, Angew. Chem. Int. Ed. Engl. 32 (1993) 566–568.
- 197. J. Sprinz i G. Helmchen, Tetrahedron Lett. 34 (1993) 1769–1772.
- G. J. Dawson, C. G. Frost, J. M. J. Williams i S. J. Coote, *Tetrahedron Lett.* 34 (1993) 3149–3150.
- 199. P. Schnider, G. Koch, R. Prétôt, G. Wang, F. M. Bohnen, C. Krüger i A. Pfaltz, *Chem. Eur. J.* 3 (1997) 887–892.
- 200. W. Chen i J. Xiao, Tetrahedron Lett. 42 (2001) 8737–8740.
- 201. G. Shang, W. Li i X. Zhang, *Catalytic Asymmetric Synthesis*, Wiley, New Jersey, 2010, str. 343–436.
- 202. H.-U. Blaser, W. Brieden, B. Pugin, F. Spindler, M. Studer i A. Togni, *Top. Cat.* **19** (2002) 3–16.
- 203. U. Nagel i J. Albrecht, Top. Cat. 5 (1998) 3-23.

- 204. C. Bruneau, Tetrahedron 151 (2024) 133793.
- 205. L. Xu, T. Yang, H. Sun, J. Zeng, S. Mu, X. Zhang i G. Chen, *Angew. Chem. Int. Ed.*63 (2024) e202319662.
- 206. C. Xie, Q. Guo, X. Wu, W. Ye i G. Hou, J. Org. Chem. 88 (2023) 15726–15738.
- R. Gunasekar, R. L. Goodyear, I. Proietti Silvestri i J. Xiao, Org. Biomol. Chem. 20 (2022) 1794–1827.
- 208. C. Margarita i P. G. Andersson, J. Am. Chem. Soc. 139 (2017) 1346–1356.
- M. A. Stoffels, F. J. R. Klauck, T. Hamadi, F. Glorius i J. Leker, Adv. Synth. Catal.
 362 (2020) 1258–1274.
- 210. S. J. Roseblade i A. Pfaltz, Acc. Chem. Res. 40 (2007) 1402–1411.
- J. Margalef, O. Pàmies i M. Diéguez, *Topics in Organometallic Chemistry*, Vol. 69, Springer International Publishing, Cham, 2020, str. 153–205.
- 212. A. Cadu i P. G. Andersson, J. Organomet. Chem. 714 (2012) 3-11.
- J. G. De Vries i C. J. Elsevier, *The Handbook of Homogeneous Hydrogenation*, Wiley, Weinheim, 2006, 1–43.
- 214. T. L. Church i P. G. Andersson, Coord. Chem. Rev. 252 (2008) 513-531.
- 215. S.-F. Zhu i Q.-L. Zhou, Acc. Chem. Res. 50 (2017) 988–1001.
- 216. E. Salomó, S. Orgué, A. Riera i X. Verdaguer, Angew. Chem. Int. Ed. 55 (2016) 7988–7992.
- 217. M. Van Den Berg, A. J. Minnaard, E. P. Schudde, J. Van Esch, A. H. M. De Vries, J. G. De Vries i B. L. Feringa, *J. Am. Chem. Soc.* 122 (2000) 11539–11540.
- 218. M. Cettolin, P. Puylaert i J. G. De Vries, *Rhodium Catalysis*, Vol. 61, Springer International Publishing, Cham, 2017, str. 231–261.
- S. Gladiali, E. Alberico i I. Gridnev, *Innovative Catalysis in Organic Synthesis*, Wiley, Weinheim, 2012, str. 103–129.
- 220. L. Lefort, J. A. F. Boogers, A. H. M. deVries i J. G. deVries, *Top. Catal.* **40** (2006) 185–191.
- 221. M. T. Reetz, T. Sell, A. Meiswinkel i G. Mehler, Angew. Chem. Int. Ed. 42 (2003) 790–793.
- 222. D. J. Frank, A. Franzke i A. Pfaltz, Chem. Eur. J. 19 (2013) 2405–2415.
- 223. M. T. Reetz i X. Li, Angew. Chem. Int. Ed. 44 (2005) 2959–2962.

- 224. R. Hoen, J. A. F. Boogers, H. Bernsmann, A. J. Minnaard, A. Meetsma, T. D. Tiemersma-Wegman, A. H. M. De Vries, J. G. De Vries i B. L. Feringa, Angew. Chem. Int. Ed. 44 (2005) 4209–4212.
- 225. J. W. Faller, S. C. Milheiro i J. Parr, J. Organomet. Chem. 691 (2006) 4945-4955.
- 226. M. T. Reetz, J. Ma i R. Goddard, Angew. Chem. Int. Ed. 44 (2005) 412-415.
- 227. F. Song, G. Ouyang, Y. Li, Y. He i Q. Fan, Eur. J. Org. Chem. 2014 (2014) 6713–6719.
- X. Jiang, L. Lefort, P. E. Goudriaan, A. H. M. De Vries, P. W. N. M. Van Leeuwen, J. G. De Vries i J. N. H. Reek, *Angew. Chem. Int. Ed.* 45 (2006) 1223–1227.
- 229. Y. Li, Y. Feng, Y.-M. He, F. Chen, J. Pan i Q.-H. Fan, *Tetrahedron Lett.* **49** (2008) 2878–2881.
- V. S. Koshti, A. Sen, D. Shinde i S. H. Chikkali, *Dalton Trans.* 46 (2017) 13966– 13973.
- 231. A. C. Chandanshive, R. G. Gonnade i S. H. Chikkali, *Chem. Eur. J.* **30** (2024) e202401077.
- A. Desmarchelier, X. Caumes, M. Raynal, A. Vidal-Ferran, P. W. N. M. Van Leeuwen i L. Bouteiller, J. Am. Chem. Soc. 138 (2016) 4908–4916.
- M. Birkholz, N. V. Dubrovina, H. Jiao, D. Michalik, J. Holz, R. Paciello, B. Breit i A. Börner, *Chem. Eur. J.* 13 (2007) 5896–5907.
- P. W. N. M. Van Leeuwen, D. Rivillo, M. Raynal i Z. Freixa, J. Am. Chem. Soc. 133 (2011) 18562–18565.
- 235. K. M. Wenz, G. Leonhardt-Lutterbeck i B. Breit, Angew. Chem. 130 (2018) 5194– 5198.
- 236. M. Raynal, F. Portier, P. W. N. M. Van Leeuwen i L. Bouteiller, *J. Am. Chem. Soc.* 135 (2013) 17687–17690.
- 237. Z. Kokan i S. I. Kirin, Eur. J. Org. Chem. 2013 (2013) 8154–8161.
- 238. B. M. Trost i R. C. Bunt, J. Am. Chem. Soc. 116 (1994) 4089–4090.
- M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori i R. Spagna, J. Appl. Crystallogr. 45 (2012) 357–361.
- 240. G. M. Sheldrick, Acta crystallogr. A: Found. Crystallogr. 64 (2008) 112–122.
- 241. P. Pracht, F. Bohle i S. Grimme, Phys. Chem. Chem. Phys. 22 (2020) 7169–7192.

