Optička svojstva dihalkogenida prijelaznih metala

Jadriško, Valentino

Master's thesis / Diplomski rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:516694

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-01

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

Valentino Jadriško

OPTIČKA SVOJSTVA DIHALKOGENIDA PRIJELAZNIH METALA

Diplomski rad

Zagreb, 2017

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK

SMJER: ISTRAŽIVAČKI

Valentino Jadriško

Diplomski rad

Optička svojstva dihalkogenida prijelaznih metala

Voditelj diplomskog rada: Dr. sc. Nataša Vujičić

Ocjena diplomskog rada: _____

Povjerenstvo: 1. _____

2. _____

3. _____

Datum polaganja: _____

Zagreb,2017

Posebno se zahvaljujem svojoj mentorici dr. sc. Nataši Vujičić koja me vodila kroz ovaj diplomski rad svojim savjetima, znanjem i podrškom uz ugodnu radnu okolinu. Uvijek je rado saslušala sva moja pitanja i ideje i time me dodatno poticala da dajem sve od sebe.

Zahvaljujem se ravnatelju Instituta za fiziku dr. sc. Marku Kralju koji mi je omogućio znanstvene posjete u sklopu ovog diplomskog rada na kojima sam stekao dodatno iskustvo i znanje koje mi je uvelike pomoglo u dovršetku ovog rada. Također, hvala mojim kolegama iz ureda B. Pieliću i B. Radatoviću koje sam svakodnevno ispitivao te kolegama D. Čapeti, I. Delač-Marion na njihovim cijenjenim savjetima.

Hvala L. Moretti, C. Gadermaier, D. Vella i C. D'Andrea na pruženoj mogućnosti mjerenja vremenske razlučive fotoluminiscencije na Italian Institute of Technology u Milanu.

Zahvaljujem se dr. sc. Zoranu Barcu na argumentima za upis ovog fakulteta, bez kojih nebih uspio uvjerit roditelje i sebe da je to prava odluka.

Na kraju najveća zahvale mojoj majci Ivanci na cjeloživotnoj podršci i obilnim večerama po izboru te ocu Tomislavu na usađenoj ljubavi prema eksperimentalnom radu i podršci.

Sažetak

Nakon otkrića prvog dvodimenzionalnog materijala grafena 2004. godine uslijedio je rast zanimanja fizikalne zajednici o 2D materijala. Ubrzo nakon izolirani su i drugi 2D materijali sa sličnom van der Waals slojevitom strukturom. Neki od njih su i intrinzični poluvodiči poput MoS₂ te u svom jednoslojnom obliku predstavlja jednu od mogućih opcija kao zamjena za silicijske tranzistore koji dostižu teorije granice tehnološkog razvoja. Jednosloj MoS₂ je poluvodič s direktnim energetskim procjepom, dok je u višeslojnom i cjelovitom obliku poluvodič indirektnog energetskog procjepa. Zbog efekata zasjenjenja i kvantnog zatočenja u jednosloju MoS₂ energije vezanja kvazičestica (ekscitona i triona) je puno veća nego u cjelovitom obliku, što nam omogućava njihovo opažanje na sobnoj temperaturi u spektrima fotoluminiscencije i apsorpcije. Eksciton se sastoji od jako vezanog para elektronšupljina, dok trion može biti pozitivan (vezano stanje ekscitona i šupljine) i negativan (vezano stanje ekscitona i elektrona). U ovom diplomskom radu sam koristio eksperimentalni postav Raman spektrometar na Institutu za fiziku u Zagrebu te eksperimentalni postav vremenski razlučive fotoluminiscencije na Italian Institute of Technology u Milanu. Uzorci MoS₂ su naraštani CVD metodom na Institutu za fiziku u Zagrebu, te su dobiveni jednosloji i dvosloji na SiO₂/Si podlozi, dodatno su karakterizani jednosloji MoS₂ transferirani na čistu SiO₂/Si podlogu. U spektru fotoluminiscencije 2D MoS₂ opažamo ekscitone A i B te pri dopiranim uzorcima pojavljuju se i trioni. U ovom radu ispituje se ovisnost spektra fotoluminiscencije o fotoinduciranom dopiranju koje smo postizali povećanjem snage lasera valne duljine 532 nm u rasponu od 1 μ W do 500 μ W. Primjetili smo pri velikim snagama lasera odnosno jakom fotodopiranju dominaciju triona u spektru fotoluminiscencije te pri niskim snagama lasera i slabom dopiranju uzorka MoS2 slabljenje trionskog potpisa u spektru i veću zastupljenost eksictona. Opaženi rezultati i ovisnost ekscitona i triona u spektru fotoluminiscencije o fotodopiranju su u skladu sa rezultatima električnog i kemijskog dopiranja. Kako bi ispitali dinamiku fotodopiranja i ovisnost populacija ekscitona A i triona A⁻ u vremenu koristili smo vremenski razlučivu fotoluminiscenciju.

