Regović, Maja

Doctoral thesis / Disertacija

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:713906

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-10-06

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu PRIRODOSLOVNO-MATEMATIČKI FAKULTET

Maja Regović

MEHANIZAM AROMATIZACIJE 4-SUPSTITUIRANIH-1,4-DIHIDROPIRIDINA

DOKTORSKI RAD

Zagreb, 2016.

University of Zagreb FACULTY OF SCIENCE

Maja Regović

MECHANISM OF AROMATIZATION OF 4-SUBSTITUTED-1,4-DIHYDROPYRIDINES

DOCTORAL THESIS

Zagreb, 2016

Sveučilište u Zagrebu PRIRODOSLOVNO-MATEMATIČKI FAKULTET

Maja Regović

MEHANIZAM AROMATIZACIJE 4-SUPSTITUIRANIH-1,4-DIHIDROPIRIDINA

DOKTORSKI RAD

Mentori:

Dr. sc. Mladen Litvić, viši znanstveni suradnik

Dr. sc. Vladimir Vinković, znanstveni savjetnik

Zagreb, 2016

University of Zagreb FACULTY OF SCIENCE

Maja Regović

MECHANISM OF AROMATIZATION OF 4-SUBSTITUTED-1,4-DIHYDROPYRIDINES

DOCTORAL THESIS

Supervisors:

Dr. Mladen Litvić, Senior Research Associate Dr. Vladimir Vinković, Senior Scientist

Zagreb, 2016

Zahvala

Zahvaljujem se mentorima dr. sc. Mladenu Litviću i dr. sc. Vladimiru Vinkoviću na odabiru teme i sugestijama u vrijeme izrade i pisanja doktorske disertacije.

Veliko hvala dipl. oec. Stanislavu Biondiću i Tatjani Šešok mr. ph., direktorima u Belupu, na ukazanom povjerenju i na podršci prilikom izrade ovog rada.

Također zahvaljujem mr. sc. Draženu Huzjaku, rukovoditelju Odjela za stabilnost, te ostalim djelatnicima iz Odjela na razumijevanju i podršci koju su mi pružili.

Veliko hvala dr.sc. Marini Ilakovac Kveder na utrošenom vremenu i snimljenim EPR spektrima prilikom izrade ovog rada.

Hvala kolegici dipl. ing. Mariji Glavanović na velikom broju odrađenih HPLC analiza. Hvala prijateljicama Danijeli, Ani i Atiđi na savjetima i pomoći tijekom cijelog studija. Posebna zahvalnost mojem tati na svemu što me naučio i što mi je omogućio. Najtoplija zahvala mojoj baki na strpljenju i pruženoj podršci.

Maja

Mojem dragom tati ...

Sadržaj

SAŽ	ETAK	ζ	
ABS	FRACTX	Ι	
§ 1.	UVOD		
1.1	Definicija problema	1	
1.2	Svrha i cilj rada	2	
§ 2.	LITERATURNI PREGLED	4	
2.1.	Općenito o 1,4-dihidropiridinima	4	
2.2.	Aromatizacija 1,4-dihidropiridina	7	
2.2.1.	Metode aromatizacije	7	
2.2.2.	Mehanizmi aromatizacije	8	
2.2 dic	2.1. Mehanizmi aromatizacije s 1, 1, 2, 2 - tetracijanoetilenom (TCNE) i 2,3-diklor-5,6- ijano-1,4-benzokinonom (DDQ)	9	
2.2	2.2. Mehanizmi aromatizacije s tropilijevim i tritilijevim kationom	2	
2.2	2.2.3. Mehanizmi aromatizacije s metalnim solima14	4	
2.2.3.	Dealkilacija odnosno eliminacija sa položaja 41.	5	
2.3.	Kompleksi s prijenosom naboja1	8	
2.3. <i>2.3.1</i> .	Kompleksi s prijenosom naboja	8 9	
2.3. 2.3.1. 2.3.2.	Kompleksi s prijenosom naboja	8 9 8	
 2.3. 2.3.1. 2.3.2. 2.3.3. 	Kompleksi s prijenosom naboja	8 9 8 9	
2.3. 2.3.1. 2.3.2. 2.3.3. 2.3	Kompleksi s prijenosom naboja18Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE19Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata29Kompleksi s prijenosom naboja s metalima293.1.Kompleksi s prijenosom naboja s vanadijem31	8 9 8 9 1	
2.3. 2.3.1. 2.3.2. 2.3.3. 2.3 2.4.	Kompleksi s prijenosom naboja 1 Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE 1 Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata 2 Kompleksi s prijenosom naboja s metalima 2 S.1. Kompleksi s prijenosom naboja s vanadijem 3 Elektronska paramagnetska rezonancija (EPR) 3	8 9 8 9 1 2	
 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3 2.4. 	Kompleksi s prijenosom naboja 1 Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE 1 Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata 2 Kompleksi s prijenosom naboja s metalima 2 S.3.1. Kompleksi s prijenosom naboja s vanadijem 3 Elektronska paramagnetska rezonancija (EPR) 3 Mehanizmi aromatizacije 1,4-DHP-a na temelju EPR spektroskopije 3	8 9 8 9 1 2 5	
 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3 2.4. 2.4.1. 2.4.2. 	Kompleksi s prijenosom naboja 1 Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE 1 Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata 2 Kompleksi s prijenosom naboja s metalima 2 .3.1. Kompleksi s prijenosom naboja s metalima 3 Elektronska paramagnetska rezonancija (EPR) 3 Mehanizmi aromatizacije 1,4-DHP-a na temelju EPR spektroskopije 3	8 9 8 9 1 2 5 9	
 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3 2.4. 2.4.1. 2.4.2. 2.4.3. 	Kompleksi s prijenosom naboja 14 Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE 14 Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata 14 Kompleksi s prijenosom naboja s metalima 24 3.1. Kompleksi s prijenosom naboja s metalima 24 3.1. Kompleksi s prijenosom naboja s vanadijem 34 Elektronska paramagnetska rezonancija (EPR) 34 Mehanizmi aromatizacije 1,4-DHP-a na temelju EPR spektroskopije 34 Tropilijev radikal 34	8 9 8 9 1 2 9 9 9	
 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3 2.4. 2.4.1. 2.4.2. 2.4.3. 2.4.4. 	Kompleksi s prijenosom naboja 1 Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE 1 Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata 2 Kompleksi s prijenosom naboja s metalima 2 S.1. Kompleksi s prijenosom naboja s vanadijem 3 Elektronska paramagnetska rezonancija (EPR) 3 Mehanizmi aromatizacije 1,4-DHP-a na temelju EPR spektroskopije 3 Tropilijev radikal 3 DDQ ⁺ radikal anion 4	8 9 8 9 1 2 5 9 2 4	
 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3 2.4. 2.4.3. 2.4.4. 2.4.5. 	Kompleksi s prijenosom naboja. 11 Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE. 11 Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata 20 12 Kompleksi s prijenosom naboja s metalima. 21 S.3.1. Kompleksi s prijenosom naboja s metalima. 22 S.3.1. Kompleksi s prijenosom naboja s vanadijem 31 Elektronska paramagnetska rezonancija (EPR) 32 Mehanizmi aromatizacije 1,4-DHP-a na temelju EPR spektroskopije 32 Tropilijev radikal 34 DDQ ⁺ radikal anion 44 TCNE ⁺ radikal anion 44	89891 25904 5	
 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3 2.4. 2.4.3. 2.4.4. 2.4.5. § 3. 	Kompleksi s prijenosom naboja	8 9 8 9 1 2 5 9 0 4 5 7	
 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3 2.4. 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. § 3. 3.1. 	Kompleksi s prijenosom naboja 14 Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE 19 Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata 20 Kompleksi s prijenosom naboja s metalima 21 S.1. Kompleksi s prijenosom naboja s metalima 21 S.3.1. Kompleksi s prijenosom naboja s vanadijem 31 Elektronska paramagnetska rezonancija (EPR) 32 Mehanizmi aromatizacije 1,4-DHP-a na temelju EPR spektroskopije 30 Tropilijev radikal 44 DDQ ⁺ radikal anion 44 EKSPERIMENTALNI DIO 44	8989125904577	
 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3.2. 2.4. 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. § 3. 3.1. 3.2. 	Kompleksi s prijenosom naboja 11 Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE 11 Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata 22 Kompleksi s prijenosom naboja s metalima 21 .3.1. Kompleksi s prijenosom naboja s vanadijem 31 Elektronska paramagnetska rezonancija (EPR) 32 Mehanizmi aromatizacije 1,4-DHP-a na temelju EPR spektroskopije 32 Tropilijev radikal 44 DDQ ⁻ radikal anion 44 EKSPERIMENTALNI DIO 44 Komplekije 44 Instrumentalni pribor i opće napomene 44	89891269045779	

3.3.1.	Sinteza i karakterizacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-nesupstituiranih 1,4-DHP	51
3.3.2.	Sinteza i karakterizacija 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP	.53
3.3.3.	Sinteza i karakterizacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP derivata	.57
3.3.4.	Sinteza i karakterizacija 4-izopropil-1,4-DHP derivata s benzilnim esterskim skupinama	.59
3.3.5.	Sinteza N-supstituiranih derivata 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-DHP	.61
3.4.	Aromatizacija 1,4-DHP derivata	.63
3.4.1.	Aromatizacija 1,4-DHP derivata kompleksom uree s vodikovim peroksidom, katalizirane jodo	m63
3.4.2.	Aromatizacija 1,4-DHP derivata s 2,3-diklor-5,6-dicijano-1,4-benzokinonom (DDQ)	.69
3.5.	EPR spektroskopija	.71
3.5.1.	<i>EPR spektroskopska mjerenja uz korištenje MoCl</i> ₅ kao oksidacijskog sredstva	.72
3.5.2.	<i>EPR spektroskopska mjerenja uz korištenje VOCl₃ kao oksidacijskog sredstva</i>	.72
3.5.3.	EPR spektroskopska mjerenja uz korištenje tritilijevog tetrafluoroborata kao oksidacijskog sredstva	.73
3.5.4.	EPR spektroskopska mjerenja uz korištenje tropilijevog tetrafluoroborata kao oksidacijskog sredstva	.73
3.5.5.	EPR spektroskopska mjerenja uz korištenje DDQ kao oksidacijskog sredstva	.74
3.5.6.	EPR spektroskopska mjerenja uz korištenje tetracijanoetilena (TCNE) kao oksidacijskog sredstva	.74
3.5.7.	EPR spektroskopska mjerenja uz korištenje katalitičke količine joda i kompleksa uree s vodikovim peroksidom kao oksidacijskog sredstva	.75
3.6.	Ispitivanje nastajanja kompleksa s prijenosom naboja	.75
3.6.1.	Ispitivanje nastajanja kompleksa s prijenosom naboja UV-Vis spektroskopijom	.75
3.6	5.1.1. Ispitivanje nastajanja kompleksa s prijenosom naboja s DDQ	.77
3.6	6.1.2. Ispitivanje nastajanja kompleksa s prijenosom naboja s TCNE	.77
3.0 tet	6.1.3. Ispitivanje nastajanja kompleksa s prijenosom naboja s tropilijevim rafluoroboratom	.78
3.6	5.1.4. Ispitivanje nastajanja kompleksa s prijenosom naboja s NbCl5	.78
3.6.2.	Ispitivanje nastajanja kompleksa s prijenosom naboja IR spektroskopijom	.79
3.6	5.2.1. Ispitivanje nastajanja kompleksa s prijenosom naboja s DDQ	.79
3.6.3.	Ispitivanje nastajanja kompleksa s prijenosom naboja NMR spektroskopijom	.80
3.6	5.3.1. Kompleks s TCNE kao oksidansom	.80
3.6	6.3.2. Kompleks s tritilijevim tetrafluoroboratom kao oksidansom	.81
3.7.	Aromatizacija 4-supstituiranih 1,4-DHP-a	.82
3.7.1.	Aromatizacija s MoCl ₅	.82
3.7.2.	Aromatizacija s VOCl ₃	.84
3.7.3.	Aromatizacija s tropilijevim tetrafluoroboratom	.86
3.7.4.	Aromatizacija s tritilijevim tetrafluoroboratom	.88

3.7	7.4.1.	Opći postupak aromatizacije	88	
3.7 2,0	7.4.2. 5-dimetil [.]	Sinteza, izolacija i karakterizacija dodatnih produkata nastalih tijekom aromatizacije -3,5-di(metoksikarbonil)-4-izopropil-1,4-DHP (3a)	89	
3.7.5.	Aromati	izacija s 2,3-diklor-5,6-dicijano-1,4-benzokinonom	89	
3.7.6.	Aromati	zacija s 1,1,2,2-tetracijanoetilenom	90	
§ 4.	REZU	LTATI I RASPRAVA	92	
4.1.	Sinteza	1,4-DHP derivata	92	
4.1.1.	Sinteza	2,6-dimetil-3,5-di(alkiloksikarbonil)-4-nesupstituiranih 1,4-DHP	93	
4.1.2.	Sinteza .	2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP	94	
4.1.3.	Sinteza .	2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP derivata	95	
4.1.4.	Sinteza	4-izopropil-1,4-DHP derivata s benzilnim esterskim skupinama	96	
4.1.5.	Sinteza .	N-supstituiranih derivata 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-DHP	96	
4.2.	Aromat	tizacija 1,4-DHP derivata	98	
4.2.1.	Aromati	izacija 1,4-DHP derivata kompleksom uree s vodikovim peroksidom, katalizirane jodor	n98	
4.2.2.	Aromati	zacija 1,4-DHP derivata s 2,3-diklor-5,6-dicijano-1,4-benzokinonom	99	
4.3.	EPR sp	ektroskopija10	00	
4.3.1.	EPR spe	ektroskopska mjerenja uz korištenje Mo Cl_5 kao oksidacijskog sredstva10	02	
4.3.2.	EPR spe	ektroskopska mjerenja uz korištenje VOCl $_3$ kao oksidacijskog sredstva10	06	
4.3.3.	EPR spe sredstva	ektroskopska mjerenja uz korištenje tritilijevog tetrafluoroborata kao oksidacijskog 1	09	
4.3.4.	EPR spe sredstva	ektroskopska mjerenja uz korištenje tropilijevog tetrafluoroborata kao oksidacijskog 11	11	
4.3.5.	EPR spe	ektroskopska mjerenja uz korištenje DD Q kao oksidacijskog sredstva1	12	
4.3.6.	EPR spe	ektroskopska mjerenja uz korištenje TCNE kao oksidacijskog sredstva1	15	
4.3.7.	EPR spe vodikovi	ektroskopska mjerenja uz korištenje katalitičke količine joda i kompleksa uree s im peroksidom kao oksidacijskog sredstva1	16	
4.4.	Ispitiva	nje nastajanja kompleksa s prijenosom naboja (CT kompleksa)1	18	
4.4.1.	Ispitivar	nje nastajanja kompleksa s prijenosom naboja UV-Vis spektroskopijom1	18	
4.4	4.1.1.	Ispitivanje nastajanja kompleksa s prijenosom naboja s DDQ12	20	
4.4	4.1.2.	Ispitivanje nastajanja kompleksa s prijenosom naboja s TCNE	25	
4.4	4.1.3.	Ispitivanje nastajanja kompleksa s prijenosom naboja s tropilijevim tetrafluoroborato	m129	
4.4	4.1.4.	Ispitivanje nastajanja kompleksa s prijenosom naboja s NbCl ₅ 1.	30	
4.4.2.	Ispitivar	nje nastajanja kompleksa s prijenosom naboja IR spektroskopijom1.	32	
4.4.3.	4.4.3. Ispitivanje nastajanja kompleksa s prijenosom naboja NMR spektroskopijom135			
4.4	4.3.1.	Kompleks s TCNE kao oksidansom	36	
4.4	4.3.2.	Kompleks s tritilijevim tetrafluoroboratom kao oksidansom1.	37	
4.5.	Mehani	zam aromatizacije 4-supstituiranih 1,4-DHP-a14	40	

5.1. Aromatizacija s metalnim oksidansima VOCl3 i MoCl5	143
5.2. Aromatizacija s karbokationima	149
4.5.2.1. Aromatizacija s tropilijevim tetrafluoroboratom	149
4.5.2.2. Aromatizacija s tritilijevim tetrafluoroboratom	155
5.3. Aromatizacija s 2,3-diklor-5,6-dicijano-1,4-benzokinonom	158
5.4. Aromatizacija s 1,1,2,2-tetracijanoetilenom	163
5.5. Aromatizacija uz korištenje katalitičke količine joda i kompleksa uree s vodikovim peroksi kao oksidacijskog sredstva	dom 165
5. ZAKLJUČAK	167
6. POPIS OZNAKÂ, KRATICÂ I SIMBOLÂ	170
7. LITERATURNI IZVORI	173
8. ŽIVOTOPIS	XII

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet **Kemijski odsjek**

SAŽETAK

MEHANIZAM AROMATIZACIJE 4-SUPSTITUIRANIH-1,4-DIHIDROPIRIDINA

Maja Regović BELUPO lijekovi i kozmetika d.d., Kontrola kvalitete, Danica 5, Koprivnica

Hantzschovom ciklizacijom pripravljen je niz 1,4-dihidropiridinskih spojeva (1,4-DHP) s različitim supstituentima na položajima 3, 4 i 5. Iz njih su sintetizirani određeni piridinski spojevi koji su korišteni kao standardi prilikom analize omjera dealkilnog i alkilnog produkta na položaju 4 visokodjelotvornom tekućinskom kromatografijom.

Za reakciju aromatizacije 1,4-DHP ispitan je niz različitih reakcijskih uvjeta i oksidansa: metalni, tritilijev i tropilijev tetrafluoroborat, 2,3-diklor-5,6-dicijano-1,4-benzokinon i tetracijanoetilen. Primjenom različitih spektroskopskih metoda je dokazano nastajanje kompleksa s prijenosom naboja prilikom prvog kontakta između 1,4-dihidropiridina i oksidansa.

Na temelju dobivenih rezultata analize i detektiranih radikala, pretpostavljen je mehanizam kojim nastaje 4-dealkilni produkt u nekoliko uzastopnih koraka: početni korak je prijenos elektrona, zatim slijedi otcjepljenje karbokationa s položaja 4 pri čemu nastaje dihidropiridilni radikal, a potom prijenosom drugog elektrona i uklanjanjem protona s dušika nastaje piridinski produkt. Istim mehanizmom nastaje i 4-alkilni produkt, ali je drugi korak uklanjanje protona umjesto karbokationa. Kod tropilijevog kationa 4-alkilni produkt nastaje jednostupanjskim prijenosom hidrida, dok se kod tritilijevog kationa ne može jednoznačno odrediti nastaje li 4-alkilni produkt jednostupanjskim ili sekvencijalnim prijenosom hidrida.

(179 stranica, 92 slike, 55 tablica, 43 sheme, 171 literaturni navod, jezik izvornika: hrvatski)

Rad je pohranjen u Središnjoj kemijskoj knjižnici, Horvatovac 102a, Zagreb i Nacionalnoj i sveučilišnoj knjižnici, Hrvatske bratske zajednice 4, Zagreb.

Ključne riječi: aromatizacija / dihidropiridilni radikal / 1,4-dihidropiridin / kompleks s prijenosom naboja / mehanizam

Mentori: Dr. sc. Mladen Litvić, v. zn. sur., Belupo d.d. Dr. sc. Vladimir Vinković, zn. savj., IRB

Rad prihvaćen: 07.09. 2016.

Ocjenitelji: Izv. prof. dr. sc. Ines Primožič, PMF Dr. sc. Mladen Litvić, v. zn. sur., Belupo d.d. Dr. sc. Marina Ilakovac Kveder, zn. savj., IRB i nasl. izv. prof., PMF

Doktorska disertacija

University of Zagreb Faculty of Science **Department of Chemistry**

ABSTRACT

MECHANISM OF AROMATIZATION OF 4-SUBSTITUTED-1,4-DIHYDROPYRIDINES

Maja Regović

BELUPO Pharmaceuticals & Cosmetics Inc., Quality Control, Danica 5, Koprivnica

1,4-Dihydropyridines with different substituents on positions 3, 4 and 5 were prepared using Hantzsch cyclisation reaction and corresponding pyridines were prepaired from them. The obtained compounds were used as standards in high performance liquid chromatography when analysing the ratio of alkylated and dealkylated product on position 4 resulted during aromatization.

Many reaction conditions and oxidants were examined for aromatization of 1,4-DHP: metal, tropylium and trityl tetrafluoroborate, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoethylene. Using different spectroscopic methods charge transfer complexes during the first contact of 1,4-dihydropyridine and oxidant were identified.

Based on obtained results of aromatization product analysis and radicals detected, a mechanism was proposed which explains the appearance of 4-dealkylated product via few consecutive steps: initial step is electron transfer, then carbocation elimination from position 4 to give dihydropyridil radical, which is followed by second electron transfer and losing a proton from nitrogen atom results in pyridine product. The same mechanism explains the appearance of 4-nondealkylated product, but the second step involves proton elimination instead of carbocation. When using tropylium cation 4-alkylated product results by one step hydride transfer. It can not be uniquely determined whether the 4-alkylated product results by one step or sequential hydride transfer when using trityl cation.

(179 pages, 92 figures, 55 tables, 43 shemes, 171 references, original in Croatian)

Thesis deposited in Central Chemical Library, Horvatovac 102A, Zagreb, Croatia and National and University Library, Hrvatske bratske zajednice 4, Zagreb, Croatia.

Keywords: aromatization / dihydropyridil radical / 1,4-dihydropyridines / charge transfer complex / mechanism

Supervisors: Dr. Mladen Litvić, Senior Research Associate, Belupo

Dr. Vladimir Vinković, Senior Scientist, IRB

Thesis accepted: 07 September 2016

Reviewers:

Dr. Ines Primožič, Associate Professor, PMF

Dr. Mladen Litvić, Senior Research Associate, Belupo

Dr. Marina Ilakovac Kveder, Senior Scientist, IRB and title Associate Professor, PMF

xi

Doctoral Thesis

§ 1. UVOD

1.1 Definicija problema

1,4-Dihidropiridinski derivati (1,4-DHP) posjeduju niz farmakoloških aktivnosti, a najznačajnije je farmakološko svojstvo blokatora kalcijevih kanala (kalcijevi antagonisti)¹ što se koristi u liječenju hipertenzije, angine pectoris i nekih drugih koronarnih bolesti. Nakon unosa u organizam njihov prvi metabolički stupanj je oksidacija (aromatizacija) citokromom P-450 do odgovarajućeg piridina.² Strukturni segment 1,4-DHP se također nalazi i u kofaktorima NADH i NADPH³ i stoga se može zaključiti da je dobro poznavanje mehanizma aromatizacije 1,4-DHP vrlo važno s ciljem razumijevanja bioloških procesa, ali i razvoja novih metoda sinteze supstituiranih piridina.

Ispitan je cijeli niz različitih oksidansa (metalnih i nemetalnih) katalitičke, fotokemijske i elektrokemijske metode aromatizacije te pretpostavljeno nekoliko različitih mehanizama aromatizacije temeljem termodinamičkih,⁴ kinetičkih⁵ i elektrokemijskih⁶ mjerenja. Uz to je prilikom aromatizacije primijećeno da ponekad, ovisno i o oksidansu, kad su na položaju 4 dihidropiridinskog prstena prisutne benzilna ili alkilna skupina, dolazi i do djelomične ili potpune dealkilacije, odnosno gubitka tih supstituenata.^{5,7-16}

U našem laboratoriju je ispitivan mehanizam aromatizacije 1,4-DHP s metalnim solima.¹⁷ Zabilježeno je da kod aromatizacije s VOCl₃ dolazi također do dealkilacije i da omjer 4dealkilnog i 4-alkilnog produkta, osim o supstituentu na položaju 4 dihidropiridinskog prstena, ovisi i o polarnosti otapala. Kod preliminarnih ispitivanja aromatizacije s TaCl₅ primijećene su promjene boje na početku i tijekom reakcije, što je objašnjeno nastajanjem kompleksa s prijenosom naboja (engl. *"Charge transfer"* (CT) kompleksi) koji zbog izrazite nestabilnosti nisu spektroskopski okarakterizirani (niti IR niti UV-Vis). Nadalje je predložen mehanizam aromatizacije s VOCl₃ koji proces dealkilacije objašnjava nastajanjem radikala.¹⁷

U literaturi postoji niz radova na temu nastajanja kompleksa s prijenosom naboja između π -akceptora TCNE i DDQ i raznih donora koji sadrže dušikove, kisikove ili sumporove atome.¹⁸ Molekulske interakcije između elektron donora i akceptora su povezane s nastajanjem obojenih CT kompleksa koji uglavnom apsorbiraju u vidljivom području, te se stoga ti kompleksi karakteriziraju IR i UV-Vis spektroskopskim metodama.¹⁹⁻²² Kinetičkim i

termodinamičkim proračunima je dokazano i nastajanje CT kompleksa između DDQ ili TCNE i NADH analoga AcrHR²² kao prvog koraka kojim započinje aromatizacija. No, pregledom literature je uočeno da dosad nije provedeno detaljnije ispitivanje nastajanja CT kompleksa između 1,4-DHP-a i raznih elektron akceptora.

Prilikom ispitivanja elektrokemijske oksidacije 4-supstituiranih-1,4-DHP-a Nunez-Vergara i suradnici su uspješno detektirali nestabilni radikalski međuprodukt (dihidropiridilni radikal s odgovarajućim supstituentom na položaju 4) koji po metodi s *N-tert*-butil- α fenilnitronom (PBN) daje signal u EPR spektru.²³⁻²⁵ To je jedina literaturno zabilježena studija oksidacije 1,4-DHP-a gdje je korišten PBN kao spinska stupica i detektiran ovakav tip radikala.

1.2 Svrha i cilj rada

Cilj ovog rada je ispitivanje utjecaja strukture 1,4-dihidropiridinskih derivata i uvjeta reakcije (otapalo, temperatura, eventualno nastajanje CT kompleksa) na omjer 4-dealkilnog i 4alkilnog produkta aromatizacije s nekoliko različitih vrsti oksidansa, budući da dosad nisu provedena detaljnija istraživanja takvog utjecaja.

U tu svrhu najprije su sintetizirani 1,4-DHP derivati koji imaju različite supstituente na položaju 3, 4 ili 5 (Slika 1). Pripravljen je i niz pripadajućih piridinskih derivata koji na položaju 4 imaju ili odgovarajući supstituent ili atom vodika koji su korišteni kao standardi kod visokodjelotvorne tekućinske kromatografije za određivanje omjera dobivenih produkata.

Slika 1: Opća formula 4-supstituiranih-1,4-DHP

Aromatizacija je ispitivana uz korištenje metalnih oksidansa VOCl₃ i MoCl₅ kao nastavak na prethodna istraživanja u našem laboratoriju,¹⁷ a dodatno su ispitani π -akceptori TCNE i DDQ²⁶ te organski kationi tropilijev tetrafluoroborat²⁷ i tritilijev tetrafluoroborat.²⁸ S većinom tih oksidansa je već rađeno ispitivanje aromatizacije s različitim analozima NADH i postoje predloženi mehanizmi, koji su uspoređeni s mehanizmima pretpostavljenim u ovom radu. Omjer 4-alkilnog **LP 2** i 4-dealkilnog **LP 3** produkta koji nastaju prilikom aromatizacije u različitim reakcijskim uvjetima (Shema 1), određen je metodom visokodjelotvorne tekućinske kromatografije.

Shema 1

Polazna pretpostavka je da 1,4-DHP, budući da posjeduju atom dušika koji se ponaša kao elektron donor, stvaraju CT komplekse prilikom kontakta s oksidansima unutar kojih nadalje dolazi do aromatizacije. Moguće je da prilikom aromatizacije nastaju različiti radikalski međuprodukti. Stoga je cilj detektirati i asignirati te komplekse UV-Vis i IR, odnosno radikalske međuprodukte EPR spektroskopijom²⁹⁻³¹ uz korištenje PBN-a kao spinske stupice.

Detektirani međuprodukti i rezultati HPLC analize bi trebali dati temeljne postavke za objašnjenje mehanizma kojim se odvija aromatizacija i to ne samo u laboratorijskim uvjetima već preneseno i u biološkim procesima. Dobiveni rezultati bi prvenstveno mogli pomoći u razjašnjenju dileme da li se trasfer hidrida s NADH na supstrate odvija u jednom ili u više koraka.

§ 2. LITERATURNI PREGLED

2.1. Općenito o 1,4-dihidropiridinima

Arthur Hantzsch je opisao pripremu 1,4-dihidropiridina 1882. godine.³² Originalna Hantzschova sinteza je trokomponentna (acetoacetatni ester, benzaldehid i amonijak ili amonijeve soli) reakcija ciklizacije na temperaturi povrata etanola.

Shema 2

70-ih godina prošlog stoljeća dolazi do napretka u kemiji 1,4-DHP zahvaljujući otkriću njihove antihipertenzivne farmakološke aktivnosti.¹ U njemačkoj farmaceutskoj kompaniji Bayer AG^{1,33,34} su ispitivana kardiovaskularna svojstva prirodnog spoja kelina LP 7,³⁵ izoliranog iz biljke *Ammi visnaga L* (Slika 2), s ciljem priprave topljivijeg spoja i povećanja aktivnosti.

Slika 2: A) Ammi visnaga L i B) struktura kelina

Među različitim stukturama ispitani su i derivati kondenziranih 1,4-DHP što je rezultiralo otkrićem veoma važnog biološkog djelovanja Hantzschovih 1,4-DHP. Hipotenzivna svojstva 1,4-DHP³⁶ su neovisno otkrivena i u kompaniji Smith, Kline & French.

Zahvaljujući mogućnosti za vezanjem različitih supstituenata na nekoliko položaja, 1,4-DHP posjeduje niz dodatnih farmakoloških aktivnosti poput protuupalne,³⁷ protualergijske, bronhodilatacijske,³⁸ antituberkulozne,³⁹ antitrombične,⁴⁰ antivirusne^{41,} antioksidacijske,⁴² antidijabetske i drugih.⁴³

Mehanizam djelovanja 1,4-DHP u organizmu

Najznačajnije farmakološko djelovanje 1,4-DHP je svojstvo blokiranja kalcijevih kanala za koje je detaljnije ispitan mehanizam djelovanja.¹ 1,4-DHP stabiliziraju kalcijeve kanale L-tipa smještene na staničnoj membrani zbog čega su oni manje osjetljivi na promjenu potencijala potrebnog za otvaranje kanala i ulazak kalcijevih iona iz izvanstaničnog prostora u stanicu.⁴⁴ Posljedično dolazi do opuštanja krvnih žila i glatkih mišića srca.⁴⁵

Slika 3: Prikaz kalcijevog kanala

Osim navedenog 1,4-DHP uzrokuje povećanje izlučivanja dušikovog(II) oksida (NO) iz endotela.⁴⁶ Dušikov(II) oksid inhibira trombozu, proliferaciju i aterosklerozu i na taj način doprinosi drugim farmakološkim djelovanjima 1,4-DHP.

Bolje poznavanje mehanizma njihova farmakološkog djelovanja će omogućiti pronalazak novih generacija 1,4-DHP koji će imati selektivnije djelovanje i smanjene nuspojave.

Komercijalni 1,4-DHP

Osim 1,4-DHP svojstvo blokiranja kalcijevih kanala posjeduju i fenilalkilamini (verapamil)⁴⁷⁻⁴⁹ te benzotiazepini (diltiazem)⁵⁰ za koje postoji posebni receptor na kalcijevom kanalu. Međutim, zbog mnogo boljih farmakoloških svojstava 1,4-DHP su najzastupljeniji na tržištu.⁵¹

Farmakološka svojstva 1,4-DHP ovise o funkcionalnostima na dihidropiridinskom i fenilnom prstenu (Slika 4). Neki od komercijalnih 1,4-DHP spojeva sa svojstvima kalcijevih antagonista su: amlodipin, aranidipin, azelnidipin, barnidipin, benidipin, cilnidipin, darodipin, efonidipin, elgodipin, elnadipin, felodipin, flordipin, furnidipin, iganidipin, klevidipin, lisradipin, lacidipin, lemildipin, lerkanidipin, manidipin, nikardipin, nifedipin, nilvadipin, nimodipin, nisoldipin, nitrendipin, olradipin, oksodipin, palonidipin, pranidipin, sagandipin, sornidipin, teludipin, tiamdipin, trombodipin.⁵²

Slika 4: Općenita struktura 1,4-DHP koji se koriste u liječenju hipertenzije

2.2. Aromatizacija 1,4-dihidropiridina

2.2.1. Metode aromatizacije

U literaturi postoji veliki broj radova koji se bave proučavanjem aromatizacije 1,4-DHP-a do odgovarajućih supstituiranih piridina. Jedan od mogućih razloga je činjenica da je prvi stupanj metabolizma 1,4-DHP lijekova oksidacija citokromom P-450 (Slika 5)⁵³ u jetri do piridinskih spojeva, koji se nakon daljnje transformacije izlučuju iz organizma.

Slika 5: Struktura citokroma P-450

Prema gruboj podjeli postoji nekoliko skupina metoda kojima je ispitivana aromatizacija 1,4-DHP:

- a) elektrokemijske metode $^{6, 23-25}$
- b) fotokemijske metode.^{54,55}
- c) aromatizacija metalnim oksidansima⁵⁶
- d) aromatizacija nemetalnim oksidansima⁵⁶

Metalne soli s metalima viših oksidacijskih stanja su vrlo često korišteni reagensi za aromatizaciju 1,4-DHP. Opisane su aromatizacije s kobaltovim naftenatom,¹⁰ kvinolinijevim fluorokromatom,¹¹ benzimidazolijevim fluorokromatom,¹¹ Ag₂O,¹² Ag₂CO₃,¹³ kobaltovim peroksidisulfatom,¹⁴ Co-naftenat/O₂,⁵⁷ CrO₂ (MagtrieveTM),⁵⁸ CrO₃,⁵⁹⁻⁶² H₂CrO₄,⁶³ piridinijevim dikromatom,⁶⁴ nikotinijevim dikromatom,⁶⁵ *tetrakis*-piridin kobalt(II) dikromatom,⁶⁶ piridinijevim klorokromatom,⁶⁷ Mn(OAc)₃,⁶⁸ BaMnO₄,⁶⁹ Mn(II) ili Co(II) soli *p*-aminobenzojeve kiseline adsorbirane na silikagelu/O₂,⁷⁰ KMnO₄,⁷¹⁻⁷³ MnO₂,⁷⁴⁻⁷⁷

 $\begin{aligned} & \text{RuCl}_{3}/\text{O}_{2}(g), \stackrel{78}{} \text{Fe}(\text{ClO}_{4})_{3}/\text{O}_{2}(g), \stackrel{79}{} \text{Fe}\text{Cl}_{3}x6\text{H}_{2}\text{O}, \stackrel{80}{} \text{K}_{3}[\text{Fe}(\text{CN})_{6}], \stackrel{81,82}{} \text{Pd/C}, \stackrel{83,84}{} \\ & \text{Bi}(\text{NO}_{3})_{3}x5\text{H}_{2}\text{O}, \stackrel{85}{} \text{Fe}(\text{NO}_{3})_{3}/\text{SiO}_{2}, \stackrel{86}{} \text{Cu}(\text{NO}_{3})_{2}, \stackrel{87}{} \text{Zr}(\text{NO}_{3})_{4}, \stackrel{88}{} (\text{NH}_{4})_{2}[\text{Ce}(\text{NO}_{3})_{6}], \stackrel{89}{} \\ & \text{Zn}(\text{ClCrO}_{3})_{2}x9\text{H}_{2}\text{O}, \stackrel{90}{} \text{Hg}(\text{OAc})_{2}, \stackrel{91}{} \text{SnCl}_{4}, \stackrel{92}{} \text{Tl}(\text{OAc})_{3}, \stackrel{93}{} \text{VOCl}_{3}, \stackrel{17}{} \text{MoOCl}_{4} \text{ i } \text{MoCl}_{5}, \stackrel{94}{} \\ & \text{SbCl}_{5}, \stackrel{95}{} \text{Ce}(\text{SO}_{4})_{2}x4\text{H}_{2}\text{O/O}_{2}. \end{aligned}$

Prvi oksidans korišten za aromatizaciju 1,4-DHP, a i danas se najčešće koristi, je dušična kiselina različite koncentracije.⁹⁷⁻¹⁰² Nitritna kiselina je korištena pripremljena *in situ* iz natrijevog nitrita u octenoj kiselini (NaNO₂/HOAc),¹⁰³⁻¹⁰⁵ NaNO₂/modificirani SiO₂,¹⁰⁶ NaNO₂/HCl,¹⁰⁷ NaNO₂/HOOCCOOHx2H₂O¹⁰⁸ ili H₃PMo₁₂O₄₀/NaNO₂/SiO₂¹⁰⁹ i gvanidinijev nitrat/H₂SO.¹¹⁰ Za aromatizaciju 1,4-DHP korišteni su i dušikovi oksidi, NO plinoviti,¹¹¹ NO⁺ vezan u krunastom eteru,¹¹² te N₂O₄, posebno za aromatizaciju *N*-alkil-1,4-DHP.¹¹³

Od ostalih oksidansa za aromatizaciju 1,4-DHP opisani su kisik,^{114,115} jodobenzen diacetat uz djelovanje ultrazvuka i mikrovalnog zračenja,¹¹⁶ NaBrO₃ u prisustvu Bu₄NHSO₄,¹¹⁷ elektrolitički generirani superoksidni ion (O₂⁻⁻),¹¹⁸ *p*-toluensulfonska kiselina u bezvodnim uvjetima¹¹⁹ kloranil,¹²⁰ DDQ,^{5,26} elementarni sumpor,¹²⁰ elementarni jod,¹²¹ H₂O₂ u prisustvu Co(OAc)₂,¹²² urea-vodikov peroksid adukt u prisustvu joda,¹²³ dibenzoilperoksid,¹²⁴ jodobenzen diacetat,¹²⁵ jodozobenzen/KBr,¹²⁶ polimerno vezani jodobenzen diacetat,¹²⁷ [hidroksi(tosiloksi)jod]benzen,¹²⁸ SeO₂,¹²⁹ CCl₄,¹³⁰ vidljivo svjetlo (λ = 450 nm) u prisustvu zraka i K₂CO₃,¹³¹ tropilijev tetrafluoroborat,²⁷ tritilijev tetrafluoroborat²⁸ i dr.

2.2.2. Mehanizmi aromatizacije

U literaturi postoji cijeli niz pretpostavljenih mehanizama aromatizacije koji se uglavnom temelje na kinetičkim i termodinamičkim proračunima, te na dobivenim produktima reakcije. Na Shemi 3 je prikazano nekoliko različitih puteva kojima se reakcija može odvijati:⁵ *put a* je direktni prijenos hidrida na oksidans pri čemu nastaju kationi **LP 10** i/ili **LP 11**, od kojih deprotonacijom nastaju konačni aromatizirani produkti A i/ili B. *Put b* započinje prijenosom jednog elektrona sa 1,4-dihidropiridina na oksidans, nastaje radikal - kation **LP 9**, koji raspadom na nekoliko različitih načina daje konačne produkte. Kod *puta c* prvi je korak homolitička razgradnja NH veze uz nastajanje radikala **LP 12** i/ili **LP 13** od kojih gubitkom atoma vodika ili radikala R_1 nastaje konačni produkt.

Shema 3

Do prijenosa hidrida može doći sa položaja 1¹³² ili položaja 4 1,4-DHP-a.

U slijedećim poglavljima su navedeni literaturno opisani pretpostavljeni mehanizmi aromatizacije s oksidacijskim sredstvima s kojima će biti ispitivana aromatizacija 1,4-DHP.

2.2.2.1. Mehanizmi aromatizacije s 1, 1, 2, 2 - tetracijanoetilenom (TCNE) i 2,3-diklor-5,6dicijano-1,4-benzokinonom (DDQ)

Od prvog rada o sintezi i svojstvima TCNE 1958. objavljen je cijeli niz radova koji koriste jedinstvene karakteristike ovog spoja, Slika 6. Zbog elektron - privlačećeg efekta četiri cijano skupine koje imaju nisku energiju π^* orbitala i njihove π konjugacije centralnom C=C dvostrukom vezom TCNE je izvrstan elektron akceptor.

Slika 6: Prikaz molekule TCNE

Fukuzumi i suradnici¹³³ su s kinetičkog stajališta proučavali aromatizaciju 1-benzil-1,4dihidronikotinamida (model NADH) i TCNE (Shema 4).

Shema 4

BNAH + TCNE
$$\longrightarrow$$
 BNA⁺ + TCNEH⁻
TCNEH⁻ + TCNE $\xrightarrow{\text{brzo}}$ TCNEH⁺ + TCNE $\xrightarrow{\text{cmatrix}}$ TCNEH₂ + TCNE

Pretpostavili su da se redukcija TCNE odvija prijenosom hidrida, nakon čega slijedi brzi prijenos elektrona sa TCNEH⁻ na TCNE i disporporcioniranje TCNEH⁻. Rađena su i ispitivanja u prisustvu baze pri čemu je zamijećen utjecaj baze na brzinu reakcije. Takav utjecaj se može objasniti Shemom 5, odnosno prijenos hidrida sa BNAH nije direktan već nastaju međuprodukti, iz čega slijedi da prijenos teče gubitkom elektrona – protona – elektrona.

Shema 5

BNAH + TCNE
$$\leftarrow$$
 [BNAH \leftarrow TCNE \leftarrow] \rightarrow
[BNA \leftarrow TCNEH \leftarrow] \rightarrow BNA \leftarrow + TCNEH \leftarrow

2,3-Diklor-5,6-dicijano-1,4-benzokinon DDQ (Slika 7) je istraživan kao moćno oksidacijsko sredstvo i pokazao se djelotvornim u širokom spektru reakcija. Reagens je od izbora zbog selektivnosti i dostupnosti. Neke od reakcija u kojima se koristi su dehidrogeniranje steroidnih ketona i pirazola, alkohola, fenola, heterocikličkih spojeva, oksidacije, oksidativne ciklizacije, oksidativna deprotekcija, medijator u stvaranju C-C veza.¹³⁴ Kinoni igraju važnu ulogu u mnogim biološkim procesima u kojima se odvija prijenos elektrona. Biološka aktivnost tih spojeva proizlazi iz redoks kemije kinonskog sistema. Ulaze u interakciju s bitnim staničnim molekulama poput DNK, proteina i kisika, te pospješuju njihovu biološku aktivnost prihvaćanjem elektrona na pravom mjestu.

Slika 7: Prikaz molekule DDQ

Proučavanjem aromatizacija s DDQ su se bavili Zhu i suradnici.⁵ Proučavali su i aromatizaciju 1,4-DHP-a s dušikovim oksidom (NO) i *N*-metil-*N*-nitrozotoluen-*p*-sulfonamidom (MNTS) u acetonitrilu na sobnoj temperaturi. Kada su supstituenti na položaju 4 bile metilna, etilna, *n*-propilna ili arilne skupine one su ostale na tom položaju, dok je kod izopropilne i benzilne skupine došlo do njihova uklanjanja i nastajanja samo 4-dealkilnog produkta. Prilikom aromatizacija s DDQ koje su provedene na sobnoj temperaturi u tetrahidrofuranu nije došlo do uklanjanja supstituenta na položaju 4 1,4-DHP-a. DDQ je dobar akceptor hidrida i pretpostavljeno je da reakcija počinje direktnim transferom hidrida i to sa položaja 4, jer je stabilnost kationa **LP 11** koji nastaje transferom sa položaja 4 puno veća od stabilnosti kationa **LP 10**, koji je produkt transfera sa dušika.

Memarian i suradnici²⁶ su proučavali aromatizaciju između DDQ i 1,4-DHP-3,5-diestera u omjeru 1:1 u acetonitrilu na sobnoj temperaturi i pod utjecajem mikrovalnog zračenja. Kada je na položaju 4 bio prisutan 1-feniletil (Ph(CH)₃CH) omjer 4-dealkilnog i 4-alkilnog produkta je iznosio 95 : 5. U prisustvu različito supstituiranog fenilnog prstena ili metilnog supstituenta na položaju 4 nastao je samo 4-alkilni produkt. Na temelju dobivenih rezultata reakcije pretpostavljen je mehanizam (Shema 6) gdje je prvi korak prijenos elektrona sa 1,4-DHP-a na DDQ i nastajanje dihidropiridilnog radikal-kationa (Py-H⁺⁺) i radikal aniona DDQ⁺⁻. Idući korak je uklanjanje prvog protona, i nastajanje dihidropiridilnog radikala (Py-H⁺) i DDQH⁺. Zatim slijedi transfer drugog elektrona i drugog protona, a krajnji produkti su piridin i DDQH₂.

Shema 6

1. korak: Prijenos prvog elektrona

2. korak: Uklanjanje prvog H⁺ili R⁺

3. korak: Prijenos drugog elektrona

2.2.2.2. Mehanizmi aromatizacije s tropilijevim i tritilijevim kationom

Slika 8: Prikaz tropilijevog i tritilijevog kationa

Tropilijev kation je slabi oksidans relativno malo korišten u organskoj i organometalnoj kemiji. Izabran je za ispitivanje mehanizama aromatizacije zbog svojstva da se ponaša i kao elektron akceptor, ali i kao akceptor hidrida.²⁷ Tritilijev kation poznat i kao trifenilugljikov ion je dugo bio poznat kao reagens za uklanjanje hidridnog iona iz organskih spojeva. Međutim, može djelovati i kao blagi jednoelektronski oksidans pri čemu daje tritilijev radikal.

Smatra se da su kinetički ili termodinamički parametri, pogotovo njihova kombinacija, najkorisniji u evaluaciji mehanizama za mnoge tipove organskih reakcija. Zhao i suradnici²⁷ su ispitivali aromatizaciju između nekoliko različitih 1,4-DHP-a (Slika 9) i tropilijevog kationa. Na temelju kinetičkih i termodinamičkih proračuna su zaključili da aromatizacija 4-supstituiranog 1,4-DHP-a započinje direktnim prijenosom hidrida, dok je kod nesupstituiranog 1,4-DHP-a prisutan hibridni mehanizam prijenosa hidrida i prijenosa elektrona.

Slika 9: Strukture korištenih 1,4-DHP-a

Na Slici 10 su prikazani spojevi za koje je ispitivana aromatizacija s tritilijevm tetrafluoroboratom.²⁸ Kinetički i termodinamički proračuni ukazuju da reakcija počinje prijenosom elektrona koji prati brzo prihvaćanje atoma vodika.

2.2.2.3. Mehanizmi aromatizacije s metalnim solima

Ispitan je cijeli niz metoda aromatizacije u kojima se metali koriste u ekvivalentnim ili u katalitičkim količinama. Jedan od pretpostavljenih mehanizama kojim bi se aromatizacija mogla odvijati u prisustvu metala je prikazan na Shemi 7.⁷⁹ Prikazana je katalitička aromatizacija 1,4-DHP-a sa željezovim perkloratom u octenoj kiselini na sobnoj temperaturi. Prvi korak je prijenos elektrona, zatim deprotonacija radikal-kationa (**LP 15**), nakon toga slijedi regeneracija Fe(III) koji veže elektron i oksidira nastali dihidropiridilni radikal (**LP 16**) te na kraju deprotonacijom piridinijevog kationa nastaje konačni produkt (**LP 18**).

Shema 7

Na položaju 4 su korišteni različiti supstituenti i svi su stabilni osim izopropilne i benzilne skupine koje se uklanjaju najvjerojatnije u obliku odgovarajućih radikala, pri čemu nastaje 4-dealkilni produkt.