- S. Grimme, F. Bohle, A. Hansen, P. Pracht, S. Spicher i M. Stahn, J. Phys. Chem. A 125 (2021) 4039–4054.
- 243. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek i G. R. Hutchison, *J. Cheminform.* **4** (2012) 1–17.
- C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher i S. Grimme, WIREs Comput. Mol. Sci. 11 (2021) e1493.
- 245. S. Ehlert, M. Stahn, S. Spicher i S. Grimme, J. Chem. Theory Comput. 17 (2021) 4250–4261.
- 246. S. Grimme, A. Hansen, S. Ehlert i J.-M. Mewes, J. Chem. Phys. 154 (2021) 064103.
- 247. A. V. Marenich, C. J. Cramer i D. G. Truhlar, J. Phys. Chem. B 113 (2009) 6378-6396.
- 248. S. Spicher i S. Grimme, J. Chem. Theory Comput. 17 (2021) 1701–1714.
- 249. M. Bakija, B. Perić i S. I. Kirin, New J. Chem. 48 (2024) 8702-8719.
- 250. R. Ditchfield, Mol. Phys. 27 (1974) 789-807.
- 251. F. Jensen, Theor. Chem. Acc. 126 (2010) 371–382.
- 252. F. Jensen, J. Chem. Theory Comput. 11 (2015) 132–138.
- S. Grimme, C. Bannwarth, S. Dohm, A. Hansen, J. Pisarek, P. Pracht, J. Seibert i F. Neese, Angew. Chem. Int. Ed. 56 (2017) 14763–14769.
- 254. P. H. Willoughby, M. J. Jansma i T. R. Hoye, Nat. Protoc. 9 (2014) 643-660.
- 255. F. Neese, WIREs Comput Mol. Sci. 12 (2022) e1606.
- 256. Microsoft Corporation, 2018. Microsoft Excel, Available at: https://office.microsoft.com/excel.
- 257. M. Bursch, J. Mewes, A. Hansen i S. Grimme, Angew. Chem. In.t Ed. 61 (2022) e202205735.
- 258. C. J. Cramer i D. G. Truhlar, Phys. Chem. Chem. Phys. 11 (2009) 10757.
- 259. E. A. Amin i D. G. Truhlar, J. Chem. Theory Comput. 4 (2008) 75-85.
- 260. P. J. Hay i W. R. Wadt, J. Chem. Phys. 82 (1985) 270-283.
- D. Škalamera, E. Sanders, R. Vianello, A. Maršavelski, A. Pevec, I. Turel i S. I. Kirin, Dalton Trans. 45 (2016) 2845–2858.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,

B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, i D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- CrysAlisPro (Version 1.171.39.46), Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, 2018.
- 264. G. M. Sheldrick, Acta Crystallogr. A Found. Adv. 71 (2015) 3-8.
- 265. G. M. Sheldrick, Acta Crystallogr. C Struct. Chem. 71 (2015) 3-8.
- 266. I. A. Guzei, J. Appl. Crystallogr. 47 (2014) 806-809.
- 267. A. L. Spek, Acta Crystallogr. C Struct. Chem. 71 (2015) 9–18.
- 268. H.-J. Kim, D. Moon, M. S. Lah i J.-I. Hong, Angew. Chem. Int. Ed. 41 (2002) 3174– 3177.
- 269. M. Luo, J. C. Zhang i H. Yin, J. Chem. Sci. 127 (2015) 163-166.
- S. Chakrabortty, K. Konieczny, B. H. Müller, A. Spannenberg, P. C. J. Kamer i J. G. De Vries, *Catal. Sci. Technol.* 12 (2022) 1392–1399.
- 271. S. Opačak, B. Perić, T. Gojšić, A. Čikoš, D. Vikić-Topić i S. I. Kirin, New J. Chem.
 46 (2022) 13275–13285.
- 272. S. Beheshti, S. Martić i H. Kraatz, Chem. Eur. J. 18 (2012) 9099–9105.
- 273. L. J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565-565.
- 274. T. Aida, E. W. Meijer i S. I. Stupp, Science 335 (2012) 813-817.
- M. W. Powner, J. D. Sutherland i J. W. Szostak, J. Am. Chem. Soc. 132 (2010) 16677– 16688.
- 276. C. Janiak, J. Chem. Soc., Dalton Trans. (2000) 3885-3896.
- B. Ishimoto, K. Tonan i S. Ikawa, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 56 (2000) 201–209.

- 278. L. Barišić, M. Čakić, K. A. Mahmoud, Y. Liu, H. Kraatz, H. Pritzkow, S. I. Kirin, N. Metzler-Nolte i V. Rapić, *Chem. Eur. J.* **12** (2006) 4965–4980.
- 279. M. H. Abraham i R. J. Abraham, New J. Chem. 41 (2017) 6064–6066.
- E. S. Stevens, N. Sugawara, G. M. Bonora i C. Toniolo, J. Am. Chem. Soc. 102 (1980) 7048–7050.
- 281. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler i P. A. Wood, *J. Appl. Crystallogr.* 53 (2020) 226–235.
- 282. L. Yang, D. R. Powell i R. P. Houser, Dalton Trans. (2007) 955-964.
- 283. A. Okuniewski, D. Rosiak, J. Chojnacki i B. Becker, Polyhedron 90 (2015) 47-57.
- N. Pantalon Juraj, G. I. Miletić, B. Perić, Z. Popović, N. Smrečki, R. Vianello i S. I. Kirin, *Inorg. Chem.* 58 (2019) 16445–16457.
- P. S. Pregosin i R. W. Kunz, ³¹P i ¹³C NMR of Transition Metal Phosphine Complexes, Springer Berlin Heidelberg, Berlin, Heidelberg, 1979, str. 16–46.
- C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler i J. Van De Streek, J. Appl. Crystallogr. 39 (2006) 453–457.
- C. Walpole, S. Y. Ko, M. Brown, D. Beattie, E. Campbell, F. Dickenson, S. Ewan, G. A. Hughes, M. Lemaire, J. Lerpiniere, S. Patel i L. Urban, *J. Med. Chem.* 41 (1998) 3159–3173.
- P. P. Bose, M. G. B. Drew, A. K. Das i A. Banerjee, *Chem. Commun.* 2006 (2006) 3196–3198.

§8. DODATAK

Tablica D1. Kristalografski podatci struktura tetraedarskih metalnih kompleksa s literaturnim, petero-članim cikličkim prstenovima pohranjenih u CSD bazi. Kutovi α_1 naglašeni crvenom bojom pripadaju strukturama s IIa* geometrijom.