Optical properties of Transition Metal Dichalcogenides

Abstract

After the discovery of first two dimensional material graphene in 2004., interest of scientific community about 2D materials started to grow. Soon after other 2D materials have been isolated with similar van der Waarls layered structure. Some of them are intrinsic seminconductors, for instance MoS_2 which in his monolayer form is one of suitable replacement for silicon based transistors which are coming to their theoretical limits of technological development. Monolayer MoS₂ is a semiconductor with direct band gap, but in the form of multilayers and bulk it is indirect band gap semiconductor. Because of the effects of screening and quantum confinement in monolayer MoS₂binding energy of quasiparticles as excitons and trions is much bigger than in bulk form, which enables us to observe them in photoluminiscence and absorption spectra at room temperature. Excitons are made of tightly bound electron hole pairs, whereas trions can be positive (bound exciton hole pair) and negative (bound exciton electron pair). In this diploma thesis I have used experimental setup Raman spectrometer on the Institute of Physics in Zagreb and time resolved photoluminiscence on Italian Institute of Technology in Milan. Samples of monolayer and bilayer MoS₂were grown by method of chemical vapor deposition, additionaly we characterized transfered MoS₂ monolayers on SiO₂/Si substrate. In the photoluminiscence spectrum of 2D MoS₂ we observe excitons A and B, under increased doping new features emerges in spectrum which we identified as trions. In this thesis we investigated dependence of photoluminiscence spectrum on photo doping which we accomplished by tuning the laser power from 1 μ W to 500 μ W with 532 nm wavelength. Under high laser powers and photo doping we observed domination of trions in photoluminiscence spectra and under low laser powers and phot doping excitons are dominant in photoluminiscence spectra. Observed results and dependence of exciton and trion population on photo doping are in corespondence with the published results of electrical and chemical doping. In order to investigate dynamics of photo doping and dependence of exciton and trion populations in time we used time resolved photoluminiscence.

Sadržaj

Sa	Sadržaj 4						
1	Uvod						
	1.1	Motiva	acija	1			
	1.2	Pregle	d dihalkogenida prijelaznih metala	2			
	1.3	Kristal	na struktura MoS_2	7			
	1.4	Elektro	onska struktura	9			
	1.5	Vibracije rešetke					
	1.6	Optička svojstva					
		1.6.1	Ekscitoni	13			
		1.6.2	Trioni	14			
		1.6.3	Elektronsko dopiranje	16			
		1.6.4	Kemijsko dopiranje	18			
2	Eksperimentalni postav 1						
	2.1	Pripre	ma uzoraka	19			
		2.1.1	Kemijsko taloženje iz plinske faze (CVD)	19			
		2.1.2	Sinteza CVD MoS_2	19			
		2.1.3	Transfer MoS_2	21			
	2.2	Raman spekrometar 2					
	2.3	Vreme	nski razlučiva fotoluminiscencija (TRPL)	24			
		2.3.1	Streak kamera	24			
3	Rez	Rezultati 2					
	3.1	Karakterizacija uzoraka optičkom mikroskopijom, Raman spektrosko-					
		pijom	i mikroskopijom atomskom silom (AFM)	26			
	3.2	Utjeca	j fotodopiranja na optički odziv MoS_2	29			
		3.2.1	Utjecaj fotodopiranja na jednoslojni naraštani MoS_2	30			
		3.2.2	Utjecaj fotodopiranja na dvoslojni naraštani MoS_2	36			
		3.2.3	Utjecaj fotodopiranja na jednoslojni MoS ₂ trasnferiran na SiO ₂ /Si	11			
	22	Icnitiv	ania dinamika fotodonirania u jodnosloju MoS-	41			
	5.5	2 2 1	Karaktorizacija spektralnog odziva	4/			
		337 227	Karakterizacija vremenskog odziva	+0 ธา			
		5.5.4	Natakietizacija viciliciiskuz uuziva	32			
4	Zaključak						
Bi	Bibliografija 5						

1 Uvod

1.1 Motivacija

Nakon otkrića grafena 2004. godine od strane Geima i Novoselova, počinje novo doba 2D materijala. Grafen je bio prvi stabilni 2D materijal, čime se opovrgnula do tada opće uvriježena teorija Landau i Pierlsa da su 2D materijali nestabilni zbog termičkih fluktuacija [1]. Zatočenje elektrona u vertikalnoj dimenziji vodi do novih iznimnih svojstava grafena. Grafen ima mnoga zanimljiva i poželjna svojstva, poput visoke mobilnosti, čvrstoće, transparentnosti i konstantne apsorpcije u cijelom EM spektru [2], međutim zbog najvećeg mogućeg optičkog procjepa od maksimalno 250 meV [3] nije primjeren za primjenu u elektronici i optoelektronici. Prošlih pola stoljeća obilježilo je tehnološka revolucija razvojem elektronike na bazi silicija koje koristimo u svakodnevnom životu; računala, komunikacija, optoelektronika, fotovoltaici i senzori. Svi današnji uređaji se zasnivaju na radu silicijskih tranzistora. Prema Mooreovu zakonu [4][5], u narednih pet godina daljnja minijaturizacija u tehnologiji izrade silicijskih tranzistora dovesti će do efekta kvantnog tuneliranja koji je nepoželjan, jer će onemogućiti njihov rad. To će dovesti do ograničenja broja tranzistora u čipovima, a i time onemogućiti daljnji razvitak bržih čipova i naprednijih elektroničkih uređaja. Kao zamjena za silicij, ispituju se drugi poluvodički materijali, od kojih su posebno zanimljivi poluvodički materijali iz porodice dvodimenzionalnih (2D) materijala, poput grafena, dihalkogenida prijelaznih metala (eng. transition metal dichalcogenides - TMD), heksagonalni borov-nitrid (h-BN), crni fosfor, siliceni i sl. Međutim, grafen je samo jedan od brojnih mogućih 2D materijala. Broj mogućih kombinacija 2D materijala je velik i prikazan je na slici 1.1. Među njima veliki interes su privukli upravo jednoslojevi dihalkogenida prijelaznih metala, koji mogu imati široki spektar optičkih i elektroničkih svojstava, za razliku od grafena koji je poluvodič nultog procjepa, TMD jednoslojevi mogu imati ovisno o kombinaciji prijelaznog metala i halkogenog atoma različita električna svojstva; poluvodička, polumetalna, metalna, valovi gustoće naboja (eng. charge density waves - CDW) i supravodička. Najzanimljiviji su MoS₂, WS₂, MoSe₂ i WSe₂ koji su zbog svojih svojstava privukli pažnju velikog broja istraživača kao što se vidi iz slike 1.2. TMD jednosloevi sačinjeni od prijelaznih metala Mo i W su poluvodiči s direktnim energetskim procjepom 1-2 eV u vidljivom i IR djelu elektromagnetnog spektra te time prikladni za primjenu u elektroničkim i optoelektroničkim uređajima. MoS₂ je od svih TMD jednoslojeva najviše izučavan materijal, pokazao se kao obećavajući kandidat za zamjenu silicijskih tranzistora u daljnjem smanjivanju proizvodnih procesa [6] samih tranzistora s efektom polja (eng. FET). Atomska debljina od 0.6 nm i veliki energetski procjep jednosloja TMD čine ih dobrim kandidatima za uporabu u FET geometriji s minimalnim negativnim efektima kratkog kanala (eng. short channel effects) i malih energetskih gubitaka [7]. TMD-i pružaju mogućnosti fleksibilne obrade i jednostavne izrade[8]