2.2.3. Dealkilacija odnosno eliminacija sa položaja 4

Prilikom aromatizacije s različitim oksidansima ne dolazi uvijek samo do oksidacije, već može doći i do eliminacije supstituenta na položaju 4 i nastajanja 4-dealkilnog produkta koji na položaju 4 ima atom vodika. U prethodnom poglavlju/ima, prilikom aromatizacije 4-supstituiranih 1,4-DHP-a s DDQ (Shema 6) vidljivo je da nastaju dva različita produkta koji na položaju 4 imaju ili supstituent R ili atom vodika. Kad je na položaju 4 bio prisutan sekundarni alkilni supstituent došlo je skoro do potpunog nastajanja 4-dealkilnog produkta.

Na Shemi 8 je vidljiv mehanizam aromatizacije 1,4-DHP-a s kobaltovim peroksidisulfatom u vodenom acetonitrilu na temperaturi povrata otapala.¹⁴ Reakcija započinje prijenosom elektrona na Co(III) ion, slijedi deprotonacija uz nastajanje međuprodukta **LP 21** koji nakon prijenosa elektrona homolizom daje aromatizirani produkt. Produkt nastaje ili gubitkom protona ili supstituenta sa položaja 4 u obliku karbokationa. Svi spojevi kod kojih je došlo do djelomične dealkilacije su bili spojevi s alkilnim supstituentima (*n*-propilni 84 i 16, *n*-butilni 79 i 21 i stiril PhCH=CH 19 i 81 je bio omjer 4-alkilnog i 4-dealkilnog produkta, kod spoja s metilnim supstituentom uopće nije došlo do dealkilacije).

Shema 8

15

Litvić i suradnici¹⁷ su nastajanje 4-dealkilnog produkta u reakciji 2,6-dimetil-3,5di(metoksikarbonil)-4-(prop-1-il)-1,4-DHP-a s VOCl₃ u diklormetanu i octenoj kiselini na sobnoj temperaturi objasnili mehanizmom na Shemi 9. Iz sheme je vidljivo da se radikalkation **LP 24** koji nastaje nakon prijenosa elektrona na oksidans deprotonira i pritom nastaje radikal **LP 25**. Do dealkilacije dolazi direktnim homolitičkim pregrađivanjem radikal-kationa **LP 24** ili aminil radikala **LP 25**.

Shema 9

Omjer 4-dealkilnog i 4-alkilnog produkta je u diklormetanu bio 91 : 9, dok je u octenoj kiselini iznosio 33 : 67. Nadalje, u diklometanu kao otapalu kod izopropilnog supstituenta na položaju 4 je došlo do potpune dealkilacije, dok kod arilnih supstituenata nastaje 4-alkilni produkt. U prisustvu benzilnog supstituenta omjer 4-dealkilnog i 4-alkilnog produkta je bio 98,5 : 2,5.

Proučavana je i aromatizacija s [hidroksi(tosiloksi)jod]benzenom (HTIB)¹²⁸ u diklormetanu na sobnoj temperaturi (Shema 10) i primijećeno je da kada je na položaju 4

16

izopropilna ili benzilna skupina dolazi do potpune dealkilacije. Pretpostavka je da se mehanizam odvija nastajanjem radikal-kation međuprodukta koji nastaje prijelazom jednog elektrona sa 1,4-DHP na HTIB. Kada je na položaju 4 prisutna benzilna ili izopropilna skupina, dolazi do odcjepljenja te skupine, a ne protona, u obliku stabilnog karbokationa. Dobiven je dihidropiridilni radikal koji daljnjom aromatizacijom daje konačni produkt.

Shema 10

Pregledom literature⁷⁻¹⁷ se može zaključiti da prilikom aromatizacije 1,4-DHP-a s raznim oksidansima kada su na položaju 4 prisutne benzilna ili alkilne skupine, dolazi do nastajanja 4-dealkilnog i 4-alkilnog produkta u različitim omjerima, ovisno o oksidansu, supstituentu na položaju 4 i uvjetima reakcije. Chavan i suradnici su se bavili katalitičkom autooksidacijom kobaltovim (II) naftenatom na temperaturi povrata kloroforma. Kod 1,4-DHP-a gdje je na položaju 4 bio prisutan etilni, *n*-propilni ili izopropilni supstituent nastao je samo 4-dealkilni produkt.¹⁰ Proučavana je aromatizacija izložena utjecaju mikrovalnog zračenja uzrokovana kvinolinijevim fluorokromatom (QFC) i benzimidazolijevim fluorokromatom (BIFC) vezanom na aluminiju bez korištenja otapala.¹¹ Kad su na položaju 4 prisutne sekundarna alkilna ili benzilna skupina koje stvaraju stabilne karbokatione dolazi do nastajanja 4-dealkilnog produkta. Nadalje, proučavana je i aromatizacija sa srebrovim oksidom u

acetonitrilu na temperaturi povrata otapala.¹² Arilne, heteroarilne i *n*-propilna skupina na položaju 4 su ostale na tom položaju, dok su stirilna (PhCH=CH) i metilna skupina dale 4dealkilni produkt u iznosu od 50 odnosno 70 %. Kod izopropilne skupine je došlo do potpune dealkilacije. Momeni i suradnici su proučavali aromatizaciju sa srebrovim karbonatom na silikagelu ili celitu također u acetonitrilu na temperaturi povrata otapala.¹³ Izopropilna i benzilna skupina na položaju 4 su dale samo 4-dealkilni produkt, dok su s *n*-propilnom skupinom dobivena dva produkta pri čemu je omjer 4-dealkilnog i 4-alkilnog produkta 83 : 17.

2.3. Kompleksi s prijenosom naboja

Kompleksi s prijenosom naboja (CT engl. "*Charge transfer*" kompleksi) su poznati od zapažanja da jod stvara u aromatskim otapalima otopine koje su drukčije boje u odnosu na nearomatska otapala. Otkriće da do obojenja dolazi zbog elektronskih prijenosa naboja potaknulo je korištenje imena kompleksi s prijenosom naboja. Taj naziv je upitan jer interakcije s prijenosom naboja slabo doprinose energiji vezanja u osnovnom stanju. Tako da se koristi i naziv molekulski kompleks, π -kompleks ili donor - akceptor kompleks. No, taj naziv može upućivati i na prijenos naboja u optičkom spektru.

Zadnjih nekoliko desetljeća, molekulske interakcije između raznih elektron donora koji sadrže atome kisika, dušika i sumpora i elektron akceptora privlače mnogo pažnje kao jedno od bitnih područja istraživanja na mnogim područjima kemije. To je zbog značajne uloge koju te interakcije imaju u biološkim sistemima, bioelektrokemijskim procesima prijenosa energije, enzimskoj katalizi, prijenosu iona kroz lipofilne membrane. Osim toga CT kompleksi djeluju kao međuprodukti u nizu reakcija koje uključuju nukleofile i elektron deficijentne molekule. Sudjeluju u reakcijama poput adicije, supstitucije i kondenzacije. CT kompleksi su prepoznati kao zanimljiv fenomen u mehanizmu vezanja lijek-receptor, a s druge strane neki od CT kompleksa pokazuju zanimljiva fizikalna svojstva poput električne vodljivosti i imaju značajnu primjenu u području elektronike, solarnih ćelija i optičkih uređaja. Te interakcije su često povezane s nastajanjem intenzivno obojenih CT kompleksa kod kojih dolazi do apsorpcije zračenja u vidljivom ili UV području. Jedna od najraširenijih fizikalnih metoda za istraživanje CT interakcija je spektroskopija koja proučava pojavu intenzivnih, širokih elektronskih apsorpcijskih vrpci u UV-Vis području. Svojstva spektara i ostala svojstva kompleksa se u potpunosti mogu razumjeti nakon što je Mulliken^{135,136}

predložio teoriju prijenosa naboja. Osnovno svojstvo te teorije je da je kompleks nastao između elektron donora i elektron akceptora. Kvantno mehanički gledano valna funkcija nastalog kompleksa je kombinacija "no-bond" i "dativne" rezonancijske strukture. U strukturi osnovnog stanja nema veze (no-bond) i do vezanja dolazi zbog fizičkih sila poput interakcija dipol-dipol, dipol-inducirani dipol, ili disperzijskih sila (tu ne dolazi po prijenosa naboja). U dativnoj strukturi je jedan elektron u potpunosti prenesen sa donora na akceptor. Elektron prelazi iz najviše popunjene molekulske orbitale donora (HOMO) u najnižu nepopunjenu molekulsku orbitalu akceptora (LUMO)¹³⁷ i pritom dolazi do apsorpcije zračenja.

Slika 11: Kompleksi s prijenosom naboja između HOMO donora i LUMO akceptora

Nadalje, vrijeme trajanja CT kompleksa je između pikosekundi i atosekundi.¹³⁸ Posljedično, dolazi do pojave CT spektarnih linija koje su karakteristične za čiste CT interakcije. Osim toga, postoji i vremenska ovisnost linija kod nekih interakcija koje uključuju CT kompleksiranje, koja je posljedica nastajanja radikal iona ili kemijske reakcije.

2.3.1. Kompleksi s prijenosom naboja s neutralnim molekulama DDQ i TCNE

Kinoni su jedni od najproučavanijih elektron akceptora koji daju CT komplekse s nizom donora. Proučavanje kinona i CT interakcija proizlazi iz njihove moguće uloge u biološkim sistemima. Kinoni su bitni u oksidativnom fosforiliranju, fotosintezi i raznim oksidacijama.

Kao što je već spomenuto C=C dvostruka veza u TCNE je elektron deficijentna. Ta elektron deficijencija čini TCNE vrlo jakim elektron akceptorom te on stvara komplekse tipa elektron-donor-akceptor s gotovo svim vrstama elektron donora. Koristi se u pripremi brojnih organskih supervodiča gdje služi kao jednoelektronski oksidans organskih elektron donora. Takve soli prijenosa naboja se nazivaju Bechgaardove soli.

Slika 12: Prikaz kompleksa s prijenosom naboja između TCNE i raznih organskih molekula

Proučavani su CT kompleksi DDQ i TCNE s 2,6-diaminopiridinom.¹³⁹

Slika 13: Elektronski apsorpcijski spektar 2,6-DAPY – TCNE reakcije u CHCl₃. A) [TCNE] = $1x10^{-4}$ mol L⁻¹; B) [2,6-DAPY] = $1x10^{-4}$ mol L⁻¹; C) 1:3 2,6-DAPY-TCNE smjesa, [2,6-DAPY] = $1x10^{-4}$ mol L⁻¹ i [TCNE] = $3x10^{-4}$ mol L⁻¹

Slika 14: Elektronski apsorpcijski spektar 2,6-DAPY – DDQ reakcije u CHCl₃. A) [DDQ] = 3x10⁻⁴ mol L⁻¹; B) [2,6-DAPY] = 1x10⁻⁴ mol L⁻¹; C) 1:2 (2,6-DAPY-DDQ smjesa, [2,6-DAPY] = 1x10⁻⁴ mol L⁻¹ i [DDQ] = 3x10⁻⁴ mol L⁻¹

Nakon miješanja otopina donora i akceptora u kloroformu dolazi do promjene boje i pojave novih apsorpcijskih vrpci u područjima gdje ne apsorbiraju ni donor niti akceptor. To je jasni dokaz nastajanja CT kompleksa. Maksimumi apsorpcije su se pojavili na 574 nm kod TCNE, 465 i 815 nm kod DDQ.

Pripremljeni su i kruti CT kompleksi kojima je snimljen IR spektar.

<i>ṽ</i> (2,6-	<i>ῦ</i> [(2,6-	<i>ṽ</i> [(2,6-	A = i = m = = i =
DAPY)/cm ⁻¹	DAPY)(TCNE) ₃]/cm ⁻¹	$DAPY)(DDQ)_2]/cm^{-1}$	Asignacija
3392	3369	3341	(N–H); DAPY
	2262		(C≡N); TCNE
		2219	(C≡N); DDQ
1641	1661	1665	(C=C); aromatski prsten
1504		1556	Vibracije istezanja;
1374		1550	DAPY i DDQ
	1537		(C=C); TCNE
			(C=C); DAPY, DDQ
1463	1508	1511	vibracije istezanja
			prstena
1455	1380	1453	δ (NH ₂) i $\overline{\delta}$ (C–H);
1433	1309	1433	deformacije DAPY

Tablica 1: IR spektar CT kompleksa između 2,6-DAPY i DDQ, TCNE

Vrpce donora i akceptora imaju male pomake u odnosu na intenzitete i valne brojeve slobodnih molekula (Tablica 1). To je logično zbog očekivane simetrije i promjena elektronske strukture uslijed kompleksiranja. Npr. vibracije CN skupine se javljaju na 2182 i

2196 cm⁻¹ u spektru slobodnog TCNE i na 2203 cm⁻¹ u spektru slobodnog DDQ. Te su vibracije na 2206 i 2219 cm⁻¹ u spektrima CT kompleksa s TCNE, odnosno DDQ. Također dolazi i do promjene u vibracijama amino skupina što ukazuje da su one uglavnom uključene u kompleksiranje između 2,6-diaminopiridina i akceptora, a ne dušik na piridinskom prstenu. Također i kod vibracija aromatskog prstena ne dolazi do značajnih promjena nakon kompleksiranja.

Praćeni su i CT kompleksi između 1-metilpiperazina (1MPIPZ) i TCNE, te DDQ u kloroformu.¹⁴⁰ 1MPIPZ-TCNE CT kompleks je svjetlo žute boje i pokazuje apsorpcijsku vrpcu oko 417 nm, dok niti jedan od reaktanata ne apsorbira u tom području.

Slika 15: Elektronski apsorpcijski spektar 1-metilpiperazina – TCNE reakcije u CHCl₃. A) $[1MPIPZ] = 5x10^{-3} \text{ mol } L^{-1}; B) [TCNE] = 5x10^{-3} \text{ mol } L^{-1}; C) 1:3 1MPIPZ-TCNE smjesa,$ $[1MPIPZ] = 5x10^{-3} \text{ mol } L^{-1} i [TCNE] = 15x10^{-3} \text{ mol } L^{-1}.$

1MPIPZ-DDQ CT kompleks je smeđe boje i povezan je s apsorpcijama na 475 i 732 nm.

Slika 16: Elektronski apsorpcijski spektar 1-metilpiperazina – DDQ reakcije u CHCl₃. A) [1MPIPZ] = $5x10^{-3} \text{ mol } L^{-1}$; B) [DDQ] = $5x10^{-3} \text{ mol } L^{-1}$; C) 1:1 1MPIPZ-DDQ smjesa, [1MPIPZ] = [DDQ] = $5x10^{-3} \text{ mol } L^{-1}$.

Infracrveni spektri (Tablica 2) također ukazuju na pomake u vibracijama CN skupina TCNE sa 2182 i 2196 cm⁻¹ na 2177 i 2197 cm⁻¹. Kod DDQ vibracije su sa 2203 cm⁻¹ pomaknute na 2213 cm⁻¹.

ΰ (1 MPIPZ)/cm ⁻¹	<i>v</i> ([(1 MPIPZ)(TCNE) ₃])/cm ⁻¹	<i>v</i> ([(1 MPIPZ)(DDQ)])/cm ⁻¹	Asignacija
3433	3415	3430	(H ₂ O); KBr
3267	3267	3291	(N-H); 1 MPIPZ
2936	2934, 2847	2962, 2852	(C-H); -CH ₃
	2197, 2177	2213	(C≡N); DDQ i TCNE
	1655	1690	(C=O); DDQ
	1561	1558	(C=C); DDQ
1454	1462	1453	(CH ₂); 1 MPIPZ
1282	1290	1275	(C-N); 1 MPIPZ
1145	1156	1166	(C-C); 1 MPIPZ

Tablica 2: IR spektar CT kompleksa između 1MPIPZ i DDQ, TCNE

CT kompleksi se mogu koristiti i u kvantitativnoj analizi za spektrofotometrijsko određivanje lijekova. Na Slici 17 je prikazan CT kompleks između perfloksacina i DDQ.¹⁴¹ Perfloksacin se ponaša prema π akceptorima kao *n* donor i stvara CT komplekse, a kvantitativno određivanje se temelji na praćenju apsorpcijskog maksimuma CT kompleksa u UV-Vis spektru.

Slika 17: Strukture A) perfloksacina i B) perfloksacin – DDQ CT kompleksa

Slika 18: Elektronski apsorpcijski spektar perfloksacin - DDQ CT kompleksa

Jedan od primjera je i reakcija losartan kalija¹⁴² (LOS-K) s polikvinonima u nepolarnim otapalima poput dikloroetana u kojima nastaju obojeni kompleksi s prijenosom naboja s niskim vrijednostima apsorptivnosti. U polarnim otapalima poput metanola i acetonitrila dolazi do kompletnog prijelaza elektrona s LOS-K (donor) na akceptor (A) pri čemu nastaju intenzivno obojeni radikal ioni s visokim vrijednostima apsorptivnosti (Shema 11).

Shema 11

$$D + A \rightleftharpoons (D-A) \rightleftharpoons D'' + A''$$
kompleks $D'' + A''$
radikal ioni

Do disocijacije (D-A) kompleksa je došlo zbog visoke ionizacijske moći polarnog otapala. Interakcija LOS-K s π -akceptorima je dala obojene kromogene s apsorpcijskim maksimumima na 460 nm za DDQ i 414 nm za TCNE.

Slika 19: Elektronski apsorpcijski spektar produkata reakcije LOS-K s TNB (1), DDQ (2) i TCNQ (3). U slučaju s DDQ radi se o otopini u metanolu, a u slučaju TNB i TCNQ u acetonitrilu.

Slika 20: Elektronski apsorpcijski spektar produkata reakcije LOS-K s TCNE (1), bromanilom (2) i pCA (3). Otopine su u acetonitrilu.

S TCNE apsorpcijska vrpca TCNE radikal aniona s maksimumom u acetonitrilu na 432 nm nije nađena. Umjesto toga, dublet na 394 nm i 414 nm je formiran, koji odgovara 1,2,3,3-pentacijanopropeneidnom anionu, koji je preferirani u odnosu na TCNE anion.

Kod većine IR mjerenja došlo je do pomaka u vibracijskoj frekvenciji donora, akceptora ili/i obojega. Došlo je i do razlike u spektrima obzirom na sumu spektara dviju komponenti. Te se razlike koriste za razlikovanje između kompleksa s prijenosom naboja i produkata reakcije prijenosa elektrona ili protona.

Snimljeni su i ¹H NMR spektri kompleksa u kojima su protoni donora pomaknuti prema nižim vrijednostima u odnosu na slobodne molekule. Pomaci protona na određenim skupinama ukazuju koje područje donira elektron i sudjeluje u kompleksiranju.

Proučavane su reakcije između 10-metil-9,10-dihidroakridina²² s akceptorima hidrida poput TCNE i *p*-benzokvinonskih derivata. Cilj je bio odrediti da li se reakcija odvija direktnim prijenosom hidrida ili sekvencijalnim elektron-proton-elektron prijenosom. Na slici 21 je prikazan dobiveni UV-Vis spektar reakcije AcrHCH₂Ph i DDQ.

Slika 21: Elektronski apsorpcijski spektar primijećen u reakciji između AcrHCH₂Ph (0, 9.3 x 10⁻⁶ – 7.5 x 10⁻⁵ mol L⁻¹) s DDQ (8.3 x 10⁻⁵ mol L⁻¹) u propuhanom acetonitrilu na 298 K.

Stvaranju radikal ion para obično prethodi nastajanje CT kompleksa između donora i akceptora. U brzoj reakciji prijenosa hidrida između DDQ i AcrH₂ je teško opažanje CT kompleksa zbog njegove nestabilnosti. Reakcije slabije reaktivnih elektron donora i akceptora daju široke apsorpcijske vrpce koje su karakteristične za međumolekulske CT prijelaze.

Slika 22: Elektronski apsorpcijski spektar CT kompleksa a) AcrH₂ s kloro-*p*-benzokvinonom, b) AcrHCH₂Ph s kloro-*p*-benzokvinonom, c) AcrHCH₂Ph s DDQ, d) AcrH₂ s *p*-CA, e) AcrHBu^t s *p*-CA i f) AcrHBu^t s DDQ u acetonitrilu na 298 K

Na Slici 22 su prikazani elektronski apsorpcijski spektri CT kompleksa između benzokinona i različitih 9-supstituiranih 10-metil-9,10-dihidroakridina. Ovisno o vrsti donora i akceptora javljaju se vrpce s različitim položajem i izgledom apsorpcijskih maksimuma. Na temelju kinetičkih i termodinamičkih mjerenja je zaključeno da se prijenos hidrida odvija putem CT kompleksa između akridina AcrHR i akceptora A (Shema 12) u kojem dolazi do prijenosa elektrona, zatim prijenos protona na A^{•-} te prijenos elektrona s AcrR[•] na AH[•] pri čemu nastaje AcrR⁺ i AH⁻. Ukupna reaktivnost je određena s tri konsekutivna koraka: nastajanje CT kompleksa, prijenos elektrona i prijenos protona, budući da je prijenos elektrona u zadnjem koraku puno brži od prijenosa protona. Početni korak prijenosa elektrona u CT kompleksu je olakšan interakcijom prijenosa naboja jer takva interakcija rezultira smanjenjem razlike nuklearnih konfiguracija prije i nakon prijenosa elektrona.

Shema 12

$$AcrHR + A \implies (AcrHR + A^{-}) \implies (AcrR + AH^{-}) \implies AcrR + AH^{-}$$

TCNE stvara CT komplekse s velikim brojem heteroatomskih donora. N,N,N',N'tetrametil-*p*-fenilendiamin (TMPD)¹⁴³ i TCNE daju u otapalu s malom dielektričnom konstantom dva maksimuma na 426 i 962 nm koji odgovaraju kompleksima s prijenosom naboja. U otapalu visoke dielektrične konstante (acetonitril) primijećene su vrpce TMPD radikal-kationa i TCNE radikal aniona, a samo pri visokim koncentracijama je bio detektiran i kompleks. U otapalima srednje dielektrične konstante su detektirani i kompleks i radikal ioni. Što znači da u otapalima koja solvatiziraju nabijene vrste, kompleks disocira u radikal ione.

Slika 23: Elektronski apsorpcijski spektar TCNE⁻ radikal aniona u acetonitrilu

Kao posljedica stvaranja CT kompleksa osim nastajanja radikal iona može doći i do kemijske reakcije. Müller i Joly¹⁴⁴ su proučavali dehidrogeniranje nekih ugljikovodika (1,4cikloheksadien, 1,4-dihidronaftalen) kao elektron donora i DDQ kao elektron akceptora. UV-Vis spektar DDQ u dioksanu pokazuje vrpce s maksimumom na 270 i 375 nm. Dodatkom 1,4-cikloheksadiena te vrpce nestaju i nastaje nova vrpca na 350 nm koja odgovara hidrokvinonu DDQH₂. Autori su pretpostavili da dehidrogeniranje slijedi reakcijski put koji uključuje sekvencijalni elektron-proton-elektron prijelaz, koji se najvjerojatnije odvija putem CT kompleksa (Shema 13).

Shema 13

 $AH + Q \iff [AH...Q] \iff AH^+Q^- \longrightarrow (sporo)A^*QH \longrightarrow A^+QH^-$

2.3.2. Kompleksi s prijenosom naboja s organskim kationima poput tropilijevog tetrafluoroborata

Organski kationi su elektron akceptori zbog elektron-deficijentnog centra na jednom ili više ugljikovih atoma. Stabilni karbokationi poput tropilija i tritilijevog stvaraju kiselo-bazne komplekse čak i sa slabim σ -donorima poput etera, nitrila. Interakcije tropilijevih iona s elektron-bogatim anionskim donorima rezultiraju nastajanjem kompleksa s prijenosom naboja koji se manifestiraju pojavom novih apsorpcijskih linija u UV-Vis području.¹⁴⁵ Manje primjetne su apsorpcijske vrpce koje nastaju interakcijom s aromatskim π -donorima. U takvim kompleksima postoje slabe elektron – donor – akceptor interakcije. Proučavani su CT kompleksi s arenskim donorima. Bezbojna otopina tropilijevog tetrafloroborata postaje svjetlo žuta nakon dodatka benzena dok dodatkom antracena postaje crvena.

Slika 24: Elektronski apsorpcijski spektar kompleksa s prijenosom naboja tropilijevog kationa s a) benzenskim, b) naftalenskim i c) antracenskim donorima

Usprkos malim vrijednostima konstanti nastajanja tropilij-naftalen kompleksa u otopini, izolirani su kristalni kompleksi. Rendgenska analiza je dala rezultat na Slici 25.

Slika 25: Rendgenska struktura tropilij - naftalen kompleksa

2.3.3. Kompleksi s prijenosom naboja s metalima

U anorganskoj kemiji boja je uglavnom povezana s d-d prijelazima. Kod d-d prijelaza, elektron ide s jedne molekulske orbitale (MO) metalnog kationa na drugu; elektron uglavnom ostaje na istom atomu. Međutim, neki kompleksi prijelaznih metala imaju intenzivne boje u otopini, a nemaju d elektrone. Kod kompleksa prijelaznih metala promjena u raspodjeli elektrona između metala i liganda daje vrpce s prijenosom naboja kad se provode UV-Vis spektroskopska mjerenja.

Ligandi posjeduju σ , σ^* , π , π^* i nevezujuće (*n*) molekulske orbitale.¹⁴⁶ Ako su molekulske orbitale liganda pune, dolazi do prijenosa naboja s molekulske orbitale liganda u praznu ili djelomično punu d-orbitalu metala. Apsorpcije koje se javljaju u tom procesu su vrpce prijenosa naboja s liganda na metal (LMCT). Takvi prijelazi rezultiraju intenzivnim vrpcama i redukcijom metala.

Slika 26: Prijenos naboja s liganda na metal koji uključuje oktaedarski d 6 kompleks

Jedan od primjera je intenzivno obojen permanganatni ion, MnO₄⁻. Do obojenja dolazi zbog LMCT prijelaza u kojem kisikov nepodijeljeni elektronski par prelazi u orbitalu metala. Vrpca na 528 nm daje tamno ljubičastu boju otopine.

Slika 27: Dio UV-Vis spektra KMnO₄ otopljenog u vodi

Ako je metal bogat elektronima i ligand ima praznu orbitalu male energije tada se javlja metal na ligand prijenos naboja. Nakon apsorpcije zračenja, elektroni se pobuđuju iz orbitala metala u orbitale liganda. Ovakav prijelaz rezultira oksidacijom metala.

Slika 28: Prijenos naboja s metala na ligand koji uključuje oktaedarski d 5 kompleks

2.3.3.1. Kompleksi s prijenosom naboja s vanadijem

Vanadij je prijelazni metal prisutan u tragovima koji posjeduje bitna biološka svojstva. U zadnje vrijeme raste interes za kemiju oksovanadijevih kompleksa. Kompleksi vanadija su zanimljiv model za razjašnjenje nekoliko biokemijskih procesa, a jedna od bitnih uloga je poboljšanje metabolizma glukoze. Bitna fiziološka uloga vanadata je inhibicija nekih ATPaza. Oksidacijski mehanizam biološki važnih spojeva s vanadijem (V) je detaljno proučavan zbog njihova značaja u bioanorganskoj kemiji.

Çakir i suradnici¹⁴⁷ su proučavali mehanizam interakcije nikotinamida (NA) s amonijevim vanadatom u vođenoj otopini pri fiziološkom pH. Na Slici 29 je prikazan spektar odgovarajućih otopina, iz čega se može zaključiti da kad se otopine pomiješaju nastaju nove vrpce i dolazi do pomaka u položaju vrpci.

Slika 29: Apsorpcijski spektar 2 x 10^{-4} mol L⁻¹ otopine NH₄VO₃ (A) i 1 x 10^{-4} mol L⁻¹ otopine NH₄VO₃ u prisutstvu 2 x 10^{-4} mol L⁻¹ otopine NA (B)

<u>**Tablica 3**</u>: UV-Vis spektar kompleksa između NH₄VO₃ i NA

\tilde{v} (NH ₄ VO ₃) / cm ⁻¹	\tilde{v} (NA) / cm ⁻¹	\tilde{v} (NH ₄ VO ₃ + NA smjesa) / cm ⁻¹
266	261	771
	238	480
	227	415
		398
		259
		247

 VO_3^- ion ima d⁰ konfiguraciju i kod njega nema d-d prijelaza. Stoga bi vrpce na 480 i 771 nm mogle biti LMCT prijelazi (Tablica 3).

2.4. Elektronska paramagnetska rezonancija (EPR)

Elektronska paramagnetska rezonancija (EPR) ili elektronska spinska rezonancija (ESR) je spektroskopska metoda koja se bavi pročavanjem materijala s nesparenim spinovima elektrona. Osnovni principi EPR-a su analogni onima u nuklearnoj magnetskoj rezonanciji (NMR), ali su pobuđeni spinovi elektrona umjesto spinova atomskih jezgri. EPR spektroskopija se naročito koristi u proučavanju metalnih kompleksa ili organskih radikala. Svaki elektron ima svojstvo spina *S* i pripadajući magnetski moment $\vec{\mu}$:

$$\vec{\mu} = -g_e \mu_B \vec{S} \tag{2.1}$$

 g_e je Landeov g-faktor slobodnog elektrona, μ_B je Bohrov magneton, a \vec{S} je operator spina. E je energija međudjelovanja magnetskog momenta elektrona $\vec{\mu}$ i magnetske indukcije \vec{B}_{0} , a definirana je:

$$E = -\vec{\mu}\vec{B}_0 = g\mu_B B_0 m_s \tag{2.2}$$

 m_s je oznaka za kvantni broj i iznosi $\pm 1/2$. U odsutnosti magnetskog polja energetske razine magnetskog momenta elektrona su degenerirane, tj. imaju istu energiju. U magnetskom polju indukcije B_0 nestaje degeneracija energijskih nivoa (Slika 30) na način da se razlikuju nivo niže $E_{-1/2}$ i više energije $E_{+1/2}$ uz energetsku razliku između njih ΔE :

$$E_{\pm 1/2} = \frac{1}{2} g \mu_B B_0 \tag{2.3}$$

$$E_{-1/2} = -\frac{1}{2}g\mu_B B_0 \tag{2.4}$$

$$\Delta E = g\mu_B B_0 \tag{2.5}$$

Slika 30: Energetski nivoi spina elektrona u magnetskom polju indukcije B_0

Velik broj EPR mjerenja se provodi u mikrovalnom području od 9 – 10 GHz, s poljima oko 350 mT. Uglavnom je frekvencija konstantna, a mijenja se magnetsko polje. Kada se postigne rezonancijski uvjet dolazi do apsorpcije zračenja i ta se apsorpcija prati i detektira kao signal (Slika 31 - A), koji se najčešće prikazuje kao prva derivacija tog signala (Slika 31 - B).

Slika 31: EPR spektar: A) apsorpcijska krivulja, B) spektar prve derivacije apsorpcijskog spektra

U realnom sistemu elektroni su povezani s jednim ili više atoma. Magnetski moment jezgre koja posjeduje nuklearni spin utječe na nesparene elektrone povezane s tim atomom. To dovodi do hiperfinog cijepanja EPR signala u dublete, triplete, itd. na temelju kojih se radikali karakteriziraju. Broj linija ovisi o nuklearnom spinu jezgre s kojom dolazi do interakcije. $2N(I + \frac{1}{2})$ pri čemu je N broj jezgri.¹⁴⁸ Interakcija između elektronskog i nuklearnog spina se značajno smanjuje s povećanjem broja veza između jezgre i nesparenog elektrona.

Slika 32: Hiperfino cijepanje EPR signala

Na vremenskoj skali EPR eksperimenta nije moguće detektirati kratkoživuće radikale te se uvode spinske stupice (ST – eng. *"spin trap"*). Nestabilni slobodni radikal reagira sa spinskom stupicom pri čemu nastaje stabilni radikal. Uobičajeni način kemijske reakcije spinske stupice s nastalim radikalima u sustavu je putem adicije radikala na spinsku stupicu.

Postoje dvije glavne skupine spinskih stupica: nitroni i nitrozo spojevi. Prednosti nitrona su da reagiraju s nizom slobodnih radikala (RC[•], RO[•], RS[•]) i stvaraju nitroksilne adukte. Adukti su uglavnom dosta stabilni.

N-tert-butil- α -fenilnitron (PBN) je jedna od prvih sintetiziranih spinskih stupica. Osim s tritilijevim radikalom, PBN stvara relativno stabilne dugo živuće spinske adukte s različitim tipovima radikala, ali razlike između konstanti hiperfinog cijepanja su vrlo male i stoga se ne mogu razlikovati. EPR spektar spinskog adukta s PBN-om je uglavnom triplet dubleta zbog cijepanja (spliting) dušikom i β protonom (Slika 33).¹⁴⁹ Na Shemi 14 je prikazano nastajanje PBN - radikal adukta.

Shema 14

Slika 33: EPR spektar PBN - radikal adukta

Zbog nedostatka specifičnosti PBN-a, Janzen i Liu su sintetizirali 1973 novu cikličku spinsku stupicu 5,5-dimetil-1-pirolin *N*-oksid (DMPO). Vrijednosti konstanti hiperfinog cijepanja za DMPO adukte su veće i osjetljivije na prirodu uhvaćenog radikala. Slika 34 prikazuje EPR spektar DMPO – OH adukta. Na Shemi 15 je prikazano nastajanje DMPO – radikal adukta.

Slika 34: EPR spektar DMPO – OH adukta

Shema 15

2.4.1. Mehanizmi aromatizacije 1,4-DHP-a na temelju EPR spektroskopije

Lopez-Alarcon i suradnici²⁴ su proučavali elektrokemijsku oksidaciju nekih 1,4-DHP-a (Slika 35) i koristili su EPR spektroskopiju. Prvi korak elektrooksidacije (Shema 16) je uklanjanje elektrona sa 1,4-DHP-a i nastajanje radikal-kationa 1,4-DHP⁺⁺. Brzom deprotonacijom radikal-kationa nastaje neutralni dihidropiridilni radikal, Py koji se dalje oksidira dajući piridinijev kation Py⁺ i deprotonira pri čemu nastaje piridinijev derivat. Raspad primarnog produkta radikal-kationa je ključni korak elektrooksidacije i moguća su dva načina raspada tih radikal-kationa, gubitak protona ili gubitak atoma vodika. Kompeticija između ta dva puta ovisi o utjecaju temperature i elektronskog efekta supstituenata na 1,4-DHP prstenu. EPR je uz korištenje PBN-a i DMPO kao spinskih stupica dao rezultate u Tablici 4 i Slici 36. Iz navedenih vrijednosti A_N i A_H vidljivo je da je neovisno o tipu spoja uhvaćen isti radikal. Usporedbom s prijašnjim rezultatima (isto njihov rad iz 2003)²³ može se zaključiti da se nastali radikali preferencijalno vežu na spinsku stupicu putem reaktivnog C4-položaja i odgovaraju dihidropiridilnom radikalu. Iz kvantnomehaničkih proračuna¹⁵⁰ slijedi da dihidropiridilni radikal ima nespareni elektron lokaliziran na položaju 2, 4 ili 6, a položaj 4 je preferiran jer elektronegativni supstituenti na položaju 3 i 5 povećavaju gustoću spina u susjednom položaju. Iz toga se može zaključiti da se radikali koji nastaju vežu na spinsku stupicu s reaktivnim C4-položajem.

Slika 35: Strukture korištenih 1,4-DHP-a

Shema 16

<u>**Tablica**</u>: Konstante hiperfinog cijepanja spinskih adukata PBN-a s dihidropiridilnim radikalima nastalih prilikom elektrokemijske oksidacije 1,4-DHP

spoj	A_N/mT	A_H/mT
LP 29	1,40	0,34
LP 30	1,39	0,28
LP 31	1,38	0,25

Slika 36: Eksperimentalni EPR spektar adukta PBN - dihidropiridilni radikal i DMPO dihidropiridilni radikal adukt. Radikal je nastao elektrokemijskim putem + 0.1M TBAHFFP. A) bazna linija, B) 1 mmol L⁻¹ spoj LP 29 + PBN i C) 1 mmol L⁻¹ spoj LP 29 + DMPO²⁴

Dobiveni EPR spektar je triplet zbog hiperfine interakcije spina elektrona sa jezgrom dušika, te dublet zbog hiperfine interakcije s jezgrom vodika. A_N vrijednosti su oko 1,4 mT a A_H vrijednosti cijepanja su između 0,2 i 0,3 mT. Nadalje, korištena je i spinska stupica DMPO i detektiran je signal od šest linija tipičan za radikale na C-centru s A_N vrijednostima oko 1,4 mT i A_H vrijednostima oko 2,1 mT.

Wu i suradnici¹⁵¹ su proučavali aromatizaciju 1,4-DHP-a s nitrozonijevim tetrafluoroboratom u bezvodnom i anaerobnom acetonitrilu na sobnoj temperaturi. Kad je na položaju 4 bio prisutan izopropil ili izobutil došlo je do dealkilacije. Prema dobivenim rezultatima iz EPR spektra (Slika 37) pretpostavljen je mehanizam na Shemi 17: NO nastaje kao rezultat jednoelektronskog transfera s nesparenog elektronskog para na dušiku. Nastaje dihidropiridilni radikal-kation koji se deprotonira i nastaje neutralni 1-aminilni radikal koji otpušta alkilni radikal. Konstante cijepanja u EPR spektru odgovaraju dialkil aminoksilnim radikalima.

Slika 37: EPR spektar stabilnog slobodnog radikala nastalog tijekom aromatizacije 4-izopropil-1,4-DHP-a u acetonitrilu¹⁵¹

38

Shema 17

2.4.2. Tropilijev radikal

U ovom i u slijedeća tri poglavlja detaljnije su opisani radikali koji su logički mogući međuprodukti tijekom aromatizacije s odgovarajućim oksidansom.

Slika 38: Cikloheptatrienilni radikal i pripadajući EPR spektar

Spektar tropilijevog radikala se sastoji od 6 linija s indikacijama na dvije slabe linije koje su s vanjske strane s relativnim intenzitetima 1:7:21:35:35:21:7:1. Osim toga linije hiperfinog cijepanja su dosta široke, što je karakteristika spektra ostalih aromatskih radikala.¹⁵²

Carrington i suradnici¹⁵³ su proučavali reakciju u vodenom mediju na sobnoj temperaturi između cikloheptatriena, titanijevog iona i vodikovog peroksida. U toj reakciji nastaje tropilijev radikal (Slika 39). Dobiven je spektar od osam jednako razmaknutih linija čiji relativni intenziteti odgovaraju očekivanoj interakciji nesparenog elektrona sa sedam ekvivalentnih protona.

2.4.3. Tritilijev radikal

M. Gombeg je 1900. godine otkrio prvi organski radikal: tritilijev radikal.¹⁵⁴ Pokušao je pripremiti heksafeniletan reakcijom tritilijevog klorida sa srebrom u benzenu. Dobiven je žuto obojeni ugljikovodik koji nije bio inertan kao što je očekivano za heksafeniletan već je reagirao s kisikom i dao tritilijev peroksid. Gomberg je postulirao nastajanje tritilijevog radikala. UV analizom je otkriveno da ima oblik propelera što je i potvrđeno elektronskom difrakcijom. Kut između fenilnih skupina je oko 35°.

Slika 40: Struktura tritilijevog radikala

Zbog stabilnosti i lakog načina pripreme, tritilijev radikal je igrao bitnu ulogu u razvoju EPR spektroskopije. Na slici je vidljiv EPR spektar u otopini benzena na sobnoj temperaturi snimljen na Bruker spektrometru.

Slika 41: EPR spektar tritilijevog radikala¹⁵⁴

Dobiveni spektar se sastoji od 196 linija koje potječu od kvarteta iz 3 *para* protona, septeta od 6 *orto* protona i još jednog septeta od 6 *meta* protona.

Eksperimenti pokazuju da je tritilijev radikal u reverzibilnoj ravnoteži s dimernom formom. Struktura dimera je riješena 1968. kada je NMR spektroskopijom dokazana struktura na Slici 42. Tritilijev radikal zbog gustoće fenilnih skupina oko centralnog α -ugljikovog atoma ne pogoduje nastajanju heksafeniletana.

Slika 42: Struktura dimera

Fukuzumi i suradnici¹⁵⁵ su proučavali aromatizaciju 10-metilakridinskog dimera s tritilijevim kationom u deareriranom acetonitrilu na sobnoj temperaturi. Nakon miješanja nastaje nova apsorpcijska vrpca na 320 nm (Slika 43) koja nestaje dodatkom kisika. EPR mjerenja dearerirane otopine otkrivaju nastajanje tritilijevog radikala. Taj je radikal stabilan u acetonitrilu, ali dodatkom kisika daje tritilijev peroksid (cjelokupna reakcija je prikazana Shemom 18).

Slika 43: a) elektronski apsorpcijski spektar nastao u reakciji $(AcrH)_2 (5.0 \times 10^{-5} \text{ mol } \text{L}^{-1}) \text{ s Ph}_3\text{C}^+ (1.0 \times 10^{-4} \text{ mol } \text{L}^{-1}) \text{ u deareriranom acetonitrilu i b) spektar dobiven nakon uvođenja kisika u otopinu.$ $c) EPR spektar primijećen u reakciji <math>(AcrH)_2 (1.5 \times 10^{-3} \text{ mol } \text{L}^{-1}) \text{ s Ph}_3\text{C}^+ (1.5 \times 10^{-3} \text{ mol } \text{L}^{-1}) \text{ u deareriranom acetonitrilu}^{155}$

Shema 18

$$Ph_{3}C' + O_{2} \longrightarrow Ph_{3}COO'$$

$$Ph_{3}COO' + Ph_{3}C' \longrightarrow Ph_{3}COOCPh_{3}$$

$$(AcrH)_{2} + Ph_{3}C' \longrightarrow (AcrH)_{2}'' + Ph_{3}C'$$

$$(AcrH)_{2}'' \longrightarrow AcrH' + AcrH^{+}$$

$$AcrH' + Ph_{3}C' \longrightarrow AcrH^{+} + Ph_{3}C'$$

 $(AcrH)_2^{*+}$ i AcrH^{*} radikali nisu detektirani najvjerojatnije zbog brzih reakcija cijepanja dimera i transfera drugog elektrona s AcrH^{*}.

U reakciji 10-metilakridinskog monomera tritilijev kation se ponaša kao akceptor hidrida (Shema 19).

Shema 19

$$AcrH_2 + Ph_3C^+ \longrightarrow AcrH^+ + Ph_3CH$$

Rađena je i oksidacija benzimidazolina s tritilijevim kationom u benzenu na sobnoj temperaturi u vakuumu.¹⁵⁶ EPR spektroskopijom je registriran tritilijev radikal. Njegov spektar je multiplet ekvidistantnih linija. Spektri radikal-kationa nisu registrirani zbog male stabilnosti i brzog trošenja u narednim konverzijama. Te konverzije mogu uključivati spontani raspad radikal-kationa s odcjepljenjem protona ili atoma vodika i privlačenje atoma vodika na tritilijev radikal uz nastajanje spojeva LP 34 i LP 35 (Shema 20). Kako su triarilmetilni radikali slabo reaktivni, nedovoljno za privlačenje atoma vodika iz tipičnih organskih supstrata, pretpostavka je da je vodikov atom koji se seli vezan u radikal-kationima benzimidazolina putem neuobičajeno slabe/labilne veze. To je svojstvo karakteristično za radikal - kationsku formu, ali ne i za dijamagnetsku formu.

Shema 20

Slika 44: EPR spektar tritilijevog radikala, nastalog u reakciji benzimidazolina LP 32 s trifenilklormetanom¹⁵⁶

2.4.4. $DDQ^{\bullet-}$ radikal anion

Slika 45: Struktura DDQ⁻ radikal aniona

Grampp i suradnici¹⁵⁷ su pomoću EPR-a proučavali reakcije izmjene između DDQ i njegovog radikala DDQ[•] (Shema 21) na 293 K. Na Slici 46 je prikazan EPR spektar DDQ[•] u ovisnosti o koncentraciji neutralnog DDQ gdje je vidljivo da njezinim porastom dolazi do kolabiranja hiperfinog cijepanja EPR spektra u jednu liniju.

Shema 21

DDQ + DDQ = DDQ + DDQ

Slika 46: EPR spektar DDQ⁻ u ovisnosti o različitim koncentracijama [DDQ] u acetonitrilu na 293 K.¹⁵⁷ Koncentracija radikala je uvijek 0,5 mmol L⁻¹ a) [DDQ] = 0 mmol L⁻¹, b) [DDQ] = 1,5 mmol L⁻¹, c) [DDQ] = 2,5 mmol L⁻¹, d) [DDQ] = 9,5 mmol L⁻¹

Na slici 46 - A je vidljivo 5 linija s relativnim intenzitetima 1:2:3:2:1. Do cijepanja dolazi zbog hiperfine interakcije uzrokovane s dva ekvivalentna atoma dušika.

Proučavana je i interakcija između DDQ i karotenoida.¹⁵⁸ Na Slici 47 je vidljiv EPR spektar dobiven miješanjem β -karotena i DDQ u suvišku. Porastom temperature jasno se vidi hiperfina struktura od pet linija koja je karakteristična za DDQ⁻⁻ radikal anion.

Slika 47: EPR spektar smjese β -karotena (1 mmol L⁻¹) i DDQ (1,5 mmol L⁻¹) u diklormetanu na a) 77K, b) 240 K i c) 280 K 24 sata nakon miješanja.¹⁵⁸

Kad je koncentracija kvinona manja od koncentracije karotenoida dobiveni spektar je jedna linija (Slika 48).

Slika 48: EPR spektar smjese β -karotena (3 mmol L⁻¹) i DDQ (0,3 mmol L⁻¹) u diklormetanu na 77 K, a) nakon zagrijavanja na sobnu temperaturu i b) nakon 24 sata na sobnoj temperaturi.¹⁵⁸

2.4.5. TCNE⁻ radikal anion

Slika 49: TCNE⁻ radikal anion i pripadajući EPR spektar

TCNE se lako reducira zbog visokog elektronskog afiniteta. TCNE radikal anion se priprema u otopini ili plinskoj fazi redukcijom s natrijem ili kalijem ili reakcijom s jodidnim solima. Elektron je delokaliziran po cijeloj molekuli a ne samo na sp² ugljikovim atomima. Inače u kombinaciji s raznim metalnim kationima pokazuje zanimljiva magnetska svojstva. EPR spektar ima 11 linija (Slika 50).¹⁵⁹ Od toga je 9 linija s intenzitetima 1:4:10:16:19:16:10:4:1 koji su očekivani za interakciju sa četiri ekvivalentne jezgre dušika. A zadnje linije odgovaraju cijepanjima ¹³C izotopa u CN skupinama. Uže linije koje se primijete u spektru su pripisane odsutstvu neutralnih TCNE molekula koje bi uzrokovale širenje zbog izmjene.