CSD kod	Metalni atom	Anion	Ligand	α_1, α_2	tip
PINPOT	Ag	trifluoroacetat	2-oksazolin	257,22, 262,81	IVc
WUSYEP	Zn	acetat	2-oksazolin	313,28, 319,94	IVc/IIa
ETUVAQ	Zn	Ι	2-oksazolin	88,75,254,37	IVa
ETUVEU	Zn	Cl	2-oksazolin	330,26, 324,21	Па Па*
ETUVIY	Zn	Br	2-oksazolin	330,06, 321,45 29,91, 34,52	IIa IIa*
ETUVOE	Zn	Ι	2-oksazolin	23,96, 33,44	IIa*
ETUVUK	Zn	Br	2-oksazolin	34,88, 34,88	IIa*
ETUWAR	Zn	Ι	2-oksazolin	303,02, 312,53	IVc/IIIa
YOQBAI	Zn	Cl	2-oksazolin	331,08, 331,08	IIa
YOQBEM	Zn	Cl	2-oksazolin	33,90, 33,90	IIa*
YOQBIQ	Zn	Cl	2-oksazolin	25,83, 35,96	Iia*
YOQBOW	Zn	Cl	2-oksazolin	33,88, 33,88	IIa*
YOQBUC	Zn	Cl	2-oksazolin	32,23, 32,23	IIa*
YOQCAJ	Zn	Br	2-oksazolin	324,97, 324,97	IIa
YOQCEN	Zn	Br	2-oksazolin	34,06, 34,06	IIa*
YOQCIR	Zn	Br	2-oksazolin	32,35, 32,35	IIa*
YOQCOX	Zn	Br	2-oksazolin	342,99, 333,9	IIa*
LIGCEL	Со	Cl	2-oksazolin	329,04, 329,04	IIa*
JUZWUW	Со	Cl	2-oksazolin	254,23, 254,44	IVc
ISAREA	Ag	trifluoroacetat	3,4,5- izooksazol	213,63, 327,7	IIc
ISARIE	Δα	trifluoroacetat	3,4,5-	41,49, 134,74	IIc
ISANE	лg	umuoroacciai	izooksazole	215,80, 319,08	IIc
AVUJIK	Zn	Cl	izoksazol	227,39, 229,76	IVa/IIb
FIBFIG	Zn	Cl	2,5-oksazo	34,56, 34,67	IIa
VOXCIU	Zn	Cl	oksazol	273,42, 273,42	IVc
YUGWII	Zn	Ι	1-pirolin	277,76, 277,76	IVb
EZIYAO	Zn	1,1,1,5,5,5- hexafluoro pentan-2,4-dion	2,5-difenil- oksazol	-	''IIc''
WAZXAW	Zn	I	2-pirolin	0,00, 269,16	IIIa
FADSUY	Zr		pirol	356,75, 291,0 6 , 349,66, 299,7	III

WEYTEA	Ti	dimetilamid	pirol	98,51, 143,80	III
WEYTOK	Ti	dimetilamid	pirol	112,96, 136,90	III
MEMQAX	Zn	pentafluoro benzen	pirolidin	56,60, 56,60 (1,59, 1,59)	II
WIQROG	Zn	Cl	pirolidin	75,17, 75,17 (7,01, 7,01) 167,70, 167,70 (2,06, 28,06)	П
WIQSIB	Zn	Cl	pirolidin	101,38, 104,66	IVb
GASSUO	Hg	Br	tetrahidro selenofen	112,90, 112,90 (13,61, 13,61)	
GASTAV	Hg	Ι	tetrahidro selenophene	244,99, 244,99 (30,21, 30,21)	IV*
RITVEW	Zn		tiazol-2(3H)- imin	51,59, 53,33, 58,70	IVc
IJIVON	Zn	N3	tiazol	125,58, 247,54	IVa
NIHTON	Zn	Br	tiazol	87,98, 229,12	IVa
NIHTUT	Zn	Ι	tiazol	87,73, 227,23	IVa
ONOJEH	Zn	Cl	tiazol	32,85, 32,85	IIa
WACDIN	Zn	Cl	tiazol	93,70, 253,34	IVa
GOGFUE	Cd	Cl	tiazol	105,60, 108,54	IVb
ATHCCO	Со	Cl	tiazol	157,79, 157,79	IIb
BHMTZC	Co	Br	tiazol	243,85, 220,54	IIIb
REYRIZ	Co	Cl	tiazol	106,69, 257,75	IVa
REYROF	Со	Cl	tiazol	237,62, 237,62	IVb
FOPROS	Co	pirolidin	2,3- dihidrotiazol	63,43, 176,80	IIIc
MONROY	Fe	O=N-	tiazolidin-2- on	301,1, 272,40	IVc
MONVUI	Fe	O=N-	tiazolidin-2- on	291,08, 292,85	IVc
QUGREQ	Zn	Cl	tiazolin	118,00, 134,81	IVb

Tablica D2. Odabrani parametri kristalnih struktura odfiltrirani iz CSD baze kristalnih struktura. Tetraedarski metalni kompleksi s molekulskim fragmentom -N-A-Ar– filtrirani su iz baze podataka korištenjem nekoliko parametara strukturnih ograničenja kao što su: tip atoma u strukturi, α kutevi i tip koordinacije oko atoma metala (gledale su se isključivo tetraedarske strukture). Atom A je bilo koji atom koji nije vodik. Udaljenost D je udaljenost između aniona i najbližeg orto-aromatskog atoma vodika iz aromata Ar; siva pozadina čelije označuje da je udaljenost navedena u toj čeliji manja od zbroja van der Waalsovih polumjera tih atoma.

CSD kod	Nje sp²?	Phi sp ² N koplanarni?	М	A1	A2	α1	α2	Tip	Udaljenost (D)
AHET AL	da	d	Zn ²⁺	Cl1	Cl2	- 170,445	- 170,885	IIb	3,085
ALINUF	n	n	Cu ²⁺	Br2	Br1	62,513	-46,749	-	2,992
									3,021
									3,021
BEGREO	da	da	Co ²⁺	Cl1	Cl2	31,653	28,136	IIa(#)*	3,012
									3,046
BEGROY	da	da	Co ²⁺	Cl1	Cl4	-68,239	-35,86	IIIa	2,619
									3,059
BUSVOB	da	da	Co ²⁺	C11	Cl1A	99,036	99,036	IVb	2,837
									2,837
CABNUQ	da	da	Cd^{2+}	C11	Cl1A	53,912	53,912	IVb	2,985
									2,985
CABNUQ01	da	da	Cd^{2+}	C11	Cl1A	54,473	54,473	IVb	3,01
									3,01
COQWEN	da	da	Zn^{2+}	C11	Cl1A	139,471	139,471	IIb	
DIFDII	da	da	Zn ²⁺	Br1	Br1A	-32,126	-32,126	IIa(#)	3,11
ETUVEU	da	da	Zn ²⁺	Cl1	Cl2	31,426	29,312	IIa*	2,717
						-29,735	-35,795	IIa	2,878
				C13	Cl4	31,426	29,312	IIa*	2,804
						-29,735	-35,795	IIa	2,932
ETUVIY	da	da	Zn ²⁺	Br1	Br2	34,522	29,915	IIa*	2,868
						-29,94	-38,551	IIa	3,011
				Br3	Br4	34,522	29,915	IIa*	2,781
						-29,94	-38,551	IIa	2,971
ETUVOE	da	da	Zn ²⁺	I1	I2	23,959	33,44	IIa*	3,105
									3,223
ETUVUK	da	da	Zn ²⁺	Br1	Br1M	34,878	34,878	IIa*	3,193
									3,193
EWUZAY	da	da	Zn ²⁺	Cl3	Cl3B	-33,31	-33,31	IIa	2,737
									2,737
				Cl1	Cl2	22,732	26,877	IIa*	2,764
									3,066