Slika 1.1: Prikaz mogućih kombinacija 2D materijala zajedno s njihovom morfologijom (lateralnim dimenzijama i debljinom). Preuzeto iz [11].

u kombinaciji s jakom interakcijom svjetla i materije te širokim optičkim apsorpcijskim spektrom u vidljivom djelu elektromagnetnog spektra, (10%) [9][10], time čine dobre kandidate za primjenu u optoelektronici, fotovoltaicima i fotonici. Prije same komercijalne primjene TMD u elektronici i optoelektronici treba savladati još puno prepreka te iz tog razloga su potrebna daljnja istraživanja na tom polju.

Optičkim pobuđivanjem spomenutih i ostalih poluvodiča nastaju ekscitoni, elektron-šupljina vezani parovi. Nabijene čestice u ekscitonima su vezane Coulombovom interakcijom, energija vezanja tih čestica je nekoliko stotina meV [13] u jednoslojnim TMD. Razlog tako velike energije vezanja leži u efektima kvantnog zarobljavanja i smanjenog dielektričnog zasjenjenja. Velika energija vezanja ekscitona čini jednoslojne TMD idealnim za proučavanje ekscitonske fizike čak i na sobnim temperaturama[14]. Daljnja istraživanja na tu temu otkrila su postojanje i drugih kvazičestica, triona i biekscitona[15][16]. Trioni su nabijeni ekscitoni, mogu biti pozitivni ili negativni, time predstavljaju tročestična pobuđenja, dok su biekscitoni kvazičestice od 2 ekscitona. Velika energija vezanja kvazičestica ih čini idealnim za proučavanjem višečestične fizike, te otvara vrata za primjenu triona za električni transport energije apsorbirane svjetlosti na sobnoj temperaturi ili stvaranje visokotemperaturnih i gustih koherentnih ekscitonskih kvantnih stanja.

1.2 Pregled dihalkogenida prijelaznih metala

TMD su klasa materijala kemijske formule MX_2 , gdje M predstavlja prijelazni metal (npr. Mo, W, Nb, Ta, Re), a X je halkogeni element (npr. S, Se, Te), vidi sliku 1.3.

Slika 1.2: Broj publikacija objavljenih na temu nekoliko vrsta 2D materijala u zadnjih nekoliko godina. Podaci su nastali pretraživanjem baze ISI Web of Science, prema ključnim riječima koja sadrže ime svakog pojedinog materijala. Pune linije označavaju eksponencijalne funkcije. Preuzeto iz [12].

TMD materijali spadaju pod skupinu slojevitih van der Waals materijala te najpoznatiji predstavnik TMD materijala je MoS₂. Jednoslojni TMD, se sastoji od 1 atomskog sloja prijelaznog metala koji se nalazi u sendviču 2 atomska sloja halkogenih atoma s kojima je povezan jakom kovalentnom vezom, kao što je prikazano na slici 1.4a). Cjeloviti oblik TMD sastoji se prethodno opisanih X-M-X slojeva međusobno povezanih van der Waalsovim silama.

Za razliku od grafena koji je poluvodič nultog energetskog procjepa (polumetal), nekoliko 2D TMD materijala imaju otvoreni energetski procjep 1-2 eV, to ih čini potencijalnom platformom za primjenu u tranzistorima s efektom polja (eng. FET) [6], digitalnim satovima [18] i u optoelektroničkim uređajima [19]. U Tablici 1.1 su prikazana elektronska svojstva pojedinih 2D TMD materijala, nama zanimljivi je MoS_2 s direktnim energetskim procjepom od ~1.8 eV [20], međutim postoje i drugi TMD s egzotičnim svojstvima kao što su supravodljivost i valovi gustoće naboja [17][21].

Znanja fundamentalne fizike, primjene i obrade prikupljena u znanstvenoj zajednici prilikom istraživanja grafena uvelike su prenesena na 2D TMD materijale što je omogućilo brzi razvoj istraživanja baziranih na 2D TMD materijalima. Kako bi 2D TMD materijali ušli u komercijalnu upotrebu potrebno je razviti odgovarajuću metodu proizvodnje. Metodom mehaničke eksfolijacije izoliran je i prvi 2D materijal grafen te je upravo ta tehnika također prva korištena pri dobivanju 2D TMD materi-

Slika 1.3: Postoji oko 40 slojevitih TMD-a. Neki prijelazni metali su polovično osvijetljeni (Co, Rh, Ir, Ni), jer samo neke od njihovih kombinacija sa halkogenim atomom rezultiraju sa slojevitim materijalom. Preuzeto iz [17].

Slika 1.4: a) Shematski prikaz MX_2 strukture gdje je su halkogeni atomi X žuti i metalni atomi M crni. b) Optička slika mehanički eksfoliranog jednosloja MoS_2 na Si/SiO₂ s debljinom oksida od 270 nm. Slike preuzete iz [6].

MX ₂	-S ₂	-Se ₂	-Te ₂
Mo	Poluvodič	Poluvodič	Poluvodič
W	Poluvodič	Poluvodič	Poluvodič
Nb	Metal, supravodič, CDW	Metal, supravodič, CDW	Metal

Tablica 1.1: Elektroničke karakteristike različitih slojevitih TMD materijala klasificirani kao poluvodič, metal, supravodič i valovi gustoće naboja (eng. Charge density wave - CDW). Preuzeto iz [8].