Slika 50: EPR spektar 10⁻⁴ mol L⁻¹ NaTCNE u tetrahidrofuranu¹⁵⁹

Pri visokim koncentracijama TCNE, TCNE⁻ radikal anion izmjenjuje elektrone s neutralnim TCNE molekulama i dolazi do širenja spektralnih linija i vidi se samo singlet. Smanjenjem koncentracije linije hiperfinog cijepanja postaju vidljive.¹⁶⁰

§ 3. EKSPERIMENTALNI DIO

3.1. Kemikalije

- Acetaldehid, 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- Acetonitril, za preparativnu kromatografiju, Merck, Darmstadt, Njemačka
- Amonijev karbamat, 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- Benzilni alkohol, 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- Butanal, \geq 96 %, Sigma-Aldrich, St. Louis, MO, SAD
- 1,8-diazabiciklo[5.4.0]undek-7-en (DBU), 98 %, Sigma-Aldrich, St. Louis, MO, SAD
- 1,4-DHP korišteni u reakcijama, a sintetizirani su u našem laboratoriju (Belupo, Koprivnica) i identifikacija je objavljena u sklopu publikacije:¹⁷
 - 2,6-dimetil-3,5-di(metoksikarbonil)-1,4-dihidropiridin (1)
 - 2,6-dimetil-3,5-di(metoksikarbonil)-4-benzil-1,4-dihidropiridin (2a)
 - 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-dihidropiridin (**3a**)
 - 2,6-dimetil-3,5-di(metoksikarbonil)-4-fenil-1,4-dihidropiridin (4)
 - 2,6-dimetil-3,5-di(metoksikarbonil)-4-etil-1,4-dihidropiridin (**5a**)
 - 2,6-dimetil-3,5-di(metoksikarbonil)-4-(prop-1-il)-1,4-dihidropiridin (**6a**)
- Diizopropil-eter, puriss p.a., Sigma-Aldrich, St. Louis, MO, SAD
- 2,3-diklor-5,6-dicijano-1,4-benzokinon (DDQ), 98 %, Sigma-Aldrich, St. Louis, MO, SAD
- Diklormetan, Sigma-Aldrich, St. Louis, MO, SAD
- 5,5-dimetil-1-pirolin *N*-oksid (DMPO), ≥ 97 %,Sigma-Aldrich, St. Louis, MO,
 SAD
- Etil-acetat, puriss p.a., Merck, Darmstadt, Njemačka
- Etil-acetoacetat, \geq 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- 3-Fenilbutiraldehid, Chemos GmbH & Co. KG, Germany
- *p*-Formaldehid, \geq 95 %, Sigma-Aldrich, St. Louis, MO, SAD
- Heksafluorbenzen, \geq 99 %, Sigma-Aldrich, St. Louis, MO, SAD

- Heksametilbenzen, \geq 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- n-Heksan, \geq 95 %, Sigma-Aldrich, St. Louis, MO, SAD
- Heksanal, 98 %, Sigma-Aldrich, St. Louis, MO, SAD
- Heptanal, 95 %, Sigma-Aldrich, St. Louis, MO, SAD
- Izobutil-acetoacetat, \geq 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- Izopropil-acetoacetat, ≥ 98 %, Sigma-Aldrich, St. Louis, MO, SAD
- Jod, molekularni, ACS reagens, \geq 99,8 %, Sigma-Aldrich, St. Louis, MO, SAD
- Klorovodična kiselina, 37 %, Merck, Darmstadt, Njemačka
- Metanol, čistoće za gradijentnu tekućinsku kromatografiju, Merck, Darmstadt, Njemačka
- Metanol, za sintezu, Merck, Darmstadt, Njemačka
- Metil-acetoacetat, \geq 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- Metil-jodid, \geq 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- Molibdenov(V) klorid, \geq 95 %, Sigma-Aldrich, St. Louis, MO, SAD
- Natrijev hidrogenkarbonat, \geq 99.7 %, Sigma-Aldrich, St. Louis, MO, SAD
- Natrijev sulfat, bezvodni za sintezu, Merck, Darmstadt, Njemačka
- Natrijev hidrid, 60 % disperzija u mineralnom ulju, Sigma-Aldrich, St. Louis, MO, SAD
- Natrijev tiosulfat, \geq 99,5 %, Sigma-Aldrich, St. Louis, MO, SAD
- Niobijev(V) klorid, \geq 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- Octena kiselina, 99 % do 100 % , Merck, Darmstadt, Njemačka
- *N-tert*-butil- α -fenilnitron (PBN), \geq 98 %, Sigma-Aldrich, St. Louis, MO, SAD
- Pentanal, 97 %, Sigma-Aldrich, St. Louis, MO, SAD
- Propanal, 97 %, Sigma-Aldrich, St. Louis, MO, SAD
- 2,2,6,6-tetrametilpiperidin 1-oksil (TEMPO), 98 %, Sigma-Aldrich, St. Louis, MO, SAD
- Tetracijanoetilen (TCNE), 98 %, Sigma-Aldrich, St. Louis, MO, SAD
- Tetrahidrofuran, Merck, Darmstadt, Njemačka
- Toluen, 99,8 %, Sigma-Aldrich, St. Louis, MO, SAD
- 1,3,5-Trimetoksibenzen, 99 %, Sigma-Aldrich, St. Louis, MO, SAD
- Tropilijev tetrafluoroborat, 97 %, Sigma-Aldrich, St. Louis, MO, SAD

- Tritilijev tetrafluoroborat, Sigma-Aldrich, St. Louis, MO, SAD
- Urea kompleks s vodikovim peroksidom, 97 %, Sigma-Aldrich, St. Louis, MO, SAD
- Valeraldehid, 97 %, Sigma-Aldrich, St. Louis, MO, SAD diizopropil-eter
- Vanadijev(V) oksiklorid, 99 %, Sigma-Aldrich, St. Louis, MO, SAD pripremljena je 1 mol L⁻¹ diklormetanska otopina koja se dalje koristi

3.2. Instrumentalni pribor i opće napomene

- Analitička vaga Sartorius CP225 D, Sartorius Weighing Technology GmbH, Göttingen, Njemačka
- Precizna vaga XS603S Delta Range, Mettler Toledo, Schwerzenbach, Švicarska
- Ultrazvučna kupelj Sonorex, Bandelin, Mörfelden-Walldorf, Njemačka
- UV lampa TL 6W/08 F6T5/BLB, Philips, Eindhoven, Nizozemska
- Rotacioni uparivač R205, Büchi Flawil, Švicarska
- Uređaj za određivanje tališta Melting Point B 540, Büchi, New Castle, DE, SAD
- **IR-spektrofotometar** Perkin-Elmer 297, Waltham, MA, SAD Uzorci za analizu IR - spektroskopijom pripravljeni su kao KBr-pastile ili tekući uzorak
- Centrifuga Eppendorf 5702
 Provedeno je kratko centrifuguranje u trajanju od 20 sekundi.
- NMR-spektrometar Bruker AV 600 MHz, Rheinstetten, Njemačka (snimanje napravljeno u Centru za NMR, Institut Ruđer Bošković, Zagreb)
 Za snimanje ¹H-NMR i ¹³C-NMR spektara uzorci spojeva pripravljeni su otapanjem u deuteriranom klorofomu. Kemijski pomaci (δ) u spektrima ¹H i ¹³C NMR su izraženi u ppm u odnosu prema tetrametilsilanu (TMS; δ 0,0 ppm), a konstante sprege (*J*) u hercima (Hz). Pojedinačne rezonancije su asignirane na temelju njihovih kemijskih pomaka, intenziteta signala, multipleta signala i konstanti sprega.

- EPR spektrometar Varian E-109 (snimanje napravljeno u Zavodu za fizičku kemiju, Institut Ruđer Bošković, Zagreb)
 Mjerenja su provedena na sobnoj temperaturi uz slijedeće eksperimentalne uvjete: frekvencija 9,3 GHz, snaga mikrovalnog zračenja 20 mW, amplituda modulacije 0,1 mT, frekvencija modulacije 100 kHz. Uzorci su snimani u staklenim kapilarama unutarnjeg promjera 0,8 mm. Za snimanje EPR signala korišten je ugrađeni softver,¹⁶¹ a za simulaciju eksperimentalnih podataka EasySpin računalni program.¹⁶²
- UV-Vis spektrofotometar Cary 100, Varian, Walnut Creek, CA, SAD
 Brzina snimanja UV-Vis spektara bila je 600 nm min⁻¹, a vrijeme nakon kojeg se spektri snimaju 0,1 s.
- Tekućinski kromatograf s UV-Vis detektorom Varian ProStar opremLjen vakuummembranskim degazerom Metakem 6324, pumpom ProStar 230, automatskim uzorkivačem AutoSampler 410, UV-detektorom ProStar 325, programom za obradu podataka Star Chromatography Workstation Version 6, (Varian, Walnut Creek, CA, SAD) i kromatografskom kolonom Waters XTerra RP18, 150 × 4.6 mm, veličina zrna 3,5 µm.

Uzorci za analizu tekućinskom kromatografijom visoke djelotvornosti pripravljeni su otapanjem 2 mg uzorka u 5 mL metanola te nadopunjavanjem do 10,0 mL smjesom ψ (acetonitril, voda) = 60 : 40. Po sastavu pokretne faze razlikuju se dvije metode:

- Metoda 1: Pokretna faza je smjesa ψ (acetonitril, voda) = 60 : 40.
- Metoda 2: Pokretna faza je smjesa ψ (acetonitril, voda) = 40 : 60.

Protok pokretne faze bio je 1 mL min⁻¹, a volumen injektiranog uzorka 25 μ L. Detekcija je rađena kod 240 nm, a vrijeme trajanja analize je 30 minuta.

• Pročišćavanje spojeva preparativnom kromatografijom na koloni silikagela:

Neki od sintetiziranih spojeva pročišćeni su kromatografijom na koloni silikagela (0,063 mm do 0,2 mm). Uzorci za preparativnu kromatografiju pripravljeni su otapanjem u minimalnom volumenu odgovarajućeg otapala dok su staklene kolone punjene pod utjecajem gravitacije uz odgovarajući eluens. Sastav frakcija koje su skupljane u epruvete praćen je tankoslojnom kromatografijom na silikagelu (Al-folije 60 F_{254}) pri čemu su mrlje detektirane pomoću UV-lampe pri 254 nm.

- Tankoslojna kromatografija je rađena na silikagelu (Al-folije 60 F₂₅₄ Merck), detekcija mrlja pomoću UV-lampe pri 254 nm i 366 nm.
- Preparativna tankoslojna kromatografija je rađena na staklenoj ploči sa silikagelom (0,25 mm silikagela, 60 F₂₅₄ Merck).

3.3. Sinteza 1,4-DHP derivata

 $R_{\rm F}$ pripravljenih 1,4-DHP određen je tankoslojnom kromatografijom na silikagelu uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9 : 1. Produkti su analizirani infracrvenom spektrofotometrijom, nuklearnom magnetskom rezonancijom (¹H, ¹³C), tekućinskom kromatografijom visoke djelotvornosti te im je određeno talište.

3.3.1. Sinteza i karakterizacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-nesupstituiranih 1,4-DHP

U odgovarajuću otopinu acetoacetata (0,2 mol) u metanolu (300 mL) dodan je amonijev karbamat (99 %, 16,55 g, 0,21 mol)¹⁶³ te je dobivena otopina miješana 10 min na sobnoj temperaturi. Zatim je dodan paraformaldehid (95 %, 3,16 g, 0,1 mol) i reakcijska smjesa je zagrijana na temperaturu povrata otapala i miješana tijekom 70 sati.

Nakon uparavanja do suhog ostatka, uparnom ostatku je dodano 50 mL diizopropil-etera. Izlučeni kristali su odsisani i isprani s 2 x 20 mL diizopropil-etera.

2,6-Dimetil-3,5-di(etoksikarbonil)-1,4-dihidropiridin (7)

Dobiveno je 13,5 g (53 %) spoja 7 u obliku žutih, igličastih kristala. TLC: $R_F = 0,33$ IR (KBr) $\nu / \text{ cm}^{-1}$: 3351, 3275, 3108, 2989, 2979, 2956, 2938, 2896, 2863, 1693, 1649, 1506, 1470, 1448, 1390, 1367, 1321, 1302, 1265, 1212, 1151, 1116, 1090, 1057, 1019, 1010. ¹H-NMR δ / ppm (CDCl₃): 1,28 (t, 6H, CH₃CH₂, J = 7,1 Hz), 2,19 (s, 6H, CH₃), 3,26 (s, 2H, CH_2), 4,17 (q, 4H, OCH₂CH₃, J = 7,1 Hz), 5,29 (br s, 1H, NH). ¹³C-NMR δ / ppm (CDCl₃): 14,3 (CH₃CH₂), 19,0 (CH₃), 24,7 (CH₂), 59,5 (OCH₂CH₃), 99,3 (C-Py), 144,7 (C-Py), 167,9 (C=O).

Talište: 186,5 – 188,5 °C

2,6-Dimetil-3,5-di(izopropoksikarbonil)-1,4-dihidropiridin (8)

Dobiveno je 14,1 g (50 %) spoja 8 u obliku žutih kristala.

TLC: $R_{\rm F} = 0,45$ IR (KBr) $\nu/{\rm cm}^{-1}$: 3361, 3264, 3112, 3007, 2978, 2934, 2875, 2775, 1670, 1645, 1561, 1550, 1504, 1468, 1453, 1388, 1370, 1338, 1330, 1296, 1249, 1179, 1160, 1144, 1125, 1112, 1044, 1010 ¹H-NMR δ / ppm (CDCl₃): 1,25 (d, 12H, CH(CH₃)₂), 2,18 (s, 6H, CH₃), 3,24 (s, 2H, CH₂), 5,04 (sp, 2H, CH(CH₃)₂), J = 6,3 Hz), 5,77 (br s, 1H, NH). ¹³C-NMR δ / ppm (CDCl₃): 18,9 (CH₃), 21,9 (CH(CH₃)₂), 24,7 (CH₂), 66,6 (CH(CH₃)₂), 99,3 (C-Py), 114,7 (C-Py), 167,6 (C=O). Talište: 123,0-124,0 °C

2,6-Dimetil-3,5-di(izobutoksikarbonil)-1,4-dihidropiridin (9)

Dobiveno je 16,9 g (55 %) spoja **9** u obliku žutih kristala. TLC: $R_F = 0,40$ IR (KBr) $\nu/ \text{ cm}^{-1}$: 3344, 3114, 2967, 2933, 2874, 1699, 1658, 1647, 1502, 1468, 1397, 1381, 1342, 1325, 1303, 1293, 1267, 1222, 1151, 1121, 1092, 1052, 1017. ¹H-NMR δ / ppm (CDCl₃): 0,95 (d, 12 H, CH(CH₃)₂, J = 6,7 Hz), 1,91 - 2,00 (m, 2H, CH(CH₃)₂), 2,20 (s, 6H, CH₃), 3,32 (s, 2H, CH₂), 3,88 (d, 4H, OCH₂, J = 6,4 Hz), 5,39 (br s, 1H, NH). ¹³C-NMR δ / ppm (CDCl₃): 19,0 (CH₃), 19,2 (CH₃), 24,9 (CH₂), 27,8 (CH), 69,9 (CH₂), 99,5 (C-Py), 145,0 (C-Py), 168,0 (C=O). Talište: 125,5 - 127,5 °C 3.3.2. Sinteza i karakterizacija 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP

2,6-Dimetil-3,5-di(metoksikarbonil)-4-metil-1,4-dihidropiridin (10a)

U otopinu metilacetoacetata (99 %, 43,60 mL, 0,4 mol) u metanolu (460 mL) dodan je amonijev karbamat (99 %, 33,09 g, 0,42 mol)¹⁶³ te je dobivena otopina miješana 10 min na sobnoj temperaturi. Zatim je odjednom dodan acetaldehid (99 %, 8,89 g, 0,2 mol) i reakcijska smjesa je miješana 220 sati na sobnoj temperaturi. Nakon uparavanja do suhog ostatka, uparnom produktu je dodano 150 mL diizopropil-etera. Nakon odsisavanja izlučenih kristala (metil 3-aminokrotonat) matičnica je uparena, a ostatku je dodano 80 mL diizopropil-etera, te je miješano 1 sat. Dobiveni (metil 3-aminokrotonat) je odsisan, a u matičnicu je dodano 50 mL diizopropil-etera te postupno dokapano 30 mL *n*-heksana. Dobiveni kristali (1,4-DHP) su odsisani i isprani s 20 mL *n*-heksana. Dobiveno je 3,8 g (8 %) spoja u obliku žuto bijelih kristala. Dobivena je smjesa sintetskog međuprodukta i 1,4-DHP (**10a**), pa su upisani spektroskopski podaci analognog spoja preuzeti iz rada²³ ko2/ji se podudaraju s dijelom spektroskopskih podataka izoliranih spojeva.

TLC: $R_{\rm F} = 0.38$

IR (KBr) ν/cm^{-1} : 3342, 2950, 1680, 1650, 1435, 1351, 1226, 1056.

¹H-NMR δ / ppm (CDCl₃): 0,96 (d, 3H, CH₃, J = 6,5 Hz), 2,29 (s, 6H, CH₃), 3,73 (s, 6H, OCH₃), 3,83 (q, 1H, CH, J = 6,5 Hz), 5,73 (br s, 1H, NH).

¹³C NMR (CDCl₃) δ: 20,4 (*C*H₃), 23,2 (*C*H₃), 29,3 (*C*H), 51,9 (O*C*H₃), 105,3 (*C*-Py), 145,6 (*C*-Py), 169,2 (*C*=O).

Talište: 147,0 -149,0 °C

2,6-Dimetil-3,5-di(metoksikarbonil)-4-(but-1-il)-1,4-dihidropiridin (11a)

U otopinu metilacetoacetata (99 %, 21,80 mL, 0,2 mol) u metanolu (200 mL) je dodan amonijev karbamat (99 %, 16,55 g, 0,21 mol).¹⁶³ Nastala suspenzija je miješana na sobnoj temperaturi 15 minuta, nakon čega je odjednom dodan valeraldehid (97 %, 10,95 mL, 0,1 mol). Reakcijska smjesa je grijana na temperaturi povrata otapala tijekom 60 sati, zatim je ohlađena do sobne temperature i uparena do suha. Uparnom ostatku je dodano 90 mL *n*heksana i otopina je miješana na sobnoj temperaturi tijekom 2 sata. Izlučeni kristali su odsisani i isprani s 2 x 10 mL *n*-heksana. Nakon sušenja do konstantne mase dobiveno je 4,10 g (14,6 %) produkta. Matičnica je uparena do suha i ostatku je dodano 80 mL n-heksana. Nakon miješanja na sobnoj temperaturi u trajanju od 2 sata, izlučeni kristali su odsisani i isprani s 2 x 10 mL n-heksana.

Izolirano je dodatno 4,16 g (15 %) produkta. Ukupno je dobiveno 8,26 g (29 %) spoja **11a** u obliku bijelo žutih kristala.

TLC: $R_{\rm F} = 0,38$ IR (KBr) $\nu/{\rm cm}^{-1}$: 3334, 3240, 3092, 3016, 2954, 2927, 2872, 2853, 1698, 1654, 1553, 1490, 1465, 1435, 1386, 1354, 1347, 1323, 1296, 1261, 1236, 1215, 1190, 1156, 1135, 1114, 1086,1066, 1049, 1017. ¹H-NMR δ / ppm (CDCl₃): 0,83 (t, 3H, CH₃CH₂, J = 7,0 Hz), 1,10-1,25 (m, 4H, CH₃CH₂CH₂), 1,27 - 1,32 (m, 2H, CH₃(CH₂)₂CH₂), 2,28 (s, 6H, CH₃), 3,70 (s, 6H, OCH₃), 3,90 (t, 1H, CH, J = 5,7 Hz), 5,81 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ : 14,0 (CH₃), 19,2 (CH₃), 22,7 (CH₂), 26,6 (CH₂), 32,6 (CH₂), 36,4 (CH₂), 50,7 (OCH₃), 102,7 (C-Py), 144,9 (C-Py), 168,4 (C=O).

Talište: 110,0-111,0 °C

2,6-Dimetil-3,5-di(metoksikarbonil)-4-(pent-1-il)-1,4-dihidropiridin (12a)

U otopinu metilacetoacetata (99 %, 21,80 mL, 0,2 mol) u MeOH (200 mL) je dodan amonijev karbamat (99 %, 16,55 g, 0,21 mol)¹⁶³ te je dobivena otopina miješana 10 min na sobnoj temperaturi. Zatim je odjednom dodan *n*-heksanal (98 %, 12,31 mL, 0,1 mol) i reakcijska smjesa je zagrijana 40 sati na temperaturi povrata otapala. Nakon toga je ohlađena na sobnu temperaturu i uparena, a ostatnom produktu je dodano 90 mL *n*-heksana i miješano je 2 sata na sobnoj temperaturi. Dobiveni kristali (metil 3-aminokrotonat) su odsisani, a matičnica uparena do suha. Od uparnog ostatka (13,5 g), 8 g je kromatografirano na koloni silikagela (400 g) smjesom ψ (diklormetan, etil-acetat) = 9 : 1. Uparavanjem frakcija s R_f = 0,41 dobiveno je 2,33 g (8 %) produkta u obliku narančastih kristala.

IR (KBr) v/cm⁻¹: 3341, 3253, 3108, 3019, 2990, 2952, 2930, 2870, 2860, 2842, 1703, 1650, 1630, 1577, 1493, 1461, 1435, 1385, 1361, 1332, 1295, 1258, 1228, 1218, 1186, 1145, 1111, 1093, 1051, 1018.

¹H-NMR δ / ppm (CDCl₃): 0,84 (t, 3H, CH₃CH₂, J = 6,9 Hz), 0,89-1,05 (m, 2H, CH₃CH₂CH₂), 1,19 - 1,23 (m, 2H, CH₃CH₂CH₂), 1,23 - 1,30 (m,

	4H, CH ₃ (CH ₂) ₂ CH ₂ CH ₂), 2,29 (s, 6H, CH ₃), 3,71 (s, 6H, OCH ₃),
	3,91 (t, 1H, CH, J = 5,6 Hz), 5,95 (br s, 1H, NH).
¹³ C-NMR δ / ppm (CDCl ₃):	13,9 (CH ₃), 19,1 (CH ₃), 22,6 (CH ₃ CH ₂), 24,1 (CH ₃ CH ₂ CH ₂),
	31,9 (CH ₃ (CH ₂) ₂ CH ₂), 32,7 (CH), 36,7 (CH ₃ (CH ₂) ₃ CH ₂), 50,7
	(OCH ₃), 102,7 (C-Py), 145,0 (C-Py), 168,5 (C=O).

Talište: 84,0 - 86,0 °C

2,6-Dimetil-3,5-di(metoksikarbonil)-4-(heks-1-il)-1,4-dihidropiridin (13a)

Otopini metilacetoacetata (99 %, 21,80 mL, 0,2 mol) u metanolu (200 mL) dodan je amonijev karbamat (99 %, 16,55 g, 0,21 mol)¹⁶³ te je dobivena otopina miješana 10 min na sobnoj temperaturi. Zatim je odjednom dodan *n*-heptanal (95 %, 14,71 mL, 0,1 mol) i suspenzija je miješana 40 sati na temperaturi povrata otapala. Nakon toga je reakcijska smjesa ohlađena na sobnu temperaturu i uparena do suhog ostatka, a uparnom produktu je dodano 100 mL *n*-heksana i miješan je 2 sata na sobnoj temperaturi. Dobiveni kristali (metil 3-aminokrotonat) su odsisani, a matičnica je uparena do suha. Od uparnog ostatka (15,5 g), 8,1 g je pročišćen kromatografijom na koloni silikagela (400 g) uz eluiranje smjesom ψ (diklormetan, etilacetat) = 9 : 1.

Uparavanjem frakcija s $R_f = 0,41$ dobiveno je 2,0 g (7 %) produkta u obliku narančastih kristala.

- IR (KBr) v/cm⁻¹: 3332, 3243, 3097, 3017, 2953, 2926, 2856, 1698, 1658, 1642, 1626, 1552, 1491, 1466, 1435, 1381, 1352, 1343, 1323, 1294, 1274, 1241, 1223, 1214, 1158, 1133, 1104, 1086, 1052, 1011.
- ¹H-NMR δ / ppm (CDCl₃): 0,83-0,88 (m, 5H, CH₃CH₂), 1,21-1,28 (m, 8H, CH₃CH₂(CH₂)₄), 2,29 (s, 6H, CH₃), 3,71 (s, 6H, OCH₃), 3,90 (t, CH, J = 5,6 Hz), 5,77 (s, 1H, NH).
- ¹³C-NMR δ / ppm (CDCl₃): 14,0 (CH₃CH₂), 19,2 (CH₃), 22,6 (CH₂), 24,5 (CH₂), 29,4 (CH₂), 31,8 (CH₂), 32,7 (CH), 36,7 (CH₂), 50,7 (OCH₃), 102,8 (C-Py), 144,9 (C-Py), 168,5 (C=O).

Talište: 83,0 - 85,0 °C

2,6-Dimetil-3,5-di(metoksikarbonil)-4-(2-fenilpropil)-1,4-dihidropiridin (14a)

U otopinu metilacetoacetata (99 %, 13,07 mL, 0,12 mol) u metanolu (100 mL) dodan je amonijev karbamat (99 %, 9,93 g, 0,126 mol)¹⁶³ i nastala suspenzija je miješana 10 min na sobnoj temperaturi. Zatim je dodan 3-fenilbutiraldehid (97 %, 9,20 mL, 0,06 mol) te je reakcijska smjesa miješana tijekom 40 sati na temperaturi povrata otapala. Nakon toga je ohlađena na sobnu temperaturu i uparena do suha, a uparnom ostatku je dodano 60 mL diizopropil-etera i miješano je 20 sati na sobnoj temperaturi. Dobiveni kristalni produkt (1,4-DHP) je odsisan i ispran s 20 mL diizopropil-etera.

Dobiveno je 7,02 g (34 %) spoja 14a u obliku bijelih kristala.

TLC: $R_{\rm F} = 0,40$

- IR (KBr) v/cm⁻¹: 3372, 3089, 3056, 3044, 3023, 2994, 2950, 2916, 2870, 2847, 1703, 1678, 1646, 1614, 1560, 1485, 1449, 1432, 1386, 1359, 1343, 1314, 1295, 1273, 1217, 1186, 1145, 1129, 1104, 1098, 1071, 1046, 1028, 1015.
- ¹H-NMR δ / ppm (CDCl₃): 1,19 (d, 3H, CH₃, J = 6,88 Hz), 1,47 1,51 (m, 1H, CHH), 1,71 1,76 (m, 1H, CHH), 2,17 (s, 3H, CH₃), 2,26 (s, 3H, CH₃), 2,65-2,69 (m, 1H, CH₃CH), 3,61 (s, 3H, OCH₃), 3,70 (s, 3H, OCH₃), 3,94 (t, 1H, CH, J = 6,48 Hz), 5,94 (br s, 1H, NH), 7,11 7,14 (m, 3H, arom), 7,23 7,26 (m, 2H, arom).
- ¹³C-NMR δ / ppm (CDCl₃): 19,0 (CH₃), 19,2 (CH₃), 23,5 (CH₃), 31,1 (CH), 35,5 (CH), 44,1 (CH₂), 50,7 (OCH₃), 50,7 (OCH₃), 102,8 (C-Py), 103,3 (C-Py), 125,3 (CH-arom), 126,7 (CH-arom), 127,8 (CH-arom), 145,0 (C-Py), 145,3 (C-Py), 148,1 (C-arom), 168,1 (C=O), 168,3 (C=O).

Talište: 119,5 - 120,0 °C

3.3.3. Sinteza i karakterizacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP derivata

2,6-Dimetil-3,5-di(etoksikarbonil)-4-(prop-1-il)-1,4-dihidropiridin (15a)

Otopini etilacetoacetata (99 %, 25,55 mL, 0,2 mol) u metanolu (50 mL) dodan je amonijev karbamat (99 %, 16,55 g, 0,21 mol)¹⁶³ te je dobivena otopina miješana 20 sati na sobnoj temperaturi. Zatim je odjednom dodan *n*-butanal (96 %, 9,38 mL, 0,1 mol). Reakcijska smjesa je miješana 120 sati na sobnoj temperaturi, nakon čega je uparena do suha. Od sirovog produkta koji zaostaje nakon uparavanja (30 g) 15 g je pročišćeno kromatografijom na koloni silikagela (1300 g) uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9,5 : 0,5.

Uparavanjem frakcija s $R_f = 0,27$ dobiveno je 5,32 g produkta u obliku žutih kristala. Kristalima (1,4-DHP) je dodano 20 mL *n*-heksana i nakon dva sata miješanja na sobnoj temperaturi, kristali su odsisani i isprani s 10 mL *n*-heksana.

Dobiveno je 3,73 g (13 %) spoja 15a u obliku žućkastih kristala.

TLC: $R_{\rm F} = 0,39$

- IR (KBr) v/cm⁻¹: 3351, 3241, 3100, 2985, 2956, 2937, 2899, 2871, 1699, 1645, 1490, 1466, 1392, 1380, 1368, 1348, 1324, 1313, 1300, 1266, 1249, 1211, 1160, 1138, 1109, 1082, 1053, 1029, 1014, 1002.
- ¹H-NMR δ / ppm (CDCl₃): 0,81 0,86 (m, 3H, CH₃CH₂CH₂), 1,16 1,24 (m, 4H, CH₂CH₂CH₃), 1,27 1,31 (t, 3H, CH₃CH₂O, J = 7,12 Hz), 2,28 (s, 6H, CH₃), 3,93 (t, 1H, CH, J = 5,50 Hz), 4,09 4,26 (m, 4H, CH₃CH₂O), 5,98 (br s, 1H, NH).
- ¹³C-NMR δ / ppm (CDCl₃): 14,3(CH₃CH₂CH₂), 14,4 (CH₃CH₂O), 18,0 (CH₃CH₂CH₂), 19,3 (CH₃), 32,7 (CH), 39,3 (CH₃CH₂CH₂), 59,6 (CH₃CH₂O). 103,2 (C-Py), 144,9 (C-Py), 168,3 (C=O).

Talište: 126,0 - 127,0 °C

2,6-Dimetil-3,5-di(izopropoksikarbonil)-4-(prop-1-il)-1,4-dihidropiridin (16a)

U otopinu izopropilacetoacetata (98 %, 29,45 mL, 0,2 mol) u MeOH (50 mL) dodan je amonijev karbamat (99 %, 16,55 g, 0,21 mol)¹⁶³ te je dobivena otopina miješana 20 sati na sobnoj temperaturi. Zatim je odjednom dodan *n*-butanal (96 %, 9,38 mL, 0,1 mol) i reakcijska smjesa je miješana 120 sati na sobnoj temperaturi. Nakon toga je uparena do suha. Od uparnog ostatka (25 g), 20 g je pročišćeno kromatografijom na koloni silikagela (1300 g) uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9,5 : 0,5. Uparavanjem frakcija s R_f = 0.38 dobiveno je 7,41 g produkta u obliku žutih kristala. Kristalima (1,4-DHP) je dodano 25 mL *n*-heksana i suspenzija je miješana 2 sata na sobnoj temperaturi, nakon čega su kristali odsisani i isprani s 10 mL *n*-heksana.

Dobiveno je 4,4 g (14 %) spoja 16a u obliku žućkastih kristala.

TLC: $R_{\rm F} = 0,47$

- IR (KBr) v/cm⁻¹: 3353, 3237, 3098, 2985, 2952, 2934, 2869, 2849, 1697, 1648, 1576, 1488, 1449, 1381, 1368, 1336, 1331, 1300, 1265, 1250, 1215, 1176, 1160, 1140, 1110, 1077, 1038, 1004.
- ¹H-NMR δ / ppm (CDCl₃): 0,82 0,87 (m, 3H, CH₃CH₂CH₂), 1,22 1,32 (m, 16 H, CH(CH₃)₂, CH₂CH₂CH₃), 2,27 (s, 6H, CH₃), 3,93 (t, 1H, CH, J = 5,4 Hz), 5,02 5,10 (m, 2H, CH(CH₃)₂), 5,90 (br s, 1H, NH).
- ¹³C-NMR δ / ppm (CDCl₃): 14,2 (CH₃CH₂CH₂), 18,0 (CH₃CH₂CH₂), 19,2 (CH₃), 21,8 (CH₃CHCH₃), 21,9 (CH₃CHCH₃), 32,5 (CH), 66,5 (CH(CH₃)₂, 39,1 (CH₃CH₂CH₂), 103,5 (C-Py), 144,3(C-Py), 167,6 (C=O).

Talište: 89,0 – 91,0 °C

2,6-Dimetil-3,5-di(izobutoksikarbonil)-4-(prop-1-il)-1,4-dihidropiridin (17a)

Otopini izobutilacetoacetata (99 %, 32,94 mL, 0,2 mol) u metanolu (200 mL) dodan je amonijev karbamat (99 %, 16,55 g, 0,21 mol)¹⁶³ te je dobivena otopina miješana 10 min na sobnoj temperaturi. Zatim je odjednom dodan *n*-butanal (96 %, 9,38 mL, 0,1 mol) i reakcijska smjesa je miješana 70 sati na temperaturi povrata otapala. Nakon toga je ohlađena na sobnu temperaturu i uparena do suha. Od uparnog ostatka (38 g), 8,0 g je pročišćeno kromatografijom na koloni silikagela (400 g) uz eluiranje smjesom ψ (diklormetan, etilacetat) = 9 : 1. Uparavanjem frakcija s R_f = 0,62 dobiveno je 3,13 g (9 %) spoja **17a** u obliku žutog ulja.

- IR (film) v/cm⁻¹: 3535, 3501, 3442, 3340, 3096, 2959, 2933, 2896, 2874, 1694, 1679, 1674, 1661, 1652, 1621, 1572, 1563, 1488, 1472, 1378, 1342, 1306, 1295, 1275, 1249, 1213, 1136, 1110. 1085, 1049, 1012.
- ¹H-NMR δ / ppm (CDCl₃): 0,81-0,85 (m, 3H, CH₃CH₂CH₂), 0,97 (d, 12H,CH(CH₃)₂, J = 6,7 Hz), 1,15 1,26 (m, 2H, CH(CH₃)₂), 1,28 1,36 (m, 2H, CH₃CH₂), 1,92 2,04 (m, 2H, CH₃CH₂CH₂), 2,30 (s, 6H, CH₃), 3,90 (d, 4H, OCH₂, J = 6,4 Hz), 4,00 (t, 1H, CH, J = 5,4 Hz), 6,04 (s, 1H, NH).
- ¹³C-NMR δ / ppm (CDCl₃): 14,3 (CH₃CH₂CH₂), 17,9 (CH₃CH₂CH₂), 19,1 (CH(CH₃)₂), 19,2 (CH₃), 27,7 (CH(CH₃)₂), 36,9 (CH), 39,2 (CH₃CH₂CH₂), 103,0 (C-Py), 144,9 (C-Py), 168,1 (C=O).

3.3.4. Sinteza i karakterizacija 4-izopropil-1,4-DHP derivata s benzilnim esterskim skupinama

U 50 mL toluena je dodan benzilni alkohol (99 %, 12,53 mL, 0,12 mol) i postupno NaH (60 %, 5,20 g, 0,13 mol) pri čemu dolazi do pjenjenja i reakcijska smjesa je miješana 10 min. Zatim je dodan 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-dihidropiridin (5,34 g, 0,020 mol) te je reakcijska smjesa postupno zagrijana do 100 °C prilikom čega dolazi do kristalizacije. Reakcijska smjesa je uparena, uparnom ostatku je dodano 30 mL vode i 30 mL diklormetana i pH je podešen na 7 s 37 % HCl. Slojevi su odijeljeni, vodeni je ekstrahiran 2 x 30 mL diklormetana, organski ekstrakti su spojeni, posušeni nad bezvodnim Na₂SO₄ i upareni do suha. Sirovi produkt koji zaostaje nakon uparavanja (8 g) je pročišćen kromatografijom na koloni silikagela (400 g) uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9 : 1. Uparavanjem frakcija s $R_f = 0,58$ dobiveno je 0,42 g (5 % - računato uz pretpostavku da nastaje samo spoj **18a**) spoja **18a** u obliku žutih kristala. Uparavanjem frakcija s $R_f = 0,48$ dobiveno je 1,46 g (21 % - računato uz pretpostavku da nastaje samo spoj **19a**) spoja **19a** u obliku žutih kristala.
2,6-Dimetil-3,5-di(benziloksikarbonil)-4-izopropil-1,4-dihidropiridin (18a)

- IR (KBr) v/cm⁻¹: 3497, 3343, 3090, 3066, 3033, 2958, 2891, 2870, 1952, 1876, 1807, 1735, 1694, 1683, 1653, 1621, 1587, 1487, 1456, 1380, 1299, 1278, 1257, 1213, 1178, 1133, 1105, 1088, 1075, 1045, 1028, 1011.
- ¹H-NMR δ / ppm (CDCl₃): 0,71 (d, 6H, CH(CH₃)₂, J = 6,87 Hz), 1,57 1,63 (m, 1H, CH(CH₃)₂), 2,29 (s, 6H, CH₃), 4,05 (d, 1H, CH, J = 5,26 Hz), 5,16 (s, 4H, OCH₂), 5,89 (br s, 1H, NH), 7,28 7,32 (m, 6H, arom), 7,33 7,37 (m, 4H, arom).
- ¹³C-NMR δ / ppm (CDCl₃): 18,2 (CH₃), 19,2 (CH₃), 35,4 (CH), 38,6 (CH), 65,3 (OCH₂), 101,3 (C-Py), 127,6 (CH-arom), 127,6 (CH-arom), 128,2 (CH-arom), 136,5 (C-arom), 145,0 (C-Py), 168,2 (C=O).

Talište: 93,0 - 95,0 °C

2,6-Dimetil-3-benziloksikarbonil-5-metoksikarbonil-4-izopropil-1,4-dihidropiridin (19a)

- IR (KBr) v/cm⁻¹: 3402, 3335, 3088, 3066, 3031, 2996, 2955, 2934, 2871, 1695, 1653, 1493, 1455, 1434, 1381, 1366, 1324, 1294, 1257, 1217, 1153, 1102, 1081, 1072, 1041, 1024, 1010.
- ¹H-NMR δ / ppm (CDCl₃): 0,73 (d, 3H, CH₃CHCH₃, J = 3,21 Hz), 0,74 (d, 3H, CH₃CHCH₃, J = 3,23 Hz), 1,56 1,63 (m, 1H, CH(CH₃)₂), 2,30 (s, 6H, CH₃), 3,69 (s, 3H, OCH₃), 3,96 (d, 1H, CH, J = 5,29 Hz), 5,13 5,24 (dd, 2H, OCH₂), 5,74 (br s, 1H, NH), 7,26 7,33 (m, 2H, arom), 7,35 7,41 (m, 3H, arom).
- ¹³C-NMR δ / ppm (CDCl₃): 18,1 (CH₃), 18,3 (CH₃), 19,1 (CH₃), 19,4 (CH₃), 35,4 (CH), 38,7 (CH), 50,7 (OCH₃), 65,4 (OCH₂), 101,3 (C-Py), 101,5 (C-Py), 127,7 (CH-arom), 127,8 (CH-arom), 128,3 (CH-arom), 136,7 (C-arom), 144,6 (C-Py), 145,0 (C-Py), 168,2 (C=O); 169,0 (C=O).

Talište: 103,0 - 105,0 °C

3.3.5. Sinteza N-supstituiranih derivata 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-DHP

N-etoksimetil-2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-dihidropiridin (20)

U 30 mL tetrahidrofurana je dodan 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4dihidropiridin (1,34 g, 5 mmol) i NaH (60 %, 0,22 g, 5,5 mmol). Nakon 30 minuta miješanja na sobnoj temperaturi u reakcijsku smjesu je dodan klormetiletileter (95 %, 0,50 g, 5 mmol). Reakcijska smjesa je miješana tijekom 12 sati na sobnoj temperaturi, a zatim je dodano 30 mL vode i 30 mL diklormetana, te je pH podešen na 7 dodatkom 10 % vodene otopine HCl. Slojevi su odijeljeni i vodeni sloj je dodatno ekstrahiran s 30 mL diklormetana. Organski slojevi su spojeni, posušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni do suha. Sirovi produkt koji zaostaje nakon uparavanja (1 g) je pročišćen kromatografijom na koloni silikagela (80 g) uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9 : 1. Uparavanjem frakcija s R_f = 0,63 dobiveno je 150 mg (9 %) spoja **20** u obliku narančasto crvenih kristala.

IR (KBr) v/cm⁻¹: 3375, 2959, 2927, 2873, 1693, 1634, 1583, 1436, 1391, 1363, 1320, 1288, 1255, 1218, 1190, 1176, 1134, 1098, 1070, 1051, 1016.

- ¹H-NMR δ / ppm (CDCl₃): 0,71 (d, 6H, CH₃, J = 6,9 Hz), 1,24 (t, 3H, CH₃CH₂, J = 7,3 Hz), 1,37-1,49 (m, 1H, CH), 2,46 (s, 6H, CH₃), 3,47 - 3,54 (m, 2H, OCH₂CH₃), 3,72 (s, 6H, OCH₃), 3.80 (d, 1H, CH, J = 5,4 Hz), 4,72 (s, 2H, NCH₂O).
- ¹³C-NMR δ / ppm (CDCl₃): 14,9 (CH₃), 15,8 (CH₃), 18.6 (CH₃), 34,1(CH), 39,1 (CH), 51,0 (OCH₃), 62,7 (OCH₂), 75,8 (OCH₂N), 106,7 (C-Py), 148,0 (C-Py), 169,2 (C=O).

Talište: 100,0 – 102,0 °C

N-metil-2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-dihidropiridin (21)

U 50 mL tetrahidrofurana je dodan 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4dihidropiridin (3,0 g, 11,2 mmol) i NaH (60 %, 0,49 g, 12,32 mmol). Nakon 30 minuta miješanja na sobnoj temperaturi u reakcijsku smjesu je dodan metiljodid (99 %, 0,70 mL, 11,2 mmol). Reakcijska smjesa je miješana tijekom 30 sati na sobnoj temperaturi, a zatim je dodano 50 mL vode i 50 mL diklormetana, te je pH podešen na 7 dodatkom 10 % vodene otopine HCl. Slojevi su odijeljeni i vodeni sloj je dodatno ekstrahiran s 50 mL diklormetana. Organski slojevi su spojeni, posušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni do suha. Sirovi produkt koji zaostaje nakon uparavanja (2,90 g) je pročišćen kromatografijom na koloni silikagela (230 g) uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9 : 1. Uparavanjem frakcija s R_f = 0,70 dobiveno je 1,70 g (54 %) spoja **21** u obliku bijelo-žutih kristala.

- IR (KBr) v/cm⁻¹: 3446, 3364, 2994, 2965, 2955, 2926, 2883, 2844, 1689, 1623, 1567, 1461, 1434, 1381, 1353, 1339, 1313, 1254, 1215, 1189, 1168, 1125, 1095, 1050, 1002.
- ¹H-NMR δ / ppm (CDCl₃): 0,71 (d, 6H, (CH₃)₂CH, J = 6,8 Hz), 1,33 1,40 (m, 1H, (CH3)2CH), 2,42 (s, 6H, CH₃), 3,15 (s, 3H, N-CH₃), 3,71 (s, 6H, COOCH₃), 3,82 (d, 1H, CH, J = 7,2 Hz).
- ¹³C-NMR δ / ppm (CDCl₃): 16,2 (CH₃), 18,7 (CH₃), 33,6 (CH₃), 33,9 (CH), 38,9 (CH), 50,9 (OCH₃), 104,8 (C-Py), 148,8 (C-Py), 169,3 (C=O).

Talište: 86,0 – 88,0 °C

3.4. Aromatizacija 1,4-DHP derivata

3.4.1. Aromatizacija 1,4-DHP derivata kompleksom uree s vodikovim peroksidom, katalizirane jodom

U otopinu 1,4-DHP-a (1,0 mmol) u etil-acetatu (10 mL) dodani su molekularni jod (99,8 %, 51 mg, 0,2 mmol, 20 mol.%) i kompleks uree s vodikovim peroksidom (97 %, 0,19 g, 2,0 mmol).¹²³ Reakcijska smjesa je miješana na sobnoj temperaturi tijekom vremena navedenog u Tablici 5. Tijek reakcija praćen je metodom tankoslojne kromatografije uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9 : 1. Nakon vremena navedenog u Tablici 5 u reakcijsku smjesu je dodano 10 mL vode i kruti Na₂S₂O₃ do obezbojenja. Slojevi su odijeljeni i vodeni sloj je dodatno ekstrahiran s 10 mL EtOAc. Organski slojevi su spojeni, posušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni do suha.

<u>*Tablica 5*</u>: Aromatizacija 1,4-DHP derivata kompleksom uree s vodikovim peroksidom katalizirane jodom pri sobnoj temperaturi

		 Н			
Reakcija	1,4-DHP	R	R_1	t (h)	Iskorištenje (%)
1	1	-	Me	2	100
2	7	-	Et	2	88
3	8	-	<i>i</i> -Pr	2	93
4	9	-	<i>i</i> -Bu	1	88
5	10a	Me	Me	5	72
6	5a	Et	Me	3	88
7	6a	<i>n</i> -Pr	Me	1	98
8	11a	<i>n</i> -Bu	Me	2	82
9	1 2 a	<i>n</i> -Pen	Me	1	82
10	13 a	<i>n</i> -He	Me	2	91
11	15 a	<i>n</i> -Pr	Et	1	95
12	16a	<i>n</i> -Pr	<i>i</i> -Pr	1	87
13	17a	<i>n</i> -Pr	<i>i</i> -Bu	2,5	72

2,6-Dimetil-di(metoksikarbonil) piridin (22)

Dobiveno je 0,22 g (100 %) spoja u obliku naranđastih kristala. TLC: *R*_F = 0,38 IR (KBr) *ν*/ cm⁻¹: 3105, 3006, 2965, 2956, 2936, 2854, 2153, 1722, 1681, 1597, 1548, 1436, 1384, 1373, 1363, 1286, 1256, 1228, 1193, 1107, 1048, 1022. ¹H-NMR δ / ppm (CDCl₃): 2,85 (s, 6H, *CH*₃), 3,93 (s, 6H, OC*H*₃), 8,70 (s, 1H, *CH*). ¹³C-NMR δ / ppm (CDCl₃): 24,9 (*C*H₃), 52,3 (OCH₃), 122,6 (*C*-Py), 141,1 (*C*H), 122,6 (*C*-Py), 162,6 (*C*-Py), 166,2 (*C*=O). Talište: 98.0 - 100.5 °C

2,6-Dimetil-3,5-di(etoksikarbonil) piridin (23)

Dobiveno je 0,22 g (88 %) spoja u obliku bijelo žutih kristala. TLC: $R_F = 0,38$ IR (KBr) ν/cm^{-1} : 2978, 2931, 2913, 2873, 1971, 1914, 1721, 1592, 1556, 1474, 1445, 1380, 1368, 1297, 1255, 1223, 1123, 1108, 1044, 1025, 1003. ¹H-NMR δ / ppm (CDCl₃): 1,42 (t, 6H, CH₃CH₂, J = 7,1 Hz), 2,85 (s, 6H, CH₃), 4,40 (k, 4H, OCH₂CH₃, J = 7,1 Hz), 8,68 (s,1H, CH). ¹³C-NMR δ / ppm (CDCl₃): 14,1 (CH₃CH₂), 24,8 (CH₃), 61,2 (OCH₂CH₃), 122,9 (C-Py), 140,7 (CH), 162,0 (C-Py), 165,8 (C=O). Talište: 70,5 - 71,5 °C

2,6-Dimetil-3,5-di(izopropoksikarbonil) piridin (24)

Dobiveno je 0,26 g (93 %) spoja u obliku naranđasto-crvenih kristala.
TLC: *R*_F = 0,44
IR (KBr) *ν*/ cm⁻¹: 2984, 2936, 2883, 1716, 1674, 1594, 1549, 1466, 1460, 1445, 1387, 1375, 1353, 1335, 1290, 1257, 1225, 1183, 1145, 1106, 1026.
¹H-NMR δ / ppm (CDCl₃): 1,40 (d, 12H, CH(CH₃)₂, *J* = 6,3 Hz), 2,84 (s, 6H, CH₃), 5,27 (sp, 2H, OCH(CH₃)₂, *J* = 6,3 Hz), 8,62 (s, 1H, CH).
¹³C-NMR δ / ppm (CDCl₃): 21,7 (CH₃), 24,7 (CH(CH₃)₂), 68,9 (CH(CH₃)₂), 123,4 (C-Py), 140,7 (CH), 161,5 (C-Py), 165,4 (C=O).