FIBFEC	da	da	Zn^{2+}	Cl1	C12	-36,384	-42,541	IIa	2,644 2,769
COCDEM	da	da	$7n^{2+}$	Cl1	Cl2	-	16 362	IIIa	2 812
GOODEM	ua	ua	ZII	Ch	CIZ	135,815	40,302	111a	2,998
GOGVUW	da	da	Co ²⁺	Cl1	Cl2	-79,03	-38,559	IIIa	2,776
				C13	Cl4	-36,275	-85,132	IIIa	2,806
GOGWAD	da	da	Co ²⁺	I1	I1A	34,054	34,054	IIa(#)*	3,3
									3,3
HAZVIN	da	у	Zn ²⁺	I1	I2	34,727	22,422	IIa*	3,175
									3,211
ITATAY	da	da	Cu ²⁺	Cl1	Cl1A	-54,54	108,979	IVa	
JAXNUS	da	n	Ni ²⁺	Cl1	Cl3	-46,71	113,71	IIIc	
				Cl2	Cl4	-44,61	-45,34	IIa/IIIa	
JECROZ	da	da	Cu ²⁺	Cl1	Cl2	-8,212	-4,323	IIa(#)	2,806
								IIa(#)	2,82
				Cl3	Cl4	-19,981	-9,064	IIa(#)	2,682
								IIa(#)	2,86
				C15	Cl6	-19,826	-9,307	IIa(#)	2,68
								IIa(#)	2,848
				Cl7	C18	-7,366	-4,923	IIa(#)	2,794
								IIa(#)	2,815
JECROZ01	da	da	Cu ²⁺	Cl1	Cl2	-7,671	-4,779	IIa(#)	2,8
								IIa(#)	2,818
				C13	Cl4	-19,955	-9,147	IIa(#)	2,681
								IIa(#)	2,854
JOVGAF	da	da	Zn ²⁺	Cl1	Cl2	35,366	70,494	IIIc	2,611
									3,073
LIGCEL	da	da	Co ²⁺	Cl1	Cl1B	-30,958	-30,958	IIa	2,852
									2,852
LOGSIL	da	da	Zn^{2+}	Cl1	Cl1A	-39,6	-39,6	IIa	3,048
									3,048
LONCAT	da	da	Cu ²⁺	C11	Cl2	-24,266	-17,134	IIa(#)	2,597
									2,641
LOSMIQ	da	da	Cu ²⁺	Cl1	Cl2	26,725	17,321	IIa(#)*	2,632
									2,645
NIQXEQ	da	da	Cu ²⁺	Cl1	Cl2	82,634	93,656	IVb	3,151
NUBHIB	da	da	Co ²⁺	Cl1	Cl1F	141,472	141,472	IIb*	3,245
OQIDEY	da	da	Cd^{2+}	Cl1	Cl1A	-40,854	-40,854	IIa	2,848
									2,848
OQIDIC	da	da	Hg ²⁺	Br1	Br1A	-40,9	-40,9	IIa	2,934
									2,934
OQIDOI	da		Hg ²⁺	Cl1	Cl1A	41,574	41,574	IIa*	2,858
									2,858
QIFBIQ	da	n	Fe ²⁺	C11	Cl2	152,431	- 153,513	IIb	3,484
				Cl3	Cl4	-	-	IIb	3,28

						159,318	142,307		
RETPAI	n	n	Cd ²⁺	I2	I1	- 143,482	-70,988		
REXFEF	da	da	Co ²⁺	Cl1	C12	168,022	- 139,247	IIb	HB HCl 2,356 2,428
SASBIB	da	da	Zn ²⁺	Cl1	Cl1A	-25,098	-25,098	IIa	2,96
SIGDUL	da	da	Ni ²⁺	Cl1	Cl2	-31,027	121,737	IIIc	2,95
SUKSOI	da	da	Co ²⁺	Cl1	Cl2	-36,784	124,906	IIIc	2,795
TERJAC	da	n	T i ²⁺	Cl2	Cl1	168,168	45,479	IIc	3,449
TOKMIR	da	da	Co ²⁺	Cl1	Cl2	28,416	26,328	IIa(#)*	2,85
									2,943
UGOPUD	da	da	Cd^{2+}	Cl1	Cl1A	-32,529	-32,529	IIa(#)	2,861
VIRYUR	da	da	Ni ²⁺	Br1	Br2	-5,436	115,681	IIIc	3,039
VOXCIU	da	da	Zn ²⁺	Cl1	Cl1N	-86,579	-86,579	IVb	
WAZZEF	da	da	Cd ²⁺	Cl1	Cl2	31,353	28,79	IIa(#)*	3,162 3,203
WAZZIJ	da	da	Hg^{2+}	Cl1	Cl2	-32,272	-27,147	IIa(#)	3,161
									3,207
WEBTIJ	da	da	Zn ²⁺	Cl1	Cl2	25,193	33,424	IIa(#)*	3,045 3,128
WIQSAT	n	n	Zn ²⁺	Cl2	Cl1	75,191	-	IVa	
WOKNUF	n	n	Hg ²⁺	Br2	Br1	146,865	143,504	IVc	
XALMIJ	da	da	Hg ²⁺	Br1	Br2	-	169,087	IIId	3,057
XEIDOI	da	n	Cd^{2+}	T1	I1A	109,523	8 77	IIa*	
XIWWIK	da	da	Co^{2+}	Cl1	Cl2	112 578	-3.05	IIIc	
XIWWIK01	da	da	Co ²⁺	Cl1	C12	-	41 622	Пс	2 983
VADVIN	da da		Co ²⁺		C12	139,862	27.1	Пе (#)	2,905
IAKIUN	da	n	Co	CII	CI2	-35,004	-37,1	11a(#)	2,835 2,897
YARYUN01	da	n	Co ²⁺	Cl1	Cl2	-24,515	-41,175	IIa(#)	2,933
									3,018
YARZEY	da	n	Co ²⁺	Br1	Br2	-36,654	-43,066	IIa(#)	2,91
									3,09
YARZIC	da	n	Co ²⁺	I1	I2	-39,733	-41,808	IIa(#)	3,017
									3,266
YASBAX	da	n	Co ²⁺	Cl1	Cl2	-41,684	-39,287	IIa(#)	2,877
									2,95
YASBEB	da	n	Co ²⁺	Br1	Br2	-32,793	-32,092	IIa(#)	2,932
									3,219
YASCAY	da	n	Zn ²⁺	Cl1	Cl2	-34,801	-38,297	IIa(#)	2,824
			- 2				10		2,885
YASCAY01	da	n	Zn^{2+}	Cl1	Cl2	-24,711	-40,881	11a(#)	2,938
VACCIC	-L.		7-2+	D-1	D-2	42.079	27 700	۲ ۲ - ۲۳۷	3,003
Y ASCIG	da	n	Zn	Brl	Br2	-42,978	-37,798	11a(#)	2,89