Slika 1.5: a) Shematska ilustracija procesa eksfolijacije nekoliko slojeva tankih materijala putem centrifugalne kaskade. b) Slika MoS₂ dobivenog tekućom eksfolijacijom snimljenog transmisijskim elektronskim mikroskopom (TEM). Slika a) je preuzeta iz [26], b) je preuzeto iz [27].

jala. Jednoslojni TMD se mogu izolirati iz njihovih cjelovitih kristala putem mikromehaničkog odvajanja ljepljivom trakom [6, 20, 14, 22, 23]. Metoda mehaničke eksfolijacije nam omogućava jednostavno dobivanje monokristalnih fleka visoke čistoće TMD materijala koja su pogodna za fundamentalna istraživanja, međutim ona ne omogućava kontrolu debljine i veličine samog eksfoliranog materijala te time, kao metoda proizvodnje uzoraka, nije pogodna za komercijalnu upotrebu gdje je potrebna skalabilnost, pouzdanost i niska cijene proizvodnje. Obično se takvi eksfolirani uzorci nanose na podlogu od SiO₂/Si pri čemu je debljina oksidnog sloja od 270 nm idealna za optičku analizu fleka TMD-a putem interferencije [24, 25], kao što je prikazano na slici 1.4b).

Tehnikom kemijskog taloženja iz plinske faze (eng. chemical vapor deposition - CVD) moguće je prouzvesti kvalitetne monokristale u kontroliranim uvjetima rasta. Upravo ovu tehniku koristimo za sintezu uzoraka u ovom diplomskom radu te će o njoj biti više riječi u poglavlju Eksperimentalni postav.

Metoda eksfolijacije materijala u cjelovitom obliku (prahu) ultrazvukom u organskim otapalima, vodenim otopinama surfaktanata ili otopinama polimera u otapalima [28, 29] omogućava dobivanje fleka nekoliko stotina nanometara veličine, kao što se vidi na slici 1.5b). Nakon opsežne studije grupe dr. sc. J. Colemana [27] o eksfolijaciji slojevitih materijala kojom se pokazala mogućnost eksfolijacije ultrazvukom u organskim otapalima bez korištenja interkaliranih iona i kvantificiranja energije potrebne za eksfolijaciju slojevitih kristala iz površinske energije uslijedila su istraživanja koja su dokazala mogućnost kontroliranja parametara u procesu eksfolijacije ultrazvukom kako bi se postigle željene debljine, veličine i koncentracije nanoplahti 2D TMD materijala [30]. Putem centrifugalne kaskade, vidi sliku 1.5 a), uspijeli su dobiti i do 75% sadržaj jednosloja WS₂ u otopinama [26], što otvara vrata jeftinoj proizvodnji savitljive elektronike.

Slika 1.6: a) Shematski prikaz različitih politipova MoS₂. 2H politip sadrži 2 sloja po jedinici ponavljanja, ima heksagonalnu simetriju i trigonalno prizmatičnu koordinaciju. 3R politip sadrži 3 sloja po jedinici ponavljanja, ima romboedarsku simetriju i trigonalno prizmatičnu koordinaciju. 1T politip sadrži 1 sloj po jedinici ponavljanja, ima tetragonalnu simetriju i oktaedarnu koordinaciju. Vertikalni razmak između slojeva iznosi ~6.15 Å te konstanta rešetke 3.16 Å. b) Prikaz u ravnini jednosloja MoS₂ s trigonalno prizmatičnom koordinacijom. c) Prikaz u ravnini jednosloja MoS₂ s oktaedarnom koordinacijom. d) Slika jednosloja MoS₂ s politipovima 2H i 1T snimljena transmisijskim elektronskim mikroskopom. Preuzeto iz [8, 17, 31, 32]

1.3 Kristalna struktura MoS₂

Kristalna struktura cjelovitog MoS₂ je otkrivena korištenjem x-ray difrakcije kojom je ustanovljeno da MoS₂ tvori heksagonalnu rešetku [33]. Cjeloviti MoS₂ se sastoji od S-Mo-S slojeva koji su međusobno slabo vezani van der Waals silama, takav jedan stabilan sloj (jednosloj MoS₂) sastoji se od dvije heksagonalne ravnine S atoma i heksagonalnom ravninom Mo atoma između, konstanta obje rešetke je a=3.16 Å. Cjeloviti kristal MoS₂ pronalazimo različitim politipovima 2H, 3R i 1T slabo vezanih susjednih slojeva van der Waalsovom silom, vidi sliku 1.6a). Slova u imenima politipova 2H, 3R, i 1T označavaju jediničnu ćeliju: heksagonalnu, romboedarsku i tetragonalnu, dok brojevi označavaju broj slojeva po jedinici ponavljanja. Metalna koordinacija slojevitih TMD materijala, time i MoS₂, može biti trigonalno prizmatična ili oktaedarno polimorfna. Za trigonalno prizmatičnu pronalazimo 2H i 3R politipove slika 1.6b), dok za oktaedarnu samo jedan politip 1T slika 1.6c). Cjeloviti oblik MoS₂ može se pojaviti u sva 3 politipa, odnosno 3 različita načina, u ovisnosti o povijesti nastanka. Prirodni MoS₂ se pojavljuje u 2H politipu u kojoj se slojevi slažu AbA BaB (velika slova označavaju halkogeni atom, dok mala slova predstavljaju atom prijelaznog metala), dok se sintetički dobiveni MoS₂ pojavljuje u 3R politipu s redoslijedom slaganja AbA CaC BcB [34]. Politip 2H sadrži S-Mo-S slojeve u kojima je Mo atom kovalentno vezan s 6 sumporovih atoma u heksagonalnoj simetriji, vidi sliku 1.7a), s dva sloja po jedinici ponavljanja i trigonalnoj prizmatičnoj koordinaciji. Politip 3R također spada u prostornu grupu D_{3h} trigonalno prizmatične koordinacije s romboedarskom simetrijom gdje su 3 sloja po jedinici ponavljanja, dok politip 1T ima oktaedarnu koordinaciju (O_h) s 1 slojem po jedinici ponavljanja u tetragonalnoj simetriji. U granici jednosloja TMD-a, odnosno MoS₂, pojavljuju se samo politipovi 2H i 1T, dok je 3R rijetko prisutan i prilikom grijanja transformira se u 2H [35]. Najstabilniji politip je 2H koji je intrinzični poluvodič, dok je 1T metastabilan i ima metalno ponašanje. Spomenuti kristalni politipovi mogu se razlikovati pomoću nekoliko tehnika, jedna od njih je i pomoću transmisijske elektronske mikroskopije (eng. transmission electron microscopy - TEM) vidi sliku 1.6d).