Talište: 61,0 - 63,3 °C

2,6-Dimetil-3,5-di(izobutoksikarbonil) piridin (25)

Dobiveno je 0,27 g (88 %) spoja u obliku žutih kristala. TLC: $R_F = 0,55$ IR (KBr) $\nu / \text{ cm}^{-1}$: 2971, 2961, 2933, 2875, 1726, 1597, 1551, 1472, 1446, 1393, 1382, 1365, 1303, 1286, 1254, 1221, 1203, 1137, 1110, 1038. ¹H-NMR δ / ppm (CDCl₃): 1,03 (d, 12H, CH(CH₃)₂, J = 6,7 Hz), 2,04 - 2,13 (m, 2H, CH(CH₃)₂), 2,85 (s, 6H, CH₃), 4,11 (d, 4H, OCH₂, J = 6,5 Hz), 8,73 (s, 1H, CH). ¹³C-NMR δ / ppm (CDCl₃): 19,0 (CH₃), 24,8 (CH₃), 27,6 (CH(CH₃)₂), 71,2 (OCH₂), 122,8 (C-Py), 140,8 (CH-Py), 162,1 (C-Py), 165,6 (C=O).

Talište: 33,0 - 36,0 °C

2,6-Dimetil-3,5-di(metoksikarbonil)-4-metil piridin (10b)

Dobiveno je 0,17 g (72 %) spoja u obliku naranđastih kristala. TLC: $R_{\rm F} = 0,23$ IR (KBr) $\nu/{\rm cm}^{-1}$: 3036, 3016, 2997, 2959, 2932, 1730, 1716, 1619, 1566, 1436, 1399, 1382, 1369, 1287, 1245, 1226, 1191, 1114, 1061, 1045. ¹H-NMR δ / ppm (CDCl₃): 2,25 (s, 3H, CH₃), 2,50 (s, 6H, CH₃), 3,92 (s, 6H, OCH₃). ¹³C-NMR δ / ppm (CDCl₃): 17,1 (CH₃), 22,9 (CH₃), 52,4 (OCH₃), 127,3 (C-Py), 142,3 (C-Py), 155,2 (C-Py), 168,8 (C=O). Telište: 72.0 – 77.0 °C

Talište: 73,0 - 77,0 °C

2,6-Dimetil-3,5-di(metoksikarbonil)-4-etil piridin (5b)

Dobiveno je 0,22 g (88 %) spoja u obliku žutog ulja. TLC: *R*_F = 0,27 IR (film) *ν*/ cm⁻¹: 2978, 2953, 2886, 2067, 1901, 1731, 1570, 1437, 1410, 1382, 1374, 1282, 1240, 1212, 1111, 1091, 1072, 1041. ¹H-NMR δ/ ppm (CDCl₃): 1,17 (t, 3H, C*H*₃CH₂, *J* = 7,6 Hz), 2,50 (s, 6H, C*H*₃), 2,54 - 2,62

(k, 2H, CH₃C H_2 , J = 7,6 Hz), 3,93 (s, 6H, OC H_3).

¹³C-NMR δ / ppm (CDCl₃): 15,0 (CH₃), 22,8 (CH₃), 24,8 (CH₂), 52,3 (OCH₃), 126,7 (C-Py), 147,9 (C-Py), 155,2 (C-Py), 168,8 (C=O).

2,6-Dimetil-3,5-di(metoksikarbonil)-4-(prop-1-il) piridin (6b)

Dobiveno je 0,26 g (98 %) spoja u obliku crvenog ulja. TLC: $R_F = 0.32$ IR (film) $\nu / \text{ cm}^{-1}$: 2956, 2876, 1731, 1595, 1568, 1470, 1436, 1409, 1379, 1290, 1239, 1204, 1111, 1041. ¹H-NMR δ / ppm (CDCl₃): 0,89 (t, 3H, CH₃CH₂, J = 7,3 Hz), 1,45 - 1,58 (m, 2H, CH₃CH₂), 2,47 (s, 6H, CH₃), 2,50 - 2,55 (m, 2H, CH₃CH₂CH₂), 3,90 (s, 6H, OCH₃). ¹³C-NMR δ / ppm (CDCl₃): 14,2 (CH₃), 22,8 (CH₃), 23,9 (CH₃CH₂), 33,3 (CH₃CH₂CH₂), 52,2 (OCH₃), 126,8 (C-Py), 146,5 (C-Py), 155,1 (C-Py), 168,8 (C=O).

2,6-Dimetil-3,5-di(metoksikarbonil)-4-(but-1-il) piridin (11b)

Dobiveno je 0,23 g (82 %) spoja u obliku crvenog ulja.

TLC: $R_{\rm F} = 0,29$

- IR (film) v/cm⁻¹: 2997, 2957, 2934, 2874, 1729, 1595, 1568, 1437, 1410, 1380, 1288, 1238, 1193, 1111, 1041.
- ¹H-NMR δ / ppm (CDCl₃): 0,9 (t, 3H, CH₃, J = 7,25 Hz), 1,28 1,40 (m, 2H, CH₃CH₂), 1,46-1,56 (m, 2H, CH₂), 2,51 (s, 6H, CH₃), 2,54-2,59 (m, 2H, CH₂), 3,93 (s, 6H, OCH₃).
- ¹³C-NMR δ / ppm (CDCl₃): 13,4 (CH₃), 22,6 (CH₃), 22,7 (CH₂), 3,.0 (CH₂), 32,7 (CH₂), 52,2 (OCH₃), 126,9 (C-Py), 146,9 (C-Py), 155,1 (C-Py), 168,7 (C=O).

2,6-Dimetil-3,5-di(metoksikarbonil-4-(pent-1-il) piridin (12b)

Dobiveno je 0,24 g (82 %) spoja u obliku naranđastog ulja. TLC: $R_{\rm F} = 0,28$ IR (film) $\nu/{\rm cm}^{-1}$: 2955, 2932, 2873, 2862, 1730, 1567, 1437, 1409, 1379, 1284, 1239, 1191, 1110, 1041.

¹ H-NMR δ / ppm (CDCl ₃):	0,86 -	0,91 (m, 3H,	CH ₃ CH	2), 1,26 - 1,31	(m, 4H	, CH_3CH_2	$(CH_2),$
	1,47 -	1,56 (m, 2H,	CH ₃ CH	$H_2CH_2CH_2$), 2	,50 (s, 6	6H, C <i>H</i> ₃),	2,53-
	2,60 (1	m, 2H, CH ₃ (C	H ₂) ₃ CH	(2), 3,92 (s, 6H	I, OCH_3).	
¹³ C-NMR δ / ppm (CDCl ₃):	13,7	(<i>C</i> H ₃ CH ₂),	22,0	(CH ₃ <i>C</i> H ₂),	22,8	(<i>C</i> H ₃),	30,3
	(CH ₃ C	CH ₂ CH ₂), 31,3	(CH ₃ C	$CH_2CH_2CH_2),$	31,9 (C	$CH_3(CH_2)_3$	CH ₂),

(CH₃CH₂CH₂), 31,3 (CH₃CH₂CH₂CH₂), 31,9 (CH₃(CH₂)₃CH₂), 52,2 (OCH₃), 126,8 (C-Py), 146,8 (C-Py), 155,2 (C-Py), 168,9 (C=O).

2,6-Dimetil-3,5-di(metoksikarbonil)-4-(heks-1-il) piridin (13b)

Dobiveno je 0,28 g (91 %) spoja u obliku naranđastog ulja. TLC: $R_F = 0,3$ IR (film) $\nu / \text{ cm}^{-1}$: 2955, 2930, 2872, 2859, 1732, 1645, 1568, 1436, 1410, 1379, 1287, 1239, 1191, 1174, 1110, 1040. ¹H-NMR δ / ppm (CDCl₃): 0,87 - 0,89 (m, 3H, CH₃CH₂), 1,23 - 1,33 (m, 6H, CH₃(CH₂)₃), 1,49 - 1,52 (m, 2H, CH₃(CH₂)₃CH₂), 2,50 (s, 6H, CH₃), 2,52 - 2,55 (m, 2H, CH₃(CH₂)₄CH₂), 3,92 (s, 6H, OCH₃). ¹³C-NMR δ / ppm (CDCl₃): 13,5 (CH₃CH₂), 21,9 (CH₃CH₂), 22,5 (CH₃), 29,0 (CH₂), 30,2 (CH₂), 30,8 (CH₂), 31,0 (CH₂), 51,8 (OCH₃), 126,4 (C-Py), 146,4 (C-Py), 154,8 (C-Py), 168,5 (C=O).

2,6-Dimetil-3,5-di(etoksikarbonil)-4-(prop-1-il) piridin (15b)

Dobiveno je 0,28 g (95 %) spoja u obliku naranđastog ulja.
TLC: R_F = 0,3
IR (film) ν/ cm⁻¹: 2967, 2936, 2906, 2875, 1727, 1568, 1470, 1447, 1413, 1381, 1286, 1274, 1236, 1202, 1173, 1106, 1040.
¹H-NMR δ / ppm (CDCl₃): 0,94 (t, 3H, CH₃CH₂, J = 7,3 Hz), 1,40 (t, 6H, CH₃CH₂O, J = 7,1 Hz), 1,52 - 1,65 (m, 2H, CH₃CH₂CH₂), 2,51 (s, 6H, CH₃),

 $2,54 - 2,59 \text{ (m, 2H, CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{), 4,41 (k, 4H, CH}_{3}\text{CH}_{2}\text{O}\text{).}$ $^{13}\text{C-NMR } \delta / \text{ppm (CDCl}_{3}\text{):} \quad 13,9 \quad (CH_{3}\text{CH}_{2}\text{CH}_{2}\text{), 14,2} \quad (CH_{3}\text{CH}_{2}\text{O}\text{), 22,7} \quad (CH_{3}\text{), 24,0} \quad (CH_{3}CH_{2}\text{), 33,2} \quad (CH_{3}\text{CH}_{2}\text{CH}_{2}\text{), 61,3} \quad (CH_{3}CH_{2}\text{O}\text{), 127,0} \quad (C-\text{Py}\text{), 146,1} \quad (C-\text{Py}\text{), 154,8} \quad (C-\text{Py}\text{), 168,3} \quad (C=\text{O}\text{).}$

2,6-Dimetil-3,5-di(izopropoksikarbonil)-4-(prop-1-il) piridin (16b)

Dobiveno je 0,28 g (87 %) spoja u obliku žutog ulja.

TLC: $R_{\rm F} = 0,3$ IR (film) $\nu/{\rm cm}^{-1}$: 2980, 2935, 2876, 1721, 1569, 1470, 1455, 1412, 1387, 1375, 1347, 1336, 1287, 1275, 1242, 1204, 1182, 1146, 1126, 1099, 1033. ¹H-NMR δ / ppm (CDCl₃): 0,95 (t, 3H, CH₃), 1,38 (d, 12H, CH(CH₃)₂), 1,58 - 1,62 (m, 2H, CH₃CH₂), 2,51 (s, 6H, CH₃), 2,55 - 2,58 (m, 2H, CH₃CH₂CH₂), 5,29 - 5,33 (m, 2H, CH(CH₃)₂). ¹³C-NMR δ / ppm (CDCl₃): 14,1 (CH₃CH₂), 21,4 (CH(CH₃)₂), 22,6 (CH₃), 24,0 (CH₃CH₂), 33,0 (CH₃CH₂CH₂), 69,0 (CH(CH₃)₂), 127,3 (C-Py), 145,6 (C-Py), 154,4 (C-Py), 167,8 (C=O).

2,6-Dimetil-3,5-di(izobutoksikarbonil)-4-(prop-1-il) piridin (17b)

Dobiveno je 0,25 g (72 %) spoja u obliku naranđastog ulja. TLC: $R_{\rm F} = 0,3$ IR (film) $\nu / {\rm cm}^{-1}$: 2964, 2935, 2876, 1728, 1568, 1471, 1412, 1392, 1376, 1342, 1285, 1273, 1234, 1201, 1109, 1036. ¹H-NMR δ / ppm (CDCl₃): 0,93 (t, 3H, CH₃CH₂CH₂, J = 7,3 Hz), 1,01 (d, 12H, CH(CH₃)₂, J = 6,7 Hz), 1,51 - 1,60 (m, 2H, CH(CH₃)₂), 1,96 - 2,14 (m, 2H, CH₃CH₂CH₂), 2,52 (s, 6H, CH₃), 2,54 - 2,60 (m, 2H, CH₃CH₂CH₂), 4,12 (d, 4H, OCH₂, J = 6,5 Hz). ¹³C-NMR δ / ppm (CDCl₃): 14,0 (CH₃CH₂CH₂), 19,0 (CH(CH₃)₂), 22,8 (CH₃), 24,1 (CH₃CH₂CH₂), 27,5 (CH(CH₃)₂), 33,3 (CH₃CH₂CH₂), 71,7 (CH₂O), 127,2 (C-Py), 146,1 (C-Py), 154,8 (C-Py), 168,6 (C=O). 3.4.2. Aromatizacija 1,4-DHP derivata s 2,3-diklor-5,6-dicijano-1,4-benzokinonom (DDQ)

Otopina odgovarajućeg 1,4-DHP-a (10 mmol) u diklormetanu (30 mL) ohlađena je na 0 °C te joj je postupno dodavan DDQ (98 %, 2,55 g, 11 mmol). Reakcijska smjesa je zatim zagrijana na sobnu temperaturu na kojoj je miješana tijekom 2 sata. Zatim je ostavljena 1 sat na - 18 °C nakon čega je talog odsisan i ispran s 30 mL hladnog diklormetana. Matičnica je uparena do suha, a uparni ostatak je pročišćen kromatografijom na koloni silikagela (300 g) uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9 : 1.

2,6-Dimetil-3,5-di(metoksikarbonil)-4-benzil piridin (2b)

Uparavanjem frakcija s $R_f = 0,39$ dobiveno je 2,59 g (83 %) produkta u obliku crvenog ulja. IR (film) $\nu / \text{ cm}^{-1}$: 3087, 3063, 3030, 3003, 2952, 2855, 1728, 1602, 1569, 1496, 1454, 1436, 1408, 1375, 1340, 1285, 1243, 1194, 1170, 1111, 1079, 1040, 1003. ¹H-NMR δ / ppm (CDCl₃): 2,52 (s, 6H, CH₃), 3,72 (s, 6H, OCH₃), 4,00 (s, 2H, CH₂), 7,05 (d, 2H, Ph, J = 6,8 Hz), 7,16 - 7,25 (m, 3H, Ph). ¹³C-NMR δ / ppm (CDCl₃): 22,8 (CH₃), 36,2 (CH₂), 52,1 (OCH₃), 126,4 (CH-Ph), 127,4 (C-Ph), 128,1 (CH-Ph), 128,8 (CH-Ph), 137,7 (C-Py), 139,1 (C-Ph), 144,9 (C-Py), 155,4 (C-Py), 168,5 (C=O).

2,6-Dimetil-3,5-di(metoksikarbonil)-4-izopropil piridin (3b)

Uparavanjem frakcija s $R_f = 0,22$ dobiveno je 2,1 g (79 %) produkta u obliku bijelo ružičastih kristala. U smjesi ψ (diklormetan, etil-acetat) = 8 : 2 $R_f = 0,39$.

IR (KBr) $\nu/\text{ cm}^{-1}$: 3044, 2994, 2977, 2956, 2941, 2854, 1893, 1732, 1644, 1565, 1463, 1440, 1412, 1378, 1368, 1284, 1239, 1211, 1192, 1154, 1106, 1034. ¹H-NMR δ / ppm (CDCl₃): 1,27 (d, 6H, CH₃, J = 7,13 Hz), 2,47 (s, 6H, CH₃), 2,84 - 2,98 (sp, 1H, CH, J = 7,11 Hz), 3,92 (s, 6H, OCH₃). ¹³C-NMR δ / ppm (CDCl₃): 21,3 (CH₃), 22,6 (CH₃), 32,6 (CH), 52,3 (OCH₃), 126,4 (C-Py),

150,2 (C-Py), 154,9 (C-Py), 169,7 (C=O).

Otopina odgovarajućeg 1,4-DHP-a (0,3 mmol) u diklormetanu (3 mL) ohlađena je na 0 °C te joj je postupno dodavan DDQ (98 %, 72,96 mg, 0,315 mmol). Reakcijska smjesa je zatim zagrijana na sobnu temperaturu na kojoj je miješana tijekom 20 sati. Nakon toga je uparena do suha, a sirovi produkt koji zaostaje nakon uparavanja je kromatografiran na preparativnoj ploči silikagela uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9 : 1.

2,6-Dimetil-3-benziloksikarbonil-5-metoksikarbonil-4-izopropil piridin (19b)

Izolacijom spoja s $R_{\rm f}$ = 0,38 s preparativne ploče dobiveno je 30 mg (29 %) produkta u obliku žutog ulja.

IR (film) ν / cm^{-1} : 3091, 3066, 3034, 2966, 2952, 2879, 1729, 1564, 1498, 1455, 1437, 1412, 1369, 1308, 1278, 1234, 1206, 1105, 1032. ¹H-NMR δ / ppm (CDCl₃): 1,21 (d, 6H, CH(CH₃)₂, J = 7,12 Hz), 2,40 (s, 3H, CH₃), 2,44 (s,

3H, CH₃), 2,82-2,91 (m, 1H, CH(CH₃)₂), 3,91 (s, 3H, OCH₃), 5,36 (s, 2H, OCH₂), 7,36 - 7,39 (m, 2H, arom), 7,40 - 7,44 (m, 3H, arom).

¹³C-NMR δ / ppm (CDCl₃): 20,4 (CH₃), 21,6 (CH₃), 21,6 (CH₃), 31,6 (CH), 51,4 (OCH₃), 66,6 (OCH₂), 127,7 (CH-arom), 127,7 (CH-arom), 127,9 (CH-arom), 133,8 (C-arom), 149,2 (C-Py), 153,9 (C-Py), 154,0 (C-Py), 168,7 (C=O).

2,6-Dimetil-3,5-di(benziloksikarbonil)-4-(izopropil) piridin (18b)

Izolacijom spoja s $R_f = 0.51$ s preparativne ploče dobiveno je 32 mg (26 %) produkta u obliku žutog ulja.

- IR (film) v/cm⁻¹: 3091, 3066, 3034, 2967, 2936, 2896, 1955, 1978, 1803, 1729, 1607, 1564, 1498, 1456, 1414, 1371, 1308, 1276, 1257, 1232, 1201, 1104, 1083, 1028, 1004.
- ¹H-NMR δ / ppm (CDCl₃): 1,18 (d, 6H, CH(CH₃)₂, J = 7,51 Hz), 2,39 (s, 6H, CH₃), 2,83 2,86 (m, 1H, CH(CH₃)₂), 5,35 (s, 4H, OCH₂), 7,36 7,40 (m, 6H, arom), 7,42 7,43 (m, 4H, arom).

¹³C-NMR δ / ppm (CDCl₃): 21,3 (CH₃), 22,5 (CH₃), 32,4 (CH), 67,5 (OCH₂), 126,3 (C-Py), 128,6 (CH-arom), 128,6 (CH-arom), 128,8 (CH-arom), 134,7 (C-arom), 150,1 (C-Py), 154,9 (C-Py), 168,9 (C=O).

2,6-Dimetil-3,5-di(metoksikarbonil)-4-(2-fenilpropil) piridin (14b)

Izolacijom spoja s $R_f = 0.41$ s preparativne ploče dobiveno je 29 mg (28 %) produkta u obliku bijelih kristalića.

- IR (KBr) v/cm⁻¹: 3085, 3031, 3004, 2975, 2955, 2931, 2872, 1726, 1713, 1603, 1567, 1496, 1457, 1436, 1406, 1378, 1361, 1329, 1312, 1286, 1274, 1252, 1193, 1165, 1158, 1112, 1039, 1018.
- ¹H-NMR δ / ppm (CDCl₃): 1,19 (d, 3H, CH₃, J = 6,68 Hz), 2,52 (s, 6H, CH₃), 2,92 2,99 (m, 2H, CH₂), 3,07 3,17 (m, 1H, CH), 3,90 (s, 6H, OCH₃), 7,10 7,13 (m, 2H, arom), 7,23 7,32 (m, 3H, arom).
- ¹³C-NMR (CDCl₃) δ: 20,4 (CH₃), 23,1 (CH₃), 39,4 (CH₂), 40,5 (CH), 52,3 (OCH₃), 126,3 (CH-arom), 126,6 (CH-arom), 127,2 (C-arom), 128,4 (CH-arom), 145,3 (C-Py), 145,8 (C-Py), 155,4 (C-Py), 168,9 (C=O).

3.5. EPR spektroskopija

U epruveti s konusnim dnom volumena 1,5 mL su pomiješane pripremljene otopine u kombinaciji i prema redoslijedu navedenom u Tablicama 6 - 12. Većina mjerenja je rađena u diklormetanu uz korištenje *N-tert*-butil- α -fenilnitrona (PBN) kao spinske stupice. 0,37 mol L⁻¹ otopina je pripremljena otapanjem PBN-a (98 %, 33,5 mg, 0,19 mmol) u 0,5 mL diklormetana. Za mjerenje je korišteno 25 µl odgovarajuće otopine ili samog otapala. Kombinacija i redoslijed dodavanja pojedinih komponenti navedeni su u Tablicama 6 - 12. Nakon miješanja smjesa je prenesena u staklenu kapilaricu koja je stavljena u magnetsko polje EPR spektrometra i mjerenja su provedena u periodu od 20 minuta. 0,01 mol L⁻¹ otopine 1,4-DHP-a su pripremljene otapanjem odgovarajućeg 1,4-DHP-a (0,1 mmol) u 10 mL diklormetana: (1 – 22,5 mg, 2a – 31,5 mg, 3a – 26,7 mg, 4 – 30,1 mg, 6a – 26,7 mg, 21 – 28,1 mg). 1 mol L⁻¹ otopina DMPO-a je pripremljena njegovim otapanjem (97 %, 58,0 mg, 0,50 mmol) u 0,5 mL diklormetana.

3.5.1. EPR spektroskopska mjerenja uz korištenje MoCl₅ kao oksidacijskog sredstva

Pripremljena je 0,01 mol L^{-1} otopina otapanjem MoCl₅ (95 %, 29 mg, 0,1 mmol) u 10 mL CH₂Cl₂.

<u>**Tablica**</u> 6: Kombinacija i redoslijed dodavanja pojedinih komponenti prilikom ispitivanja aromatizacije 1,4-DHP s $MoCl_5$

Kombinacija	R	edoslijed dodavanja:	
	1.	2.	3.
1.	DMPO	CH_2Cl_2	-
2.	PBN	CH_2Cl_2	-
3.	MoCl ₅	PBN	CH_2Cl_2
4.	3a	MoCl ₅	PBN
5.	2a	MoCl ₅	PBN
6.	6a	MoCl ₅	PBN
7.	1	MoCl ₅	PBN

3.5.2. EPR spektroskopska mjerenja uz korištenje VOCl₃ kao oksidacijskog sredstva

Pripremljena je 0,01 mol L^{-1} otopina iz 1 mol L^{-1} diklormetanske otopine VOCl₃ razrjeđivanjem 1 mL u 100 mL CH₂Cl₂.

<u>**Tablica**</u> 7: Kombinacija i redoslijed dodavanja pojedinih komponenti prilikom ispitivanja aromatizacije 1,4-DHP s VOCl₃

Kombinacija	R	edoslijed dodavanja:	
	1.	2.	3.
1.	VOCl ₃	PBN	CH_2Cl_2
2.	3 a	VOCl ₃	CH_2Cl_2
3.	4	VOCl ₃	CH_2Cl_2
4.	3 a	VOCl ₃	PBN
5.	4	VOCl ₃	PBN
6.	2a	VOCl ₃	PBN
7.	6a	VOCl ₃	PBN
8.	1	VOCl ₃	PBN

3.5.3. EPR spektroskopska mjerenja uz korištenje tritilijevog tetrafluoroborata kao oksidacijskog sredstva

Pripremljena je 0,01 mol L^{-1} otopina otapanjem 33 mg tritilijevog tetrafluoroborata (33 mg, 0,1 mmol) u 10 mL diklormetana.

<u>*Tablica 8</u>: Kombinacija i redoslijed dodavanja pojedinih komponenti prilikom ispitivanja aromatizacije 1,4-DHP s tritilijevim tetrafluoroboratom*</u>

Kombinacija:		Redoslijed dodavanja:	
	1.	2.	3.
1.	PBN	Tritilijev tetrafluoroborat	CH_2Cl_2
2.	3 a	Tritilijev tetrafluoroborat	PBN
3.	2a	Tritilijev tetrafluoroborat	PBN
4.	1	Tritilijev tetrafluoroborat	PBN
5.	21	Tritilijev tetrafluoroborat	PBN
6.	3 a	Tritilijev tetrafluoroborat	CH_2Cl_2
7.	2a	Tritilijev tetrafluoroborat	CH_2Cl_2

3.5.4. EPR spektroskopska mjerenja uz korištenje tropilijevog tetrafluoroborata kao oksidacijskog sredstva

Pripremljena je 0,01 mol L^{-1} otopina otapanjem 18,2 mg tropilijevog tetrafluoroborata (97 %, 18,2 mg, 0,1 mmol) u 10 mL diklormetana. Međutim sav tropilijev tetrafluoroborat se nije otopio tako da to nije točna koncentracija.

<u>Tablica</u> 9: Kombinacija i redoslijed dodavanja pojedinih komponenti prilikom ispitivanja aromatizacije 1,4-DHP s tropilijevim tetrafluoroboratom

Kombinacija:		Redoslijed dodavanja:	
	1.	2.	3.
1.	PBN	Tropilijev tetrafluoroborat	CH_2Cl_2
2.	3 a	Tropilijev tetrafluoroborat	CH_2Cl_2
3.	2a	Tropilijev tetrafluoroborat	PBN
4.	3 a	Tropilijev tetrafluoroborat	PBN
5.	4	Tropilijev tetrafluoroborat	PBN
6.	1	Tropilijev tetrafluoroborat	PBN
7.	6a	Tropilijev tetrafluoroborat	PBN

3.5.5. EPR spektroskopska mjerenja uz korištenje DDQ kao oksidacijskog sredstva

Pripremljena je 0,01 mol L⁻¹ otopina otapanjem DDQ (98 %, 23,2 mg, 0,1 mmol) u 10 mL diklormetana.

<u>*Tablica 10</u>: Kombinacija i redoslijed dodavanja pojedinih komponenti prilikom ispitivanja aromatizacije 1,4-DHP s DDQ*</u>

Kombinacija:	Redoslijed dodavanja:				
	1.	2.	3.		
1.	DDQ	-	-		
2.	DDQ	CH_2Cl_2	-		
3.	DDQ	PBN	CH_2Cl_2		
4.	3 a	DDQ	PBN		
5.	2a	DDQ	CH_2Cl_2		
6.	3 a	DDQ	CH_2Cl_2		
7.	1	DDQ	CH_2Cl_2		
8.	21	DDQ	CH_2Cl_2		

3.5.6. EPR spektroskopska mjerenja uz korištenje tetracijanoetilena (TCNE) kao oksidacijskog sredstva

Pripremljena je 0,01 mol L⁻¹ otopina otapanjem TCNE (98 %, 13 mg, 0,1 mmol) u 10 mL diklormetana.

<u>*Tablica* 11</u>: Kombinacija i redoslijed dodavanja pojedinih komponenti prilikom ispitivanja aromatizacije 1,4-DHP s TCNE

Kombinacija		Redoslijed dodavanja:	
	1.	2.	3.
1.	TCNE	PBN	CH_2Cl_2
2.	3 a	PBN	CH_2Cl_2
3.	TCNE	CH_2Cl_2	-
4.	3 a	TCNE	PBN
5.	2a	TCNE	CH_2Cl_2
6.	3 a	TCNE	CH_2Cl_2
7.	1	TCNE	CH_2Cl_2
8.	21	TCNE	CH_2Cl_2
9.	4	TCNE	CH_2Cl_2
10.	6a	TCNE	CH_2Cl_2

Mjerenja su rađena u etil-acetatu uz korištenje *N-tert*-butil- α -fenilnitrona (PBN) kao spinske stupice. 0,37 mol L⁻¹ otopina je pripremljena otapanjem PBN-a (98 %, 33,5 mg, 0,19 mmol) u 0,5 mL etil-acetata. U 10 mL etil-acetata je otopljen jod (99,8 %, 5,1 mg, 0,02 mmol), te je kompleks uree s vodikovim peroksidom (97 %, 19,4 mg, 0,2 mmol) otopljen u 10 mL etil-acetata nakon 10 minuta u ultrazvučnoj kupelji. 0,01 mol L⁻¹ otopine 1,4-DHP-a su pripremljene otapanjem odgovarajućeg 1,4-DHP-a (0,1 mmol) u 10 mL etil-acetata: (1 – 22,5 mg, **3a** – 26,7 mg, **4** – 30,1 mg, **6a** – 26,7 mg).

<u>**Tablica 12**</u>: Kombinacija i redoslijed dodavanja pojedinih komponenti prilikom ispitivanja aromatizacije 1,4-DHP s katalitičkom količinom joda i kompleksom uree s vodikovim peroksidom

Kombinacija:	Redoslijed dodavanja:			
	1.	2.	3.	4.
1.	I_2	EtOAc	PBN	$urea - H_2O_2$
2.	3 a	I_2	PBN	$urea - H_2O_2$
3.	6a	I_2	PBN	urea – H_2O_2
4.	1	I_2	PBN	$urea - H_2O_2$
5.	4	I_2	PBN	urea – H_2O_2

3.6. Ispitivanje nastajanja kompleksa s prijenosom naboja

Ispitivanje nastajanja navedenih kompleksa je provedeno primjenom UV-Vis, IR i NMR spektroskopije.

3.6.1. Ispitivanje nastajanja kompleksa s prijenosom naboja UV-Vis spektroskopijom

Pripremljene su otopine odgovarajućeg 1,4-DHP-a i piridina, te im je snimljen UV-Vis spektar u području od 200 – 800 nm. Također su pripremljene i koncentriranije otopine 1,4-DHP i otopine oksidansa za korištenje prilikom ispitivanja nastajanja CT kompleksa i snimljen im je UV-Vis spektar. Otopine su pripremljene otapanjem određene količine spoja u diklormetanu i dodatnim razrjeđivanjem pripremljenih otopina do koncentracije navedene u narednim Tablicama 13 i 14.

<u>Tablica 13</u>: Konačne koncentracije 1,4-DHP i pripadajućih piridina s kojima je rađeno početno snimanje UV-Vis spektara

H ₃ CO H ₃ C	R O OCH ₃ I N CH ₃	H ₃ CO H ₃ CO H ₃ C N CH ₃
Spoj	R	$c / \text{mmol } L^{-1}$
2a	CH ₂ Ph	0,037
2b	CH ₂ Ph	0,072
2a	CH ₂ Ph	32
3a	<i>i</i> -Pr	0,044
3 a	<i>i</i> -Pr	36
3 b	<i>i</i> -Pr	0,12
1	-	0,13
22	-	0,067
1	-	4,2

<u>**Tablica 14**</u>: Konačne koncentracije oksidansa koji će se koristiti prilikom ispitivanja nastajanja CT kompleksa s kojima je rađeno početno snimanje UV-Vis spektara

Oksidans	$c \ / \ \mathrm{mmol} \ \mathrm{L}^{-1}$
DDQ	0,048
TCNE	0,029
Tropilijev tetrafluoroborat	0,044 ^a
NbCl ₅	0,51 ^b

^a okvirna koncentracija jer se nije sve otopilo ^b okvirna koncentracija jer se nije sve otopilo

(prije snimanja je profiltrirana kroz filter papir)

3.6.1.1. Ispitivanje nastajanja kompleksa s prijenosom naboja s DDQ

- u kivetu u kojoj se rade snimanja UV-Vis spektara je odvagnuto 2,5 mg spoja 2a i 3,6 mg DDQ. Zatim je dodano 3 mL diklormetana. Konačna koncentracija dobivenih otopina je 2,6 mmol L⁻¹ (2a) i 5,2 mmol L⁻¹ (DDQ). Dobivena je narančasta otopina kojoj je snimljen UV-Vis spektar. Zatim je pomiješano 4,9 mg spoja 2a i 7,2 mg DDQ u 3 mL diklormetana pri čemu nastaje intenzivno narančasta otopina konačne koncentracije spoja 2a 5,2 mmol L⁻¹ i 10,4 mmol L⁻¹ (DDQ) te joj je snimljen UV-Vis spektar.
- Iz prethodne kivete je otpipetiran 1,5 mL otopine i dodan 1,5 mL etanola. Dobivena je otopina crvene boje kojoj je sniman UV-Vis spektar.
- u kivetu u kojoj se rade snimanja UV-Vis spektara je odvagnuto 16,2 mg spoja 1 i 16,5 mg DDQ. Zatim je dodano 3 mL diklormetana. Konačna koncentracija dobivenih otopina je 24 mmol L⁻¹ (spoj 1 i DDQ). Nastaje tamno crvena suspenzija koja stvara pahuljasti talog na dnu kivete, a iznad njega je crvena otopina. Sniman je UV-Vis spektar nastale suspenzije u periodu od 20 minuta.
- zatim je otopljeno 10,6 mg spoja 3a i 9 mg DDQ u 5 mL diklormetana u kiveti za centrifugiranje i centrifugirano oko 20 s na 4,4 rpm-a. Dobivenom supernatantu je sniman UV-Vis spektar.

3.6.1.2. Ispitivanje nastajanja kompleksa s prijenosom naboja s TCNE

- u kivetu u kojoj se rade snimanja UV-Vis spektara je odvagnuto 10 mg spoja 1 i 5,6 mg TCNE. Zatim je dodano 3 mL diklormetana i kiveta je 20 sekundi stavljena u ultrazvučnu kupelj. Konačna koncentracija dobivenih otopina je 15 mmol L⁻¹ (spoj 1 i TCNE). Nastaje suspenzija zelene boje kojoj je sniman UV-Vis spektar.
- u odmjernu tikvicu od 5 mL je odvagnuto 6,8 mg spoja 2a i 2,7 mg TCNE. Tikvica je dopunjena diklormetanom i konačna koncentracija dobivenih otopina je 4 mmol L⁻¹ (spoj 2a i TCNE). Nastaloj žutoj otopini je snimljen UV-Vis spektar. Tijekom

vremena od 1 sat otopina gubi boju. Isti postupak je ponovljen i s 6,8 mg spoja **2a** i 5,4 mg TCNE gdje nastaju otopine konačnih koncentracija 4 mmol L^{-1} (spoj **2a**) i 8 mmol L^{-1} (TCNE).

u odmjernu tikvicu od 5 mL je odvagnuto 5,8 mg spoja 3a i 2,7 mg TCNE. Tikvica je dopunjena diklormetanom i konačna koncentracija dobivenih otopina je 4 mmol L⁻¹ (spoj 3a i TCNE). Nastaloj bezbojnoj otopini je u periodu od 90 minuta sniman UV-Vis spektar. Otopina s vremenom postaje sve jače žuta i nakon 1,5 h je crvene boje. Također joj je snimljen spektar nakon 2 dana. Isti postupak je ponovljen i s 5,8 mg spoja 3a i 5,4 mg TCNE gdje nastaju otopine konačnih koncentracija 4 mmol L⁻¹ (spoj 3a) i 8 mmol L⁻¹ (TCNE).

3.6.1.3. Ispitivanje nastajanja kompleksa s prijenosom naboja s tropilijevim tetrafluoroboratom

➢ u odmjernu tikvicu od 5 mL je odvagnuto 81,3 mg spoja **3a** i 55,2 mg tropilijevog tetrafluoroborata. Tikvica je dopunjena diklormetanom i konačna koncentracija dobivenih otopina je 60 mmol L⁻¹ (spoj **3a** i okvirna koncentracija tropilijevog tetrafluoroborata jer se nije sav otopio). Isti postupak je ponovljen i s 81,3 mg spoja **3a** i 110,4 mg tropilijevog tetrafluoroborata pri čemu je okvirna koncentracija tropilijevog tetrafluoroborata 120 mmol L⁻¹, te s 81,3 mg spoja **3a** i 165,6 mg tropilijevog tetrafluoroborata čija okvirna koncentracija iznosi 180 mmol L⁻¹. Nastaloj suspenziji je tek nakon 20 minuta sniman spektar jer je tada došlo do njenog obojenja.

3.6.1.4. Ispitivanje nastajanja kompleksa s prijenosom naboja s NbCl₅

- u kivetu u kojoj se rade snimanja UV-Vis spektara je odvagnuto 49,1 mg NbCl₅ prethodno usitnjenog u tarioniku i 15,75 mg spoja **3a**. Zatim je dodano 3 mL diklormetana. Konačna koncentracija dobivenih otopina je 20 mmol L⁻¹ (spoj **3a**) i 60 mmol L⁻¹ (NbCl₅). Nakon kratkog mućkanja kivete u njoj zaostaje ljubičasto smeđi talog u žutoj otopini kojoj je sniman UV-Vis spektar.
- ➢ u kivetu u kojoj se rade snimanja UV-Vis spektara je odvagnuto 24,6 mg NbCl₅ prethodno usitnjenog u tarioniku i 20,5 mg spoja 1. Zatim je dodano 3 mL

diklormetana. Konačna koncentracija dobivenih otopina je 30 mmol L^{-1} (spoj **1** i NbCl₅). Nakon stajanja u ultrazvučnoj kupelji u periodu od 1 minute nastaje crvena suspenzija – snimana pa su kapalicom dodane dvije kapi diklormetana i tada joj je sniman UV-Vis spektar.

u kivetu u kojoj se rade snimanja UV-Vis spektara je odvagnuto 27,7 mg NbCl₅ prethodno usitnjenog u tarioniku i 32,4 mg spoja 2a. Zatim je dodano 3 mL diklormetana. Konačna koncentracija dobivenih otopina je 34 mmol L⁻¹ (spoja 2a i NbCl₅). Nakon stajanja u ultrazvučnoj kupelji u periodu od 1 minute nastaje ljubičastocrvena suspenzija – snimana pa je kapalicom dodano pet kapi diklormetana i tada joj je sniman UV-Vis spektar.

3.6.2. Ispitivanje nastajanja kompleksa s prijenosom naboja IR spektroskopijom3.6.2.1. Ispitivanje nastajanja kompleksa s prijenosom naboja s DDQ

Pomiješani su odgovarajući 1,4-DHP i DDQ prema masama navedenim u Tablici 15. Zatim im je dodano 5 mL diklormetana i nastaje suspenzija koja je u periodu od 30 sekundi stavljena u ultrazvučnu kupelj. Na dnu epruvete dolazi do izdvajanja taloga koji je uzet kapalicom, pomiješan s KBr-om i pripremljena je pastila kojoj je snimljen IR spektar.

<u>Tablica 15</u>: Korišteni 1,4-DHP i odvage spojeva pri pripremi CT kompleksa za snimanje IR spektra

R ₁		R ₁	
H₃C	N H H	CH3	

Reakcija	1,4-DHP	R	R_1	<i>m</i> / mg	<i>m</i> (DDQ) / mg
1	2a	CH ₂ Ph	Me	30	37
2	1	-	Me	30	30
3	3 a	<i>i</i> -Pr	Me	50	43

3.6.3. Ispitivanje nastajanja kompleksa s prijenosom naboja NMR spektroskopijom

Pomiješani su 2,6-dimetil-3,5-di(metoksikarbonil)-4-benzil-1,4-DHP (2a) i odgovarajući oksidans prema masama navedenim u Tablici 16. Nakon 24 h im je dodan CDCl₃ i sniman NMR spektar.

<u>Tablica 16</u>: Korišteni oksidansi i odvage spojeva pri pokušaju detekcije CT kompleksa NMR spektroskopijom

Reakcija	Spoj	R	R ₁ ; R ₂	<i>m</i> / mg	Oksidans	<i>m</i> / mg
1	2a	CH ₂ Ph	Me; Me	20	TCNE	8
					Tritilijev	
2	2a	CH ₂ Ph	Me; Me	20	tetrafluoroborat	21

3.6.3.1. Kompleks s TCNE kao oksidansom

- ¹H-NMR δ / ppm (CDCl₃): 2,18 (s, 6H, CH₃), 2,56 (s, 6H, CH₃), 2,58 (d, 2H, CH₂, J = 6,7Hz), 3,60 (s, 6H, COOCH₃), 3,75 (s, 6H, COOCH₃), 4,09 (s, 2H, CH₂), 4,18 (t, 1H, J = 5,4 Hz; 4-CH), 5,34 (s, 1H, NH), 7,00 – 7,26 (m, 10 H, arom.).
- ¹³C-NMR δ / ppm (CDCl₃): 19,2 (CH₃), 21,7 (CH₃), 35,5 (CH), 36,8 (CH₂), 42,4 (CH₂), 50,9 (OCH₃), 52,7 (OCH₃), 101,6 (C-Py), 125 - 130 (CH-Ph), 139,1 (C-Ph), 145,6 (C-Py), 154,6 (C-Py), 168,2 (C=O).

3.6.3.2. Kompleks s tritilijevim tetrafluoroboratom kao oksidansom

- ¹H-NMR δ / ppm (CDCl₃): 2,17 (s, 6H, CH₃), 2,56 (d, 2H, J = 5,5 Hz; CH₂), 3,16 (s, 6H, CH₃), 3,59 (s, 6H, COOCH₃), 4,02 (s, 6H, COOCH₃), 4,17 (t, 1H, J = 5,5 Hz; 4-CH), 5,36 (s, 1H, NH), 5,55 (trifenilmetan), 6,99 7,89 (m, H, arom. i trifenilmetan), 9,32 (s, 1H, CH).
- ¹³C-NMR δ / ppm (CDCl₃): 19,1 (CH₃), 20,3 (CH₃), 35,4 (CH), 42,4 (CH₂), 50,9 (OCH₃), 53,7 (OCH₃), 56,9 (CH trifenilmetan) 101,6 (C-Py), 125 130 (CH-arom) 139,1 (C-arom), 143,9 (C-arom trifenilmetan), 145,7 (C-Py), 148,1 (C-Py), 159,9 (C-Py), 168,2 (C=O).

3.7. Aromatizacija 4-supstituiranih 1,4-DHP-a

Aromatizacije su provedene s nekoliko različitih oksidansa i u različitim uvjetima. Nakon obrade reakcijske smjese dobiveni produkt analiziran je tekućinskom kromatografijom visoke djelotvornosti. U svrhu analize su korištene 2 različite metode, ovisno o spoju.

3.7.1. Aromatizacija s MoCl₅

1) U otopinu 1,4-DHP derivata (0,5 mmol) u 5 mL diklormetana dodan je odjednom $MoCl_5$ (95 %, 0,30 g, 1,05 mmol). Nakon miješanja na sobnoj temperaturi tijekom vremena navedenog u Tablicama 17 i 18, u reakcijsku smjesu je dodano 5 mL vode, te je neutralizirana krutim NaHCO₃ do pH>7. Nakon odjeljivanja organskog sloja, vodeni sloj je dodatno ekstrahiran diklormetanom 2 x 5 mL. Spojeni organski slojevi su osušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni.

2) Otopina 1,4-DHP derivata (0,5 mmol) u 5 mL diklormetana ohlađena je na 0 °C i dodan je odjednom MoCl₅ (95 %, 0,30 g, 1,05 mmol), te se nakon 5 minuta miješanja na 0 °C reakcijska smjesa ostavi u ledenici. Nakon vremena navedenog u Tablicama 17 i 18, u reakcijsku smjesu je dodano 10 mL vode i 5 mL diklormetana, te je neutralizirana krutim NaHCO₃ do pH>7. Nakon odjeljivanja organskog sloja, vodeni je dodatno ekstrahiran diklormetanom 2 x 5 mL. Spojeni organski slojevi su osušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni.

3) U otopinu 1,4-DHP derivata (0,5 mmol) u 5 mL octene kiseline dodan je odjednom $MoCl_5$ (95 %, 0,30 g, 1,05 mmol). Nakon miješanja na sobnoj temperaturi tijekom vremena navedenog u Tablici 17, u reakcijsku smjesu je dodano 5 mL vode i 5 mL diklormetana, te je neutralizirana krutim NaHCO₃ do pH>7. Nakon odjeljivanja organskog sloja, vodeni je dodatno ekstrahiran diklormetanom 2 x 5 mL. Spojeni organski slojevi su osušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni.

Tablica 17: Aromatizacija 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP s MoCl₅

Dooltoiio		D	R otapalo		/ h	HPLC
Reakcija	1,4-DHF	K			0 °C	metoda
1	10a	Me	CH_2Cl_2	80	70	Metoda 2 ^a
2	5a	Et	CH_2Cl_2	40	15	Metoda 2 ^a
3	11a	<i>n</i> -Bu	CH_2Cl_2	40)	120	Metoda 1 [°]
4	12a	<i>n</i> -Pn	CH_2Cl_2	20	120	Metoda 1 ^b
5	13 a	<i>n</i> -Hx	CH_2Cl_2	2	120	Metoda 1 ^b
6	10a	Me	HOAc	70		Metoda 2 ^a
7	5a	Et	HOAc	20		Metoda 2 ^a
8	6a	<i>n</i> -Pr	HOAc	40		Metoda 1 ^b
9	11a	<i>n</i> -Bu	HOAc	40		Metoda 1 ^b
10	12a	<i>n</i> -Pn	HOAc	80		Metoda 1 ^b
11	13 a	<i>n</i> -Hx	HOAc	20		Metoda 1 ^b

^a Metoda 2: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 40 : 60. ^b Metoda 1: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 60 : 40.

<u>**Tablica**</u> 18: Aromatizacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP s MoCl₅ u dikormetanu

Poakaija		D	t	/ h	HPLC
Кеаксіја	1,4-DIII	K	s.t.	0 °C	metoda
1	6a	Me	20	140	Metoda 1 ^a
2	15a	Et	20	60	Metoda 1 ^a
3	16a	<i>i</i> -Pr	20	60	Metoda 1 ^a
4	17a	<i>i</i> -Bu	70	120	Metoda 1 ^a

^a Metoda 1: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 60 : 40.

3.7.2. Aromatizacija s VOCl₃

1) U otopinu 1,4-DHP derivata (0,5 mmol) u 5 mL diklormetana dodana je odjednom 1 mol L^{-1} otopina VOCl₃ u diklormetanu (1,05 mL, 1,05 mmol). Nakon miješanja na sobnoj temperaturi tijekom vremena navedenog u Tablicama 19 i 20, u reakcijsku smjesu je dodano 5 mL vode te je neutralizirana krutim NaHCO₃ do pH>7. Nakon odjeljivanja organskog sloja, vodeni je dodatno ekstrahiran diklormetanom 2 x 5 mL. Spojeni organski slojevi su osušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni.