						1			3,094
YASCOM	da	n	Zn ²⁺	I1	I2	-40,473	-42,236	IIa(#)	3,014
									3,241
YASDED	da	n	Zn ²⁺	Cl1	Cl2	-37,707	-65,386	IIIa	2,967
				Cl3	Cl4	45,395	37,647	IIa(#)*/IIIc	2,848
									3,075
YASDIH	da	n	Zn ²⁺	Br1	Br2	-31,077	-33,164	IIa	2,926
									3,211
YATWEX	da	n	Zn ²⁺	Cl1	Cl11	44,472	44,472	IIa(#)*	2,853
									2,853
YINMAK	da	da	Zn^{2+}	Cl1	Cl2	13,53	48,457	IIa(#)*	2,628
									3,183
YIXJOE	da	n	Zn ²⁺	Cl1	Cl1D	-62,239	-62,239	IVc	2,807
									2,807
YIXJUK	da	n	Cu ²⁺	Cl1D	Cl1	61,244	61,244	IVb	
YIXKAR	da	n	Zn ²⁺	Cl2	Cl1	-57,987	-63,155	IVc	2,954
			- 2+		~ ~ ~ ~				3,218
YOQBAI	da	da	Zn ²	Cl1	CIIA	-28,916	-28,916	lla	2,806
VOODEN		1	7 2+	CII	C11.4	22.000	22.000	TT 4	2,806
YOQBEM	da	da	Zn	CII	CIIA	33,899	33,899	lla*	2,766
VOODIO	do	da	$7n^{2+}$	Cl1	CI2	25.922	25.061	Uo*	2,700
тодыд	ua	ua	ZII	CII	CI2	23,833	55,901	11a.	2,821
YOOBOW	da	da	7 n ²⁺	Cl1	CIIA	33.88	33.88	IIa*	2,075
TOQUO	uu	uu	211	CII	Cim	55,00	55,00	IIu	2,766
YOOBUC	da	da	Zn ²⁺	Cl1	Cl1A	32.232	32.232	IIa*	2.752
				-		- , -	- , -		2,752
YOQCAJ	da	da	Zn ²⁺	Br1	Br1A	-35,029	-35,029	IIa	2,885
									2,885
YOQCEN	da	da	Zn^{2+}	Br1	Br1A	34,057	34,057	IIa*	2,85
									2,85
YOQCIR	da	da	Zn ²⁺	Br1	Br1A	32,347	32,347	IIa*	2,854
									2,854
YOQCOX	da	da	Zn ²⁺	Br1	Br2	-17,006	-26,101	IIa(#)	2,989
									3,172
YUPBUH	da	n	Hg^{2+}	I1	I2	- 146.037	- 120.662	IIb	3,341
ZECZUE	da	n	Ni ²⁺	Cl1	Cl2	-68,626	-50,084	IVc	2,919
									3,235
				C13	Cl4	-31,259	-54,986	IVc	2,988
									3,299
ZEDBUH	da	n	Ni ²⁺	Cl1	Cl1C	-47,033	-47,033	IVc	3,181
									3,181
ZEDCAO	da	n	Ni ²⁺	Br1	Br2	-36,687	-46,941	IIa(#)/IIIa	2,844
									3,09
TIHQOU	da	da	Zn^{2+}	Cl1	Cl2	-49,005	-41,576	IIa(#)/IIIa	2,813

									2,905
XEJDOI01	da	n	Cd^{2+}	I1	I1A	8,53	8,53	IIa*	
GOGWIL	da	da	Co ²⁺	N=C=S1	N=C=S2	-65,25	-66,16	IVc	
TUFGEH	da	n	Co ²⁺	N=C=S1	N=C=S2	-32,66	-34,02	IIa(#)	2,653
GETWUZ	da	da	Zn ²⁺	-	-	-29,8	-29,8	IIa(#)	
				4 L koordinira Zn	29,8	29,8		IIa(#)*	
CASGIN	da	da	Zn ²⁺	-	-	-106,21	-99,95	IVc	
				4 L koordinira Zn	105,03	99,85		IVb	
UDIFIY	da	ne	Zn ²⁺	4 L koordinira Zn	-36,41	-36,41		IIa(#)	
VODPAG	da	ne	Zn ²⁺	4 L koordinira Zn	137,8	137,8		IIb	
WAQREM	da	ne	Zn ²⁺	4 L koordinira Zn	-35,87	-35,87		IIa(#)	

Tablica D3. Pregled provedenih sinteza metalnih kompleksa. "+" = nastao je monokristal i spoj je karakteriziran, "-"= nije nastao monokristal, "o"= nije nastao monokristal, ali je uzorak karakteriziran spektroskopski, "n.p." = sinteza nije provedena.

		Ligand						
Metalni prekursor	B1 _H	B1 _F	B1 _N	B1 _P	B1 _{mA}	B1 _{mA} *	B1 _{m2A}	
ZnBr ₂	+	+	+	0	+	0	+	
ZnI_2	+	n.p	n.p.	n.p.	n.p.	n.p.	n.p.	
$Zn(NO_3)_2 \cdot 4H_2O$	+	-	-	-	-	n.p.	n.p.	
$Zn(ClO_4)_2 \cdot 6H_2O$	-	-	-	n.p.	n.p.	n.p.	n.p.	
$Zn(BF_4)_2 \cdot H_2O$	-	-	-	n.p.	n.p.	n.p.	n.p.	
Zn(OTf) ₂	-	-	-	n.p.	n.p.	n.p.	n.p.	
CdBr ₂	+	n.p	n.p	n.p.	n.p.	n.p.	n.p.	
CdI ₂	+	n.p	n.p	n.p.	+	n.p.	-	
$Cd(NO_3)_2 \cdot 4H_2O$	-	-	-	n.p.	n.p.	n.p.	n.p.	
CoCl ₂ .6H ₂ O	-	-	-	+	-	-	-	
anhy. CoBr ₂	+	0	+	+	+	0	+	
$Co(NO_3)_2 \cdot 6H_2O$	-	-	-	-	n.p.	n.p.	n.p.	
$Co(BF_4)_2 \cdot 6H_2O$	-	-	-	-	n.p.	n.p.	n.p.	
Co(OTf) ₂ ·4H ₂ O	-	-	-	-	n.p.	n.p.	n.p.	

Slika D2. ¹H NMR spektri (300 MHz, CD₃CN) [Zn(**B1**_H)₂Br₂] kompleksa u temperaturnom rasponu od 40 °C do -40 °C, c = 6 mM.

Slika D3. ¹H NMR spektri (300 MHz, CDCl₃) **B1**_H liganda u temperaturnom rasponu od 40 °C do -40 °C, c = 6 mM.

Slika D4. ¹H NMR spektri (300 MHz, CD₃CN) **B1**_H liganda u temperaturnom rasponu od 40 °C do -40 °C, c = 6 mM.