Atomi prijelaznih metala predaju 4 elektrona valentnoj ljusci halkogenih atoma, oksidacijski broj prijelaznog metala je +4 i halkogenog atoma +2, time je omjer halkogenih atoma i atoma prijelaznih metala u spoju 2:1. Posljedica toga je odsustvo slobodnih veza (eng. dangling bonds) zbog kojeg je spoj stabilan i inertan. Udaljenost M-M u TMD materijalima je između 3.15 Å i 4.03 Å, što je 15% - 20% dulje nego udaljenosti u elementarnim čvrstim stanjima prijelaznih metala, ušto upućuje na ograničenu energetsko i prostorno preklapanje d orbitala TMD spojeva[17].

Kristalne strukture materijala mogu se opisati Bravaisovim rešetkima s pripadnim Wigner-Seitz primitivnim ćelijama. Recipročna rešetka je Fourierov transformat direktne rešetke te je bitna za proučavanje periodičkih struktura. Brillouinova zona je Wigner-Seitzova ćelija u recipročnom prostoru. Rješenja Blochove valne funkcije za periodički sustav su potpuno karakterizirana ponašanjem u prvoj Brillouino-

Slika 1.7: Kristalna struktura i Brillouinove zone jednosloja i 2H oblika MoS₂. a) Model kristalne strukture jednosloja MoS₂ načinjen od štapića i kuglica. Pogled odozgo. b) Bočni pogled jednosloja 1H i c) 2H oblika MoS₂. Iscrtkane linije predstavljaju jedninične ćelije. Plave kuglice su molibden atomi, a crvene sumpor. Narančasti vektori predstavljaju vektore rešetke, a zeleni okomite osi direktnog prostora. c) Prva Brillouinova zona 2H oblika MoS₂. Heksagonalna ravnina s točkama $\overline{\Gamma}$, \overline{M} , \overline{K} , $\overline{K'}$ predstavlja odgovarajuću 2D projekciju Brillouinove zone. Preuzeto iz [36].

voj zoni, slika 1.7d), te nam njeno proučavanje eksperimentalnim tehnikama pruža uvid u elektronsku strukturu materijala. Pri opisu prve Brillouinove zone koristimo točke visoke simetrije koje su za heksagonalnu rešetku: Γ središte Brillouinove zone, A središte heksagonalne stranice, H vrh heksagonalne stranice, K sredina ruba koji spaja dvije pravokutne stranice, L sredina ruba koji spaja heksagonalnu i pravokutnu stranicu, M središte pravokutne stranice. Heksagonalna 3D jedinična ćelija sadrži 6 atoma, dok 2D sadrži 3 atoma, vidi sliku 1.7b) i c). Heksagonalna rešetka u direktnom prostoru se transformira u heksagonalnu rešetku u recipročnom prostoru rotiranjem za 30°u odnosu na heksagonalnu rešetku u direktnom prostoru.

1.4 Elektronska struktura

Cjeloviti oblik MoS₂ je dijamagnetični poluvodič s indirektnim energetskim procjepom u iznosu od 1,2 eV. Na slici 1.8a) [8] prikazana je izračunata elektronska struktura za jednosloj, dvosloj i četverosloj MoS₂ i MoS₂ u cjelovitom obliku. U Γ točki za cjeloviti oblik MoS₂ se nalazi maksimum valentne vrpce, dok se minimum vodljive vrpce nalazi u nisko-simetričnoj točki između K i Γ točaka, odnosno energetski procjep je indirektan. Eksperimentom je dokazano i proračunima [14] predviđeno da elektronska struktura TMD materijala uvelike ovisi o broju slojeva [37]. Promjena elektronske strukture u ovisnosti o broju slojeva je ponajviše zbog efekata kvantnog zatočenja [38] i promjene u hibridizaciji između p_z orbitala atoma sumpora i d orbirala atoma molibdena. DFT izračuni elektronske strukture MoS₂ pokazuju da stanja vodljive vrpce u K točki dolaze od d orbitala atoma molibdena koji se nalaze u sendviču S-Mo-S, i time na njih ne utječe međuslojno vezanje. Stanje maksimuma valentne vrpce blizu Γ točke pripada kombinaciji nevezajućih p_z orbitala sumporovih atoma i d orbitala atoma molibdena, te su jako međuslojno vezani. Obzirom da K točka nije jako međuslojno vezana prilikom promjene broja slojeva ne dolazi do znatnih promjena u položaju elektronske strukture[8]. Zbog jakog međuslojnog vezanja u blizini Γ točke dolazi do promjene elektronske strukture u ovisnosti o broju slojeva, odnosno dolazi do prijelaza iz indirektnog u direktni energetski procjep u iznosu ~ 1,82 eV [14], što je vidljivo sa slike 1.8a) [39, 38]: smanjivanjem broja slojeva indirektni procjep postaje veći, dok istovremeno direktni procjep u K točki ostaje skoro nepromjenjen. Na slici 1.8a) prikazan je elektronska struktura u granici jednosloja gdje se opaža da se minimum vodljive i maksimum valentne vrpce pomaknuo u K točku, posljedica toga je pojačana fotoluminiscencija u jednosloju u odnosu na višeslojeve [20, 14].