2) Otopina 1,4-DHP derivata (0,5 mmol) u 5 mL diklormetana ohlađena je na 0 °C i dodana je odjednom 1 mol L⁻¹ otopina VOCl₃ u diklormetanu (1,05 mL, 1,05 mmol). Nakon 5 minuta miješanja na 0 °C reakcijska smjesa je stavljena u ledenicu. Nakon vremena navedenog u Tablicama 19 i 20, u reakcijsku smjesu je dodano 10 mL vode i 5 mL diklormetana, te je neutralizirana krutim NaHCO₃ do pH>7. Nakon odjeljivanja organskog sloja, vodeni je dodatno ekstrahiran diklormetanom 2 x 5 mL. Spojeni organski slojevi su osušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni.

3) U otopinu 1,4-DHP derivata (0,5 mmol) u 5 mL octene kiseline dodana je odjednom 1 mol L^{-1} otopina VOCl₃ u diklormetanu (1,05 mL, 1,05 mmol). Nakon miješanja na sobnoj temperaturi tijekom vremena navedenog u Tablicama 19 i 20, u reakcijsku smjesu je dodano 5 mL vode i 5 mL diklormetana, te je neutralizirana krutim NaHCO₃ do pH>7. Nakon odjeljivanja organskog sloja, vodeni je dodatno ekstrahiran diklormetanom 2 x 5 mL. Spojeni organski slojevi su osušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni.

Tablica 19: Aromatizacija 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP s VOCl3

Poakcija		D	otanalo	<i>t /</i> h		HPLC
Ксаксіја	1,4-DIIF	r K Otapaio		s.t.	0 °C	metoda
1	10a	Me	CH_2Cl_2	0,5	20	Metoda 2 ^a
2	5a	Et	CH_2Cl_2	20	60	Metoda 2 ^a
3	11a	<i>n</i> -Bu	CH_2Cl_2	20	120	Metoda 1 [°]
4	12a	<i>n</i> -Pn	CH_2Cl_2	20	120	Metoda 1 [°]
5	13 a	<i>n</i> -Hx	CH_2Cl_2		120	Metoda 1 ^b
6	10a	Me	HOAc	1,5		Metoda 2 ^a
7	5a	Et	HOAc	2		Metoda 2 ^a
8	11a	<i>n</i> -Bu	HOAc	20		Metoda 1 ^b
9	12a	<i>n</i> -Pn	HOAc	1		Metoda 1 [°]
10	13a	<i>n</i> -Hx	HOAc	3		Metoda 1 [°]

^a Metoda 2: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 40 : 60. ^b Metoda 1: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 60 : 40.

<u>**Tablica 20:**</u> Aromatizacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP s VOCl₃

RO		OR
H ₃ C	N H	CH3

Paaltoija		-DHP R	otopolo	<i>t /</i> h		HPLC
Reakcija	1,4-DHP	K	otapaio	s.t.	0 °C	Metoda
1	6a	Me	CH_2Cl_2	20	140	Metoda 1 ^a
2	15 a	Et	CH_2Cl_2	20	140	Metoda 1 ^a
3	16a	<i>i</i> -Pr	CH_2Cl_2	20	140	Metoda 1 ^a
4	17a	<i>i</i> -Bu	CH_2Cl_2	70	40	Metoda 1 ^a
5	6a	Me	HOAc	1		Metoda 1 ^a
6	15 a	Et	HOAc	20		Metoda 1 ^a
7	16a	<i>i</i> -Pr	HOAc	20		Metoda 1 ^a
8	17a	<i>i</i> -Bu	HOAc	2		Metoda 1 ^a

^a Metoda 1: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 60 : 40.

3.7.3. Aromatizacija s tropilijevim tetrafluoroboratom

U otopinu 1,4-DHP derivata (0,5 mmol) u 5 mL diklormetana ili toluena na sobnoj temperaturi je dodan odjednom tropilijev tetrafluoroborat (97 %, 97 mg, 0,53 mmol,). Osim navedenih uvjeta, reakcija je praćena uz nekoliko drugih uvjeta koji su navedeni u Tablici 21. Nakon miješanja na odgovarajućoj temperaturi i tijekom vremena navedenog u Tablici 21, u reakcijsku smjesu je dodano 5 mL vode, te je neutralizirana krutim NaHCO₃ do pH>7. Nakon odjeljivanja organskog sloja, vodeni je dodatno ekstrahiran diklormetanom 2 x 10 mL. Spojeni organski slojevi su osušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni. Osim omjera 4-dealkilnog i 4-alkilnog produkta tekućinskom kromatografijom visoke djelotvornosti praćeno je i prisustvo benzaldehida.

<u>*Tablica*</u> 21: Aromatizacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-alkil-1,4-DHP s tropilijevim tetrafluoroboratom

Reakcija	1,4-	R	$\mathbf{R}_1 \cdot \mathbf{R}_2$	Otanalo	Dodatni	θ/°C	<i>t /</i> h	HPLC
reakerja	DHP	R	$\mathbf{n}_1, \mathbf{n}_2$	Otupuio	reagens	070	<i>v</i> / 11	metoda
1	10a	Me	Me; Me	CH_2Cl_2	-	s.t.	0.5	Metoda 2 ^d
2	5a	Et	Me; Me	CH_2Cl_2	-	s.t.	1	Metoda 2 ^a
3	3 a	<i>i</i> -Pr	Me; Me	CH_2Cl_2	-	s.t.	20	Metoda 2 ^a
4	3 a	<i>i</i> -Pr	Me; Me	CH_2Cl_2	-	- 5	1	Metoda 1 ^e
5	6a	<i>n</i> -Pr	Me; Me	CH_2Cl_2	-	s.t.	1	Metoda 1 ^e
6	11a	<i>n</i> -Bu	Me; Me	CH_2Cl_2	-	s.t.	0.5	Metoda 2 ^a
7	12a	<i>n</i> -Pn	Me; Me	CH_2Cl_2	-	s.t.	0.5	Metoda 2 ^a
8	13 a	<i>n</i> -Hx	Me; Me	CH_2Cl_2	-	s.t.	0.5	Metoda 2 ^a
9 ^a	2a	CH ₂ Ph	Me; Me	CH ₂ Cl ₂	UV zračenje	s.t.	1	Metoda 1 ^e
10	2a	CH_2Ph	Me; Me	CH_2Cl_2	-	s.t.	2	Metoda 1 ^e
11 ^b	2a	CH ₂ Ph	Me; Me	CH_2Cl_2	HMB	s.t.	2	Metoda 1 ^e
$12^{\rm c}$	2a	CH_2Ph	Me; Me	CH_2Cl_2	HFB	s.t.	5	Metoda 1 ^e
13	2a	CH_2Ph	Me; Me	CH_2Cl_2	-	-10	1	Metoda 1 ^e
14	2a	CH_2Ph	Me; Me	toluen	-	s.t.	5	Metoda 1 ^e
15	14a	CH ₃ CH(Ph)CH ₂	Me, Me	CH_2Cl_2	-	s.t.	20	Metoda 1 ^e
16	15a	<i>n</i> -Pr	Et; Et	CH_2Cl_2	-	s.t.	1	Metoda 1 ^e
17	16a	<i>n</i> -Pr	<i>i-</i> Pr; <i>i-</i> Pr	CH_2Cl_2	-	s.t.	2	Metoda 2 ^d
18	18a	<i>i</i> -Pr	CH ₂ Ph; CH ₂ Ph	CH_2Cl_2	-	s.t.	2	Metoda 1 ^e
19	19a	<i>i</i> -Pr	CH ₂ Ph; Me	CH_2Cl_2	-	s.t.	2	Metoda 2 ^d
20	20	<i>i-</i> Pr (<i>N</i> -derivat)	Me; Me	CH_2Cl_2	-	s.t.	100	Metoda 1 ^e

^a Reakcija je provedena pod UV lampom na valnoj duljini od 365 nm.

^b U 5 mL diklormetana je pomiješan tropilijev tetrafluoroborat (97 %, 97 mg, 0,53 mmol) i heksametilbenzen (99 %, 87 mg, 0,53 mmol). Zatim je dodano 0,5 mmol 1,4-DHP-a.

^c U 5 mL diklormetana je pomiješan tropilijev tetrafluoroborat (97 %, 97 mg, 0,53 mmol) i heksafluorobenzen (99 %, 0,11 mL, 1 mmol). Zatim je dodano 0,5 mmol 1,4-DHP-a.

^d Metoda 2: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 40 : 60.

^e Metoda 1: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 60 : 40.

3.7.4. Aromatizacija s tritilijevim tetrafluoroboratom3.7.4.1. Opći postupak aromatizacije

U otopinu tritilijevog tetrafluoroborata (50 mg, 0,15 mmol) u 3 mL diklormetana ili toluena dodan je odjednom 1,4-DHP (0,15 mmol). Nakon miješanja na sobnoj temperaturi tijekom vremena navedenog u Tablici 22, u reakcijsku smjesu je dodano 5 mL vode i 2 mL diklormetana te je neutralizirana krutim NaHCO₃ do pH>7. Nakon odjeljivanja organskog sloja, vodeni je dodatno ekstrahiran diklormetanom 2 x 10 mL. Spojeni organski slojevi su osušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni. Osim omjera 4-dealkilnog i 4-alkilnog piridina tekućinskom kromatografijom visoke djelotvornosti se prati i prisutstvo trifenilmetanola.

<u>Tablica 22:</u> Aromatizacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-alkil-1,4-DHP s tritilijevim tetrafluoroboratom na sobnoj temperaturi

Reakcija	1,4- DHP	R	R ₁ ; R ₂	Otapalo	<i>t /</i> h	HPLC metoda
1	10a	Me	Me; Me	CH_2Cl_2	0,5	Metoda 2 ^a
2	5a	Et	Me; Me	CH_2Cl_2	1	Metoda 2 ^a
3	3a	<i>i</i> -Pr	Me; Me	CH_2Cl_2	3	Metoda 1 [°]
4	20	<i>i</i> -Pr (<i>N</i> -derivat)	Me; Me	CH_2Cl_2	4	Metoda 1 ^b
5	6a	<i>n</i> -Pr	Me; Me	CH_2Cl_2	4	Metoda 1 ^b
6	11a	<i>n</i> -Bu	Me; Me	CH_2Cl_2	1	Metoda 1 ^b
7	12a	<i>n</i> -Pn	Me; Me	CH_2Cl_2	1	Metoda 1 ^b
8	13a	<i>n</i> -Hx	Me; Me	CH_2Cl_2	1	Metoda 1 ^b
9	2a	CH_2Ph	Me; Me	CH_2Cl_2	2	Metoda 1 ^b
10	14a	CH ₃ CH(Ph)CH ₂	Me; Me	CH_2Cl_2	3	Metoda 1 ^b
11	14a	CH ₃ CH(Ph)CH ₂	Me; Me	toluen	24	Metoda 1 ^b
12	19a	<i>i</i> -Pr	Me; CH ₂ Ph	CH_2Cl_2	3	Metoda 1 ^b
13	18a	<i>i-</i> Pr	CH ₂ Ph; CH ₂ Ph	CH_2Cl_2	3	Metoda 1 ^b

^a Metoda 2: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 40 : 60. ^b Metoda 1: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 60 : 40. 3.7.4.2. Sinteza, izolacija i karakterizacija dodatnih produkata nastalih tijekom aromatizacije 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-DHP (**3a**)

U otopinu tritilijevog tetrafluoroborata (500 mg, 1,5 mmol) u 20 mL diklormetana dodan je odjednom spoj **3a** (200 mg, 0,75 mmol). Nakon miješanja na sobnoj temperaturi tijekom 24 sata, u reakcijsku smjesu je dodano 20 mL vode te je neutralizirana krutim NaHCO₃ do pH>7. Nakon odjeljivanja organskog sloja, vođeni je dodatno ekstrahiran diklormetanom 2 x 20 mL. Spojeni organski slojevi su osušeni nad bezvodnim Na₂SO₄, profiltrirani i upareni. Sirovi produkt (0,52 g) je pročišćen kromatografijom na koloni silikagela (50 g) uz eluiranje smjesom ψ (diklormetan, etil-acetat) = 9,8 : 0,2. Frakcije s R_f = 0,53 su skupljene i uparene do suha. Dobiven je spoj **LP 35** (trifenilmetan), u obliku bijelih kristalića mase 0,05 g.

IR (film) v/cm⁻¹: 3058, 3001, 1956, 1889, 1816, 1767, 1596, 1494, 1444, 1314, 1248, 1177, 1155, 1115, 1078, 1031, 1003.

- ¹H-NMR δ / ppm (CDCl₃): 5.,5 (s, 1H, CH(C₆H₅)₃), 7,10 7,30 (m, 5H, CH(C₆H₅)₃) 7.36 7.40 (m, 6H, arom), 7.42 7.43 (m, 4H, arom)
- ¹³C-NMR δ / ppm (CDCl₃): 56,9 (*C*H(C₆H₅)₃), 126,3 (*C*H-arom), 128,3 (*C*H-arom), 129,5 (*C*H-arom), 143,9 (*C*-arom).

Talište: 92 - 94 °C

3.7.5. Aromatizacija s 2,3-diklor-5,6-dicijano-1,4-benzokinonom

Otopina odgovarajućeg 1,4-DHP-a (0,5 mmol) u diklormetanu (CH₃CN-u, THF-u, heksanu) (5 mL) ohlađena je na 0 °C te joj je postupno dodavan DDQ (98 %, 122 mg, 0,53 mmol). Reakcijska smjesa je zatim zagrijana na sobnu temperaturu na kojoj je miješana tijekom vremena i u uvjetima navedenim u Tablici 23.

Zatim je dodano 5 mL diklormetana i 5 mL 1 % vodene otopine HCl. Nakon odjeljivanja slojeva, organski sloj je dodatno ekstrahiran s 1 % vodenom otopinom HCl (5 mL). Organski sloj je osušen nad bezvodnim Na₂SO₄, profiltriran i uparen.

Tablica 23: Aromatizacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-alkil-1,4-DHP s DDQ

Dookoiio	1,4-	D	$\mathbf{D} \cdot \mathbf{D}$	Dodatni	Otopolo	<i>t</i> / h	HPLC
Кеаксіја	DHP	К	$\mathbf{K}_1, \mathbf{K}_2$	reagens	Otapaio	<i>l</i> / 11	metoda
1	10a	Me	Me; Me	-	CH_2Cl_2	20	Metoda 2 ^a
2	3a	<i>i</i> -Pr	Me; Me	-	CH_2Cl_2	60	Metoda 1 ^b
3	3a	<i>i</i> -Pr	Me; Me	-	CH ₃ CN	60	Metoda 1 ^b
4	6a	<i>n</i> -Pr	Me; Me	-	CH_2Cl_2	20	Metoda 1 ^b
5	2a	CH_2Ph	Me; Me	-	CH_2Cl_2	20	Metoda 1 ^b
6	2a	CH ₂ Ph	Me; Me	-	heksan	70	Metoda 2 ^a
7°	2a	CH_2Ph	Me; Me	DBU	CH_2Cl_2	3	Metoda 1 ^b
8	14a	CH ₃ CH(Ph)CH	Me, Me	-	CH_2Cl_2	20	Metoda 2 ^a
9	15a	<i>n</i> -Pr	Et; Et	-	CH_2Cl_2	20	Metoda 2 ^a
10	15a	<i>n</i> -Pr	Et; Et	-	THF	1	Metoda 1 ^b
11	16a	<i>n</i> -Pr	<i>i</i> -Pr; <i>i</i> -Pr	-	CH_2Cl_2	20	Metoda 1 ^b
12	19a	<i>i</i> -Pr	Me, CH ₂ Ph	-	CH_2Cl_2	0,5	Metoda 1 ^b
13	18a	<i>i</i> -Pr	CH ₂ Ph; CH ₂ Ph	-	CH_2Cl_2	2	Metoda 1 ^b

^a Metoda 2: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 40 : 60.

^b Metoda 1: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 60 : 40.

^c Otopini odgovarajućeg 1,4-DHP-a (0,5 mmol) u 5 mL diklormetana na sobnoj temperaturi je dodan DBU (98 %, 85 mg, 0,55 mmol). Dobivena otopina je miješana 20 minuta. Zatim je postupno dodavan DDQ (98 %, 122 mg, 0,53 mmol).

3.7.6. Aromatizacija s 1,1,2,2-tetracijanoetilenom

U otopinu 1,4-DHP derivata (0,5 mmol) u 5 mL diklormetana dodan je odjednom TCNE (98 %, 72 mg, 0,55 mmol). Reakcijska smjesa je miješana na sobnoj temperaturi tijekom vremena navedenog u Tablici 24. Osim tih uvjeta, reakcija je praćena na nekoliko drugih uvjeta koji su navedeni u Tablici 24.

Zatim je dodano 5 mL diklormetana i 5 mL 1 % vodene otopine HCl. Nakon odjeljivanja slojeva, organski sloj je dodatno ekstrahiran s 1 % vodenom otopinom HCl (5 mL). Organski sloj je posušen nad bezvodnim Na₂SO₄, profiltriran i uparen.

<u>*Tablica 24</u>: Aromatizacija 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP s TCNE na sobnoj temperaturi*</u>

Reakcija	1,4-DHP	R	Dodatni reagens	Otapalo	<i>t /</i> h	HPLC metoda
1	20	<i>i</i> -Pr (<i>N</i> -derivat)	-	CH_2Cl_2	5	Metoda 1 ^a
2	3 a	<i>i</i> -Pr	-	CH_2Cl_2	60	Metoda 2 [°]
3°	3 a	<i>i</i> -Pr	DBU	CH_2Cl_2	1	Metoda 2 ^b
4^{a}	3 a	<i>i</i> -Pr	TEMPO	CH_2Cl_2	5	Metoda 1 ^a
5	11a	<i>n</i> -Bu	-	CH_2Cl_2	20	Metoda 2 ^b
6	2a	CH_2Ph	-	CH_2Cl_2	60	Metoda 2 ^b
$7^{\rm e}$	2a	CH_2Ph	DBU	CH_2Cl_2	1	Metoda 2 [°]
8 ¹	2a	CH_2Ph	TMB	CH_2Cl_2	24	Metoda 1 ^a
9	14a	CH ₃ CH(Ph)CH ₂	-	CH_2Cl_2	0,5	Metoda 1 ^a

^a Metoda 1: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 60 : 40.

^b Metoda 2: kolona Waters XTerra RP18 uz pokretnu fazu sastava ψ (acetonitril, voda) = 40 : 60.

^c U otopinu 1,4-DHP derivata (0,5 mmol) u 5 mL diklormetana na sobnoj temperaturi je dodan DBU (98 %, 85 mg, 0,55 mmol). Nakon miješanja u periodu od 30 minuta dodan je TCNE (98 %, 72 mg, 0,55 mmol).

^d U otopinu 1,4-DHP derivata (0,5 mmol) u 5 mL diklormetana na sobnoj temperaturi je dodan TEMPO (98 %, 16 mg, 0,1 mmol, 20 mol.%). Zatim je dodan TCNE (98 %, 72 mg, 0,55 mmol).

^e U otopinu 1,4-DHP derivata (0,5 mmol) u 5 mL diklormetana na sobnoj temperaturi je dodan DBU 98 %, (98 %, 85 mg, 0,55 mmol). Nakon miješanja u periodu od 30 minuta dodan je TCNE (98 %, 72 mg, 0,55 mmol).

^f U 5 mL diklormetana na sobnoj temperaturi je dodan TCNE (98 %, 72 mg, 0,55 mmol) i trimetoksibenzen (98 %, 170 mg, 1 mmol). Zatim je dodan 0,5 mmol 1,4-DHP-a.

§ 4. REZULTATI I RASPRAVA

Pregledom literature zaključili smo da prilikom aromatizacije 1,4-DHP derivata kad je prisutna benzilna, izopropilna ili alkilna skupina na položaju 4, dolazi do djelomičnog ili potpunog nastajanja 4-dealkilnog produkta. I u prethodnom radu našeg laboratorija prilikom aromatizacije 2,6-dimetil-3,5-di(metoksikarbonil)-4-(prop-1-il)-1,4-DHP-a **6a** s VOCl₃ u diklormetanu i octenoj kiselini¹⁷ primijećeno je djelomično nastajanje 4-dealkilnog produkta.

Cilj ovog rada je nastaviti se na prethodna istraživanja i ispitati osim raznih oksidansa i uvjeta reakcije i utjecaj strukture 1,4-DHP-a (razni alkilni supstituenti na položaju 4 1,4-DHP prstena i različite esterske skupine) na omjer 4-dealkilnog i 4-alkilnog produkta. U tu svrhu je pripravljen niz različitih 1,4-DHP derivata. Iz njih su raznim metodama aromatizacije sintetizirani odgovarajući piridinski derivati, kako bi se dobili standardi za HPLC analizu kod određivanja omjera nastalih produkata.

4.1. Sinteza 1,4-DHP derivata

Kao metoda priprave je odabrana Hantzschova ciklizacija. Od različitih varijanti je odabrana ona koja koristi 2 ekvivalenta odgovarajućeg svježe pripremljenog aminokrotonatnog estera i 1 ekvivalent odgovarajućeg aldehida. Aminokrotonatni ester¹⁶³ **27** je pripremljen reakcijom odgovarajućeg acetoacetata **26** i amonijevog karbamata kao izvora amonijaka (Shema 22) i dalje je korišten u Hantzschovoj kondenzaciji bez posebne izolacije i karakterizacije.

Shema 22

R = Me, Et, i-Pr, i-Bu

4.1.1. Sinteza 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-nesupstituiranih 1,4-DHP

Reakcijom paraformaldehida i odgovarajućeg aminokrotonatnog estera na temperaturi povrata metanola (Shema 23) pripravljeni su 4-nesupstituirani 1,4-DHP derivati koji posjeduju različite esterske skupine (Tablica 25).

Shema 23

Tablica 25. Sinteza 4-nesupstituiranih-1,4-DHP prema Shemi 23

produkt	R	<i>t /</i> h	ŋ / %	talište / °C
7	Et	70	53	186,5 – 188,5
8	<i>i</i> -Pr	70	50	123,0 - 124,0
9	<i>i</i> -Bu	70	55	125,5 – 127,5

Spojevi su izolirani dodatkom diizopropil-etera u uparni produkt sirove reakcijske smjese. Dodatkom diizopropil-etera se smanji polarnost i pospješi kristalizacija 1,4-DHP koji se zatim profiltrira. Detaljni mehanizam nastajanja je prikazan na Shemi 24. U prvom stupnju dolazi do nukleofilnog napada ugljikovog atoma na položaju 2 iz 3-aminokrotonata na paraformaldehid. Pri tome nastaje prijelazni ionski međuprodukt **28** (*njem.* "zwitter ion") koji tautomerizira u iminoalkohol **29**. Nakon djelomičnog protoniranja hidroksilne skupine, utjecajem amonijaka kao baze, dolazi do eliminacije jedne molekule vode uz nastanak tzv. "imino"-Knoevenagelovog produkta **31**. Slijedeći stupanj je nukleofilni napad druge molekule 3-aminokrotonata na međuprodukt **31**. Prilikom nastajanja ionskog međuprodukta **32** stvoreni su uvjeti za intramolekularnu ciklizaciju uz nastanak međuprodukta **33**, koji nakon protoniranja (međuprodukt **34**) i eliminacije molekule amonijaka daje produkt, 1,4-DHP **35**.⁵⁶

Shema 24

4.1.2. Sinteza 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP

Reakcijom odgovarajućeg aldehida **36** i metil-3-aminokrotonatnog estera na temperaturi povrata metanola (Shema 25) pripravljeni su 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP koji na položaju 4 imaju različite alkilne supstituente. Rezultati su prikazani u Tablici 26. 1,4-DHP derivati **10a**, **11a** i **14a** su izolirani dodatkom diizopropil-etera i/ili *n*-heksana u uparenu reakcijsku smjesu pri čemu se nastali derivat izdvoji filtriranjem, dok su spojevi **12a** i **13a** izolirani kromatografijom uparnog produkta na koloni silikagela.

Shema 25

produkt	R	<i>t /</i> h	η / %	talište / °C
10a	Me	220	8	147,0 -149,0
11a	<i>n</i> -Bu	60	29	110,0 - 111,0
12a	<i>n</i> -Pn	40	8	84,0-86,0
13a	<i>n</i> -Hx	40	7	83,0-85,0
14a	CH ₃ CH(Ph)CH ₂	40	34	119,5 – 120,0

Tablica 26. Sinteza 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP prema Shemi 25

4.1.3. Sinteza 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP derivata

Reakcijom *n*-butanala i odgovarajućeg 3-aminokrotonatnog estera na temperaturi povrata metanola (Shema 26) pripravljeni su 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP derivati s različitim esterskim skupinama (Tablica 27). Dobiveni spojevi su izolirani kromatografijom uparnog produkta na koloni silikagela.

Shema 26

<u>*Tablica 27.*</u> Sinteza 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP prema Shemi 26

produkt	R	<i>t /</i> h	ŋ / %	talište / °C
15 a	Et	120	13	126,0 – 127,0
16 a	<i>i</i> -Pr	120	14	89,0-91,0
17a	<i>i</i> -Bu	70	9	/
4.1.4. Sinteza 4-izopropil-1,4-DHP derivata s benzilnim esterskim skupinama

Reakcijom butanola i NaH u toluenu na sobnoj temperaturi nastaje otopina natrijevog benziloksida u koju je dodan 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-DHP **3a** prethodno pripremljen i okarakteriziran u našem laboratoriju.¹⁷ Postupnim zagrijavanjem reakcijske smjese dolazi do transesterifikacije metoksi skupina s benziloksi skupinom na jednoj ili na obje esterske skupine (Shema 27). Odgovarajući 1,4-DHP derivati su nakon obrade reakcijske smjese izolirani kromatografijom na koloni silikagela. Rezultati su prikazani u Tablici 28.

Shema 27

<u>Tablica 28</u>: Sinteza 4-izopropil-1,4-DHP derivata s benzilnim esterskim skupinama prema Shemi 27

produkt	<i>t /</i> h	η / %	talište / °C
18 a	2	5	93,0-95,0
19a	2	21	103,0 - 105,0

4.1.5. Sinteza N-supstituiranih derivata 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-DHP

Zamjena H atoma na *N* s odgovarajućim supstituentom je provedena s ciljem dodatne potvrde mehanizma reakcije i ispitivanja utjecaja te zamjene na rezultat aromatizacije (omjer 4-dealkilnog i 4-alkilnog produkta).

Otopini 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-DHP-a 3a u tetrahidrofuranu dodan je NaH koji vrši deprotonaciju na *N*-položaju. Zatim je dodan metiljodid, odnosno klormetiletileter čiji se pripadajući karbokationi vežu na *N* anion **37** (Shema 28).

Odgovarajući 1,4-DHP derivati su nakon obrade reakcijske smjese izolirani kromatografijom na koloni silikagela i dobiveni rezultati su prikazani u Tablici 29.

Shema 28

<u>*Tablica 29:*</u> Sinteza N-derivata 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-DHP prema Shemi 28

produkt	R	<i>t /</i> h	ŋ / %	talište / °C
20	CH ₂ OEt	12	9	100,0 - 102,0
21	Me	30	54	86,0-88,0

4.2. Aromatizacija 1,4-DHP derivata

4.2.1. Aromatizacija 1,4-DHP derivata kompleksom uree s vodikovim peroksidom, katalizirane jodom

Aromatizacija odgovarajućih 1,4-DHP-a navedenih u Tablici 30 je provedena u etil-acetatu s 2 ekvivalenta kompleksa uree s vodikovim peroksidom, katalizirana s 20 mol.% joda prema metodi prethodno optimiranoj i korištenoj u našem laboratoriju (Shema 29).¹²³ Ovom metodom su aromatizirani svi 1,4-DHP derivati, osim onih koji na položaju 4 imaju R = benzilnu, izopropilnu ili 2-fenilpropilnu skupinu. Naime, kod 1,4-DHP derivata s tim skupinama dolazi do nastajanja 4-dealkilnog produkta **22** prilikom aromatizacije (Shema 30), a u svrhu izrade standarda potrebno je dobiti 4-alkilni produkt, odnosno onaj kod kojeg je prisutan supstituent na položaju 4.

Shema 29

Velika prednost ove metode je lagana izolacija produkata koja uključuje dodatak vode u reakcijsku smjesu, dodatak nekoliko kristalića natrijevog tiosulfata ($Na_2S_2O_4$) za uklanjanje joda i suviška oksidansa, odvajanje organskog sloja, sušenje na bezvodnom Na_2SO_4 , filtriranje i uparavanje otapala.

40

22

1,4-DHP	R_1	R_2	produkt	<i>t /</i> h	η / %
1	-	Me	22	2	100
7	-	Et	23	2	88
8	-	<i>i</i> -Pr	24	2	93
9	-	<i>i</i> -Bu	25	1	88
10a	Me	Me	10b	5	72
5a	Et	Me	5b	3	88
6a	<i>n</i> -Pr	Me	6b	1	98
11a	<i>n</i> -Bu	Me	11b	2	82
12a	<i>n</i> -Pen	Me	12b	1	82
13 a	<i>n</i> -He	Me	13b	2	91
15 a	<i>n</i> -Pr	Et	15b	1	95
16a	<i>n</i> -Pr	<i>i</i> -Pr	16b	1	87
17 a	<i>n</i> -Pr	<i>i</i> -Bu	17b	2.5	72
	1,4-DHP 1 7 8 9 10a 5a 6a 11a 12a 13a 15a 16a 17a	1,4-DHP R1 1 - 7 - 8 - 9 - 10a Me 5a Et 6a n-Pr 11a n-Bu 12a n-Pen 13a n-He 15a n-Pr 16a n-Pr 17a n-Pr	1,4-DHP R_1 R_2 1-Me7-Et8- i -Pr9- i -Bu10aMeMe5aEtMe6a n -PrMe11a n -BuMe12a n -PenMe13a n -HeMe15a n -PrEt16a n -Pr i -Pr17a n -Pr i -Bu	1,4-DHP R_1 R_2 produkt1-Me227-Et238- i -Pr249- i -Bu2510aMeMe10b5aEtMe5b6a n -PrMe6b11a n -BuMe11b12a n -PenMe13b13a n -HeMe13b15a n -PrEt15b16a n -Pr i -Pr16b17a n -Pr i -Bu17b	1,4-DHP R1 R2 produkt t / h 1 - Me 22 2 7 - Et 23 2 8 - i-Pr 24 2 9 - i-Bu 25 1 10a Me Me 10b 5 5a Et Me 5b 3 6a n-Pr Me 6b 1 11a n-Bu Me 11b 2 12a n-Pen Me 13b 2 13a n-He Me 13b 2 15a n-Pr Et 15b 1 16a n-Pr i-Pr 16b 1 17a n-Pr i-Bu 17b 2.5

Tablica 30: Rezultati aromatizacije 1,4-DHP derivata prema Shemi 29

4.2.2. Aromatizacija 1,4-DHP derivata s 2,3-diklor-5,6-dicijano-1,4-benzokinonom

S DDQ su aromatizirani spojevi s benzilnom **2a**, izopropilnom (**3a**, **18a** i **19a**) ili 2fenilpropilnom skupinom **14a** na položaju 4 (Shema 31) i rezultati su navedeni u Tablici 31. DDQ je odabran kao oksidans iz razloga što prilikom aromatizacije daje i 4-alkilni produkt, što je prethodnom metodom bilo nemoguće postići. Aromatizacija je provedena s 1,05 - 1,1ekvivalentom DDQ u diklormetanu. DDQ je dodan na 0 °C i zatim je reakcijska smjesa zagrijana na sobnu temperaturu. Spojevi **2b** i **3b** su izolirani hlađenjem reakcijske smjese na -18 °C, filtriranjem taloga i kromatografijom na koloni silikagela, dok su spojevi **14b**, **18b** i **19b** izolirani uparavanjem reakcijske smjese i kromatografijom na preparativnoj ploči od silikagela.

		, je na se na s		I			
Reakcija	1,4-DHP	R_1	R_2	R ₃	produkt	<i>t /</i> h	η / %
1	2a	CH ₂ C ₆ H ₅	Me	Me	2b	2	83
2	3 a	<i>i</i> -Pr	Me	Me	3 b	2	79
3	19a	<i>i</i> -Pr	Me	$CH_2C_6H_5$	19b	20	29
4	18a	<i>i</i> -Pr	$CH_2C_6H_5$	$CH_2C_6H_5$	18b	20	26
5	14a	CH ₃ CH(Ph)CH ₂	Me	Me	14b	20	28

Tablica 31. Rezultati aromatizacije 1,4-DHP derivata prema Shemi 31

4.3. EPR spektroskopija

U literaturi se može naći niz radova o elektrokemijskoj oksidaciji 1,4-DHP-a i provedena su EPR spektroskopska mjerenja s ciljem detekcije nestabilnih radikalskih međuprodukata koji nastaju tijekom oksidacije.²³⁻²⁵ Ispitivani su spojevi koji na položaju 4 imaju odgovarajući supstituent i atom vodika. Redovno su detektirani međuprodukti nastali uklanjanjem jednog elektrona i deprotonacijom koji na položaju 4 imaju nespareni elektron i odgovarajući supstituent.

Proučavana je i aromatizacija s nitrozonijevim tetrafluoroboratom, a snimanjem EPR spektara su primijećeni spojevi koji nastaju otpuštanjem supstituenta s položaja 4 u obliku radikala.¹⁵¹

Praćena je i katalitička oksidacija s citokromom P-450. Kad je korišten 2,6-dimetil-3,5di(etoksikarbonil)-4-etil-1,4-dihidropiridin došlo je do uništenja citokroma P-450 kao posljedica vezanja etilnog radikala na N prostetičkog hema. Metoda sa spinskom stupicom POBN je potvrdila nastajanje etilnog radikala tijekom katalitičke oksidacije.¹⁶⁴

Osim 1,4-DHP-a koji tijekom aromatizacija mogu dati radikale, u ovoj disertaciji su korišteni i oksidansi koji prilikom redukcije daju različite radikale koji se mogu detektirati pomoću EPR spektroskopije.

Prilikom proučavanja aromatizacija 1,4-DHP spojeva većina mehanizama, izuzev ovih nekoliko navedenih, se bazira uglavnom na dobivenim produktima reakcije i na kinetičkim mjerenjima i termodinamičkim proračunima. Velik dio mehanizama pretpostavlja i nastajanje radikala tijekom aromatizacije, ali oni nisu eksperimentalno dokazani.

EPR spektroskopija je izabrana s ciljem detekcije radikalskih međuprodukata (ukoliko oni nastaju), kako bi pomogli u interpretaciji dobivenih eksperimentalnih rezultata i boljoj

pretpostavci odgovarajućih mehanizama. Kao spinske stupice su korišteni PBN i DMPO, koji su korišteni i u detekciji prethodno spomenutih radikala. Međutim, otapanjem DMPO-a u diklormetanu i snimanjem EPR spektra na sobnoj temperaturi dobiven je signal na Slici 51.

Slika 51: EPR spektar spinske stupice DMPO otopljene u diklormetanu

Daljnje snimanje s DMPO nije nastavljeno zbog njegove reakcije s otapalom. Sva snimanja su obavljena uz korištenje PBN-a kao spinske stupice jer on otapanjem u diklormetanu ne daje vidljiv EPR signal. Interpretacija dobivenog spektra je temeljena na međusobnoj usporedbi konstanti hiperfinog cijepanja A_N i A_H budući da je oblik spektra sličan i simuliraju se eksperimentalni podaci iz kojih se one određuju. Također vrijednosti između tih konstanti su dosta bliske, primjerice kad se detektira dihidropiridinski prsten s raznim supstituentima na položaju 4.²⁴

Kod interpretacije rezultata EPR spektara postoji i nekoliko drugih puteva u kojima mogu nastati odgovarajući radikalski adukti.¹⁶⁵ U jakim oksidacijskim uvjetima, može doći do oksidacije spinske stupice u odgovarajući radikal-kation ST⁺⁺ koji reagira s nukleofilom R⁻ i daje isti spinski adukt kao i kad ST reagira s radikalom R[•] (Shema 32). Ovakav se slučaj naziva "inverzni" spin trapping. Nadalje, može doći i do nukleofilnog napada na ST koji je praćen jednoelektronskom oksidacijom.

Shema 32

$$ST + R' \longrightarrow R-ST'$$

$$ST \xrightarrow{-e} ST'' \xrightarrow{R} R-ST'$$

$$ST + R \xrightarrow{-e} R-ST$$

$$R-ST \xrightarrow{-e} R-ST'$$

4.3.1. EPR spektroskopska mjerenja uz korištenje MoCl₅ kao oksidacijskog sredstva

Za EPR spektroskopska mjerenja je odabran 2,6-dimetil-3,5-di(metoksikarbonil)-4-(prop-1il)-1,4-dihidropiridn **6a** s kojim je rađeno i HPLC određivanje omjera nastalih produkata kojim je utvrđeno da daje visoki udio 4-dealkilnog produkta. Nadalje su korišteni 2,6-dimetil-3,5-di(metoksikarbonil)-4-benzil-1,4-dihidropiridin 2a i 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-dihidropiridin 3a, za koje je i iz literature poznato da daju uglavnom 4produkt.11-13,128 dealkilni Korišten nesupstituirani je i spoj 2,6-dimetil-3,5di(metoksikarbonil)-1,4-dihidropiridin 1, kod kojega je prilikom aromatizacije na položaju 4 uvijek prisutan samo H atom. Iz razloga što bi PBN mogao reagirati s MoCl₅ i dati lažne signale najprije je sniman i EPR spektar samo njihove smjese. U Tablici 32 je navedeno prisustvo ili odsustvo signala za odgovarajuće kombinacije i redoslijed dodavanja spinske stupice PBN-a, odgovarajućeg 1,4-DHP-a i MoCl₅.

<u>**Tablica**</u> 32: Prisustvo/odsustvo signala kod snimanja EPR spektra za odgovarajuću kombinaciju i redoslijed dodavanja pojedinih komponenti prilikom aromatizacije s $MoCl_5$

Kombinacija:	R	edoslijed dodavanja:		Rezultat:
	1.	2.	3.	signal
1	MoCl ₅	PBN	CH_2Cl_2	-
2	3 a	MoCl ₅	PBN	+
3	2a	MoCl ₅	PBN	+
4	6a	MoCl ₅	PBN	+ (slabi signal)
5	1	MoCl ₅	PBN	+

Kao što je vidljivo iz Tablice 32, MoCl₅ i PBN ne reagiraju međusobno i ne daju nikakav signal, što znači da je ovaj sustav prikladan za praćenje nastalih radikalskih međuprodukata. Na Slici 52 je prikazan simulirani EPR spektar dobiven korištenjem programskog paketa EasySpin, koji daje vrijednosti konstanti hiperfinog cijepanja A_N i A_H , i eksperimentalno snimljen spektar prilikom aromatizacije spoja **3a** s MoCl₅ uz korištenje PBN. Na Slici 53 su prikazani dobiveni EPR spektri, a u Tablici 33 dobivene vrijednosti konstanti hiperfinog cijepanja A_N i A_H za pojedine 1,4-DHP.

Slika 52: EPR spektar adukta PBN-dihidropiridilni radikal dobiven prilikom aromatizacije spoja 3a + MoCl₅ + PBN. Crvena linija predstavlja eksperimentalni spektar, a plava simulaciju programom "garlic" programskog paketa EasySpin.¹⁶²

<u>**Tablica**</u> 33: Eksperimentalno određene vrijednosti konstanti hiperfinog cijepanja A_N i A_H radikala dobivenih prilikom aromatizacije s $MoCl_5$

1,4-DHP	A_N / mT	A_H / mT
3 a	1,414	0,193
2a	1,386	0,200
1	1,387	0,181
1	1,408	0,193
6a	1,385	0,199

Slika 53: Eksperimentalni EPR spektar adukata PBN-dihidropiridilni radikal dobiven prilikom aromatizacije s MoCl₅

 $\begin{array}{l} A-\text{spoj } \textbf{6a}+\text{MoCl}_5+\text{PBN}, B-\text{spoj } \textbf{3a}+\text{MoCl}_5+\text{PBN}, C-\text{spoj } \textbf{2a}+\text{MoCl}_5+\text{PBN}, D-\text{spoj } \textbf{1}+\text{MoCl}_5+\text{PBN} \end{array}$

Iz Slike 53 je jasno vidljivo da su dobiveni identični spektri. Također i vrijednosti konstanti hiperfinog cijepanja u Tablici 33 ukazuju na to da je detektiran jedan te isti radikal u svim slučajevima. Pretpostavke s kojima je postavljen ovaj eksperiment jesu da je moguće nastajanje nekoliko različitih radikala:

A) nastajanje benzilnog, izopropilnog i n-propilnog radikala

B) nastajanje dihidropiridilnog radikala koji na položaju 4 ima odgovarajući supstituent 43, odnosno H atom 44 (Slika 54)

Slika 54: Strukture potencijalnih dihidropiridilnih radikala

Da je detektiran radikal iz pretpostavke A te bi se vrijednosti međusobno razlikovale. Usporedbom s literaturnim podacima²³⁻²⁵ može se zaključiti da je detektiran dihidropiridilni radikal jer su dobivene konstante cijepanja slične onima iz literature. Međutim, za razliku od dosad detektiranih radikala koji su na položaju 4 imali odgovarajući supstituent (jer kod elektrooksidacije nije došlo do dealkilacije), ovim je eksperimentom detektiran drukčiji radikal **44** koji na položaju 4 ima H atom. U prilog toj činjenici ide i to da je takav radikal detektiran i kod 2,6-dimetil-3,5-di(metoksikarbonil)-1,4-dihidropiridina **1**, a ovo je jedini radikal koji on može dati. Pregledom literature se može zaključiti da ovakav tip radikala dosad nije bio detektiran²³⁻²⁵ i ovo je prvi slučaj njegove detekcije. Iz kvantnomehaničkih proračuna¹⁵⁰ slijedi da dihidropiridilni radikal ima nespareni elektron lokaliziran na položaju 2, 4 ili 6, a položaj 4 je preferiran jer elektronegativni supstituenti na 3 i 5 položaju povećavaju gustoću spina u susjednom položaju. Iz toga se može zaključiti da se radikali koji nastaju preferencijalno vežu na spinsku stupicu s reaktivnim C4-položajem. Struktura pretpostavljenog adukta prikazana je Shemom 33.

Shema 33

EPR spektar spinskog adukta s PBN-om je uglavnom triplet dubleta.¹⁴⁹ Triplet nastaje zbog hiperfine interakcije spina elektrona sa jezgrom dušika, te dublet zbog hiperfine interakcije s jezgrom vodika.

Za EPR spektroskopska mjerenja su odabrani isti spojevi i iz istog razloga kao i u poglavlju 4.3.1. jedino je koncentracija 2,6-dimetil-3,5-di(metoksikarbonil)-4-(prop-1-il)-1,4dihidropiridina **6a** povećana (50 mg otopljeno u 5 mL diklormetana), jer je kod aromatizacije s MoCl₅ dobiven signal slabog intenziteta. Očito je da taj spoj reagira puno sporije u odnosu na ostale 1,4-DHP-e koji su dali intenzivne signale u razdoblju od nekoliko minuta. Dodatno je analiziran i 2,6-dimetil-3,5-di(metoksikarbonil)-4-fenil-1,4-dihidropiridin **4** za koji je poznato da prilikom aromatizacije daje samo 4-alkilni produkt. Cilj tog eksperimenta je vidjeti da li i kod tog spoja koji inače daje samo 4-alkilni produkt, prilikom aromatizacije nastaje određeni radikalski međuprodukt s fenilnim supstituentom na položaju 4.

U Tablici 34 je navedeno prisustvo ili odsustvo signala za odgovarajuće kombinacije i redoslijed dodavanja spinske stupice PBN-a, odgovarajućeg 1,4-DHP-a i VOCl₃.

Kombinacija:	R	edoslijed dodavanja:		Rezultat:
	1.	2.	3.	signal
1	VOCl ₃	PBN	CH_2Cl_2	+
2	3 a	VOCl ₃	CH_2Cl_2	-
3	4	VOCl ₃	CH_2Cl_2	-
4	3 a	VOCl ₃	PBN	+
5	4	VOCl ₃	PBN	+
6	2a	VOCl ₃	PBN	+
7	6a	VOCl ₃	PBN	+
8	1	VOCl ₃	PBN	+ (slabi signal)

<u>**Tablica**</u> 34</u>: Prisustvo/odsustvo signala kod snimanja EPR spektra za odgovarajuću kombinaciju i redoslijed dodavanja pojedinih komponenti prilikom aromatizacije s $VOCl_3$

Slika 55: EPR spektar dobiven snimanjem kombinacije VOCl₃ + PBN + CH₂Cl₂

Iz razloga što bi PBN mogao reagirati s VOCl₃ najprije je sniman i EPR spektar samo njih u kombinaciji. Kao što je vidljivo iz Slike 55, VOCl₃ i PBN daju signal od 8 linija. Taj signal je posljedica nastajanja vanadija(IV) kao produkta redukcije vanadija(V) s PBN-om. Nuklearni spin ⁵¹V je I=7/2, tako da su stanja pocijepana u 8 različitih energetskih nivoa. Bitno je spomenuti da se prilikom svih EPR spektroskopskih mjerenja, najprije pomiješaju 1,4-DHP i oksidans, a zatim se doda PBN kako on ne bi preferencijalno reagirao s oksidansom umjesto s radikalom. Na Slici 56 su prikazani dobiveni EPR spektri, a u Tablici 35 dobivene vrijednosti konstanti hiperfinog cijepanja A_N i A_H za pojedine 1,4-DHP. Kod daljnjih mjerenja u spektru je vidljiv samo signal koji nastaje kao posljedica vezanja PBN-a na dihidropiridilni radikal, dok 8 linija koje bi odgovarale V(IV) nije detektirano. Kada su rađena mjerenja bez PBN-a nije detektiran nikakav EPR signal. Kod kombinacije 5 (Tablica 34) nije detektiran dihidropiridilni radikal, već samo 8 linija koje nastaju kao produkt redukcije V(V) s PBN-om. Očito je reakcija V(V) i spoja 4 sporija od reakcije V(V) i PBN-a.

1,4-DHP	A_N / mT	A_H / mT
3a	1,389	0,201
2a	1,386	0,200
6a	1,385	0,199

<u>**Tablica 35**</u>: Eksperimentalno određene vrijednosti konstanti hiperfinog cijepanja A_N i A_H radikala dobivenih prilikom aromatizacije s VOCl₃

Slika 56: Eksperimentalni EPR spektar adukata PBN-dihidropiridilni radikal dobiven prilikom aromatizacije s VOCl₃

 $A - spoj \mathbf{3a} + VOCl_3 + PBN, B - spoj \mathbf{2a} + VOCl_3 + PBN, C - spoj \mathbf{6a} + VOCl_3 + PBN$

Iz Slike 56 i Tablice 35 je jasno vidljivo da su dobiveni međusobno identični radikali koji su po vrijednostima konstanti cijepanja istovjetni prethodno dobivenim kod aromatizacije s MoCl₅. Zaključak ovih mjerenja je da u oba slučaja nastaje jedan te isti dihidropiridilni radikal **44** te da su mehanizmi kojima se reakcija odvija identični. Detekcija ovog radikala pomaže u objašnjavanju mehanizma nastajanja 4-dealkilnog produkta.