8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 f1 (ppm)

Slika D5. ¹H NMR spektri (600 MHz, CDCl₃) [Zn(**B1**_N)₂Br₂] kompleksa u temperaturnom rasponu od 40 °C do -40 °C, c = 6 mM.

Slika D6. ¹H NMR spektri (600 MHz, CDCl₃) **B1**_N liganda u temperaturnom rasponu od 40 °C do -40 °C, c = 6 mM.

9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 f1 (ppm)

Slika D7. ¹H NMR spektri (600 MHz, CDCl₃) [Zn(**B1**_P)₂Br₂] kompleksa u temperaturnom rasponu od 40 °C do -40 °C, c = 6 mM.

f1 (ppm)

Slika D8. ¹H NMR spektri (600 MHz, CDCl₃) **B1**_P liganda u temperaturnom rasponu od 40 °C do -40 °C, c = 6 mM.

Slika D9. UV-Vis (prvi red) i CD (drugi red) spektri u CH₂Ch liganda **B1**_H (od c = 0,030 do 0,150 mM) i odgovarajućeg Co(II) kompleksa (od c = 0,015 do 2,50 mM).

Slika D10. Koncentracijska ovisnost UV-Vis absorbancije pri 663nm (a) i CD eliptičnost pri 653 nm (b) $[Co(1_H)_2Br_2]$ kompleksa u CH₂Cl₂, s.t., u rasponu koncentracija c = 0,015-2,50 mM).

Slika D11. UV-Vis (prvi red) i CD (drugi red) spektri u CH₂Cl₂ liganda **B1**_F (od c = 0,030 do 0,150 mM) i odgovarajućeg Co(II) kompleksa (od c = 0,015 do 2,50 mM).

b)

a)

Slika D12. Koncentracijska ovisnost UV-Vis absorbancije pri 663nm (a) i CD eliptičnost pri 653 nm (b) $[Co(B1_F)_2Br_2]$ kompleksa u CH₂Cl₂, s.t., u rasponu koncentracija c = 0,015-2,50 mM).

Slika D13. UV-Vis (prvi red) i CD (drugi red) spektri u CH₂Cl₂ liganda **B1**_N (od c = 0,030 do 0,150 mM) i odgovarajućeg Co(II) kompleksa (od c = 0,015 do 2,750 mM).

Slika D14. Koncentracijska ovisnost UV-Vis absorbancije pri 663nm (a) i CD eliptičnost pri 653 nm (b) $[Co(B1_N)_2Br_2]$ kompleksa u CH₂Cb, s.t., u rasponu koncentracija c = 0,015-2,750 mM).

Slika D15. UV-Vis (prvi red) i CD (drugi red) spektri u CH₂Cl₂ liganda **B1**_P (od c = 0,030 do 0,150 mM) i odgovarajućeg Co(II) kompleksa (od c = 0,015 do 2,250 mM).

Slika D16. Koncentracijska ovisnost UV-Vis absorbancije pri 663nm (a) i CD eliptičnost pri 653 nm (b) $[Co(B1_P)_2Br_2]$ kompleksa u CH₂Cl₂, s.t., u rasponu koncentracija c = 0,015-2,250 mM).

Slika D17. UV-Vis (prvi red) spektri u CH₂Cl₂ Co(II) kompleksa s ligandima BOX1, BOX2, $B1_{mA}$, $B1_{ma}$ * i $B1_{m2A}$ pri c = 2,250 mM.

$[Zn(\mathbf{B1}_{\mathbf{H}})_2Br_2]$									
Tip/ Podtip	α_1, α_2 (°)	$\Delta G(vakuum)/kcal mol-1$	α_1, α_2 (°)	$\Delta G(CHCl_3) / kcal mol-1$	α_1, α_2 (°)	$\Delta G(CH_3CN)/$ kcal mol ⁻¹			
IIa	328,78 328,81	0,0	328,43 328,43	0,0	329,83 329,86	0,0			
IIIb	216,65 96,39	7,1	216,37 94,85	5,1	217,02 91,00	6,9			
IIId1	176,56 304,08	4,4	n.o. ^a	n.o.	173,82 301,55	5,8			
IIId2	175,61 277,89	9,0	177,33 279,81	7,8	178,76 272,95	9,2			
IIIa/IVa	136,34 299,05	6,3	132,56 299,32	4,6	125,98 296,49	6,2			
IVa	100,95 270,68	6,3	102,52 269,45	4,4	101,23 267,48	7,5			
IVb	88,39 88,40	5,3	86,25 86,30	5,3	80,30 85,08	7,6			
IIb	201,88 202,05	7,3	195,54 196,32	4,2	n.o.	n.o.			
IIId3	219,57 303,63	6,5	219,80 305,65	7,4	221,35 303,55	7,2			
IIc/IIIb	42,62 214,39	8,6	50,70 212,22	4,6	51,84 216,06	8,5			
IIId4	214,71 278,81	8,8	207,41 280,63	7,1	213,17 261,30	5,6			
IIId5	219,56 303,63	6,5	212,68 257,52	8,3	213,23 261,27	8,2			

Tablica D4. Parametri α i relativne slobodne Gibbsove energije (ΔG) za optimizirane konformere [Zn(B1_H)₂Br₂].

^a n.o.-nije određeno

	$[Zn(\mathbf{B1}_{\mathbf{F}})_2Br_2]$									
Tip/ Podtip	α_1, α_2 (°)	$\Delta G(vakuum)/$ kcal mol ⁻¹	α_1, α_2 (°)	$\Delta G(CHCl_3) / kcal mol-1$	α_1, α_2 (°)	$\Delta G(CH_3CN)/$ kcal mol ⁻¹				
IIa	328,55 328,55	0,0	328,63 329,3	0,0	329,25 329,23	0,0				
IIIb	216,35 97,08	6,1	216,61 93,07	5,7	216,29 91,18	3,7				
IIId/IIc	179,44 305,27	2,7	174,85 306,95	4,0	172,61 304,09	3,0				
IIId1	175,35 278,93	8,4	177,88 275,38	8,5	178,30 274,01	7,1				
IIIb/IVa	136,42 300,00	5,3	132,47 299,56	5,5	129,80 297,89	4,1				
IVa	101,34 271,00	5,7	101,16 266,68	6,5	101,74 269,23	5,8				
IVb	88,78 88,82	3,7	86,40 86,41	5,4	79,48 84,86	4,6				
IIb/IVc	220,80 220,79	10,7	229,34 230,89	9,5	n.o.	n.o.				
IIb	202,25 201,97	6,3	195,87 195,83	5,3	198,89 198,88	6,5				
IIc/IIIb	41,69 214,38	7,8	46,31 221,53	8,5	34,91 215,59	6,4				
IIId2	218,37 302,53	5,2	207,76 279,30	7,2	n.o.	n.o.				
IIId3	n.o.	n.o.	213,00 256,69	9,4	213,31 261,10	6,5				

Tablica D5. Parametri α i relativne slobodne Gibbsove energije (ΔG) za optimizirane konformere [Zn(B1_H)₂Br₂].