 MoS_2 posjeduje jako spin-orbit cijepanje valentne vrpce atoma jednosloja[40] MoS_2 u K točki na rubu Brillouinove zone koje većim dijelom dolazi od d orbitale teškog Mo atoma u iznosu od 150 meV, vidi sliku 1.8b), što je vidljivo u apsorpcijskom i fotoluminiscencijskom spektru u obliku eksciotna A i B [41, 20] i upravo ono predstavlja interesantnu platformu za istraživanje spinske fizike te spintronike. Spin-

Slika 1.8: **a)** Elektronska struktura dobivena DFT računom za cjeloviti, četveroslojan, dvoslojan i jednoslojan MoS₂. Horizontalna iscrtkana linija označava energetski nivo vrha valentne vrpce u K točci. Crvenom linijom označen je minimum vodljive vrpce, a plavom maksimum valentne vrpce. Puna strelica pokazuje najniži energetski prijelaz, a iscrtkana strelica pokazuje prethodno najniži energetski prijelaz. Preuzeto iz [14]. b) Elektronska struktura cjelovitog, dvoslojnog i jednoslojnog MoS₂ s prikazanim cijepanjem valentnih vrpci v1 i v2. Vidi se prijelaz iz indirektnog energetskog procjepa u direktni energetski procjep. Preuzeto iz [13].

orbit cijepanje vodljive vrpce je puno slabije, svega nekoliko meV i ne primjećuje se u optičkim spektrima [42]. Spin-orbit cijepanje u dvosloju MoS₂ dolazio, od kombinacije interakcije među slojevima i spin-orbit vezanja.

Jednosloj MoS₂ se nalazi u 2H, odnosno 1H, politipu trigonalno prizmatične koordinacije u kojoj nailazimo na lom inverzne simetrije. Kada neki sustav ima prostorno inverznu simetriju onda vrijedi $E(k, \uparrow) = E(-k, \uparrow)$, dok za postojanje vremensku inverziju vrijedi $E(k, \uparrow) = E(-k, \downarrow)$, sustav s obje navedene simetrije ima svojstvo $E(k, \uparrow) = E(k, \downarrow)$. U slučaju jednoslojnog MoS₂, u trigonalno prizmatičnoj koordinaciji centar inverzije je atom molibdena te se atomi sumpora preslikavaju u prazni prostor i time nema prostorne inverzne simetrije, dok za slučaj dvosloja centar inverzije se nalazi između dva sloja i sustav ima inverznu simetriju [43]. Dakle, neparni slojevi MoS₂ posjeduju lom inverzije, dok parni slojevi posjeduju inverznu simetriju, iz čega slijede i drugačija optička svojstva takvih slojeva [44].

1.5 Vibracije rešetke

Broj fononskih modova u 3D kristalnoj rešetci je jednak broju atoma u primitivnoj jediničnoj ćeliji pomnožen s 3, odnosno za cjeloviti oblik MoS_2 2H politip koji ima N=6 atoma u primitivnoj ćeliji postoji 18 fononskih modova. Uvijek postoje 3 akustična moda titranja, dok se optički modovi titranja javljaju u slučaju više od jednog atoma u

Slika 1.9: a) Evolucija Raman spektra i njegovih modova E_{2g}^1 i A_{1g} od cjelovitog do jednoslojnog MoS₂. b) Frekvencije E_{2g}^1 i A_{1g} Raman aktivnih modova u ovisnosti o broju slojeva MoS₂. Preuzeto iz [45]. c) Pomaci atoma 4 Raman aktivna moda i moda disanja slojeva u jedničnoj ćeliji cjelovitog MoS₂ kristala. Preuzeto iz [46].

primitivnoj ćeliji te za cjeloviti oblik MoS₂ 2H politip postoje 15 optičkih modova. Od ukupno 18 fononskih modova tri su rotacijska i tri translacijska, a ostali su vibracijski (3N-6). Kristal MoS₂ 2H politipa ima rotacionu invarijantnost, stoga 3 rotacijska moda su akustična a ostalih 15 su optička. Nama su zanimljivi optički modovi jer oni nastaju u interakciji sa svjetlošću, te od 15 optičkih modova, neki su Raman aktivni, neki su IR aktivni, a neki nisu ni Raman ni IR aktivni, odnosno optički su neaktivni (tzv. tihi modovi) [47]. Raman spektroskopija omogućuje proučavanje vibracijskih modova općenito, u ovom slučaju MoS₂. Glavna svojstva Raman spektra cjelovitog MoS₂ su nerezonanta pobuđenja 4 Raman aktivna moda prvog reda [48]. Postoje 2 niskofrekventna optička fononska moda koja odgovaraju krutom smicanju slojeva $(E_{2\sigma}^2$, optičke vibracije susjednih S-Mo-S slojeva u protufazi) frekvencije 35.2 cm⁻¹ i vertikalnom gibanju slojeva (B_{2g}^2 , "disanje slojeva") 57.7 cm⁻¹ koja su prisutna u cjelovitom obliku MoS2, međutim u granici jednosloja MoS2 nisu prisutna. Visoko frekventni optički fononski modovi su odvojeni za otprilike ~ 220 cm⁻¹ od niskofrekventnih, to su: E_{1g} (optičke vibracije S atoma u ravnini, u protufazi), E_{2g}^1 (optičke vibracije Mo i S atoma u ravnini, u protufazi) i A_{1g} (optičke vibracije S atoma izvan ravnine duž c osi u protufazi) čiji prikaz vidimo na slici 1.9b). U tankim filmovima MoS_2 Raman modovi E_{1g} i E_{2g}^2 nisu primjećeni zbog selekcijskih pravila geometrije raspršenja (E_{1g}) ili zbog ograničenog odbijanja Rayleigh raspršenja (E_{2g}^2). Ostala dva Raman aktivna moda E_{2g}^1 i A_{1g} nalaze se tipično na energijama ~ 387cm⁻¹, odnosno $\sim 405 cm^{-1}.~U$ članku Lee et al. [45] otkriveno je da frekvencije modova E_{2g}^1 i A_{1g}