4.3.3. EPR spektroskopska mjerenja uz korištenje tritilijevog tetrafluoroborata kao oksidacijskog sredstva

Za EPR spektroskopska mjerenja su odabrani spojevi 2a, 3a i 1. Dodatno je analiziran i spoj 21. Cilj tog eksperimenta je vidjeti da li i taj spoj koji na *N* umjesto H atoma ima metilnu skupinu daje određeni radikalski međuprodukt prilikom aromatizacije ili je njegov mehanizam aromatizacije drukčiji.

U Tablici 36 je navedeno prisustvo ili odsustvo signala za odgovarajuće kombinacije i redoslijed dodavanja spinske stupice PBN-a, odgovarajućeg 1,4-DHP-a i tritilijevog tetrafluoroborata.

<u>**Tablica**</u> 36</u>: Prisustvo/odsustvo signala kod snimanja EPR spektra za odgovarajuću kombinaciju i redoslijed dodavanja pojedinih komponenti prilikom aromatizacije s tritilijevim tetrafluoroboratom

Kombinacija:		Redoslijed dodavanja:		
	1.	2.	3.	signal
1	PBN	Tritilijev tetrafluoroborat	CH_2Cl_2	-
2	3 a	Tritilijev tetrafluoroborat	PBN	+
3	2a	Tritilijev tetrafluoroborat	PBN	+
4	1	Tritilijev tetrafluoroborat	PBN	+
				(slabi signal)
5	21	Tritilijev tetrafluoroborat	PBN	+
6	3 a	Tritilijev tetrafluoroborat	CH_2Cl_2	-
7	2a	Tritilijev tetrafluoroborat	CH_2Cl_2	-

Sniman je EPR spektar kombinacije PBN-a i tritilijevog tetrafluoroborata. Poznato je da PBN ne detektira tritilijev radikal i u skladu s očekivanjima nije vidljiv EPR signal, što potvrđuje da je ovo pogodna metoda za detekciju potencijalnih radikalskih međuprodukata. Na Slici 57 su prikazani dobiveni EPR spektri, a u Tablici 37 dobivene vrijednosti konstanti hiperfinog cijepanja A_N i A_H za pojedine 1,4-DHP. Kada su rađena mjerenja bez PBN-a nije detektiran nikakav EPR signal.

1,4-DHP	A_N / mT	A_H / mT
30	1,403	0,198
Ja	1,414	0,188
20	1,39	0,192
2 a	1,387	0,201
21	1,399	0,2

<u>**Tablica 37**</u>: Eksperimentalno određene vrijednosti konstanti hiperfinog cijepanja A_N i A_H radikala dobivenih prilikom aromatizacije s tritilijevim tetrafluoroboratom

Slika 57: Eksperimentalni EPR spektar adukata PBN-dihidropiridilni radikal dobiven prilikom aromatizacije s tritilijevim tetrafluoroboratom

A – spoj 3a + tritilijev tetrafluoroborat + PBN, B – spoj 2a + tritilijev tetrafluoroborat + PBN

Iz Slike 57 i Tablice 37 je jasno vidljivo da su dobiveni međusobno identični radikali koji su po vrijednostima konstanti hiperfinog cijepanja istovjetni prethodno dobivenim. Vidljivo je i da *N*-metilirani spoj **21** reagira na identičan način ko i 1,4-DHP-i koji imaju H na dušiku. Tritilijev tetrafluoroborat redukcijom daje tritilijev radikal koji je stabilan (u uvjetima bez kisika) i bez prisustva stupice daje široki EPR spektar.^{155, 156} U ovim eksperimentalnim uvjetima nije došlo do detekcije i tog radikala. Moguće je da je reakcija transfera drugog elektrona toliko brza da taj radikal nije moguće detektirati. Pretpostavljeno je da PBN možda ometa sam tijek reakcije pa su rađena mjerenja i bez njegovog prisustva, ali u tom slučaju nisu detektirani nikakvi radikali. Iz dobivenih podataka se može zaključiti da je i u ovom slučaju detektiran isti dihidropiridilni radikal **44**, te da nastajanje 4-dealkilnog produkta ide preko istog radikalskog međuprodukta.

4.3.4. EPR spektroskopska mjerenja uz korištenje tropilijevog tetrafluoroborata kao oksidacijskog sredstva

Za EPR spektroskopska mjerenja su odabrani spojevi **1**, **2a**, **3a**, **4** i **6a**. U Tablici 38 je navedeno prisustvo ili odsustvo signala za odgovarajuće kombinacije i redoslijed dodavanja spinske stupice PBN-a, odgovarajućeg 1,4-DHP-a i tropilijevog tetrafluoroborata.

1 5	5			
Kombinacija:		Redoslijed dodavanja:		Rezultat:
	1.	2.	3.	signal
1	PBN	Tropilijev tetrafluoroborat	CH_2Cl_2	+ (slabi signal)
2	3 a	Tropilijev tetrafluoroborat	CH_2Cl_2	-
3	2a	Tropilijev tetrafluoroborat	PBN	+
4	3a	Tropilijev tetrafluoroborat	PBN	+
5	4	Tropilijev tetrafluoroborat	PBN	-
6	1	Tropilijev tetrafluoroborat	PBN	-
7	6a	Tropilijev tetrafluoroborat	PBN	-

<u>**Tablica 38:**</u> Prisustvo/odsustvo signala kod snimanja EPR spektra za odgovarajuću kombinaciju i redoslijed dodavanja pojedinih komponenti prilikom aromatizacije s tropilijevim tetrafluoroboratom

Sniman je EPR spektar kombinacije PBN-a i tropilijevog tetrafluoroborata. Dobiveni spektar nije ravna linija već je prisutan signal slabog intenziteta karakterističan za PBN-radikal adukte, koji je najvjerojatnije posljedica reakcije PBN-a i tropilijevog tetrafluoroborata. Da se ta interakcija ubuduće izbjegne PBN je dodavan na kraju i ovaj signal je zanemaren budući je puno manji u odnosu na intenzitete ostalih signala. U Tablici 39 dobivene vrijednosti konstanti hiperfinog cijepanja A_N i A_H za pojedine 1,4-DHP. Kada su rađena mjerenja bez PBN-a nije detektiran nikakav EPR signal.

<u>**Tablica 39**</u>: Eksperimentalno određene vrijednosti konstanti hiperfinog cijepanja A_N i A_H radikala dobivenih prilikom aromatizacije s tropilijevim tetrafluoroboratom

1,4-DHP	A_N / mT	A_H / mT
3a	1,43	0,214
2a	1,40	0,215

Iz Tablice 39 je vidljivo da su dobiveni radikali koji se po vrijednostima konstanti cijepanja ipak malo razlikuju od prethodno dobivenih. Dobivene razlike u rezultatima su u okviru

eksperimentalne pogreške i zaključeno je da je detektiran isti dihidropiridilni radikal **44**. U EPR spektru spojeva **1**, **4** i **6a** nisu detektirani nikakvi signali.

Tropilijev tetrafluoroborat redukcijom daje tropilijev radikal koji je stabilan i bez prisustva spinske stupice daje široki EPR spektar.¹⁵³ U ovim eksperimentalnim uvjetima nije detektiran niti taj radikal. Moguće je da je reakcija transfera drugog elektrona ili protona toliko brza da taj radikal nije moguće detektirati. Iz dobivenih podataka se može zaključiti da nastajanje 4-dealkilnog produkta ide preko radikalskih međuprodukata.

4.3.5. EPR spektroskopska mjerenja uz korištenje DDQ kao oksidacijskog sredstva

Za EPR spektroskopska mjerenja su odabrani spojevi **1**, **2a**, **3a** i **21**. U Tablici 40 je navedeno prisustvo ili odsustvo signala za odgovarajuće kombinacije i redoslijed dodavanja spinske stupice PBN-a, 1,4-DHP-a i DDQ.

Kombinacija:		Redoslijed dodavanja:		
	1.	2.	3.	signal
1	DDQ	-	-	+ (slabi signal)
2	DDQ	CH_2Cl_2	-	+ (slabi signal)
3	DDQ	PBN	CH_2Cl_2	+
4	3 a	DDQ	PBN	+
5	2a	DDQ	CH_2Cl_2	+
6	3 a	DDQ	CH_2Cl_2	+
7	1	DDQ	CH_2Cl_2	+
8	21	DDQ	CH_2Cl_2	+

<u>**Tablica 40**</u>: Prisustvo/odsustvo signala kod snimanja EPR spektra za odgovarajuću kombinaciju i redoslijed dodavanja pojedinih komponenti prilikom aromatizacije s DDQ

Kombinacije 1, 2 i 3 daju spektar slabog intenziteta koji odgovara po literaturnim podacima DDQ^{•–} radikalu.^{157, 158} DDQ je bilo u krutini bilo u otopini prisutan kao kinon, ali radikal koji nastaje je najvjerojatnije posljedica pojave malih količina nesparenih elektrona na DDQ zbog prisutstva atoma klora odnosno njihove polarizacije.

EPR spektri svih kombinacija su identičnog položaja i izgleda ko i prethodno dobiveni, ali puno većeg intenziteta (Slika 58). Najprije je prilikom snimanja korišten i PBN, ali kako je DDQ^{•-} dovoljno stabilan da se može detektirati i bez prisustva spinske stupice, u daljnjim snimanjima PBN nije bio korišten. Kombinacija 4 osim signala koji odgovara DDQ^{•-} nema niti jedan drugi signal koji bi odgovarao prethodno detektiranom signalu adukta PBN i dihidropiridilnog radikala. Signal DDQ^{•-} je intenzivan, ali uzak i da postoji još koji radikal najvjerojatnije bi ga vidjeli.

Slika 58: Eksperimentalni EPR spektar DDQ⁻ radikal aniona dobiven prilikom aromatizacije s DDQ A – spoj 1 + DDQ, B – spoj 21 + DDQ, C – spoj 2a + DDQ

Slika 59 prikazuje EPR spektar kombinacije 4 sniman u periodu od 10 minuta iz kojeg je vidljivo da se koncentracija DDQ^{•-} radikala smanjuje tijekom vremena.

Slika 59: Eksperimentalni EPR spektar DDQ⁻ radikal aniona dobiven prilikom aromatizacije spoja 3a s DDQ u vremenskom periodu od 10 minuta

 $A - 3 \min, B - 6 \min, C - 10 \min$

Ovaj radikal inače ima 5 linija cijepanja, ali ovisno o koncentraciji molekula s kojima stupa u interakciju dolazi do širenja spektralne linije u jednu. U tom slučaju dolazi do interakcija izmjene i brze relaksacije spinova. U mom slučaju nastali radikali dalje reagiraju s 1,4-DHP i zbog toga možda dolazi do širenja spektralne linije.

4.3.6. EPR spektroskopska mjerenja uz korištenje TCNE kao oksidacijskog sredstva

Za EPR spektroskopska mjerenja su odabrani spojevi **1**, **2a**, **3a**, **4**, **6a** i **21**. U Tablici 41 je navedeno prisustvo ili odsustvo signala za odgovarajuće kombinacije i redoslijed dodavanja spojeva.

Kombinacija	R	Rezultat:		
	1.	2.	3.	signal
1	TCNE	PBN	CH_2Cl_2	+
2	3 a	PBN	CH_2Cl_2	-
3	TCNE	CH_2Cl_2	-	-
4	3 a	TCNE	PBN	+
5	2a	TCNE	CH_2Cl_2	+
6	3 a	TCNE	CH_2Cl_2	+
7	1	TCNE	CH_2Cl_2	+
8	21	TCNE	CH_2Cl_2	+
9	4	TCNE	CH_2Cl_2	+
10	6a	TCNE	CH_2Cl_2	+

<u>**Tablica 41**</u>: Prisustvo/odsustvo signala kod snimanja EPR spektra za odgovarajuću kombinaciju i redoslijed dodavanja pojedinih komponenti prilikom aromatizacije s TCNE

TCNE i PBN daju EPR spektar izgledom sličan na adukt radikala vezanog na PBN, ali po konstantama hiperfinog cijepanja znatno drukčiji. Nastali radikal je rezultat interakcije PBN-a i TCNE.

EPR spektri ostalih kombinacija su međusobno identičnog položaja. Glede izgleda linije nekih spojeva su intenzivnije izražene u odnosu na druge (Slika 60). Dobiveni spektri se izgledom podudaraju s literaturno dobivenim EPR spektrima i imaju 11 linija.¹⁵⁹ Najprije je prilikom snimanja korišten i PBN, ali kako je TCNE^{•-} dovoljno stabilan da se može detektirati i bez prisustva spinske stupice, u daljnjim snimanjima PBN nije bio korišten. Kombinacija 4 osim signala koji odgovara TCNE^{•-} nema niti jedan drugi signal koji bi odgovarao prethodno detektiranom signalu adukta PBN i dihidropiridilnog radikala.

Slika 60: Eksperimentalni EPR spektar TCNE⁻ radikal aniona dobiven prilikom aromatizacije s TCNE

A – spoj **3a** + TCNE, B – spoj **1** + TCNE, C – spoj **2a** + TCNE

Slika 61 prikazuje EPR spektar kombinacije 9 sniman u periodu od 10 minuta iz kojeg je vidljivo da se koncentracija TCNE^{•–} radikala smanjuje tijekom vremena.

Slika 61: EPR spektar TCNE⁻ radikal aniona dobiven prilikom aromatizacije spoja 4 s TCNE u vremenskom periodu od 10 minuta $A - 3 \min, B - 6 \min, C - 10 \min$

4.3.7. EPR spektroskopska mjerenja uz korištenje katalitičke količine joda i kompleksa uree s vodikovim peroksidom kao oksidacijskog sredstva

Za EPR spektroskopska mjerenja su odabrani **1**, **3a**, **4 i 6a**. U Tablici 42 je navedeno prisustvo ili odsustvo signala za odgovarajuće kombinacije i redoslijed dodavanja spinske stupice PBN-a, 1,4-DHP-a, I_2 te urea - H_2O_2 .

<u>**Tablica**</u> 42: Prisustvo/odsustvo signala kod snimanja EPR spektra za odgovarajuću kombinaciju i redoslijed dodavanja pojedinih komponenti prilikom aromatizacije s I_2 /urea - H_2O_2

Kombinacija:		Redoslijed dodavanja:				
	1.	2.	3.	4.	signal	
1.	I_2	EtOAc	PBN	$urea - H_2O_2$	-	
2.	3 a	I_2	PBN	$urea - H_2O_2$	+	
3.	6a	I_2	PBN	$urea - H_2O_2$	+	
4.	1	I_2	PBN	$urea - H_2O_2$	+	
5.	4	I_2	PBN	$urea-H_2O_2$	+ (slabi signal)	

Na Slici 62 su prikazani dobiveni EPR spektri. Kombinacija 1 ne daje nikakav signal. EPR spektri kombinacija 2 - 5 su identični i sastoje se od 3 linije. Inače, adukti PBN-a i radikala su tripleti dubleta, ali ova snimanja su rađena u etil-acetatu koji ima drukčija svojstva u smislu polarnosti, gustoće i viskoznosti u odnosu na dosad korišteni diklormetan. To utječe na gibanje molekule i širenje linija i stoga se najvjerojatnije ne vide sva cijepanja već samo tripleti.

Slika 62: Eksperimentalni EPR spektar adukta PBN-OH radikal dobiven prilikom aromatizacije s I_2 /urea - H_2O_2

 $\begin{array}{l} A-spoj \; \textbf{3a}+I_2+PBN+urea \text{ - } H_2O_2 \text{, } B-spoj \; \textbf{1}+I_2+PBN+urea \text{ - } H_2O_2 \text{, } C-spoj \; \textbf{4}+I_2$

Konstante hiperfinog cijepanja su $A_H = 0,283$ mT, a $A_N = 1,569$ mT. Usporedbom s literaturnim podacima,¹⁶⁶ može se zaključiti da se radi o PBN - OH[•] radikalu. Signal adukta PBN-dihidropiridilni radikal nije detektiran, što znači da ova reakcija ide drukčijim mehanizmom u kojem ne nastaje dihidropiridilni radikal već OH[•] radikal.

4.4. Ispitivanje nastajanja kompleksa s prijenosom naboja (CT kompleksa)

Poznato je da elektron donori koji sadrže atome kisika, dušika ili sumpora u kombinaciji s raznim elektron akceptorima stvaraju molekulske interakcije koje su povezane s nastajanjem intenzivno obojenih kompleksa (CT engl. "*Charge transfer*" kompleksi) koji apsorbiraju zračenje u vidljivom ili UV području.

Fukuzumi i suradnici²² su dokazali UV-Vis spektrofotometrijski nastajanje CT kompleksa prilikom aromatizacije 9-supstituiranih 10-metil-9,10-dihidroakridina (NADH analoga) s *p*-benzokinonima i TCNE.

Analogno se može pretpostaviti i da bi 1,4-DHP (zbog posjedovanja atoma dušika) u kombinaciji s elektron akceptorima mogao dati slične komplekse koji bi bili prekursori prilikom aromatizacije 1,4-DHP-a. Litvić i suradnici¹⁷ su nastajanje obojenih diklormetanskih otopina kada se pomiješaju 1,4-DHP i TaCl₅, NbCl₅ ili VOCl₃ objasnili nastajanjem CT kompleksa. S ciljem karakterizacije nastalih kompleksa s TaCl₅ UV-Vis spektrofotometrijom, pripremili su otopine različitih koncentracija, ali svaki pokušaj detekcije je propao zbog taloženja crvenog precipitata stajanjem na sobnoj temperaturi. Stvaranje kompleksa s TaCl₅ i NbCl₅ je lako primijećeno zbog njihove spore reaktivnosti, ali s VOCl₃ nastaje trenutno obojenje koje nestaje unutar sekunde zbog njegove velike reaktivnosti.

U ovom radu su za aromatizaciju korišteni DDQ, TCNE i tropilijev tetrafluoroborat. Svi ti spojevi u kombinaciji s raznim elektron donorima daju UV-Vis spektre nastalih CT kompleksa u vidljivom dijelu spektra, a kod DDQ i TCNE su izolirani i kruti CT kompleksi kojima je snimljen IR spektar. Stoga je cilj bio pokušati naći pogodnu koncentraciju 1,4-DHP-a i odgovarajućeg elektron donora te okarakterizirati CT UV-Vis spektroskopijom. Umjesto VOCl₃ koji daje CT komplekse i koji brzo nestaju pa ih je stoga teško i detektirati, korišten je NbCl₅ koji reagira sporije i čiji bi se kompleksi mogli detektirati UV-Vis spektroskopijom.

4.4.1. Ispitivanje nastajanja kompleksa s prijenosom naboja UV-Vis spektroskopijom

Kao rezultat konjugirane strukture 1,4-DHP-i apsorbiraju zračenje iznad 240 nm. Obično imaju dva apsorpcijska maksimuma – jedan u području od 200 – 240 nm za koji su odgovorni $\pi \rightarrow \pi^*$ prijelazi nezasićenih veza i drugi od 300 – 400 nm. Za početak su pripremljene otopine

spojeva 1, 2a i 3a i njihovih konačnih produkata aromatizacije 2b, 3b i 22 odgovarajućih koncentracija i snimljen im je UV-Vis spektar (Slika 63). Snimljeni su i spektri koncentriranijih otopina 1,4-DHP-a, da se eliminiraju svi signali koji bi mogli odgovarati polaznim spojevima (Slika 64). Sva su mjerenja rađena u neprotičnom otapalu diklormetanu, budući da protična otapala sprječavaju nastanak takvog tipa slabih interakcija.

Slika 63: UV-Vis spektar diklormetanskih otopina spojeva: A) $[2a] = 0,037 \text{ mmol } L^{-1}; B) [2b] = 0,072 \text{ mmol } L^{-1}; C) [3a] = 0,044 \text{ mmol } L^{-1}; D) [3b] = 0,12 \text{ mmol } L^{-1}; E) [1] = 0,13 \text{ mmol } L^{-1}; F) [22] = 0,067 \text{ mmol } L^{-1}$

Slika 64: UV-Vis spektar diklormetanskih otopina spojeva: A) $[2a] = 32 \text{ mmol } L^{-1}$; B) $[1] = 5 \text{ mmol } L^{-1}$; C) $[3a] = 36 \text{ mmol } L^{-1}$

Na Slici 65 je prikazan UV-Vis spektar diklormetanskih otopina oksidansa koji će se koristiti za ispitivanje nastajanja CT kompleksa. Iz Slika 63 - 65 je vidljivo da svi spojevi apsorbiraju u području ispod 400 nm, dok se za CT komplekse koji su intenzivno obojeni očekuje apsorpcija u području iznad 400 nm.

Slika 65: UV-Vis spektar diklormetanskih otopina oksidansa: A) $[NbCl_5] = 0,51 \text{ mmol } L^{-1}; B)$ $[TCNE] = 0,029 \text{ mmol } L^{-1}; C) [tropilijev tetrafluoroborat] = 0,044 \text{ mmol } L^{-1};$ D) $[DDQ] = 0,048 \text{ mmol } L^{-1}$

4.4.1.1. Ispitivanje nastajanja kompleksa s prijenosom naboja s DDQ

Kada se pomiješaju razni 1,4-DHP (bezbojni) i DDQ (žuta otopina) nastaju suspenzije različitih nijansi crvene boje iz čega se može zaključiti da nastaje CT kompleks (Slika 66).

Slika 66: Fotografija kivete prilikom izvedbe pokusa priprave kompleksa s prijenosom naboja između spoja **3a** i DDQ

Glavni problem koji se javljao prilikom snimanja CT kompleksa bio je naći odgovarajuću koncentraciju komponenata. Ako je koncentracija prevelika, nastaje CT kompleks koji taloži i nemoguće je snimiti njegov spektar zbog visokog intenziteta apsorpcije, a pri malim koncentracijama uopće ne nastaje CT kompleks. Najprije su pomiješani spoj **2a** i DDQ u omjeru 1:2. Zbog male koncentracije spojeva nastaje narančasta otopina kojoj se može snimati spektar.

Slika 67: UV-Vis spektar: A) reakcije spoja 2a - DDQ; $[2a] = 2,6 \text{ mmol } L^{-1}$; $[DDQ] = 5,2 \text{ mmol } L^{-1}$; B) reakcije spoja 2a - DDQ; $[2a] = 5,2 \text{ mmol } L^{-1}$; $[DDQ] = 10,4 \text{ mmol } L^{-1}$; C) DDQ⁻⁻ radikal aniona

Na Slici 67 A je vidljiva pojava nove apsorpcijske vrpce u području gdje ne apsorbiraju ni donor ni akceptor s maksimumom na 434 nm, koja odgovara novonastalom CT kompleksu između spoja **2a** i DDQ. Apsorpcija ispod 400 nm odgovara polaznim spojevima i njihovim međuproduktima, te u konačnici i produktima. Ona je uglavnom na maksimumu i iz tih se apsorpcija teško mogu dobiti zaključci, stoga je pozornost posvećena samo apsorpcijama u području od 400 – 800 nm. Na Slici 67 B na kojoj je dvostruko povećana koncentracija obje komponente je vidljiva apsorpcijska vrpca s maksimumom oko 590 nm, dok se prethodno detektirani maksimum ne može jasno razlučiti zbog visoke apsorpcije. Nastali spektri upućuju na to da prvo nastaje CT kompleks s maksimumom na 434 nm, a zatim nastaje spoj koji apsorbira oko 590 nm. Poznato je da polarna otapala sprječavaju nastanak CT kompleksa i

stoga je iz kivete odvojeno 1,5 mL otopine i dodano 1,5 mL etanola. Dobivena je otopina intenzivno crvene boje (Slika 68) što je karakteristično za DDQ^{•-} radikal anion i dobiveni spektar odgovara po izgledu i apsorpcijskim maksimumima DDQ^{•-} radikal anionu (Slika 67 C - maksimumi su oko 417, 429, 460, 521 i 576 nm).

Slika 68: Fotografija kivete prilikom dodavanja etanola otopini spoja 2a i DDQ

Na Slici 69 je vidljiv spektar spoja **1** i DDQ. Njihovim miješanjem u omjeru 1:1 nastaje tamno crvena suspenzija koja stvara pahuljasti talog na dnu kivete. Ovdje je jasno vidljiv spektar DDQ⁻⁻ radikal aniona. Usporedbom sa spektrom B vidi se da maksimum na 430 nm odgovara CT kompleksu. Najvjerojatnije u ovoj reakciji dolazi do taloženja CT kompleksa u obliku pahuljastog taloga i zato apsorpcijski maksimum nije intenzivan kao u slučaju sa spojem **2a** i ne prekriva područje apsorpcije radikal aniona.

Slika 69: UV-Vis spektar: A) reakcije spoja 1 - DDQ; $[1] = 24 \text{ mmol } L^{-1}$; $[DDQ] = 24 \text{ mmol } L^{-1}$; B) DDQ⁻⁻ radikal aniona

Snimanjem spektra tijekom vremena (Slika 70) je primijećeno da se koncentracija DDQ^{•-} radikala smanjuje, odnosno da on najvjerojatnije sudjeluje u daljnjoj reakciji.

Slika 70: UV-Vis spektar reakcije spoja 1 - DDQ; $[1] = 24 \text{ mmol } L^{-1}$; [DDQ] = 24 mmol L^{-1} ; tijekom vremenskog perioda od 20 minuta

Pomiješani su spoj **3a** i DDQ, ali nastaje suspenzija kojoj bi bilo teško snimiti spektar i stoga je centrifugirana pa je sniman je spektar supernatanta (Slika 71). U spektru je vidljiv apsorpcijski maksimum na 434 nm koji odgovara CT kompleksu i maksimum oko 590 nm koji odgovara DDQ[•] radikal anionu.

Slika 71: UV-Vis spektar: A) reakcije spoja 3a - DDQ; B) DDQ⁻ radikal aniona

Iz navedenih spektara se može zaključiti da između 1,4-DHP i DDQ najprije nastaje CT kompleks, unutar kojega dolazi do prelaska elektrona i nastajanja DDQ[•] radikal aniona. Međutim spektar tog radikal aniona opada tokom vremena kao posljedica daljnje reakcije. Radikal-kation najvjerojatnije apsorbira u području ispod 400 nm gdje je visoki intenzitet apsorbancije od različitih spojeva i međuprodukata, pa ga je teško selektivno detektirati.

Također dolazi i do stvaranja obojenog taloga za koji je pretpostavljeno da je CT kompleks i u svrhu karakterizacije sniman mu je IR spektar (opisano u poglavlju 4.4.2.).

Da bi se objasnio nastanak CT kompleksa korišten je računski paket Chem3D kojim je dobiven kompleks najniže energije prikazan na Slici 72. Prikazan je kompleks za spojeve 1, **2a** i **3a** u kombinaciji s DDQ. Iz 3D prikaza je vidljivo da je DDQ kod spojeva 1 i **3a** smješten gotovo okomito na ravninu 1,4-DHP s C4 strane, dok je kod spoja **2a** smješten iznad ravnine 1,4-DHP prstena pomaknut više prema strani na kojoj je N. Ovakav međusobni razmještaj se može objasniti činjenicom da i benzilna skupina svojim π -sustavom dodatno interagira s DDQ pa je takav razmještaj najpogodniji za interakciju i s dihidropiridinskim prstenom i s benzilnom skupinom.

Slika 72: 3D prikaz kompleksa s prijenosom naboja spojeva A – 2a, B – 3a, C - 1 i DDQ

4.4.1.2. Ispitivanje nastajanja kompleksa s prijenosom naboja s TCNE

Kada se pomiješaju razni 1,4-DHP (bezbojni) i TCNE (bezbojna otopina) nastaju obojene otopine uglavnom žute boje koje kasnije postaju crveno obojene iz čega se može zaključiti da nastaje CT kompleks (Slika 73).

Slika 73: Fotografija bočica prilikom izvedbe pokusa priprave kompleksa s prijenosom naboja između spoja 2a i TCNE

Najprije su pomiješani spoj 1 i TCNE. Nastala je suspenzija zelene boje.

Slika 74: UV-Vis spektar reakcije spoja 1 - TCNE; $[1] = 15 \text{ mmol } L^{-1}$; [TCNE] = 15 mmol L^{-1}

Na Slici 74 je vidljiva pojava dvije nove apsorpcijske vrpce u području gdje ne apsorbiraju ni donor ni akceptor. Jedna ima maksimum na oko 600 nm, ona odgovara novonastalom CT kompleksu između spoja **1** i TCNE. Apsorpcija u područjima ispod 350 nm ima visoki

intenzitet u cijelom području i nemoguće je odrediti kojim međuproduktima ili produktima pripada. Druga apsorpcijska vrpca apsorbira u području od 400 do 490 nm, a po izgledu i apsorpcijskim maksimumima odgovara TCNE⁻⁻ radikal anionu.¹⁴³

Na Slici 75 je vidljiv spektar spoja **2a** i TCNE. Spojevi su miješani u omjeru 1:1 i 1:2. Pri omjeru 1:1 je vidljiv spektar CT kompleksa s maksimum oko 520 nm, i nazire se spektar TCNE^{•-} radikal aniona. Zatim je napravljena smjesa u većem omjeru u čijem spektru se jasno vidi samo TCNE^{•-} radikal anion. CT kompleks je najvjerojatnije nestao prije snimanja spektra zbog velike brzine reakcije. Općenito, CT komplekse koji su međuprodukti u nekoj brzoj reakciji (a reakcije s TCNE i DDQ su brze reakcije) je teško detektirati.

Pomiješani su spoj **3a** i TCNE u omjerima 1:1 i 1:2, a dobiveni spektar je prikazan na Slici 75. Pri omjeru 1:1 nazire se spektar TCNE^{•-} radikal aniona. Zatim je pripravljena smjesa u većem omjeru u čijem spektru se jasno vidi TCNE^{•-} radikal anion. CT kompleks nije detektiran.

A) reakcije spoja **2a** - TCNE; [**2a**] = 4 mmol L^{-1} ; [TCNE] = 8 mmol L^{-1} ; B) reakcije spoja **2a** - TCNE; [**2a**] = 4 mmol L^{-1} ; [TCNE] = 4 mmol L^{-1} ; C) reakcije spoja **3a** - TCNE; [**3a**] = 4 mmol L^{-1} ; [TCNE] = 4 mmol L^{-1} ; D) reakcije spoja **3a** - TCNE; [**3a**] = 4 mmol L^{-1} ; [TCNE] = 8 mmol L^{-1}

Iz navedenih spektara se može zaključiti da između 1,4-DHP i TCNE najprije nastaje CT kompleks, unutar kojega dolazi do prelaska elektrona i nastajanja TCNE⁻ radikal aniona. Radikal-kation najvjerojatnije apsorbira u području ispod 400 nm gdje je visoki intenzitet apsorbancije od različitih spojeva i međuprodukata pa ga je teško selektivno detektirati.

Snimanjem spektara tijekom vremena (Slika 76) je primijećeno da se koncentracija TCNE^{•–} radikala smanjuje, odnosno da on najvjerojatnije sudjeluje u daljnjoj reakciji.

Slika 76: UV-Vis spektar reakcije spoja **3a** - TCNE; $[3a] = 4 \text{ mmol } L^{-1}$; [TCNE] = 4 mmol L^{-1} tijekom vremenskog perioda od 20 minuta

Snimanjem te reakcije nakon 35 i više minuta je vidljiva pojava dva nova signala s apsorbancijama na 512 nm i 578 nm (Slika 77). Pojava novih apsorpcijskih vrpci je povezana i s promjenom boje iz žute u crvenu. Iz spektra je vidljivo da su apsorpcijske vrpce prisutne i nakon dva dana i da je došlo do povećanja njihova intenziteta. Vrpce najvjerojatnije odgovaraju apsorpciji CT kompleksa koji nastaje između konačnih produkata piridina i TCNEH₂.

Slika 77: UV-Vis spektar reakcije spoja **3a** - TCNE; [**3a** $] = 4 \text{ mmol } L^{-1}$; [TCNE] = 4 mmol L⁻¹ snimljen nakon 90 minuta i nakon dva dana

Na Slici 78 je prikazan kompleks za spojeve **1**, **2a** i **3a** u kombinaciji s TCNE dobiven računski u Chem3D. Iz 3D prikaza je vidljivo da je TCNE kod spoja **1** i **3a** smješten gotovo okomito na ravninu 1,4-DHP s C4 strane, dok je kod spoja **2a** smješten iznad ravnine 1,4-DHP prstena pomaknut više prema strani na kojoj je *N*. Ovakav međusobni razmještaj se može objasniti činjenicom da i benzilna skupina svojim π -sustavom dodatno interagira s TCNE pa je takav razmještaj najpogodniji za interakciju i s dihidropiridinskim prstenom i s benzilnom skupinom.

Slika 78: 3D prikaz kompleksa s prijenosom naboja spojeva A – 2a, B – 1, C – 3a s TCNE

4.4.1.3. Ispitivanje nastajanja kompleksa s prijenosom naboja s tropilijevim tetrafluoroboratom

Pomiješani su spoj **3a** i tropilijev tetrafluoroborat u omjerima 1:1 (nakon 20 minuta nastaje otopina crvene boje), 1:2 (nakon 20 minuta nastaje svjetlo ljubičasta otopina) i 1:3 (nakon 30 minuta postaje ljubičasta – Slika 79). Nakon obojenja otopinama su snimljeni UV-Vis spektri (Slika 80).

Slika 79: Fotografija bočica prilikom izvedbe pokusa priprave kompleksa s prijenosom naboja između spoja **3a** i tropilijevog tetrafluoroborata u omjeru 1:3

Slika 80: UV-Vis spektar reakcije spoja 3a – tropilijev tetrafluoroborat;

- A) $[3a] = 60 \text{ mmol } L^{-1}$; [tropilijev tetrafluoroborat] = 60 mmol L^{-1} ;
- B) $[3a] = 60 \text{ mmol } L^{-1}; [tropilijev tetrafluoroborat] = 120 \text{ mmol } L^{-1};$

C) $[3a] = 60 \text{ mmol } L^{-1}$; [tropilijev tetrafluoroborat] = 180 mmol L^{-1}

Na Slici 80 je vidljiva pojava nove apsorpcijske vrpce u području gdje ne apsorbiraju ni donor ni akceptor. Ima maksimum na oko 560 nm i odgovara novonastalom CT kompleksu između spoja **3a** i tropilijevog tetrafluoroborata. I iz ovog spektra se može zaključiti da je prvi kontakt između DHP-a i tropilijevog tetrafluoroborata nastajanje CT kompleksa.

Na Slici 81 je prikazan kompleks za spojeve **1**, **2a** i **3a** u kombinaciji s tropilijevim tetrafluoroboratom dobiven računski u Chem3D. Iz 3D prikaza je vidljivo da je tropilijev kation kod spoja **2a** smješten izvan ravnine 1,4-DHP pomaknut prema C4 strani, dok je kod spojeva **1 i 3a** smješten iznad ravnine 1,4-DHP prstena.

Slika 81: 3D prikaz kompleksa s prijenosom naboja spojeva A – 1, B – 2a, C – 3a s tropilijevim tetrafluoroboratom

4.4.1.4. Ispitivanje nastajanja kompleksa s prijenosom naboja s NbCl₅

Pomiješani su spoj **3a** i NbCl₅ koji je prethodno usitnjen u tarioniku radi ubrzavanja reakcije s 1,4-DHP. Nastaje žuta suspenzija (Slika 82) u kojoj dolazi do stvaranja taloga i sniman joj je UV-Vis spektar (Slika 83).

Slika 82: Fotografija bočica prilikom izvedbe pokusa priprave kompleksa s prijenosom naboja između spoja 3a i NbCl₅ u omjeru 1:3

Slika 83: UV-Vis spektar:

A) reakcije spoja **3a** – NbCl₅; [**3a**] = 20 mmol L⁻¹; [NbCl₅] = 60 mmol L⁻¹; B) reakcije spoja **1** – NbCl₅; [**1**] = 30 mmol L⁻¹; [NbCl₅] = 30 mmol L⁻¹; C) reakcije spoja **2a** – NbCl₅; [**2a**] = 34 mmol L⁻¹; [NbCl₅] = 34 mmol L⁻¹

Na Slici 83 A je vidljiva pojava nove apsorpcijske vrpce u području gdje ne apsorbiraju ni donor ni akceptor. Ima maksimum na oko 560 nm i odgovara novonastalom CT kompleksu između spoja **3a** i NbCl_{5.}

Nadalje su u kiveti pomiješani spoj **1** i NbCl₅ koji je prethodno usitnjen u tarioniku radi ubrzavanja reakcije s 1,4-DHP. Smjesa je blago žute boje i stavljena je u ultrazvučnu kupelj čime je ubrzano nastajanje CT kompleksa jer dolazi do usitnjavanja slabo topljivog NbCl₅ i povećanja površine metalne soli. Zbog toga već nakon 1 minute nastaje crvena suspenzija (Slika 84), koja je zbog visoke apsorbancije razrijeđena s 2 kapi diklormetana i sniman joj je UV-Vis spektar prikazan na Slici 84 B. Dodatkom male količine diklormetana, suspenzija
postaje svjetlija i jasno je detektiran spektar CT kompleksa. Vidljiv je maksimum koji odgovara novonastalom CT kompleksu između spoja **1** i NbCl₅.

Slika 84: Fotografija bočica prilikom izvedbe pokusa priprave kompleksa s prijenosom naboja između spoja 1 i NbCl₅

Na Slici 85 je vidljiva narančastocrvena suspenzija koja nastaje miješanjem spoja **2a** i NbCl₅, pripremljena na identičan način ko i suspenzija sa spojem **1**. Nakon razrjeđenja s 5 kapi diklormetana sniman joj je UV-Vis spektar prikazan na Slici 83 C. Jasno je detektiran spektar novonastalog CT kompleksa s maksimumom na oko 540 nm.

Slika 85: Fotografija bočica prilikom izvedbe pokusa priprave kompleksa s prijenosom naboja između spoja 2a i NbCl₅

Iz spektara na Slici 83 se može zaključiti da je prvi kontakt između 1,4-DHP-a i NbCl₅ nastajanje CT kompleksa unutar kojeg dolazi do reakcije.

4.4.2. Ispitivanje nastajanja kompleksa s prijenosom naboja IR spektroskopijom

Kod snimanja UV-Vis spektara 1,4-DHP-a s DDQ primijećeno je nastajanje taloga na dnu kivete. Stoga su pomiješani 1,4-DHP i DDQ, otopljeni u diklormetanu i dobivena crvena suspenzija je stavljena u ultrazvučnu kupelj da se pospješi nastajanje CT kompleksa, odnosno njegovo taloženje (Slika 86).

Slika 86: Nastajanje taloga u smjesi spoja 2a i DDQ

Iz tog je taloga pripremljena KBr pastila (Slika 87) i snimljen joj je IR spektar.

Slika 87: KBr pastila pripremljena iz taloga smjese spoja 1 i DDQ i spoja 2a i DDQ

Asignacijom vrpci snimljenih spektara je primijećeno da je snimljen CT kompleks između konačnog produkta aromatizacije – piridina i konačnog produkta redukcije - DDQH₂. U Tablici 43 navedeni su valni brojevi iz IR spektra DDQH₂ i odgovarajućeg piridinskog produkta. Kod CT kompleksa postoji i niz apsorpcija ispod 1400 cm⁻¹, ali je teško odrediti kojim skupinama te apsorpcije pripadaju pa nisu ni navedene. Također i kod piridina nisu navedene vrpce koje je teško asignirati.

<u>**Tablica 43**</u>: Valni brojevi (cm^{-1}) i asignacija vrpci pojedinih piridinskih produkata i CT kompleksa

177				ñ ([22 -	ñ ([3h ₋		
<i>v</i> (DDQH ₂ ¹⁰ /)/ cm ⁻¹	<i>ṽ</i> (22)/ cm ⁻¹	\tilde{v} (3b)/ cm ⁻¹	<i>v</i> ̃ (2b)/ cm ⁻¹	DDQH ₂])/ cm ⁻¹	DDQH ₂])/ cm ⁻¹	$\tilde{v} ([\mathbf{2b} - \mathbf{DDQH}_2])/\mathrm{cm}^{-1}$	Asignacija
3295				3232	3230	3233	(OH); DDQH ₂
	3105		3087- 3003				(C—H) aren
	3005, 2964	2994, 2977	2952				(C—H) alkan
2257,2269				2254	2254	2253	(CN); DDQH ₂
	1722	1732	1728	1723	1734	1731	(C=O) ester
	1597	1565	1569				Vibracije rastezanja prstena DDQH ₂ i piridina
1575							(C=C) arom; DDQH ₂
	1547			1575	1575	1574	Vibracije rastezanja prstena DDQH ₂ i piridina
1465							(C=C) arom; DDQH ₂
	1436	1440	1436	1452	1452	1453	Vibracije rastezanja prstena DDQH ₂ i piridina

UV-Vis spektroskopijom je dokazano nastajanje CT kompleksa prilikom prvog kontakta između 1,4-DHP i DDQ. Također je i UV-Vis i EPR spektroskopijom dokazano nastajanje DDQ^{•-} radikal aniona kao posljedica prelaska elektrona s 1,4-DHP na DDQ. Međutim iz EPR (Slika 59) i UV-Vis spektra (Slika 70) je vidljivo da se intenzitet DDQ^{•-} smanjuje tijekom vremena, odnosno da dalje reagira i kao konačni produkt daje DDQH₂ što je vidljivo iz IR spektra. Također se iz njega može očitati da nastaje piridin koji stvara CT kompleks s DDQH₂. U ovom slučaju dakle nastaju 2 CT kompleksa – jedan na početku kao rezultat interakcije između reaktanata i jedan na kraju između konačnih produkata što je prikazano

Shemom 34.¹⁶⁸ Ovakvo nastajanje CT kompleksa između DDQ i tiazolidin-2-tiona opisali su i Rabie i suradnici.

Shema 34

1,4-DHP + DDQ \longrightarrow 1,4-DHP · DDQ (prva CT interakcija) 1,4-DHP · DDQ \longrightarrow 1,4-DHP-2H + DDQH₂ (reakcija) 1,4-DHP-2H + DDQH₂ \longrightarrow 1,4-DHP-2H · DDQH₂ (druga CT interakcija)

Vrpce donora i akceptora imaju male pomake u odnosu na intenzitete i valne brojeve slobodnih molekula. To je i za očekivati zbog promjena elektronske strukture uslijed kompleksiranja. Vidljivo je da dolazi do pomaka u vibracijama OH skupina, C=O skupina i vibracijama rastezanja i piridinskog prstena i DDQH₂. Navedene promjene ukazuju da su najviše OH skupine, ali i aromatski prsten DDQH₂ koji je zbog elektron akceptorskih svojstava Cl i CN skupina osiromašen elektronima, uključeni u kompleksiranje s piridinskim prstenom kod kojega u interakciji uglavnom sudjeluje prsten (π veze i nepodijeljeni elektronski par na dušiku), ali djelomično sudjeluje i C=O skupina zbog postojanja nepodijeljenog elektronskog para na kisiku.

4.4.3. Ispitivanje nastajanja kompleksa s prijenosom naboja NMR spektroskopijom

Nastajanje CT kompleksa između 1,4-DHP i raznih oksidansa je dokazano UV-Vis i IR spektroskopijom (CT kompleks između konačnih produkata reakcije) i cilj mi je bio pokušati odrediti strukturu nastalog CT kompleksa primjenom NMR spektroskopije. Kao modelni spoj je odabran spoj **2a** i pomiješan s TCNE i tritilijevim tetrafluoroboratom. Dobivenoj smjesi je nakon 24 h dodan CDCl₃ i snimljen NMR spektar. Spektar kompleksa je uspoređen sa spektrom slobodnog 1,4-DHP-a odnosno piridina (Tablica 44, 45, 46 i 47).

4.4.3.1. Kompleks s TCNE kao oksidansom

	δ , ppm										
		CT k	ompleks								
2a	2b	1	2	Asignacija							
		[2a - TCNE]	[2b - TCNEH ₂]								
2,19	2,52	2,18	2,56	s, 6H, CH ₃							
2,58		2,58		d, 2H, CH ₂ Ph							
3,60	3,72	3,60	3,75	s, 6H, OCH ₃							
	4,00		4,09	s, 2H, $CH_2 Ph$							
4,19		4,18		t, 1H, 4-CH							
5,50		5,34		s, 1H, NH							
7,01-7,04				m, 2H, Ph							
		7,00-7,26	7,00-7,26	m, 5H, Ph							
	7,05			d, 2H, Ph							
7,11-7,22	7,16-7,25			m, 3H, Ph							

Tablica 44: ¹H NMR spektar spoja **2a**, **2b** i njihovih CT kompleksa s TCNE odnosno TCNEH₂

<u>**Tablica** 45:</u> ¹³C NMR spektar spoja 2a, 2b i njihovih CT kompleksa s TCNE odnosno $TCNEH_2$

	δ , ppm										
		CT k	ompleks								
2a	2b	1	2	Asignacija							
		[2a - TCNE]	[2b - TCNEH ₂]								
19,0	22,8	19,2	21,7	CH ₃							
35,3		35,5		4-CH							
42,2	36,2	42,4	36,8	CH ₂ Ph							
50,7	52,1	50,9	52,7	OCH ₃							
101,4	127,4	101,6	125-130	C-Py							
125,5	126,4,										
127,1	128,1	125-130	125-130	CH-Ph							
130,0	128,8										
139,0	137,7	139,1	139,1	C-Ph							
	144,9		145,6	C-Py (C-4)							
145,6	155,4	145,6	154,6	C-Py (do N)							
168,1	168,5	168,2	168,2	C=O							

U Tablicama 44 i 45 su navedeni pomaci koji pripadaju pojedinim kompleksima. Iz pomaka u NMR spektrima je vidljivo da postoje dvije vrste CT kompleksa: 1) CT kompleksi koji nastaju između spoja **2a** i TCNE 2) CT kompleksi između spoja **2b** i TCNEH₂ koji su detektirani IR spektroskopijom i u prethodnom poglavlju s DDQH₂. U Tablicama 44 i 45 su odijeljeni pomaci koji pripadaju kompleksima spoja **2a** s TCNE i spoja **2b** s TCNEH₂. Iz ¹H NMR spektra je vidljivo da kod kompleksa spoja **2a** s TCNE dolazi jedino do značajnije

promjene pomaka vodika na dušiku (NH) i to $\Delta \delta = 0,16$ ppm. U ¹³C NMR spektru nema značajnijih promjena kod tog kompleksa. Iz navedenih rezultata se može zaključiti da prvi kontakt između 1,4-DHP i TCNE počinje nastajanjem CT kompleksa, u kojem je atom dušika elektron donirajuće mjesto u 1,4-DHP. U ¹H i ¹³C NMR spektrima kod kompleksa spoja **2b** s TCNEH₂ su vidljivi pomaci $\Delta \delta = 0,03 - 0,09$ ppm u ¹H i $\Delta \delta = 0,3 - 1,4$ ppm u ¹³C NMR spektru, što znači da se cijeli piridinski prsten ponaša kao elektron donor. Najvjerojatnije i benzilna skupina sudjeluje svojim π vezama u nastajanju CT kompleksa 1 i 2, ali zbog velikog broja fenilnih atoma vodika teško je odrediti koji pomak odgovara kojim atomima pa su svi navedeni zajedno.