^a n.o.-nije određeno

$[Zn(\mathbf{B1}_N)_2Br_2]$									
Tip/ Podtip	α_1, α_2 (°)	$\Delta G(vakuum)/kcal mol-1$	α_1, α_2 (°)	$\Delta G(CHCl_3) / kcal mol-1$	α_1, α_2 (°)	$\Delta G(CH_3CN)/$ kcal mol ⁻¹			
IIa	330,61 330,62	0,0	330,73 330,25	0,0	301,38 330,27	0,0			
IIb	202,43 202-42	5,1	194,01 194,01	4,6	196,21 196,22	5,0			
IIIb	216,39 94,68	3,2	215,69 95,23	2,4	213,75 89,24	4,4			
IIIc	176,18 303,80	8,1	179,48 264,13	7,9	173,73 304,45	8,1			
IIId1	175,46 275,56	6,0	178,23 275,04	4,4	179,87 275,44	4,2			
IVa1	134,69 299,41	5,1	128,98 298,04	5,1	129,33 298,21	6,0			
IVa2	98,76 270.75	5,2	98,13 271,98	5,8	97,71 272,53	6,0			
IVb	88,35 88,40	7,1	90,43 90,53	6,1	85,97 91,90	6,7			
IIId2	219,28 302,82	4,9	217,44 302,71	6,2	217,06 301,42	5,5			
IIId3	219,27 302,82	4,9	217,45 302,74	6,2	203,27 280,55	6,4			

Tablica D6. Parametri α i relativne slobodne Gibbsove energije (ΔG) za optimizirane konformere [Zn(B1_N)₂Br₂].

^a n.o.-nije određeno
$[Zn(\mathbf{B1}_{\mathbf{H}})_2(NO_3)_2]$						
Tip/ Podtip	α1, α2 (°)	$\Delta G(vakuum)/kcal mol-1$	α1, α2 (°)	Δ <i>G</i> (<i>CHCl</i> ₃) / kcal mol ⁻¹	α1, α2 (°)	$\Delta G(CH_3CN)/$ kcal mol ⁻¹
IIa1	329,16 329,17	0,0	328,39 328,43	0,0	332,46 332,46	0,0
IVa1	97,71 237,40	0,8	91,40 238,21	0,0	83,65 243,30	0,1
IIId1	175,41 305,37	2,6	172,92 302,25	2,0	169,28 298,87	0,5
IIId2	203,1 257,71	7,0	198,89 258,73	2,6	198,16 259,04	1,8
IVa2	103,23 260,22	1,8	103,89 256,74	0,0	103,57 257,44	0,8
IVb	86,62 86,64	1,0	79,20 79,24	4,5	72,65 81,02	0,5
IIIa /IIa	351,25 311,86	2,3	359,92 308,33	2,2	n.o.	n.o.
IIc/IVc	322,31 209,92	2,1	327,54 233,54	5,7	308,06 237,48	0,4
IIIa	340,84 242,61	3,8	348,06 243,11	2,0	n.o.	n.o.
IIId	204,03 257,39	3,0	n.o.	n.o.	221,17 255,9	2,5
IVc1	242,28 242,28	6,3	240,46 240,43	4,6	243,28 238,75	1,8
IIa2	328,03 328,03	2,2	326,97 317,89	3,5	325,44 325,45	0,9
IVc2	287,10 246,92	5,5	284,26 274,87	3,7	261,77 258.23	-0,7
n.onije od	dređeno					

Tablica D7. Parametri α i relativne slobodne Gibbsove energije (ΔG) za optimizirane konformere $[Zn(B1_H)_2(NO_3)_2].$

$[Co(\mathbf{B1}_{\mathbf{H}})_2Br_2]$						
Tip/ Podtip	α1, α2 (°)	$\Delta G(vakuum)/kcal mol-1$	α ₁ , α ₂ (°)	$\Delta G(CHCl_3) /$ kcal mot ¹	α ₁ , α ₂ (°)	$\Delta G(CH_3CN)/$ kcal mol ⁻¹
IIa	332,74 332,72	0,0	333,33 333,35	0,0	331,00 330,99	0,0
IIIb	215,47 93,18	6,0	215,67 91,63	4,1	215,66 89,23	3,4
IIId	174,66 304,68	3,6	168,72 307,15	2,7	169,85 300,00	3,0
IVa	130,03 300,01	5,2	126,14 295,64	4,0	123,04 296,41	3,8
Iva2	97,53 269,03	6,8	100,29 268,49	5,9	98,93 267,59	6,2
IVb	n.o.	n.o.	83,99 87,25	4,2	82,60 79,29	6,4
IIb	200,89 200,93	6,2	194,48 194,46	5,4	197,89 197,17	5,9
IIc/IIIb	41,24 214,19	7,3	41,71 216,90	5,9	47,88 213,05	3,6
IIc/IIId	219,07 304,51	5,4	220,40 303,97	5,2	221,25 301,96	4,9
IIId3	213,50 275,13	10,0	214,1 272,14	7,4	n.o.	n.o.

Tablica D8. Parametri α i relativne slobodne Gibbsove energije (ΔG) za optimizirane konformere [Co(B1_H)₂Br₂].

^a n.o.-nije određeno

Tablica D9. Relativne slobodne Gibbsove energije (ΔG) za optimizirane konformere [Zn(**B1**_E)₂Br₂] i [Zn(**B1**_H)₂Br₂].

Komplelva	Tip,	$\Delta G(\text{vakuum})$ /	$\Delta G(\text{CHCl}_3)$ /	$\Delta G(CH_3CN)/$
Kompieks	Podtip	kcal mol ⁻¹	kcal mol ⁻¹	kcal mol ⁻¹
$[\mathbf{Zn}(\mathbf{B1}_{\mathbf{F}}) \circ \mathbf{Br}_{2}]$	IIa	0,0	0,0	0,0
	IIa*	0,0	0,0	0,0
$[Zn(\mathbf{B1}_{\mathbf{H}})_2Br_2]$	IIa	0,0	0,0	0,0
	IIa*	9,8	8,6	8,7

§ 9. ŽIVOTOPIS

Osobni podaci			
Ime i prezime	Marija Bakija		
Titula	mag.chem.		
Ustanova zaposlenja	Zavod za kemiju materijala, Institut Ruđer Bošković, Bijenička cesta 54, HR-10000 Zagreb Marija.Bakija@irb.hr		
E-pošta			
Osobna mrežna stranica	https://www.irb.hr/O-IRB-u/Ljudi/Marija-Bakija		
Obrazovanje			
01.2019.	Diplomski rad : "Sinteza i konformacijska analiza tert- alkilnih diamantoidnih etera " Mentorica: dr. sc. Marina Šekutor, rad izrađen na Institutu Ruđer Bošković i diplomski ispit položen na Prirodoslovno- matematičkom fakultetu		
09.201601.2019.	Magistra kemije, sveučilišni diplomski studij Kemija, istraživački smjer, Sveučilište u Zagrebu Prirodoslovno- matematički fakultet, Zagreb		
09.201309.2016.	Prvostupnica kemije , sveučilišni preddiplomski studij Kemija, istraživački smjer, Sveučilište u Zagrebu Prirodoslovno-matematički fakultet, Zagreb		
Radno iskustvo			
01.2020danas	Asistentica, Institut Ruđer Bošković Tema disertacije: Kompleksi metala d bloka i konjugata aminokiselina s oksazolinima i trifenilfosfinima kao kiralni katalizatori u reakcijama hidrogenacije mentor: dr. sc. Srećko Kirin		