ovise o debljini slojeva u jako tankim filmovima MoS₂. U njihovim mjerenjima je dobivena ovisnost frekvencija A_{1g} moda povećava, a frekvencija E_{2g}^1 moda smanjuje porastom broja slojeva MoS₂, vidi sliku 1.9a). Povećanjem broja slojeva vdW sila između slojeva guši atomske vibracije što rezultira potrebom za unos veće energije za pobuđenje E_{2g}^1 i A_{1g} modova. Prema tome, oba moda E_{2g}^1 i A_{1g} trebali bi biti pomaknuti u plavo (eng. blueshifted), odnosno ukrutiti se. Međutim, samo je pomak frekvencije moda A_{1g} u skladu s očekivanjima. Pomak frekvencije moda E_{2g}^1 u crveno (eng. redshifted) ukazuje na mogućnost da povećanje vdW sila između slojeva ne doprinosi puno promjeni frekvencija modova. Objašnjenje paradoksalnog smanjenja frekvencije E_{2g}^1 moda s porastom broja slojeva, kojeg su dali [49], je povezano sa slabljenjem konstante sile između najbližih susjeda Mo-S, koje je uzrokovano blagom redistribucijom gustoće naboja uslijed postojanja susjednih energetskih nivoa i dužim Mo-S vezama u cjelovitom MoS₂. Svojstvo E_{2g}^1 i A_{1g} modova da se razmiču pri promjeni broja slojeva omogućuje korištenje Raman spektroskopije kao pouzdanog alata za provjeru broja slojeva u nanoslojevima MoS₂.

1.6 Optička svojstva

Poluvodiči i izolatori imaju zabranjeni energetski procjep između valentne i vodljive vrpce, zabranjeni energetski procjep kod poluvodiča je manji nego u slučaju izolatora. U materijalima koji imaju zabranjeni energetski procjep mogu postojati kvazičestice ekscitoni. Zbranjeni energetski procjep se još naziva i kvazičestični energetski procjep i odgovora energiji potrebnoj za pobudu elektrona iz valentne u vodljivu vrpcu. Pri spominjanju energetskog procjepa 2D TMD materijala mi u stvari govorimo o optičkom energetskom procjepu, jer njega možemo direktno mjeriti. Optički energetski procjep (E_{OG}) odgovara energiji stvaranja kvazičestica ekscitona, odnosno energija zabranjenog energetskog procjepa (E_G) umanjenja za energiju vezanja kvazičestice ekscitona (E_B):

$$E_{OG} = E_G - E_B. \tag{1.1}$$

Energije ekscitona i drugih kvazičestica se nalaze ispod minimuma vodljive vrpce kao što je prikazano na slici 1.10a). Stoga, direknti energetski procjep od ~ 2.3 eV za jednosloj MoS_2 dobije se zbrajanjem optičkog energetskog procjepa u iznosu od ~ 1.8 eV uvećanog za energiju vezanja ~ 0.5 eV [13]. Optički i kvazičestićni energetski procjep nalazi se u vidljivom dijelu elektromagnetnog spektra što čini jednosloj MoS_2 pogodnim za primjenu u optoelektronici i fotonici.

Direktnom energetskom prijelazu odgovara eksciton A energije ~1,82 eV (681 nm) i eksciton B, koji dolazi od cijepanja valentne vrpce, pomaknut u plavo u odnosu na eksciton A za 15 meV na energijama ~1,97 eV (629 nm). Indirektni prijelaz koji se događa na indirektnom energetskom procjepu prisutan u cjelovitom i višeslojnom MoS_2 je fononski potpomognut proces te ima zanemarivo mali kvantni prinos, slika

Slika 1.10: a) Sumirani prikaz energijskih nivoa, optičkih prijelaza i energija vezanja (Δ) kvazičestica ekscitona A, B, triona i ekscitona vezanog za defekte. b) Prikaz šest točaka visoke simetrije u recipročnom prostoru jednoslojnog MoS₂ sa suprotnim spinskim stanjima K i K'. Cijepanje maksimuma valentne vrpce je prikazano crvenim i plavim brijegovima koji odgovaraju stanjima suprotnih spinskih parova. Minimumi vodljive vrpce su predstavljeni zelenim udolinama. Slika a) preuzeta iz [50], b) je preuzeta iz [51].

1.11b), što se očituje u smanjivanju fotoluminiscenskog intenziteta prijelazom s jednosloja na višeslojeve, vidi sliku 1.11a). Jednosloj MoS₂ u svom fotoluminiscenskom spektru sadrži spomenute ekscitone A i B, dok za višeslojeve se pojavljuje i treći emisijski vrh I koji označava indirektni prijelaz. Položaj emisijskog vrha ekscitona A se pomiče u crveno s povečanjem broja slojevaMoS₂, skupa s položajem emisijskog vrha ekscitona B, dok se emisijski vrh indirektnog prijelaza I približava vrijednosti indirektnog prijelaza za cjeloviti MoS₂ u iznosu od 1,29 eV kao što je prikazano na slici 1.11c).