4.4.3.2. Kompleks s tritilijevim tetrafluoroboratom kao oksidansom

	δ , ppm											
	22	CT kor	mpleks									
20		1	2	trifenilmetan	Asignacija							
2a		[2a – tritilijev	[22 – tritilijev	unenninetan	Asignacija							
		kation]	kation]									
2,19	2,85	2,17	3,16		s, 6H, CH ₃							
2,58		2,56			d, 2H, CH ₂ Ph							
3,60	3,93	3,59	4,02		s, 6H, OCH ₃							
4,19		4,17			t, 1H, 4-CH							
5,50		5,36			s, 1H, NH							
				5,55	C(Ph) ₃ H							
7,01-					m JU Dh							
7,04					III, 2 Π , FII							
		6,99-7,89	6,99-7,89	6,99-7,89	m, Ph							
7,11-					m 2LI Dh							
7,22					III, 511, PII							
	8,70		9,32		s, 1H, 4-CH							

Tablica 46:	^I HNMR	spektar	spoja 2a,	22 i	njihovih	CT komplek	zsa
		1	1 0			1	

	δ , ppm											
	22	CT ko	mpleks									
20		1	2	trifonilmoton	Acianopiio							
2a		[2a – tritilijev	[22 – tritilijev	unennnetan	Asignacija							
		kation]	kation]									
19,0	24,9	19,1	20,3		CH ₃							
35,3		35,4			4-CH							
42,2		42,4			CH ₂ Ph							
50,7	52,3	50,9	53,7		OCH ₃							
				56,9	C(Ph) ₃ H							
101,4	122,6	101,6	125-130		C-Py položaj 3							
125,5												
127,1		125-130	125-130	125-130	CH-Ph							
130,0												
139,0		139,1			C-Ph							
	141,1		148,1		CH (C-4)							
				143,9	C-Ph							
145,6	162,6	145,7	159,9		C-Py (do N)							
168,1	166,2	168,2	168,2		C=O							

Tablica 47: ¹³C NMR spektar spoja 2a, 22 i njihovih CT kompleksa

U Tablicama 46 i 47 su navedeni pomaci koji pripadaju pojedinim kompleksima. Iz kemijskih pomaka u NMR spektrima je vidljivo da postoje dvije vrste CT kompleksa: 1) CT kompleksi koji nastaju između spoja 2a i tritilijevog kationa 2) CT kompleksi između spoja 22 (koji nastaje dealkilacijom prilikom aromatizacije spoja 2a) i najvjerojatnije neizreagiranog tritilijevog kationa. Također su vidljivi i pomaci koji odgovaraju produktu redukcije tritilijevog kationa – trifenilmetanu. Njegovo nastajanje u CDCl₃ dokazuje da prilikom redukcije tritilijev radikal veže protone iz 1,4-DHP-a, jer kad bi reagirao s otapalom imao bi vezan D umjesto H i ne bi vidjeli njegov pomak u ¹H NMR spektru. Iz ¹H NMR spektra je vidljivo da kod kompleksa spoja 2a s tritilijevim kationom dolazi jedino do značajnije promjene pomaka vodika na dušiku (NH) i to $\Delta \delta = 0.14$ ppm. U ¹³C NMR spektru nema značajnijih promjena kod kompleksa spoja 2a s tritilijevim kationom. Slični rezultati su dobiveni i u poglavlju 4.4.3.1. te se također može zaključiti da prvi kontakt između 1,4-DHP i tritilijevog kationa počinje nastajanjem CT kompleksa, u kojem je atom dušika elektron donirajuće mjesto u 1,4-DHP. U ¹H i ¹³C NMR spektrima kod spoja **22** s tritilijevim kationom su vidljivi pomaci $\Delta \delta = 0.09 - 0.62$ ppm u ¹H i $\Delta \delta = 1.4 - 7$ ppm u ¹³C NMR spektru, što znači da se cijeli piridinski prsten ponaša kao elektron donor.

Na Slici 88 je prikazan kompleks za spojeve **1**, **2a** i **3a** u kombinaciji s tritilijevm kationom dobiven računski u Chem3D. Iz 3D prikaza je vidljivo da je tritilijev kation kod spojeva **1** i **3a** smješten izvan ravnine 1,4-DHP s C4 strane i to nasuprot izopropilne skupine, dok je kod spoja **2a** smješten iznad ravnine 1,4-DHP prstena s iste strane s koje je i benzilna skupina.

Slika 88: 3D prikaz kompleksa s prijenosom naboja spojeva A – 3a, B – 2a i C - 1 s tritilijevim kationom

4.5. Mehanizam aromatizacije 4-supstituiranih 1,4-DHP-a

Prilikom aromatizacije s raznim oksidansima je primijećeno da dolazi i do djelomičnog ili potpunog gubitka supstituenta na 4-položaju,^{5,7-16} a omjer dobivenog 4-alkilnog i 4dealkilnog produkta osim o oksidansu ovisi i o supstituentu na položaju 4, zatim o supstituentima na položajima 3 i 5, ali i o polarnosti otapala. S ciljem ispitivanja utjecaja strukture 1,4-DHP na omjer dobivenih produkata, sintetizirani su različito supstituirani 1,4-DHP.

Nadalje, da bi se ispitao utjecaj oksidansa na rezultate aromatizacije odabrano je nekoliko različitih vrsti: metalni – koji su elektron akceptori, zatim DDQ i TCNE koji mogu biti i elektron akceptori i akceptori hidrida i dva organska kationa koji također imaju svojstva i elektron, ali i hidridnih akceptora. S metalnim oksidansima je osim diklormetana kao aprotičnog slabo polarnog organskog otapala, korištena i octena kiselina (polarno protično otapalo) kao nastavak na prethodna istraživanja u našem laboratoriju, s ciljem ispitivanja utjecaja vrste otapala na omjer dobivenih produkata. Ostale aromatizacije su rađene uglavnom u diklormetanu, ali radi usporedbe i u nekim drugim otapalima. Kod metalnih oksidansa prilikom aromatizacije u diklormetanu je ispitan i utjecaj temperature (0 °C i sobna temperatura). Ostale reakcije su rađene na sobnoj temperaturi, jedino je DDQ dodavan pri temperaturi od 0 °C i zatim pušten da se zagrije na sobnu temperaturu.

Na temelju rezultata EPR spektroskopskih mjerenja, međusobnom usporedbom konstanti hiperfinog cijepanja zaključeno je da prilikom aromatizacije nastaje dihidropiridilni radikal **50** koji na položaju 4 ima H atom. Dihidropiridilni radikal **52** s odgovarajućim supstituentom na položaju 4 nije detektiran u ispitivanim eksperimentalnim uvjetima.

U Shemi 35 su prikazani pretpostavljeni mehanizmi koji vode k nastajanju 4-dealkilnog i 4-alkilnog produkta. Nastajanje 4-dealkilnog produkta **54** se nikako ne može objasniti na temelju puta **a** kod kojeg dolazi do uklanjanja hidrida s položaja 4 i nastajanja međuprodukta **49**. Putevi **a** i **h** bi mogli objasniti nastajanje 4-alkilnog produkta **53**. Najvjerojatnije ne nastaje ni međuprodukt **48** iz kojeg bi i mogao nastati spoj **54** (put **g**), ali takav reakcijski put ne vodi preko dihidropiridilnog radikala **50** koji je detektiran EPR spektroskopijom. Za provjeru puta **g** kod nastajanja 4-alkilnog produkta rađene su reakcije s *N*-supstituiranim 1,4-DHP ili/i u prisutstvu baze. Budući da se reakcija aromatizacije odvijala i u ovim uvjetima, put **g** je isključen. Nadalje, nigdje nije detektiran alkilni radikal **R**' pa se i put **j** može

eliminirati. Međuprodukti **51** i **52** mogu nastati interkonverzijom, ali na ovaj način ne nastaje detektirani radikal **50** tako da niti put **k** nije odgovarajući za objašnjenje mehanizma nastajanja produkta **54**. Iako putevi **f** i **l** ne objašnjavaju nastajanja 4-dealkilnog produkta, ne mogu se potpuno isključiti pri objašnjenju mehanizma nastajanja produkta **53**. Put **c** je isključen budući da su svi oksidansi koji se koriste ili jednoelektronski oksidansi ili akceptori hidrida. Putevi **b**, **e** i **i** bi objašnjavaju nastajanje 4-dealkilnog produkta **54**, budući da uključuju nastajanje detektiranog dihidropiridilnog radikala **50** koji na položaju 4 ima H atom. Put **d** je isključen uz pretpostavku da nakon transfera elektrona (put **b**) dolazi ili do uklanjanja karbokationa (put **e**), za što postoje eksperimentalni dokazi, ili analogno tome, uklanjanja protona (put **f**).

Dakle, do sad su općenito navedeni mehanizmi putem kojih bi se aromatizacija mogla ili putem kojih se nikako ne može odvijati, a kod svakog pojedinog oksidansa će biti naveden mehanizam koji objašnjava dobivanje odgovarajućih međuprodukata i produkata.

Shema 35

- ____ mogući mehanizmi nastajanja 4-alkilnog produkta 53
- _____ mehanizam nastajanja 4-dealkilnog produkta **54** postavljen na temelju detektiranog međuprodukta **50**
- _____ isključeni mehanizmi

4.5.1. Aromatizacija s metalnim oksidansima VOCl₃ i MoCl₅

Aromatizacija je provedena s 2,1 ekvivalentom VOCl₃ prema metodi prethodno optimiranoj u našem laboratoriju i uvjetima navedenim u Tablicama 48 i 50.^{17,56} Aromatizacija s 2,1 ekvivalentom MoCl₅ je također provedena prema metodi prethodno optimiranoj u našem laboratoriju i uvjetima navedenim u Tablicama 49 i 51.⁵⁶ Vrijeme navedeno u svim tablicama je vrijeme nakon kojeg je reakcijska smjesa obrađena. To nije nužno i vrijeme kad je sav polazni spoj izreagirao. Prekidanje reakcije i izolacija produkta je provedena dodatkom vode i krutog NaHCO₃ do pH>7 pri kojem piridin prelazi u neutralni oblik. U suprotnom bi bio protoniran na atomu dušika i piridinski kation bi zaostao u vodenom sloju kod ekstrakcije. Dobiveni produkt nakon obrade reakcijske smjese je analiziran metodom visokodjelotvorne tekućinske kromatografije. Tablica 48 sadrži omjere 4-dealkilnog i 4-alkilnog produkta kod aromatizacije 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP s VOCl₃, a Tablica 49 sadrži rezultate aromatizacije s MoCl₅ U Tablici 50 su prikazani izračunati omjeri 4-dealkilnog i 4-alkilnog produkta prilikom aromatizacije 2,6-dimetil-3,5-di(metoksikarbonil)-4-(prop-1-il)-1,8-DHP s VOCl₃, dok su rezultati aromatizacije s MoCl₅ navedeni u Tablici 51. Osim toga u tablicama 50 i 51 su navedeni i rezultati dobiveni prethodno u našem laboratoriju.^{17,56}

<u>Tablica 48.</u> Dealkilacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP s VOCl₃ pri sobnoj temperaturi i pri 0°C.

Reakcija	1,4-	P	Otanalo	t,	/ h	A	/ %	B / %	
Кеаксіја	DHP	К	Otapaio	s.t.	0 °C	s.t.	0 °C	s.t.	0 °C
1	6a	Me	CH_2Cl_2	20	140	9	26	91	74
2	15a	Et	CH_2Cl_2	20	140	20	45	80	55
3	16a	<i>i</i> -Pr	CH_2Cl_2	20	140	28	58	72	42
4	17a	<i>i</i> -Bu	CH_2Cl_2	70	40	18	37	82	63
5	6a	Me	HOAc	1		67		33	
6	15a	Et	HOAc	20		61		39	
7	16a	<i>i</i> -Pr	HOAc	20		66		34	
8	17a	<i>i</i> -Bu	HOAc	2		61		39	

<u>Tablica 49.</u> Dealkilacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-(prop-1-il)-1,4-DHP s MoCl₅ u diklormetanu pri sobnoj temperaturi i pri 0°C.

Tablica 50. Dealkilacija 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP s VOCl₃ pri sobnoj temperaturi i pri 0°C.

	VOCl ₃ , otapalo	H ₃ CO H ₃ +	
	s.t. / 0 °C	H ₃ C ^W N ^C H ₃	H ₃ C ^{II} N ^C CH ₃
Ĥ		А	В

Reakcija	1,4-	R	otanalo	t /	<i>t</i> / h		A / %		B / %	
recuterju	DHP	R	otuputo	s.t.	0 °C	s.t.	0 °C	s.t.	0 °C	
1	10a	Me	CH_2Cl_2	0,5	20	99	99	1	1	
2	5a	Et	CH_2Cl_2	20	60	3	23	97	77	
3	11a	<i>n</i> -Bu	CH_2Cl_2	20	120	13	40	87	60	
4	12a	<i>n</i> -Pn	CH_2Cl_2	20	120	14	30	86	70	
5	13a	<i>n</i> -Hx	CH_2Cl_2		120		36		64	
6	10a	Me	HOAc	1,5		99,7		0,3		
7	5a	Et	HOAc	2		53		47		
8	11a	<i>n</i> -Bu	HOAc	20		57		43		
9	12a	<i>n</i> -Pn	HOAc	1		57		43		
10	13a	<i>n</i> -Hx	HOAc	3		58		42		
11^{17}	2a	CH ₂ Ph	CH_2Cl_2	1		2,5		97,5		
12^{17}	3 a	<i>i</i> -Pr	CH_2Cl_2	0,1		0,1		99,9		
13 ¹⁷	4	Ph	CH_2Cl_2	1		100		0		

H ₃ CO H ₃ C	R O N CI	`OCH ₃	MoCl ₅ , otaj s.t. / 0 °C	palo C	(_ H ₃ CÓ H ₃ (O CH ₃	CH ₃ +	0 Н₃СО́ Н₃С́	H N N B	о ↓осн `Сн₃
Reakcija	1,4- DHP	R	otapalo	t ,	/ h	A	/ %	B	/ %		
1	10a	Me	CH ₂ Cl ₂	S.t. 80	70	s.t. 87	97	S.t.	3		
2	-10a 5a	Et		40	15	16	21	84	79		
3	11a	<i>n</i> -Bu	CH ₂ Cl ₂	40	120	5	22	95	78		
4	12a	<i>n</i> -Pn	CH ₂ Cl ₂	20	120	14	18	86	82		
5	13 a	<i>n</i> -Hx	CH_2Cl_2	2	120	5	31	95	69		
6	10a	Me	HOAc	70		96		4			
7	5a	Et	HOAc	20		8		92			
8	6a	<i>n</i> -Pr	HOAc	40		6		94			
9	11a	<i>n</i> -Bu	HOAc	40		6/5		94/95			
10	12a	<i>n</i> -Pn	HOAc	80		5		95			
11	13 a	<i>n</i> -Hx	HOAc	20		7		93			
12^{56}	2a	CH_2Ph	CH_2Cl_2	0,2		0		100			
13 ⁵⁶	3a	<i>i</i> -Pr	CH_2Cl_2	0,1		0		100			

<u>*Tablica 51.*</u> Dealkilacija 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP s $MoCl_5$ na sobnoj temperaturi / 0°C.

Iz opisanih eksperimenata mogu se izdvojiti sljedeći zapažaji:

- Kod aromatizacije s VOCl₃ vidljivo je da u svim reakcijama nastaje 4-dealkilni produkt (1 – 99,9 % ovisno o vrsti supstituenta), jedino kad je arilni supstituent prisutan na položaju 4 nastaje u potpunosti 4-alkilni produkt.
- Usporedbom rezultata HPLC analize iz Tablica 48 51 i rezultata EPR spektroskopskih mjerenja iz Tablica 33 i 35 može se vidjeti da dobiveni rezultati potkrepljuju pretpostavku da je detektiran radikal 58 (Shema 36) koji ima H na položaju 4. Naime, vidljivo je da u sva tri slučaja nastaje preko 90 % 4-dealkilnog produkta tako da PBN ni ne može loviti neki drugi radikal jer on u tim slučajevima ni ne nastaje. Ili ako i nastaje, nastaje u premaloj količini da bi ga se razlikovalo od ovog, budući su vrijednosti konstanti cijepanja dosta bliske.
- Iz Tablica 50 i 51 u kojima je proučavan utjecaj supstituenata na položaju 4 se vidi da kad je prisutan metilni supstituent nastaje pretežno 4-alkilni produkt neovisno o otapalu, temperaturi i metalnom oksidansu.

- Kod ostalih alkilnih supstituenata u diklormetanu na sobnoj temperaturi dealkilacija se kreće preko 80 %, dok kod benzilnog i izopropilnog supstituenta iznosi gotovo 100 % za oba oksidansa.
- Na 0 °C nastaje između 60 i 70 % 4-dealkilnog produkta kod aromatizacije s VOCl₃, dakle primijeti se blagi utjecaj temperature i smanjenje udjela 4-dealkilnog produkta sa spuštanjem temperature.
- Značajnija razlika se primijeti u octenoj kiselini prilikom aromatizacije s VOCl₃ gdje nastaje od 40 – 50 % 4-dealkilnog produkta. Očito vrsta otapala značajno utječe na omjer nastalih produkata. Moguće je da octena kiselina stvara vodikove veze s VOCl₃ čime preferencijalno vodi k nastajanju manje 4-dealkilnog produkta.
- U Tablici 48 je proučavan utjecaj strukture esterskih supstituenata na položaju 3 i 5 kod aromatizacije s VOCl₃. Najviše 4-dealkilnog produkta u diklormetanu nastaje kad je metilni ester, a najmanje kad je izopropilni. Tu je vidljiv sterički utjecaj tih supstituenata, pogotovo na 0 °C. U octenoj kiselini je dobiveno malo 4-dealkilnog produkta ko i s različitim 4-alkil supstituiranim 1,4-DHP-ima.
- Kod aromatizacije s MoCl₅ na 0 °C nastaje između 43 i 82 % 4-dealkilnog produkta, dakle primijeti se blagi utjecaj temperature i smanjenje udjela 4-dealkilnog produkta sa spuštanjem temperature ko i s prethodnim oksidansom.
- Međutim, za razliku od VOCl₃ gdje je u octenoj kiselini smanjen udio 4-dealkilnog produkta, u ovom je slučaju dobiveno preko 90 % 4-dealkilnog produkta. Dakle, definitivno interakcija između oksidansa VOCl₃ i octene kiseline utječe na omjer dobivenih produkata, jer je to jedina razlika u uvjetima obaju reakcija.
- U Tablici 49 je proučavan utjecaj strukture esterskih supstituenata na položaju 3 i 5 kod aromatizacije s MoCl₅. Najviše 4-dealkilnog produkta u diklormetanu nastaje kad je izobutilni ester, a najmanje kad je izopropilni, neovisno o temperaturi. MoCl₅ je veća molekula od VOCl₃ i utjecaj esterskih skupina je puno izraženiji. Što su steričke smetnje veće nastaje manje 4-dealkilnog produkta. Tako se taj omjer smanjuje od metilnog preko etilnog do izopropilnog supstituenta od 80 do 30 %. No kod izobutilnog supstituenta je nastalo 95 % 4-dealkilnog produkta. Prostorni razmještaj atoma kod tog supstituenta je takav da nema nepovoljnih steričkih interakcija između oksidansa i 1,4-DHP.

Iz svih dosad dobivenih rezultata je pretpostavljeno da najprije nastaje kompleks s prijenosom naboja (uspješno je detektiran UV-Vis spektroskopijom s drugim metalnim oksidansima gdje sporije nestaje) unutar kojeg dolazi do prijenosa elektrona i nastajanja radikal-kationa 56 (Shema 36). Zatim se supstituent na položaju 4 otcjepljuje u obliku protona ili stabilnog karbokationa i pritom nastaju dihidropiridilni radikali 57 i 58. Idući korak je transfer drugog elektrona i deprotonacija piridinskog kationa do koje dolazi prilikom obrade reakcijske smjese. Nastaju dva produkta u različitim omjerima - 4-dealkilni i 4-alkilni čiji omjer ovisi o stabilnosti nastalog karbokationa. Poznato je da su primarni karbokationi najmanje stabilni i zato i nastaje najmanje 4-dealkilnog produkta kad je kao supstituent prisutan metilni karbokation. Ostali alkilni karbokationi su isto primarni ali su stabilizirani hiperkonjugacijom sa susjednim vezama i približno su jednake stabilnosti. Benzilni i izopropilni karbokation (sekundarni) su stabilniji od njih i zato i daju gotovo u potpunosti 4dealkilni produkt. Utjecajem strukture supstituenta na položaju 4 9-supstituiranih-10-metil-9,10-dihidroakridina prilikom aromatizacije s metalnim oksidansima su se bavili Fukuzumi i suradnici.¹⁶⁹ Zaključili su da se C-C ili C-H veza u AcrHR^{*+} koji nastane nakon prijenosa elektrona, cijepa i daje AcrH⁺ ili AcrR⁺ ion, pri čemu selektivnost cijepanja C-H ili C-C veze ovisi o supstituentu R. Kad je R = Me ili Ph nastaje samo $AcrR^+$ ion, a kod R = t-Bu nastaje samo AcrH⁺. Dok je R = i-Pr ili CH₂Ph dolazi do cijepanja obje veze. Brzina deprotonacije AcrHR⁺⁺ kod cijepanja C-H veze pada i to ovisno o R = primarna > sekundarna > tercijarnaalkilna skupina, dok brzina cijepanja C-C veze postaje dominantna kod tercijarnih alkilnih skupina.

Potpunu dealkilaciju benzilnog i izopropilnog supstituenta prilikom aromatizacije 1,4-DHP-a s HTIB su na isti način objasnili Lee i suradnici.¹²⁸ Ovakav mehanizam se razlikuje od onog koji je prethodno pretpostavljen¹⁷ u našem laboratoriju samo na temelju HPLC analize i objašnjen nastajanjem radikala umjesto odgovarajućeg karbokationa. Inače, većina pretpostavljenih mehanizama aromatizacije s metalnim oksidansima je objašnjena transferom prvog elektrona, deprotonacijom, transferom drugog elektrona i opet deprotonacijom.⁷⁹ Anniyapan¹⁴ je nastajanje 4-dealkilnog produkta objasnio gubitkom protona ili karbokationa nakon transfera drugog elektrona, ali takav mehanizam ne objašnjava nastajanje detektiranog radikala **58**.

Ovim mehanizmom je objašnjeno nastajanje 4-dealkilnog produkta za spojeve koji imaju alkilni, benzilni ili izopropilni supstituent na položaju 4. Pretpostavka je da istim

mehanizmom nastaje i 4-alkilni produkt, ali radikal **57** nije detektiran jer ga nastaje puno manje u odnosu na radikal **58** pa se ne razlikuju međusobno u EPR spektru. Međutim, kod 2,6-dimetil-3,5-di(metoksikarbonil)-4-fenil-1,4-DHP-a kod kojeg nastaje samo 4-alkilni produkt nije detektiran nikakav radikal u EPR spektru. Pretpostavljeno je da je aromatizacija ovog spoja sporija u odnosu na ostale (zato vanadij i reagira preferencijalno s PBN-om umjesto s 1,4-DHP-om) i da je u ovim uvjetima nastalo nedovoljno radikala **57** da bi se mogao detektirati, a mehanizam je identičan prethodno opisanom Shemom 36.

Shema 36

_____ mehanizam nastajanja 4-dealkilnog produkta **62** postavljen na temelju detektiranog međuprodukta <mark>58</mark>

____ pretpostavljeni mehanizam nastajanja 4-alkilnog produkta **61**

Istim mehanizmom u kojem je umjesto V(V) prisutan Mo(V) se može objasniti i aromatizacija uz korištenje MoCl_{5.}

4.5.2. Aromatizacija s karbokationima4.5.2.1. Aromatizacija s tropilijevim tetrafluoroboratom

Aromatizacija je provedena s 1,05 ekvivalenata tropilijevog tetrafluoroborata u uvjetima navedenim u Tablici 52. Vrijeme navedeno u svim tablicama je vrijeme nakon kojeg je reakcijska smjesa obrađena. To nije nužno i vrijeme kad je sav polazni spoj izreagirao. Prekidanje reakcije i izolacija produkta je provedena dodatkom vode i krutog NaHCO₃ do pH>7 pri kojem piridin prelazi u neutralni oblik. U suprotnom bi bio protoniran na atomu dušika i piridinski kation bi zaostao u vođenom sloju kod ekstrakcije. Dobiveni produkt nakon obrade reakcijske smjese je analiziran metodom visokodjelotvorne tekućinske kromatografije. U Tablici 52 su prikazani izračunati omjeri 4-dealkilnog i 4-alkilnog produkta prilikom aromatizacije 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-alkil-1,4-DHP s tropilijevim tetrafluoroboratom. Osim toga je detektirana i određena količina benzaldehida **65** koji nastaje prilikom vođene obrade reakcijske smjese iz cikloheptatrienola (Shema 37).

Shema 37

Najprije dolazi do pregrađivanja cikloheptatrienskog prstena **63**, koji zatim u bazičnim uvjetima nakon pregradnje daje benzaldehid **65**.

Poznato je da tropilijev kation djeluje i kao akceptor elektrona, ali i hidrida. Zhao i suradnici²⁷ su proučavali aromatizaciju 4-aril-supstituiranog-1,4-DHP i spoja **1**. Na temelju kinetičkih i termodinamičkih proračuna zaključili su da kod aromatizacije 4-aril supstituiranog 1,4-DHP-a dolazi do prijenosa hidrida, a kod spoja **1** postoji hibridni mehanizam prijenosa elektrona i hidrida. Zhu i suradnici su na temelju kinetičkih i termodinamičkih proračuna zaključili da se prijenos hidrida u reakciji 1-(4-supstituiranog fenila)-1,4-dihidronikotinamida s tropilijevim kationom odvija transferom hidrida u nekoliko koraka od kojih je prvi prijenos elektrona.¹⁷⁰

Tablica 52. Dealkilacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-alkil-1,4-DHP s tropilijevim tetrafluoroboratom

0 R₁0			apalo	− R ₁ 0		OR ₂ +		
H ₃ C	<u>N</u>	CH ₃	BF ₄	H ₃ C	N CH	H ₃	H ₃ C	N CH ₃
	н	<u> </u>			А			В
	1,4- DHP	R	$R_1; R_2$	Otapalo	heta / °C	<i>t /</i> h	A / %	B / %
1	10a	Me	Me; Me	CH_2Cl_2	s.t.	0.5	99,8	0,2
2	5a	Et	Me; Me	CH_2Cl_2	s.t.	1	99,4	0,6
3	3a*	<i>i</i> -Pr	Me; Me	CH_2Cl_2	s.t.	20	7,0	93,0
4	3a	<i>i</i> -Pr	Me; Me	CH_2Cl_2	- 5	1	7,0	93,0
5	6a	<i>n</i> -Pr	Me; Me	CH_2Cl_2	s.t.	1	99,6	0,4
6	11a	<i>n</i> -Bu	Me; Me	CH_2Cl_2	s.t.	0.5	99,6	0,4
7	12a*	<i>n</i> -Pn	Me; Me	CH_2Cl_2	s.t.	0.5	98,3	1,7
8	13a	<i>n</i> -Hx	Me; Me	CH_2Cl_2	s.t.	0.5	99,8	0,2
9	2a	CH ₂ Ph	Me; Me	CH_2Cl_2	s.t.	1	97 ^c	3
10	2a*	CH_2Ph	Me; Me	CH_2Cl_2	s.t.	2	96,8	3,2
11	2a	CH_2Ph	Me; Me	CH_2Cl_2	s.t.	2	83 ^b	17
12	2a	CH_2Ph	Me; Me	CH_2Cl_2	s.t.	5	91,8 ^a	8,2
13	2a*	CH ₂ Ph	Me; Me	CH_2Cl_2	-10	1	87,5	12,5
14	2a	CH_2Ph	Me; Me	toluen	s.t.	5	19	81
15	14a	CH ₃ CH(Ph)CH ₂	Me, Me	CH_2Cl_2	s.t.	20	95,5	4,5
16	15 a	<i>n</i> -Pr	Et; Et	CH_2Cl_2	s.t.	1	98,7	1,3
17	16a	<i>n</i> -Pr	<i>i</i> -Pr; <i>i</i> -Pr	CH_2Cl_2	s.t.	2	99,2	0,8
18	18a	<i>i</i> -Pr	CH ₂ Ph; CH ₂ Ph	CH ₂ Cl ₂	s.t.	2	26,7	73,3
19	19a	<i>i</i> -Pr	CH ₂ Ph; Me	CH_2Cl_2	s.t.	2	71,8	18,2
20	20	<i>i</i> -Pr (<i>N</i> derivat)	Me; Me	CH ₂ Cl ₂	s.t.	100	80	20

^a 1,2,3,4,5,6-heksafluorbenzen

^b 1,2,3,4,5,6-heksametilbenzen ^c pod UV zračenjem

* kod određenih reakcija je HPLC analizom primijećeno i nastajanje benzaldehida 65

Iz opisanih eksperimenata mogu se izdvojiti sljedeći zapažaji:

 \triangleright Iz Tablice 52 je vidljivo da u svim reakcijama nastaje 4-dealkilni produkt (0,2 – 93 % ovisno o vrsti supstituenta).

- Usporedbom rezultata HPLC analize iz Tablice 52 i rezultata EPR spektroskopskih mjerenja iz Tablice 39 može se vidjeti da dobiveni rezultati potkrepljuju pretpostavku da je detektiran radikal 58 koji ima H na položaju 4. Naime, vidljivo je da u reakciji 3 (Tablica 52) nastaje uglavnom 4-dealkilni produkt, tako da je taj radikal jedino i moguće detektirati.
- \triangleright Kod izopropilnog supstituenta nastaje 93 % 4-dealkilnog produkta, dok je kod benzilnog supstituenta, suprotno rezultatima iz prethodnog poglavlja, dobiveno malo više od 3 % 4-dealkilnog produkta. Iz ovog se može zaključiti da stabilnost nastalog karbokationa nije presudni faktor za nastajanje ovakvog omjera produkata. Reakcija je rađena i u toluenu (reakcija 14 - Tablica 52) gdje je dobiveno preko 80 % 4dealkilnog produkta, za razliku od diklormetana u kojem je dobiveno malo tog produkta. Iz prethodno proučavanih kompleksa s prijenosom naboja je zaključeno da u nastajanju kompleksa s prijenosom naboja osim 1,4-DHP prstena sudjeluje i benzilna skupina. Svi dobiveni rezultati ukazuju na to da dodatno nastajanje CT kompleksa i s benzilnom skupinom utječe na nastajanje ovakvog omjera produkata. I zato kad je reakcija u toluenu koji kompetira u nastajanju CT kompleksa i nastaje puno 4dealkilnog produkta. Iz istog razloga su u reakcijsku smjesu dodavani 1,2,3,4,5,6heksafluorbenzen i 1,2,3,4,5,6-heksametilbenzen i vidljivo je da zbog kompeticije u nastajanju CT kompleksa ipak nastaje više 4-dealkilnog produkta. Proučavan je i utjecaj benzilne skupine prisutne kao esterskog supstituenta na jednoj (19) ili obje (18) esterske skupine dok je na položaju 4 prisutan izopropilni supstituent. Kad je benzilna skupina prisutna na obje esterske skupine nastaje također puno 4-dealkilnog produkta, a kad je prisutna samo na jednoj nastaje značajno manje 4-dealkilnog produkta. Na Slici 89 je prikazan kompleks za reakcije 18 i 19 (Tablica 52) u kombinaciji s tropilijevim kationom dobiven računski u Chem3D. Jasno se vidi da je kod spoja 18 tropilijev kation prisutan iznad 1,4-DHP prstena, a kod spoja 19 je zbog nastajanja CT kompleksa pomaknut nasuprot esterske skupine s benzilnim supstituentom.

Iz svega navedenog se može zaključiti da kao posljedica CT interakcija nastaje manje 4-dealkilnog produkta, a to se može dovesti i u vezu s međusobnim prostornim razmještajem između 1,4-DHP i tropilijevog kationa. Kad su oni jedan iznad drugog dolazi uglavnom do dealkilacije, a kad su međusobno pomaknuti prevladava 4-alkilni produkt.

Slika 89: 3D prikaz kompleksa s prijenosom naboja između A – spoja 18a, B – spoja 19a, C – spoja 20 i tropilijevog kationa

- Kad je proučavan utjecaj alkilnog supstituenata na položaju 4 vidi se da nastaje 4alkilni produkt u omjeru više od 98 % neovisno o veličini i stabilnosti alkilnog supstituenta. Rezultat je uvjetovan stabilnošću karbokationa koja je manja od stabilnosti benzilnog ili izopropilnog karbokationa.
- Kod 2,6-dimetil-3,5-di(metoksikarbonil)-4-izopropil-1,4-dihidropiridina (reakcija 4 -Tablica 52) se vidi da u ovom slučaju temperatura nema utjecaj na omjer nastalih produkata, dok se kod 2,6-dimetil-3,5-di(metoksikarbonil)-4-benzil-1,4dihidropiridina (reakcija 13 – Tablica 52) jasno vidi da sniženjem temperature nastaje više 4-dealkilnog produkta. Moguće je da sniženjem temperature utjecaj CT interakcija s benzilnom skupinom slabi ili je drukčiji prostorni raspored reaktanata.
- Reakcija 9 (Tablica 52) ukazuje na to da UV zračenje nema utjecaj na tijek reakcije.
- Proučavan je i utjecaj strukture esterskih supstituenata na položaju 3 i 5, ali nije primijećen značajan sterički utjecaj. Međutim, kod *N*-supstituiranog derivata (20) je primijećeno da postoje steričke smetnje koje uzrokuje supstituent na *N* atomu, zbog čega je tropilijev kation odmaknut od 1,4-DHP prstena i analogno rečenom nastaje uglavnom 4-alkilni produkt. Nadalje, ova reakcija dokazuje da do uklanjanja hidrida može doći samo s položaja 4, jer u protivnom ne bi ni došlo do aromatizacije.
- Kod spoja 6a nikakvi radikali nisu detektirani EPR spektroskopijom. I iz Tablice 52 je vidljivo da nastaje uglavnom 4-alkilni produkt prilikom aromatizacije i za očekivati je

detekcija radikala **57** ako se aromatizacija odvija na analogni način ko u prethodnom poglavlju s metalnim oksidansima. Budući da niti s tim spojem, a niti s 4-fenil supstituiranim 1,4-DHP (također daje samo 4-aril supstituirani produkt), nije detektiran nikakav signal, može se zaključiti da se nastajanje 4-alkilnog produkta odvija drukčijim mehanizmom (Shema 38).

Iz svih dosad dobivenih rezultata je zaključeno i dokazano da najprije nastaje kompleks s prijenosom naboja. Nastajanje 4-dealkilnog produkta se može objasniti Shemom 39 gdje je prvi korak prijenos elektrona i nastajanje radikal-kationa **56**. Zatim se supstituent na položaju 4 otcjepljuje u obliku stabilnog karbokationa i pritom nastaje dihidropiridilni radikal **58**. Naredni korak je transfer drugog elektrona i deprotonacija piridinskog kationa. 4-alkilni produkt nastaje kako je opisano Shemom 38. Aromatizacija se odvija transferom hidrida s položaja 4 pri čemu nastaje piridinijev kation **59** koji deprotonacijom daje konačni produkt.

Shema 38

___ pretpostavljeni mehanizam nastajanja 4-alkilnog produkta 61

Shema 39

_ mehanizam nastajanja 4-dealkilnog produkta **62** postavljen na temelju detektiranog međuprodukta **58**

4.5.2.2. Aromatizacija s tritilijevim tetrafluoroboratom

Aromatizacija je provedena s 1 ekvivalentom tritilijevog tetrafluoroborata u uvjetima navedenim u Tablici 53. Vrijeme navedeno u svim tablicama je vrijeme nakon kojeg je reakcijska smjesa obrađena. To nije nužno i vrijeme kad je sav polazni spoj izreagirao. Prekidanje reakcije i izolacija produkta je provedena dodatkom vode i krutog NaHCO₃ do pH>7 pri kojem piridin prelazi u neutralni oblik. U suprotnom bi bio protoniran na atomu dušika i piridinski kation bi zaostao u vodenom sloju kod ekstrakcije. Dobiveni produkt nakon obrade reakcijske smjese je analiziran metodom visokodjelotvorne tekućinske kromatografije. U Tablici 53 su prikazani izračunati omjeri 4-dealkilnog i 4-alkilnog produkta prilikom aromatizacije 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-alkil-1,4-DHP s tritilijevim tetrafluoroboratom. Osim toga HPLC metodom su detektirani i trifenilmetan i trifenilmetanol. Trifenilmetan je kao produkt reakcije pročišćen kromatografijom na koloni silikagela i analiziran NMR spektroskopijom.

Poznato je da tritilijev kation u kombinaciji s raznim spojevima djeluje i kao akceptor elektrona, ali i hidrida. Cheng i suradnici²⁸ su proučavali aromatizaciju nesupstituiranog 1,4-DHP i ostalih raznih NADH analoga. Na temelju kinetičkih i termodinamičkih proračuna su pretpostavili da aromatizacija započinje prijenosom elektrona nakon kojeg slijedi transfer atoma vodika, ali dealkilacija se ne može objasniti samo transferom atoma vodika.

Na temelju termodinamičkih izračuna kod proučavanja aromatizacije analoga NADH (BNAH i AcrH₂) i organskih kationa i *p*-kinona zaključeno je da se mogu odvijati i kombinacije jednostupanjskog i višestupanjskog prijenosa hidrida, jedino je bitno da obje budu termodinamički povoljne.¹⁷¹

R ₁ O´ H ₃			otapalo h+Ph BF ₄ Ph	R ₁		R O OR ₂ + N CH ₃	R_{10}	H O OR N CH ₃
*	1,4- DHP	R	R ₁ ; R ₂	Otapalo	<i>t /</i> h	A / %	B / %	
1	10a	Me	Me; Me	CH_2Cl_2	0,5	99,7	0,3	
2	5a	Et	Me; Me	CH_2Cl_2	1	93,3	6,7	
3	3a	<i>i</i> -Pr	Me; Me	CH_2Cl_2	3	0,5	99,5	
4	20	<i>i</i> -Pr (<i>N</i> -derivat)	Me; Me	CH_2Cl_2	4	5	95	
5	6a	<i>n</i> -Pr	Me; Me	CH_2Cl_2	4	66	44	
6	11a	<i>n</i> -Bu	Me; Me	CH_2Cl_2	1	92,2	7,8	
7	12a	<i>n</i> -Pn	Me; Me	CH_2Cl_2	1	97,9	2,1	
8	1 3 a	<i>n</i> -Hx	Me; Me	CH_2Cl_2	1	99,6	0,4	
9	2a	CH ₂ Ph	Me; Me	CH_2Cl_2	2	54,7	45,3	
10	14a	CH ₃ CH(Ph)CH ₂	Me; Me	CH_2Cl_2	3	98,7	1,3	
11	14a	CH ₃ CH(Ph)CH ₂	Me; Me	toluen	24	69,1	30,9	
12	19a	<i>i</i> -Pr	Me; CH ₂ Ph	CH ₂ Cl ₂	3	0,1	99,9	
13	18a	<i>i</i> -Pr	CH ₂ Ph; CH ₂ Ph	CH ₂ Cl ₂	3	0,4	99,6	

<u>*Tablica 53.*</u> Dealkilacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-alkil-1,4-DHP s tritilijevim tetrafluoroboratom na sobnoj temperaturi

*HPLC analizom su detektirani trifenilmetan i trifenilmetanol

Iz opisanih eksperimenata mogu se izdvojiti sljedeći zapažaji:

- Iz Tablice 53 je vidljivo da u svim reakcijama nastaje 4-dealkilni produkt (0,3 99,9
 % ovisno o vrsti supstituenta).
- Kad je proučavan utjecaj alkilnog supstituenata na položaju 4 vidi se da postotak 4dealkilnog produkta raste do *n*-propilnog supstituenta, a zatim opada s rastom alkilnog lanca. Omjer dobivenih produkata ovisi o veličini alkilnog supstituenta i položaju tritilijeve skupine u odnosu na prsten.
- Kod spoja 3a nastaje preko 99 % 4-dealkilnog produkta, dok je kod spoja 2a, dobiveno 45 % 4-dealkilnog produkta. Iz ovog se može zaključiti da stabilnost nastalog karbokationa nije presudni faktor za nastajanje ovakvog omjera produkata. Proučavan je i utjecaj benzilne skupine prisutne kao esterskog supstituenta na jednoj (19a) ili obje (18a) esterske skupine dok je na položaju 4 prisutan izopropilni

supstituent. U oba slučaja je dobiveno skoro 100 % 4-dealkilnog produkta, za razliku od rezultata aromatizacije s tim spojevima iz Tablice 52 gdje su dobiveni različiti rezultati. I kod ovog oksidansa dolazi do nastajanja CT kompleksa i s benzilnom skupinom. Kod spoja **2a** je tritilijev kation smješten blizu benzilne skupine i nastaje samo 45 % 4-dealkilnog produkta. Moguće je da nastajanje dodatnih CT interakcija pogoduje nastanku 4-alkilnog produkta. Ali ovakav rezultat se može dovesti i u vezu s međusobnim prostornim razmještajem između 1,4-DHP-a i tritilijevog kationa, gdje nastaje manje 4-dealkilnog produkta kao posljedica nepovoljnih steričkih interakcija između izlazećeg benzilnog karbokationa i tritilijeve skupine. Kod spojeva **18a** i **19a** tritilijeva skupina je udaljenija od 1,4-dihidropiridinskog prstena zbog benzilnih supstituenta na esterskim skupinama i prilikom dealkilacije ne dolazi do prethodno spomenutih nepovoljnih steričkih interakcija. Na Slici 90 je vidljivo da je tritilijev kation smješten sa suprotne strane od izopropilnog supstituenta kod spoja **18a**.

Slika 90: 3D prikaz kompleksa s prijenosom naboja između A - spoja 18a i B – spoja 14a i tritilijevog kationa

- U reakciji 10 (Tablica 53) u kojoj je prisutan 2-fenilpropilni supstituent na položaju 4 nastaje oko 1 % 4-dealkilnog produkta, dok u toluenu (reakcija 11) nastaje 30 % 4-dealkilnog produkta. Očito da ovdje kao i kod benzilnog supstituenta dolazi do nastajanja CT kompleksa (Slika 91 to i pokazuje). Vidljivo je da je tritilijeva skupina smještena blizu tih supstituenata i najvjerojatnije i zbog steričkih smetnji nastaje manje 4-dealkilnog produkta, jer je uklanjanje takvog karbokationa energetski nepovoljnije. Kad je reakcija u toluenu koji kompetira u nastajanju CT kompleksa nastaje puno više 4-dealkilnog produkta jer je tritilijev kation udaljeniji od 1,4-DHP-a.
- Kod N-supstituiranog derivata 20 (reakcija 4 u Tablici 53) je uspješno provedena reakcija aromatizacije. Ova reakcija dokazuje da do eventualnog uklanjanja hidrida može doći samo s položaja 4, jer u protivnom ne bi ni došlo do aromatizacije.

- Usporedbom rezultata HPLC analize iz Tablice 53 i rezultata EPR spektroskopskih mjerenja iz Tablice 37 može se vidjeti da dobiveni rezultati potkrepljuju pretpostavku da je detektiran radikal 58 koji ima H na položaju 4. Naime, vidljivo je da u reakcijama 3 i 4 nastaje uglavnom 4-dealkilni produkt, tako da je taj radikal jedino i moguće detektirati. Takvi rezultati se mogu objasniti mehanizmom na Shemi 39, analogno mehanizmu aromatizacije s tropilijevim tetrafluoroboratom pri čemu je prvi korak nastajanje CT kompleksa. Nastaju i trifenilmetan i trifenilmetanol koji su detektirani HPLC analizom.
- Sa spojevima koji daju uglavnom 4-alkilni produkt nisu provedena EPR spektroskopska mjerenja i ne zna se da li prilikom njihove aromatizacije nastaje radikal 57.

Iz svih dosad dobivenih rezultata je zaključeno i dokazano da najprije nastaje kompleks s prijenosom naboja. Nastajanje 4-dealkilnog produkta se definitivno može objasniti Shemom 39, dok se nastajanje 4-alkilnog produkta ne može jednoznačno objasniti samo Shemom 38. Moguće je da se aromatizacija odvija prijenosom elektrona, pa protona (nastaje dihidropiridilni radikal **57**), zatim prijenosom drugog elektrona (**59**) i na kraju deprotonacijom nastaje produkt **61** (Shema 36 – put B).

4.5.3. Aromatizacija s 2,3-diklor-5,6-dicijano-1,4-benzokinonom

Aromatizacija je provedena s 1,05 ekvivalenata DDQ u uvjetima navedenim u Tablici 54. Vrijeme navedeno u svim tablicama je vrijeme nakon kojeg je reakcijska smjesa obrađena. To nije nužno i vrijeme kad je sav polazni spoj izreagirao. Prekidanje reakcije i izolacija produkta je provedena dodatkom diklormetana i 1 % vodene otopine HCl. Naime, tijekom cijele reakcije između spojeva postoje CT interakcije koje su prisutne i između konačnih produkata (dokazano IR spektroskopijom – piridin i DDQH₂). Uparavanjem takve reakcijske smjese nastaje polarni produkt koji kod HPLC analize ostaje na početku i zato je potrebno dodati HCl da se CT kompleks razori i da se može provesti analiza. Dobiveni produkt nakon obrađe reakcijske smjese je analiziran metodom visokodjelotvorne tekućinske kromatografije. U Tablici 54 su prikazani izračunati omjeri 4-dealkilnog i 4-alkilnog produkta prilikom aromatizacije 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-alkil-1,4-DHP s DDQ.