Istraživački boravci u inozemstvu

02.2023.	Leibniz Institute for Catalysis, Rostock (Njemačka), Short- term scientific mission (STSM) putem multilateralne suradnje COST akcija CA17120 "Chemobrionics", 30 dana početkom 2023.; voditelji: S. Tin i E. Barath
11.2022.	PSL University, Pariz (Francuska); bilateralna suradnja MZO-Cogito: "Catalytic i biological properties of metal- containing peptide conjugates", 7 dana krajem 2022.; voditelji: G. Gasser i K. Cariou.
2022.	Leibniz Institute for Catalysis, Rostock (Njemačka), putem bilateralne suradnje MZO-DAAD: "Enantioselective catalysis with transition metal complexes of new conjugates of phosphines, oxazolines i amino acids as ligands", ukupno 90 dana tijekom 2022. (u dva navrata); voditelji: S. Tin i J. de Vries.

Nastava i voditeljstvo

Neposredna voditeljica dodiplomskih studenata: Hugo Tetu, 04.-08.2021. (Sveučilište Caen, Francuska, uz Erasmus stipendiju) Valentina Jakopović, 09.-10.2020. (FKIT, Sveučilište u Zagrebu, studentska praksa) Valentino Golub, 08.-10.2020. (FKIT, Sveučilište u Zagrebu)

Asistentica

Organska kemija 1, praktikum za studente 1. godine studija Molekularne Biologije, Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (60 sati), 2022/23

Praktikum organske kemije 2, praktikum za studente 3. godine studija Kemije, Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (60 sati), 2022/23

Nagrade i priznanja

Medalja Kemijskog odsjeka Prirodoslovno-matematičkog fakulteta za izvrstan uspjeh, 2018.

Znanstveni radovi

3. **M. Bakija**, S. Opačak, B. Perić, S. Chakrabortty, A. Dell'Acqua, E. Baráth, J. G. de Vries, S. Tin, S. I. Kirin, "Supramolecular bidentate rhodium(I) or iridium(I) phosphine i oxazoline amino acid bioconjugates as selective catalysts for enantioselective reactions", *Dalton Trans.* (prihvaćen 2024., DOI:10.1039/D4DT02519A).

2. M. Bakija, B. Perić, S. I. Kirin, Oxazoline amino acid bioconjugates: One-pot synthesis i analysis of supramolecular interactions, New J. Chem. 48 (2024) 8702–8719.

1. L. Gourdon-Gründewaldt, **M. Bakija**, L. Wild, B. Perić, G. Gasser, S. I. Kirin, K. Cariou, *Towards Platinum(II) Complexes for in cellulo Applications: Synthesis, Characterization, Biological i Catalytic Evaluation, Helv. Chim. Acta* **106** (2023) e202300078.

Sudjelovanje na skupovima

12. B. Perić, **M. Bakija**, S. I. Kirin, *DFT calculation i NMR spectroscopy of an oxazoline amino acid bioconjugate: supramolecular dimers vs. monomers*, Central European NMR Symposium & Bruker Users' Meeting (CEUM), Rijeka, Hrvatska, 2024, knjiga sažetaka, str. 45

11. **M. Bakija**, B. Perić, R. Vianello, S. I. Kirin, *Group 11 transition metal complexes of chiral monodentate oxazoline ligands*, 8th EuCheMS Conference on Nitrogen Ligands, Cassis France, 2024, knjiga sažetaka, str. 96

10. **M. Bakija**, B. Perić, R. Vianello, S. I. Kirin, *Synthesis and characterization of transition metal complexes with chiral monodenate oxazoline ligands*, 14th Inorganic & Bioinorganic Chemistry Conference, Lisabon, Portugal, 2024, knjiga sažetaka, str. 29.

9. **M. Bakija**, S. Opačak, S. Chakrabortty, A. Dell'Acqua, E. Baráth, J. G. de Vries, S. Tin, S. I. Kirin, *Amino acid bioconjugate P- i N-ligands in iridium or rhodium catalyzed asymmetric hydrogenation*, 8. Simpozij studenata doktorskih studija PMF-a, Zagreb, 2024, knjiga sažetaka, str. 28

8. **M. Bakija**, B. Perić, S. I. Kirin, *One-pot synthesis i supramolecular interaction analysis of oxazoline amino acid bioconjugates*, 15. susret mladih kemijskih inženjera (SMLKI15), Fakultet kemijskog inženjerstva i tehnologije, Zagreb, 2024, knjiga sažetaka str. 93.

7. **M. Bakija**, S. Opačak, S. Chakrabortty, A. Dell'Acqua, E. Baráth, J. de Vries, S. Tin, S. I. Kirin, "*Backdoor induction" of chirality: Iridium or rhodium phosphine or oxazoline complexes as selective catalysts for asymmetric hydrogenation*, Supramolecular Chemistry Days for Young Researchers 2023., University of Cagliari, Zagreb, 2023, knjiga sažetaka, str. 64.

6. **M. Bakija**, B. Perić, S. I. Kirin, *Transition metal complexes of monodentate oxazoline ligands*, 44th International Conference on Coordination Chemistry, Rimini, Italija, 2022, knjiga sažetaka, str. 533.

5. **M. Bakija**, B. Perić, S. I. Kirin: *Synthesis i Characterization of Oxazoline Amino Acid Bioconjugates*, 27. Hrvatski skup kemičara i kemijskih inženjera (27HSKIKI), Mali Lošinj, 2021, Knjiga sažetaka, str. 177.

4. **M. Bakija**, S. Kirin, One pot" pristup sintezi monodentatnih oksazolina s aromatskom jezgrom -asimetrična supstitucija prekursora u jednom koraku, 5. Simpozij studenata doktorskih studija PMF-a, Zagreb, 2021, knjiga sažetaka, str. 308.

3. **M. Bakija**, A. Mikelić, K. Sović, T. Hrenar, *Grid search conformational analysis of carnitine i acetylcarnitine*, Computational Chemistry Day, Zagreb, 2018, Zbornik radova str. 36.

2. **M. Bakija**, A. Mikelić, K. Sović, T. Hrenar, *Utjecaj solvatacijskih efekata na potpuni konformacijski prostor L-karnitina*, 5. Simpozij Studenata Kemičara, Zagreb, 2018, Zbornik radova str. 56.

1. K. Leko, K. Pičuljan, **M. Bakija**, R. Ribić, J. Požar, *The complexation of lipophilic mannosides with* β *-cylcodextrin*, Winter School of Physical Organic Chemistry, Bressanone, 2017.