R			DDQ	R		O OR ₂ +	
	H ₃ C	CH ₃	otapalo	0	H ₃ C ^N	CH3	
	ł	H			А		В
	1,4- DHP	R	R ₁ ; R ₂	Otapalo	<i>t /</i> h	A / %	B / %
1	10a	Me	Me; Me	CH ₂ Cl ₂	20	99,9	0,1
2	3 a	<i>i</i> -Pr	Me; Me	CH_2Cl_2	60	62	38
3	3 a	<i>i</i> -Pr	Me; Me	CH ₃ CN	60	89	11
4	6a	<i>n</i> -Pr	Me; Me	CH_2Cl_2	20	96,3	2,7
5	2a	CH ₂ Ph	Me; Me	CH_2Cl_2	20	60	40
6	2a	CH_2Ph	Me; Me	heksan	70	86,0	14,0
7	2a	CH_2Ph	Me; Me	$CH_2Cl_2^{\ a}$	3	40	60
8	14a	CH ₃ CH(Ph)CH	Me, Me	CH_2Cl_2	20	100	0
9	15a	<i>n</i> -Pr	Et; Et	CH_2Cl_2	20	98,3	1,7
10	15a	<i>n</i> -Pr	Et; Et	THF	1	98,5	1,5
11	16a	<i>n</i> -Pr	<i>i</i> -Pr; <i>i</i> -Pr	CH_2Cl_2	20	99,4	0,6
12	19a	<i>i</i> -Pr	Me, CH ₂ Ph	CH_2Cl_2	0,5	88,2	11,8
13	18 a	<i>i</i> -Pr	CH ₂ Ph; CH ₂ Ph	CH_2Cl_2	2	77,7	22,3

Tablica 54. Dealkilacija 2,6-dimetil-3,5-di(alkiloksikarbonil)-4-alkil-1,4-DHP s DDQ

^aDBU

Iz opisanih eksperimenata mogu se izdvojiti sljedeći zapažaji:

- ➢ Iz Tablice 54 je vidljivo da u svim reakcijama nastaje 4-dealkilni produkt (0 − 40 % ovisno o vrsti supstituenta).
- I kod spoja 2a i 3a nastaje oko 40 % 4-dealkilnog produkta. Ovdje omjer nastalih produkata ovisi samo o stabilnosti karbokationa. Položaj između 1,4-DHP i DDQ koji je uvjetovan i nastajanjem CT kompleksa je takav da nema nepovoljnih steričkih interakcija između supstituenta na položaju 4 koji se odcjepljuje i DDQ.
- Vidljivo je da otapalo ima utjecaj na omjer nastalih produkata. Heksan je nepolarno otapalo i za očekivati je da u njemu nastaje manje 4-dealkilnog produkta jer nema stabilizacije nastalog karbokationa. Neočekivani je rezultat da i u polarnom aprotičnom otapalu nastaje malo 4-dealkilnog produkta.
- Reakcija 8 (Tablica 54) je vrlo interesantna, gdje je bez obzira na stabilni 2fenilpropilni karbokation dobiveno 0 % 4-dealkilnog produkta. Iz Slike 91 se vidi da je DDQ smješten blizu 2-fenilpropilne skupine s kojom stvara vrlo čvrsti CT kompleks

koji sprečava bilo koji drugi put osim transfera hidrida. I iz NMR strukture spoja **14a** je vidljivo da zbog krute 2-fenilpropilne skupine kod koje ne dolazi do rotacije, ta molekula nije simetrična, što je netipično za ovakav tip spojeva.

Slika 91: 3D prikaz kompleksa s prijenosom naboja između spoja 14a i DDQ

- Proučavan je i utjecaj strukture esterskih supstituenata na položaju 3 i 5, i vidljivo je da se povećanjem steričkih smetnji smanjuje udio 4-dealkilnog produkta.
- Kod EPR i UV-Vis spektroskopskih mjerenja je detektiran samo DDQ⁻ radikal EPR signal kojeg pada tijekom vremena. Nastajanje takvog radikala se može objasniti transferom hidrida i zatim reakcijom prikazanom na Shemi 3, ali u tom slučaju bi signal DDQ⁻ radikala rastao, a ne padao tijekom vremena. Osim toga nastajanje 4-dealkilnog produkta se ne može objasniti na taj način. Fukuzumi i suradnici su na temelju kinetičkih i termodinamičkih proračuna između AcrHR i raznih akceptora hidrida (TCNE i DDQ) zaključili da se taj proces odvija najprije nastajanjem CT kompleksa unutar kojeg dolazi do prijenosa elektrona, pa protona i drugog elektrona.²² Do istog zaključka su došli i proučavanjem aromatizacije između TCNE i BNAH.¹³³ Memarian i suradnici su nastajanje 4-dealkilnog produkta kod aromatizacije s DDQ objasnili na analogni način prikazan Shemom 6.²⁶

Iz dobivenih rezultata proizlazi da se mehanizam aromatizacije može objasniti Shemom 40. Najprije nastaje CT kompleks. Prvi korak je transfer elektrona, zatim uklanjanje protona ili karbokationa, pa transfer drugog elektrona i na kraju deprotonacija. U tom slučaju opet nastaju dihidropiridilni radikali, ali oni nisu detektirani EPR spektroskopijom. Mogući je razlog da se nastali radikalski par nalazi u takozvanom "solvent cage"¹⁷¹ odnosno kavezu otapala (Slika 92). Dokazano je u prethodnim poglavljima da između 1,4-DHP-a i DDQ prilikom aromatizacije na početku i na kraju postoji kompleks s prijenosom naboja koji je

najvjerojatnije okružen molekulama otapala. U takvom stanju PBN teško hvata radikal koji nastaje i zato i nije detektiran.

Slika 92: Odvijanje reakcije u kavezu otapala

Shema 40

_____ pretpostavljeni mehanizam nastajanja produkata **61 i 62** postavljen na temelju detektiranog međuprodukta DDQ⁻⁻ U prilog činjenici da kod ove aromatizacije ne dolazi do uklanjanja hidridne skupine čime bi se objasnilo nastajanje 4-alkilnog produkta, ide i reakcija 7 (Tablica 54) kod koje je vidljivo da dodatkom baze nastaje više 4-dealkilnog produkta. Dodatkom baze nastaje negativi naboj na atomu N (66) i za očekivati je da će doći do uklanjanja hidrida, ukoliko reakcija ide transferom hidrida, međutim dolazi do transfera elektrona (Shema 41) i uklanjanja uglavnom karbokationa, jer bi supstituent sa svojim elektrondonorskim utjecajem dodatno destabilizirao negativno nabijen 1,4-DHP prsten (68).

Shema 41

4.5.4. Aromatizacija s 1,1,2,2-tetracijanoetilenom

Aromatizacija je provedena s 1,1 ekvivalentom TCNE u uvjetima navedenim u Tablici 55. Vrijeme navedeno u svim tablicama je vrijeme nakon kojeg je reakcijska smjesa obrađena. To nije nužno i vrijeme kad je sav polazni spoj izreagirao. Prekidanje reakcije i izolacija produkta je provedena dodatkom diklormetana i 1 % vodene otopine HCl. Naime, tijekom cijele reakcije između spojeva postoje CT interakcije koje su prisutne i između konačnih produkata. Uparavanjem takve reakcijske smjese nastaje polarni produkt koji kod HPLC analize ostaje na početku i zato je potrebno dodati HCl da se CT kompleks razori i da se može provesti analiza. Dobiveni produkt nakon obrade reakcijske smjese je analiziran metodom visokodjelotvorne tekućinske kromatografije. Dobiveni produkt nakon obrade reakcijske smjese je analiziran metodom visokodjelotvorne tekućinske kromatografije. U Tablici 55 su prikazani izračunati omjeri 4-dealkilnog i 4-alkilnog produkta prilikom aromatizacije 2,6-dimetil-3,5-(dimetoksikarbonil)-4-alkil-1,4-DHP s TCNE.

<u>*Tablica*</u> 55. Dealkilacija 2,6-dimetil-3,5-di(metoksikarbonil)-4-alkil-1,4-DHP s TCNE na sobnoj temperaturi

H ₃ CO H ₃ C		CH ₃ CN	→ H ₃ CO H ₃ C	R O OC N CH ₃	H _{3 +} H ₃ CO [^] H ₃	B B B B B B B B B B B B B B B B B B B
Reakcija	1,4-DHP	R	Otapalo	<i>t /</i> h	A / %	B / %
1	20	<i>i</i> -Pr (<i>N</i> derivat)	CH_2Cl_2	5	92,6	7,4
2	3 a	<i>i</i> -Pr	CH_2Cl_2	60	~ 100	tragovi
3	3 a	<i>i</i> -Pr	$CH_2Cl_2^{\ a}$	1	77,2	12,8
4	3 a	<i>i</i> -Pr	$CH_2Cl_2^{\ c}$	5	99,3	0,7
5	11a	<i>n</i> -Bu	CH_2Cl_2	20	99,7	0,3
6	2a	CH ₂ Ph	CH_2Cl_2	60	99,5	0,5
7	2a	CH ₂ Ph	$CH_2Cl_2^{\ a}$	1	41	59
8	2a	CH ₂ Ph	$CH_2Cl_2^{\ b}$	24	99,7	0,3
9	14a	CH ₃ CH(Ph)CH ₂	CH_2Cl_2	0.5	100	0
^a DBU.						

^b TMB.

^c TEMPO.

Iz opisanih eksperimenata mogu se izdvojiti sljedeći zapažaji:

- Iz Tablice 55 je vidljivo da u svim reakcijama osim u ovima gdje je dodana baza nastaje vrlo malo 4-dealkilnog produkta.
- Reakcija 8 (Tablica 55) pokazuje da nastajanje CT kompleksa nema nikakvi utjecaj na omjer dobivenih produkata, jer dodatkom trimetoksibenzena koji kompetira u nastajanju CT kompleksa nema skoro nikakve promjene.
- Kod EPR i UV-Vis spektroskopskih mjerenja je detektiran samo TCNE⁻ radikal EPR signal kojeg pada tijekom vremena. Iz dobivenih rezultata proizlazi da se mehanizam aromatizacije može objasniti isto Shemom 40, a postojanje CT kompleksa tijekom cijele reakcije unutar kojeg se molekule nalaze u kavezu otapala onemogućuje EPR detekciju radikala.
- U reakciji 4 (Tablica 55) je dodan TEMPO koji je inhibitor radikal reakcija, ali nema nikakvog utjecaja. To je još jedna potvrda da su radikali koji nastaju u kavezu otapala i onemogućen je njegov pristup k radikalima koji nastaju tijekom reakcije.
- Kod N-supstituiranog derivata 20 (reakcija 1 u Tablici 55) je dobiveno puno više 4dealkilnog produkta u odnosu na reakciju 2 (Tablica 55) u kojoj sudjeluje derivat 3a koji ima H na dušiku. Etoksimetilna skupina na N atomu djeluje elektron donirajuće što pogoduje otpuštanju karbokationa.
- Kod reakcija 3 i 7 u Tablici 55 se vidi da dodatkom baze dolazi do znatnog nastajanja 4-dealkilnog produkta. Objašnjenje je isto kao i u prethodnom poglavlju: dodatkom baze nastaje negativni naboj na atomu N i za očekivati je da će doći do uklanjanja hidrida, ali dolazi najprije do transfera elektrona zatim uklanjanja i protona, ali i karbokationa, jer bi supstituent sa svojim elektrondonorskim utjecajem dodatno destabilizirao negativno nabijen 1,4-DHP prsten, pa uklanjanje karbokationa postaje povoljnije.
- Reakcija 9 (Tablica 55) daje isti rezultat ko i prilikom aromatizacije s DDQ, gdje je bez obzira na stabilni 2-fenilpropilni karbokation dobiveno 0 % 4-dealkilnog produkta. Očito i u ovom slučaju TCNE stvara s 2-fenilpropilnom skupinom vrlo čvrsti CT kompleks koji sprečava bilo koji drugi put osim transfera hidrida.

Prilikom aromatizacije 1,4-DHP derivata uz korištenje katalitičke količine joda i kompleksa uree s vodikovim peroksidom kao oksidacijskog sredstva, primijećeno je da kad su na položaju 4 benzilni ili izopropilni supstituent **2a** i **3a** nastaje 4-dealkilni produkt, a kad su prisutni ostali alkilni ili arilni supstituenti nastaje u potpunosti 4-alkilni produkt. Također prilikom dealkilacije potpuna konverzija je postignuta s 50 mol % joda umjesto 20 mol % koliko je bilo dovoljno kod ostalih aromatizacija i nastaje i benzil-jodid, odnosno izopropil-jodid kao dodatni produkt prilikom aromatizacije benzil DHP. Litvić i suradnici¹²³ su nastajanje 4-dealkilnog produkta objasnili otpuštanjem supstituenta sa položaja 4 u obliku odgovarajućeg radikala.

Rađena su EPR spektroskopska mjerenja i detektiran je jedino OH[•] radikal, neovisno o 1,4-DHP derivatu. Na temelju takvog rezultata pretpostavljen je mehanizam prikazan Shemom 42.

Shema 42

_____ pretpostavljeni mehanizam nastajanja 4-dealkilnog produkta (put B)

HOI nastaje u reakciji između H₂O₂ i joda. Nastanak hipojoditne kiseline je ravnotežan jer niti u jednom trenutku ne dolazi do obezbojenja reakcijske smjese, iako je jod prisutan u katalitičkoj količini. Zbog elektrofilnog karaktera joda u hipojoditnoj kiselini reakcija započinje njegovim vezanjem na dušik pri čemu nastaje *N*-jodo derivat **70**.¹²³ Homolitičkim cijepanjem *N*-jodo derivata započinje pregradnja derivata **70**. U njoj nastaju R[•] radikali (put B - Shema 42) ili H[•] radikali (put A - Shema 42) koji reakcijom s I[•] radikalom ili I₂ daju RI odnosno HI. R[•] radikali nastaju kod spojeva **2a** i **3a**, te je na taj način objašnjeno nastajanje benzil-jodida i izopropil-jodida.

Shema 43

 $HOI + I' \longrightarrow I_2 + OH'$

U Shemi 43 je objašnjeno nastajanje OH[•] radikala koji je detektiran EPR spektroskopijom i vidi se da on nastaje iz HOI i I[•] radikala koji se oslobađa prilikom aromatizacije i iz kojeg se reciklira jod koji opet započinje katalitički ciklus. OH[•] radikal nije detektiran EPR spektroskopijom u reakcijama bez prisustva 1,4-DHP iz čega se može zaključiti da I[•] radikal nastaje tek prilikom homolitičke pregradnje međuprodukta **70**. Ostali radikali koji nastaju unutar međuprodukta **70**.

§ 5. ZAKLJUČAK

- U ovom radu ispitan je utjecaj nekoliko raznih oksidansa, strukture 1,4dihidropiridina (1,4-DHP), uvjeta reakcije i nastajanja kompleksa s prijenosom naboja (CT kompleksa) na omjer 4-dealkilnog i 4-alkilnog produkta i na temelju dobivenih rezultata predložen mehanizam kojim oni nastaju. Zaključeno je da omjer nastalih produkata ovisi o:
 - pojedinom oksidansu i o njegovim steričkim svojstvima (veličina, položaj u odnosu na 1,4-DHP prsten). Tako kod metalnih oksidansa nastaje najviše 4-dealkilnog produkta, kod tetracijanoetilena (TCNE) nastaje uglavnom 4-alkilni produkt u uvjetima bez prisustva baze, a s ostalim oksidansima uglavnom 4-izopropil supstituirani 1,4-DHP daje najviše 4dealkilnog produkta, dok drugi 4-alkil supstituirani 1,4-DHP daju pretežno 4-alkilni produkt;
 - o uvjetima u kojima se reakcija odvija: temperatura, polarnost i protičnost otapala;
 - elektronskim i steričkim svojstvima supstituenata na položaju 4 1,4-DHPa (stabilnost karbokationa koji se otcjepljuje prilikom aromatizacije, te sterički utjecaj supstituenata na esterskim skupinama);
 - nastajanju CT kompleksa s dodatnim skupinama na 1,4-DHP prstenu
- CT kompleksi koji nastaju u prvom kontaktu između 1,4-DHP-a i raznih oksidansa provjereni su UV-Vis, IR i NMR spektroskopskim metodama.
- Kod EPR spektroskopskih istraživanja detektiran je dihidropiridilni radikal s atomom vodika na položaju 4 (58). Do sada je bio detektiran uglavnom samo radikal s arilnim supstituentom na položaju 4, tako da je ovo prvi slučaj detekcije ovakvog radikala.
- Očekivani radikal sa supstituentom na položaju 4 (57) nije detektiran EPR spektroskopijom pri uvjetima eksperimenta.
- Na temelju dobivenih rezultata HPLC analize, EPR i UV-Vis spektroskopije pretpostavljen je jedinstveni mehanizam koji objašnjava nastajanje 4-dealkilnog produkta:
 - prvi korak je transfer elektrona,
 - drugi korak je otcjepljenje karbokationa s položaja 4 i nastajanje dihidropiridilnog radikala (58),
 - treći korak je transfer drugog elektrona,
 - posljednji korak je deprotonacija dušika.
- Budući da nije detektiran radikal 57 kojim bi se potvrdio sličan mehanizam nastanka 4-alkilnog produkta i kod oksidacije s tropilijevim kationom, potrebno je uzeti u obzir i druge mehanizme (npr. transfer hidrida u jednom koraku).
- Kod aromatizacije s 2,3-diklor-5,6-dicijano-1,4-benzokinonom i TCNE neovisno o tome što nastaje dosta 4-alkilnog produkta, predloženo je da se prijenos hidrida ne odvija direktno već putem tri prethodno opisana koraka (drugi korak je otcjepljenje protona s položaja 4 umjesto karbokationa).

CT kompleksi 1,4-DHP se mogu promatrati kao model za interakcije NADH i akceptora u biološkom sustavu na temelju kojih dolazi do njihovog međusobnog prepoznavanja.

U novije vrijeme sve je veći interes za dihidropiridinske spojeve kao potencijalne antioksidativne spojeve. Ovim radom dokazano je da oni s različitim oksidansima reagiraju kao donori elektrona. Njihova antioksidativna aktivnost se temelji na deaktivaciji radikala redukcijom pri čemu nastaju manje reaktivni i manje štetni spojevi.

§ 6. POPIS OZNAKÂ, KRATICÂ I SIMBOLÂ

AcrH ₂	10-metilakridinski monomer		
(AcrH) ₂	10-metilakridinski dimer		
BIFC	Benzimidazolijev fluorokromat		
BNAH	1-benzil-1,4-dihidronikotinamid		
br s	Prošireni singlet		
<i>i</i> -Bu	Izobutil		
<i>n</i> -Bu	<i>n</i> -butil		
CDCl ₃	Deuterirani kloroform		
CH ₂ Cl ₂	Diklormetan		
CH ₂ Ph	benzil		
CH ₃ CH(Ph)CH ₂	2-fenilpropil		
CH ₃ CN	Acetonitirl		
CT kompleks	Kompleks s prijenosom naboja		
	(engl. Charge transfer)		
d	Dublet		
2,6-DAPY	2,6-diaminopiridin		
DBU	1,8-diazabiciklo[5.4.0]undek-7-en		
DDQ	2,3-diklor-5,6-dicijano-1,4-benzokinon		
1,4-DHP	1,4-dihidropiridin		
DMPO	5,5-Dimetil-1-pirolin N-oksid		
DNK	Deoksiribonukleinska kiselina		
EPR	Elektronska paramagnetska rezonancija		
ESR	Elektronska spinska rezonancija		
Et	Etil		
EtOAc	Etil-acetat		

HCl	Klorovodična kiselina		
HFB	Heksafluorobenzen		
HMB	Heksametilbenzen		
НОМО	Najviša popunjena molekulska orbitala		
	(engl. Highest occupied molecular orbital)		
HPLC	Tekućinska kromatografija visoke djelotvornosti		
	(engl. High Performance Liquid Chromatography)		
HOAc	Octena kiselina		
HTIB	[hidroksi(tosiloksi)jod]benzen		
<i>n</i> -Hx	<i>n</i> -heksil		
IR	Infracrvena spektroskopija		
	(engl. Infrared Spectroscopy)		
LUMO	Najniža nepopunjena molekulska orbitala		
	(engl. Lowest unoccupied molecular orbital)		
m	Multiplet		
Me	Metil		
MoCl ₅	Molibdenov(V) klorid		
mol %	Molarni postotak		
1-MPIPZ	1-metilpiperazin		
NA	Nikotinamid		
NADH	Nikotinamid adenin dinukleotid		
NADPH	Nikotinamid adenin dinukleotid fosfat		
NaH	Natrijev hidrid		
NaHCO ₃	Natrijev hidrogenkarbonat		
Na ₂ SO ₄	Natrijev sulfat		
NbCl ₅	Niobijev(V) klorid		
NH ₄ VO ₃	Amonijev vanadat		
NMR	Nuklearna magnetska rezonancija		
	(engl. Nuclear Magnetic Resonance)		

NO	Dušikov(II) oksid		
PBN	<i>N-tert</i> -butil-α-fenilnitron		
POBN	<i>N-tert</i> -butil-α-(4-piridil -1-oksid)nitron		
<i>n</i> -Pn	<i>n</i> -pentil		
<i>i</i> -Pr	Izopropil		
<i>n</i> -Pr	<i>n</i> -propil		
Ру	Piridin		
q	Kvartet		
QFC	Kvinolinijev fluorokromat		
$R_{\rm F}$	Faktor zadržavanja		
S	Singlet		
s.t.	Sobna temperatura		
t	Triplet		
TCNE	Tetracijanoetilen		
TEMPO	2,2,6,6-tetrametilpiperidin 1-oksil		
THF	Tetrahidrofuran		
TMB	Trimetoksibenzen		
TMS	Tetrametilsilan		
Urea - H ₂ O ₂	Urea - vodikov peroksid		
UV-Vis spektroskopija	Ultraljubičasta - vidljiva spektroskopija		
	(engl. Ultraviolet/Visible-Spectrophotometry)		
VOCl ₃	Vanadijev(V) oksiklorid		

§ 7. LITERATURNI IZVORI

- 1. G. Grün, A. Fleckenstein, Arzneim. Forsch. (Drug Res.), 22 (1972) 334–344.
- 2. J. S. Lee, N. E. Jacobsen, P. R. Ortiz de Montellano, *Biochem.*, 27 (1988) 7703–7710.
- 3. L. Stryer, *Biokemija*, Školska knjiga, Zagreb, 1991.
- 4. B. W.Carlson, L. L.Miller, J. Am. Chem. Soc. 107 (1985) 479–485.
- 5. X. Zhu, B. J. Zhao, J. Cheng, J. Org. Chem. 65 (2000) 8158–8163.
- 6. J. Ogle, J. Stradins, L. Baumane, *Electrochim. Acta* **39** (1994) 73-79.
- B. Turovska, I. Goba, I. Turovskis, S. Grinberga, S. Belyakov, S. Stupnikova, F. Liepinsh, J. Stradins, *Chem. Heterocycl. Comp.* 44 (2008) 1483.
- 8. L. Wu W. Chen. Z. Liu, Res. Chem. Intermed. 27 (2001) 219–224.
- 9. M. Moghadam , M. Nasr-Esfahani, S. Tangestaninejad, V. Mirkhani, *Bioorganic and Medicinal Chemistry Letters* **16** (2006) 2026-2030.
- S. P. Chavan, R. K. Kharul, U. R. Kalkote, I. Shivakumar, *Synth. Commun.* 33 (2003) 1333-1340.
- V. Sivamurugan, A. Vinu, V. Suresh, M. Pakanichamy, V. Murugesan, J. Heterocyclic Chem. 44 (2007) 973-977.
- 12. B. Zeynizadeh, K. A. Dilmaghani, M. Mirzaei, Acta Chim. Slov. 54 (2007) 366-369.
- A. Momeni, T. Sameh, H. Golmohammadi, H. J. Naghash, H. Aliyan, A.R.Massah, S. Solati, Bull. Korean Chem. Soc. 27 (2006) 355–356.
- 14. M. Anniyappan, D. Muralidharan, P. T. Perumal, *Tetrahedron* 58 (2002) 5069-5073.
- 15. D. Cheng, Z. Chen, Synth. Commun. 32 (2002) 5069-5073.
- K. Niknam, M. Zalfigol, S. M. Razavian, I. Mohammadpoor-Baltork, J. Heterocyclic Chem.
 43 (2006) 199-202.
- 17. M. Filipan-Litvić, M. Litvić, V. Vinković, *Tetrahedron* 64 (2008) 10912–10918.
- 18. H. S. Bazzi, A. Mostafa, S. Y. AlQaradawi, E. Nour, J. Mol. Struct. 842 (2007) 1–5.
- 19. A. Fakhro, H. Bazzi, A. Mostafa, L. Shahada, J. Mol. Struct. 973 (2010) 9–17.
- 20. E. Y. Frag, G. G. Mohamed, J. Mol. Struct. 979 (2010) 46–55.
- 21. E. Nour, S. Y. AlQaradawi, A. Mostafa, E. Shams, H. S. Bazzi, *J. Mol. Struct.* **980** (2010) 218–224.
- 22. S. Fukuzumi, K. Ohkubo, Y. Tokuda i T. Suenobu, J. Am. Chem. Soc 122 (2000) 4286-4294.
- L. J. Nunez-Vergara, C. Lopez-Alarcon, P. A. Navarrete-Encina, A. M. Atria, C. Camargo, J. A. Squella, *Free Radical Res.* 37 (2003) 109–120.

- 24. C. Lopez-Alarcon, L. J. Nunez-Vergara, J. A. Squella, *Electrochim. Acta.* **48** (2003) 2505-2516.
- L. J. Nunez-Vergara, R. Salazar, C. Camargo, J. Carbajo, B. Conde, P. A. Navarrete-Encina, J. A. Squella, *Bioorg. Med. Chem.* 15 (2007) 4318-4326.
- 26. H. R. Memarian, M. Ghazaie, S. K. Mehneh, Z. Naturforsch. 64b (2009) 1187-1192.
- 27. B. Zhao, X. Zhu, Y. Lu, C. Z. Xia, J. P. Cheng, *Tetrahedron Lett.* **41** (2000) 257-260.
- 28. J. P. Cheng, Y. Lu, J. Phys. Org. Chem. 10 (1997) 577-584.
- 29. T. J. Reddy, T. Iwama, H. J. Halpern, V. H.Rawal, J. Org. Chem 67 (2002) 4635-4639.
- N. E. Polyakov, V. V. Konovalov, T. V. Leshina, O. A. Luzina, N. F. Salakhutdinov, T. A. Konovalova, L. D. Kispert, J. Photochem. Photobiol. A: Chem. 141 (2001) 117-126.
- 31. C. J. Bender, Anal. Biochem. 253 (1997) 196-200.
- 32. A. Hantzsch, Justus Liebigs Ann. Chem. 215 (1882) 1-82.
- 33. S. Goldmann, J. J. Stoltefuss, Angew. Chem., Int. Ed. Engl. 30 (1991) 1559-1578.
- 34. H. Medenwald, K. Schloßmann, C. Wünsche, Arzneim. Forsch. (Drug Res.), 22 (1972) 53-56.
- 35. C. P. Huttrer, E. Dale, *Chem. Rev.* 48 (1951) 543-579.
- 36. F. Bossert, H. Meyer, E. Wehinger, Angew. Chem. 93 (1981) 755-763.
- 37. R. Peri, S. Padmanabhan, S. Singh, A. Rutledge, D. J. Triggle, J. Med. Chem. 43 (2000) 2906.
- 38. R. W. Chapman, G. Danko and M. I. Siegels, *Pharmacology* 29 (1984) 282.
- 39. S. R. Pattan, A. N. Parate, Indian J. Heterocycl. Chem. 12 (2003) 387-388.
- 40. B. K. Cooper, M. J. Fray, M. J. Parry J. Med. Chem. 35 (1992) 3115-3129.
- 41. A. Krauze, S. Germane, O. Eberlins, I. Sturms, V. Klusa, G. Duburs, *Eur. J. Med. Chem.* **34** (1999) 301.
- C. Napoli, S. Salomone, T. Godfraind, W. Palinski, D. M. Capuzzi, G. Palumbo, F. P. D'Armiento, R. Donzelli, F. de Nigris, R. L. Capizzi, M. Mancini, J. S. Gonnella, A. Bianchi, *Stroke* 30 (1999) 1907-1915.
- 43. G. Swarnalatha, G. Prasanthi, N. Sirisha, C. Madhusudhana Chetty, *Int. J. ChemTech Res.*3 (2011) 75-89.
- 44. <u>https://en.wikipedia.org/wiki/Calcium_channel_blocker</u>, (preuzeto 12. ožujka 2015.)
- 45. B. J. Materson, Am. J. Hypertens. 8 (1995) 325 -329.
- 46. R. Berkels, R. Roesen, S. Dhein, U. Fricke, W. Klaus, *Cardiovasc. Drug Rev.* **17** (1999) 179-186.
- 47. The Merck Index, 12thedition, Merck Research Laboratories, 1996, str. 1696.
- 48. H. Ramuz, *Helv.Chim. Acta* **58** (1975) 2050-2060.
- 49. L. J. Theodore, W. L. Nelson, J. Org. Chem. 52 (1987) 1309-1315.
- 50. The Merck Index, 12thedition, Merck Research Laboratories, 1996, str. 541.

- 51. R. W. Piepho, *Hosp. Pharm.* **26** (1989) 482-497.
- 52. <u>https://en.wikipedia.org/wiki/Dihydropyridine</u> (preuzeto 11. ožujka 2015.)
- 53. F. P. Guengerich, M. V. Martin, P. H. Beaune, P. Kremers, T. Wolff, D. J. Waxman, *J. Biol. Chem.* **61** (1986) 5051-5060.
- 54. H. Memarian, A. Mirjafari, *Bioorg Med Chem Lett* **15** (2005) 3423-3425.
- 55. E.Fasani, A. Albini, M. Mella *Tetrahedron* **64** (2008) 3190-3196.
- 56. M. Filipan-Litvić, Aromatizacija 1,4-dihidropiridinskih derivata, Doktorski rad (2006)
- 57. S. P. Chavan, R. K. Kharul, U. R. Kalkote, I. Shivakumar, *Synth. Commun.* **33** (2003) 1333-1340.
- 58. K.-Y. Ko, J.-Y. Kim, Tetrahedron Lett. 40 (1999) 3207-3208.
- H. Meyer, E. Wehinger, F. Bossert, D. Scherling, Arzneim.-Forsch./Drug. Res. 33 (1983) 106-112.
- 60. N. Sugiyama, K. Kubota, G. Inouye, Bull. Chem. Soc. Jpn. 37 (1964) 637-639.
- 61. B. Khadilkar, H. Jaisinghani, A. Khare, *Ind. J. Chem* **37B** (1998) 817-818.
- 62. W. A. Waters, *Quart. Rev.* **12** (1958) 277-300.
- 63. E. E. Griensteius, E. I. Stankevich, G. Ya Dubur, *Khim. Geterotsikl. Soed.* (1967) 1118-1120.
- 64. K. Y. Ko, J. Y. Park, Bull. Korean Chem. Soc. 16 (1995) 200-201.
- 65. M. M. Sadeghi, I. Mohammadpoor-Baltork, H. R. Memarian, S. Sobhani, *Synth. Commun.* **30** (2000) 1661-1665.
- 66. B. Wang, Y. Hu, H. Hu, Synth. Commun. 29 (1999) 4193-4199.
- 67. J. J. Vanden Eynde, A. Mayence, A. Maquestiau, *Tetrahedron* **48** (1992) 463-468.
- 68. R. S. Varma, D. Kumar, *Tetrahedron Lett.* **40** (1999) 21-24.
- 69. H. R. Memarian, M. M. Sadeghi, A. R. Momeni, Synth. Commun. 31 (2001) 2241-2244.
- 70. M. M. Hashemi, Y. A. Beni, J. Sci. I. R. Iran 9 (1998) 237-239.
- 71. A. Kamal, M. Ahmad, N. Mohd, A. M. Hamid, Bull. Chem. Soc. Jpn. 37 (1964) 610-612.
- 72. B. M. Choudary, V. L. K. Valli, A. Durga Prasad, Synth. Commun. 21 (1991) 2007-2013.
- 73. J. J. Vanden Eynde, R. D'Ozario, Y. Van Haverbeke, *Tetrahedron* **50** (1994) 2479-2484.
- 74. J. J. Vanden Eynde, F. Delfosse, A. Mayence, Y. Van Haverbeke, *Tetrahedron* **51** (1995) 6511-6516.
- I. Katsuyama, S. Ogawa, H. Nakamura, Y. Yamaguchi, K. Funabiki, M. Matsui, H. Muramatsu, K. Shibata, *Heterocycles* 48 (1998) 779-785.
- 76. A. Kuno, H. Sakai, M. Ohkubo, H. Takasugi, *Chem. Pharm. Bull.* **41** (1993) 156-162.
- 77. A. Kuno, H. Sakai, M. Ohkubo, H. Takasugi, Chem. Pharm. Bull. 41 (1993) 163-170.
- 78. S. H. Mashraqui, M. A. Karnik, *Tetrahedron Lett.* **39** (1998) 4896-4898.

- 80. J. Lu, Y. Bai, Z. Wang, B. Yang, W. Li, Synth. Commun. 31 (2001) 2625-2630.
- 81. M. F. Powell, J. C. Wu, T. C. Bruice, J. Am. Chem. Soc. 106 (1984) 3850-3856.
- S. Ašperger, D. Pavlović, I. Murati, A. Šustra, *Rad Jugosl. akd. znan. umjet., kem.*, 6 (1986) 1 8.
- 83. R. E. Misner, *Diss. Abstr.* **29B** (1969) 2817-2817.
- 84. N. Nakamichi, Y. Kawashita, M. Hayashi, Org. Lett. 4 (2002) 3955-3957.
- 85. S. H. Mashraqui, M. A. Karnik, Synthesis (1998) 713-714.
- 86. B. Khadilkar, S. Borkar, Synth. Commun. 28 (1998) 207-212.
- 87. M. Balogh, I. Hermecz, Z. Mészáros, P. Laszlo, Helv. Chim. Acta 67 (1984) 2270-2272.
- 88. G. Sabitha, G. S. Kiran Kumar Reddy, C. S. Reddy, N. Fatima, J. S. Yadav, *Synthesis* (2003) 1267-1271.
- 89. J. R. Pfister, Synthesis (1990) 689-690.
- 90. M. M. Hashemi, S. Balalaie, J. Sci. I. R. Iran 8 (1997) 161-163.
- 91. T. Kametani, K. Ogasawara, A. Kozuka, J. Pharm. Soc. Jap. 86 (1966) 815-822.
- 92. S. M. Jain, R. Kant, K. L. Dhar, S. Singh, G. B. Singh, Ind. J. Chem. 29B (1990) 277-279.
- 93. M. M. Hashemi, M. S. Zakeri, S. Arianfar, Iran. J. Chem. & Chem. Eng. 22 (2003) 9-11.
- 94. M. Litvić, M. Regović, K.Šmic, M. Lovrić, M. Filipan-Litvić, *Bioorg. Med. Chem. Lett.* 22 (2012) 3676-3681.
- 95. M. Filipan-Litvić, M. Litvić, I. Cepanec, V. Vinković, Arkivoc 11 (2008) 96-103.
- 96. D. D. Kumbhar, B.Y.Waghamare S.H. Pardeshi, *Res J Pharm BiolChemSci* **3** (2012) 1197-1207.
- 97. R. H. Böcker, F. P. Guengerich, J. Med. Chem. 29 (1986) 1596-1603.
- 98. E. Mohr, W. Schneider, J. Prakt. Chem. 69 (1904) 245-264.
- 99. M. Furdík, A. Gvozdjanová, Acta Fac. Rerum Natur. Univ. Comenianae Chim. (1964) 581-586.
- A. Kuno, Y. Sugiyama, K. Katsuta, T. Kamitani, H. Takasugi, *Chem. Pharm. Bull.* 40 (1992) 1452-1461.
- T. Shibanuma, M. Iwanami, M. Fujimoto, T. Takenaka, M. Murakami, *Chem. Pharm. Bull*, 28 (1980) 2609-2613.
- 102. L. Weidolf, K. J. Hoffman, S. Carlsson, K. O. Borg, Acta Pharm. Sue. 21 (1984) 209-222.
- 103. B. A. Vigante, Ya Ya Ozols, G. Ya Dubur, E. M. Belash, Ya I. Beilis, *Khim. Geterotsikl. Soed.* (1984) 170-176.
- 104. L. S. Geita, G. Y. Vanag, Zh. Obschch. Khim. 27 (1957) 1058-1060.

- 105. J. Kuthan, R. Bartoníčkova, Z. Chem. 4 (1964) 271-272.
- M. A. Zolfigol, F. Shirini, A. G. Choghamarani, I. Mohammadpoor-Baltork, *Phosphorus, Sulfur, and Silicon* 178 (2003) 1709-1715.
- 107. G. Ya Vanag, E. I. Stankevich, Zh. Obshch. Khim. 30 (1960) 3257-3261.
- M. A. Zolfigol, M. Kiany-Borazjani, M. M. Sadeghi, I. Mohammadpoor-Baltork, H. R. Memarian, *Synth. Commun.* 30 (2000) 551-558.
- K. Niknam, M. A. Zolfigol, S. M. Razavian, I. Mohammadpoor-Baltork, *Heterocycles* 65 (2005) 657-660.
- 110. M. Nikoorazm, Sci Iran 20 (2013) 603-606.
- T. Itoh, K. Nagata, Y. Matsuya, M. Miyazaki, A. Ohsawa, J. Org. Chem. 62 (1997) 3582-3585.
- M. A. Zolfigol, M. H. Zebarjadian, M. M. Sadegh, I. Mohammadpoor-Baltork, H. R. Memarian, M. Shamsipur, *Synth. Commun.* **31** (2001) 929-934.
- 113. K. Wallenfels, W. Hanstein, Angew. Chem., Int. Ed. Engl. 4 (1965) 869-870.
- 114. N. Gangadhar, Ch. H. Kumar, G. L. D. Krupadanam, Ind. J. Chem. 38B (1999) 87-89.
- 115. A. I. Arbuzov, Bull. Acad. Sci. USSR, Classe Sci. Chim. (1945) 451-455.
- 116. K. Hussain, D. Wadhwa, Int. J. Org. Chem. 4 (2014) 174-181.
- M. Abdoli-Senejani, N. Foruzan, M. Bahmani, T. Momeni Isfahani, S. Dustepour, *Iran. Chem. Commun.* 4 (2016) 309-317.
- 118. M. E. Ortiz, L. J. Núñez-Vergara, J. A. Squella, *Pharmaceutical Res.* 20 (2003) 292-296.
- M. Nasr-Esfahani, M. Montazerozohori, R. Raeatikia, *Maejo Int. J. Sci. Technol.* 8 (2014) 32-40.
- 120. D. L. Comins, S. O'Connor, Adv. Heterocycl. Chem. 44 (1988) 199-267.
- 121. J. S. Yadav, B. S. Reddy, G. Sabitha, G. S. K. K. Reddy, Synthesis (2000) 1532-1534.
- 122. M. M. Hashemi, Y. Ahmadibeni, H. Ghafuri, Monatsh. Chem. 134 (2003) 107-110.
- 123. M. Filipan Litvić, M. Litvić, V. Vinković, Tetrahedron 64 (2008) 5649-5656.
- 124. M. M. M. Sadeghi, H. R. Memarian, A. R. Momeni, J. Sci. I. R. Iran 12 (2001) 141-143.
- 125. D.-P. Cheng, Z.-C. Chen, Synth. Commun. 32 (2002) 793-798.
- 126. P. Kumar, J. Heterocycl. Chem. 47 (2010) 1429-1433.
- 127. J.-W. Lee, K.-Y. Ko, Bull. Korean Chem. Soc. 25 (2004) 19-20.
- 128. K.-H. Lee, K.-Y. Ko, Bull. Korean Chem. Soc. 23 (2002) 1505-1506.
- 129. X.-hua Cai, H.-jun Yang, G.-lin Zhang, Can. J. Chem. 83 (2005) 273-275.
- 130. M.-Z. Jin, L. Yang, L.-M. Wu, Y.-C. Liu, Z.-L. Liu, Chem. Commun. (1998) 2451-2452.
- 131. X. Wei, L. Wang, W. Jia, S. Du, L. Wu, Q. Liu, Chin. J. Chem 32 (2014) 1245-1250.
- 132. B. Love, K. M. Snader, J. Org. Chem. 30 (1965) 1914-1916.

- 133. S. Fukuzumi, Y. Kondo, T. Tanaka, J. Chem. Soc. Perkin Trans II (1984) 673-679.
- L.-Y. Chen, S.-R. Li, P.-Y. Chen, H.-C. Chang, T.-P. Wang, I.-L. Tsai, E.-C. Wang, *Arkivoc* 11 (2010) 64-76.
- 135. R. S. Mulliken, J. Am. Chem. Soc. 74 (1952) 811–813.
- 136. R. S. Mulliken, Recl. Trav. Chim. Pays-Bas 57 (1956) 845-852.
- 137. A. R. Lepely, J. Am. Chem. Soc. 84 (1962) 3577–3582.
- A. Föhlisch, P. Feulner, F. Hennies, A. Fink, D. Menzel, A. Sanchez-Portal, P. M. Echenique,
 W. Wurth, *Nature* 436 (2005) 373-376.
- 139. H. S. Bazzi, A. Mostafa, S. Y. AlQaradawi, E.-M. Nour, J. Mol. Struct. 842 (2007) 1-5.
- 140. A. Fakhro, H. S. Bazzi, A. Mostafa, L. Shahada, J. Mol. Struct. 973 (2010) 9-17.
- 141. S. Mostafa, M. El-Sadek, E. A. Alla, J. Pharm. Biomed. Anal. 27 (2002) 133-142.
- 142. I. A. Darwish, Analytica Chimica Acta 549 (2005) 212-220
- 143. W. Liptay, G. Briegleb, K. Schindler, Z. Elektrochem 66 (1962) 331.
- 144. P. Müller, D. Joly, Helv. Chim. Acta 66 (1983) 1110–1118.
- 145. J. K. Kochi, Pure & Appl. Chem 63 (1991) 255-264.
- 146. <u>http://chemwiki.ucdavis.edu/Physical Chemistry/Spectroscopy/</u> <u>Electronic Spectroscopy/Selection Rules for Electronic Spectra of Transition</u> <u>Metal Complexes/Metal to Ligand and Ligand to Metal Charge Transfer Bands (preuzeto 11. ožujka 2015.)</u>
- 147 S. Çakir, E. Biçer, *Turk J Chem* **31** (2007) 223-231.
- 148. <u>https://en.wikipedia.org/wiki/Electron_paramagnetic_resonance</u> (preuzeto 11. ožujka 2015.)
- 149. L. Bolojan, Characterization of free radicals in biomedical and biopharmaceutical systems, PhD Thesis (2012)
- L. J. Nunez-Vergara, J. C. Sturm, A. Alvarez-Lueje, C. Olea-Azar, C. Sunkel, J. A. Squella, J. Electrochem. Soc. 146 (1999) 1478-1485.
- 151. L.-M. Wu, W. Chen, Z.-L. Liu, Res. Chem. Intermed 27 (2001) 219 -224.
- 152. <u>http://joule.qfa.uam.es/epr/tutorial_uk/5_1_6Cycloheptatrienyl_neut.html</u> (preuzeto 23. lipnja 2015. godine)
- 153. A. Carrington, I.C.P. Smith, Mol. Phys. (1964) 99-100.
- 154. <u>http://www.chm.bris.ac.uk/motm/triphenylmethyl/dimer1.html</u> (preuzeto 23. lipnja 2015. godine)
- 155. S. Fukuzumi, T. Kitano, M. Ishikawa, J. Am. Chem. Soc 112 (1990) 5631 -5632.
- A. S. Morkovnik, A. N. Suslov, E. S. Klimov, Z. S. Morkovnik, O. Yu. Okhlobystin, *Chem. Heterocycl. Compd.* 31 (1995) 563-566.
- 157. G.Grampp, S. Landgraf and K. Rasmussen, J. Chem. Soc., Perkin Trans 2 (1999) 1897-1899.

- N.E.Polyakov, V. V. Konovalov, T. V. Leshina, O. A. Luzina, N. F. Salakhutdinov, T. A. Konovalova, L D. Kispert, *J. Photochem. Photobiol. A: Chem.* 141 (2001) 117-126.
- 159. W. D. Phillips, J. C. Rowell, S. I. Weisman, J. Chem. Phys. 33 (1960) 626-627
- Complexes of tetracyanoethylene with substituted pyridines by Richard don Gooujn, B. S., A thesis in chemistry for the degree of Master of Science
- 161. P. D. Morse, *Biophys. J.* **51** (1987) A440.
- 162. S. Stoll, A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. *J. Magn Reson* **178** (2006) 42.
- 163. M. Litvić, M. Filipan, I. Pogorelić, I. Cepanec, Green Chem, 7 (2005) 771-774.
- 164. O. Augusto, H. S. Beilan, P. R. Ortiz de Montellano, J. Biol. Chem. 257 (1982) 11288-11295.
- 165. L. Eberson, *Acta Chemica Scandinavica* **53** (1999) 584-593.
- C. Rota, L. Liverani, F. Spelta, G. Mascellani, A. Tomasi, A. Iannone, E. Vismara, *Anal. Biochem.* 344 (2005) 193-203.
- 167. J. S. Miller, P. J. Krusic, D. A. Dixon, W. M. Reiff, J. H. Zhang, E. C. Anderson, A. J. Epstein, J. Am. Chem. Soc 108 (1986) 4459-4466
- 168. U. M. Rabie, M. H. Abou-El-Wafa, H. Nassar, Spectrochim Acta 79A (2011) 1411-1417.
- S. Fukuzumi, Y. Tokuda, T. Kitano, T. Okamoto i J. Otera, J. Am. Chem. Soc 115 (1993) 8960-8968
- 170. X-Q. Zhu, Y. Liu, B-J. Zhao, J. P. Cheng, J. Org. Chem 66 (2001) 370-375.
- 171. J. P. Cheng, Y. Lu, X-Q. Zhu, L. Mu, J. Org. Chem 63 (1998) 6108-6114.

§8. ŽIVOTOPIS

OSOBNE INFORMACIJE

Ime i prezime:	Maja Regović		
Datum rođenja:	02.12.1984		
Mjesto rođenja:	Koprivnica, Hrvatska		
Email:	maja.regovic@belupo.hr		
Tel.	091 5598 747		

OBRAZOVANJE

2009 danas	Prirodoslovno-matematički fakultet, Poslijediplomski sveučilišni
	(doktorski) studij Kemija, Sveučilište u Zagrebu
2003. – 2007.	Kemijski odsjek, Prirodoslovno-matematički fakultet,
	Sveučilište u Zagrebu
	smjer: dipl. ing. kemije
1999. – 2003.	Opća Gimnazija u Đurđevcu

RADNO ISKUSTVO

2016 danas	Belupo d.d., Kontrola kvalitete, Odjel za stabilnost
2009 2016.	Belupo d.d., Sektor Istraživanje i razvoj, Odjel za stabilnost
2008 2009.	Belupo d.d., Sektor Istraživanje i razvoj, Odjel istraživanja

ČLANSTVO U DRUŠTVIMA

2015 danas	Društvo ke	emičara i	i tehnologa	Kopriv	nica
------------	------------	-----------	-------------	--------	------

DODATNE INFORMACIJE

Popis publikacija: M. Litvić, M. Regović, K. Šmic, M. Lovrić, M. Filipan-Litvić
 Remarkably fast and selective aromatization of Hantzsch esters with MoOCl₄ and MoCl₅: A chemical model for possible biologically relevant properties of molybdenum-containing enzymes, *Bioorg. Med. Chem. Lett.* 22 (2012) 3676-3681

Priopćenja na M. Litvić, M. Filipan-Litvić, M. Regović, M. Glavanović, I. znanstvenim skupovima: Večenaj, K. Mlinarić, D. Lesjak, V. Vinković, Z. Mikuldaš Ladišić, Utjecaj kompleksa s prijenosom naboja na količinu produkata dealkilacije tijekom aromatizacije supstituiranih 4-alkil-1,4-dihidropiridina, XXI. Hrvatski skup kemičara i kemijskih inženjera, Zagreb, 2009, Knjiga sažetaka, str. 114.

M. Litvić, I. Večenaj, Z. Mikuldaš Ladišić, D. Lesjak, K. Mlinarić, M. Regović, M. Glavanović, M. Filipan-Litvić, V. Vinković, Aluminijev tetrafluoroborat kao jaka i selektivna Lewisova kiselina u organskoj sintezi: jednostavna i efikasna priprava dihidropirimidinona Biginellijevom reakcijom, *XXI. Hrvatski skup kemičara i kemijskih inženjera*, Zagreb, 2009, Knjiga sažetaka, str. 115.

Nagrade: Medalja Kemijskog odsjeka PMF-a zbog izvrsnog uspjeha tijekom studija