Pri postojanju spomenutog loma inverzije dolazi do spinskog cijepanja nivoa ovisnog o momentu, odnosno u kojoj točki k prostora se nalazimo. Jednosloj MoS_2 ima heksagonalnu Brilloiunovu zonu s točkama K i K' (K'=-K) u momentnom prostoru. Okolina K i K' točaka se naziva dolina valentnih vrpci koje ima degenerirane energije i suprotna spinska stanja za različita spin-orbit stanja, vidi sliku 1.10b), što se naziva spin-dolina (eng. spin-valley) vezanje. Spin-dolina vezanje za posljedicu ima izborna pravila prijelaza između vrpci, lijevo i desno kružno polarizirano svjetlo selektivno pobuđuju K i K' doline, u tom redoslijedu [43, 52] to otvara mogućnost primjene jednosloja MoS_2 u dolinotronici (eng. valleytronic) i optoelektronici.

1.6.1 Ekscitoni

Ekscitoni su kvazičestice jako vezanih parova elektron-šupljina, shematski prikaz je na slici 1.12a). Nastaju zbog jake Coulombove interakcije između elektrona koji su pobuđeni u vodljivu vrpcu i šupljina koje se nalaze u valentnoj vrpci. Energija vezanja ekscitona u 3D sistemima cjelovitih poluvodiča je mala te su ekscitoni u tome slučaju vidljivi samo na niskim temperaturama. Pri prelasku na 2D sisteme ekscitoni postaju vidljivi i na sobnim temperaturama zbog porasta energije vezanja. U 2D sis-

Slika 1.11: a) Spektar fotoluminiscencije jednosloja i dvosloja MoS_2 . Umetak prikazuje ovisnost kvantne efikasnosti fotoluminiscencije o broju slojeva MoS_2 . b) Spektar fotoluminiscencije MoS_2 normaliziran na intenzitet ekscitona A za broj slojeva od 1 do 6. c) Prikaz optičkog energetskog procjepa za slojeve MoS_2 od 1 do 6. Za slojeve od 2 do 6 uzeta je energija indirektnog prijelaza, dok je za jednosloj uzeta energija direktnog prijelaza ekscitona A. Iscrtkana linija predstavlja energiju indirektnog procjepa cjelovitog MoS_2 . Preuzeto iz [20].

temima zbog reducirane dimenzionalnosti dolazi do efekta kvantnog zatočenja valne fukncije ekscitona u sloju te slabog dielektričnog zasjenjenja. Dielektrično okruženje je u 2D sistemima različito od onog u 3D, te zbog toga Coulombove silnice električnog polja elektron-šupljine para se protežu izvan materijala gdje u slučaju vakuuma nema zasjenjenja ili postoji malo zasjenjenje uzrokovano supstratom [53], vidi sliku 1.12c). Posljedica toga je energija vezanja ekscitona u granici jednosloja TMD ≥ 0.5 eV [13, 54] odnosno dolazi do povećanja energije vezanja i kvazičestičnog energetskog procjepa u odnosu na cjeloviti oblik. Energije pobuđenja ekscitona predstavljaju optički energetski procjep koji je ustvari kvazičestični energetski procjep umanjen za energiju vezanja ekscitona. Ekscitoni u jednoslojevima imaju Bohr-ov radijus ~1 nm, te time spadaju u Wannier-Mott tip kao i ekscitoni u cjelovitim TMD poluvodičima. Ekscitonske energije vezanja odstupaju od modela 2D vodika [53] zbog toga što različita ekscitonska Rydberg stanja imaju drugačiju prostornu distribuciju i time je efektivno zasjenjenje drugačije za svako stanje[55, 14].

1.6.2 Trioni

Negativno ili pozitivno nabijeni ekscitoni zvani trioni su tročestična pobuđenja. Trion je nabijena kvazičestica koja se za negativni trion sastoji od ekscitona vezanog s dodatnim elektronom, a pozitivni trion eksciton vezan sa šupljinom [57, 15]. Trion može biti predočen sa slikom 1.12a) kao eksciton oko kojeg se vrti treća nabijena čestica na udaljenosti od 2,5 nm od isto nabijene čestice [58]. U nedopiranom uzorku MoS₂ fotoluminiscenski spektar je dominiran ekscitonima, prilikom dopiranja uzorka dolazi do redukcije ekscitona u fotoluminiscenskom spektru i nastanka novog emisij-skog vrha koji pripada trionima. Prilikom uvođenja dodatnih elektrona koji se mogu vezat za fotopobuđene ekscitone, spektralna težina ekscitona prelazi na trione[15].

Slika 1.12: a) Shematski prikaz kvazičestica ekscitona, pozitivnih i negativnih triona te biekscitona. b) Shematski prikaz ovisnosti konfiguracije elektrona i šupljine u kvazičesticama u ovisnosti o dopiranosti uzorka. c) Ilustracija elektrona i šupljine vezanih u eksciton u cjelovitom materijalu i 2D jednoslojnom materijalu. Dielektrično okruženje je naznačeno različitim dielektričnim konstantama ε_{3D} i ε_{2D} i permitivnosti vakuuma ε_0 . Slika a) i b) preuzete su iz [56], slika c) je preuzeta iz [53].

Energija disocijacije triona je definirana kao razlika energija pobuđenja neutralnih ekscitona E_A i negativno nabijenih ekscitona E_{A^-} (triona)[59]:

$$E_{A} - E_{A^{-}} = E_{B}^{A^{-}} + E_{F}$$
(1.2)

za nedopirani uzorak Fermi energija je $E_F = 0$ te energija disocijacije postaje energija vezanja triona $E_B^{A^-}$. Za jednosloj MoS₂ eksperimentalno je utvrđena energija vezanja triona u iznosu od 18 meV na 10 K, vidi sliku 1.13c) i 30 meV na sobnoj temperaturi. Opažanje triona i mjerenje njihove energije vezanja je ostvareno putem električnog dopiranja jednosloja MoS₂ pomoću napona vratiju u konfiguraciji tranzistora s efektom polja (eng. field effect transistor, FET), [15].

Eksciton A i B bi u teoriji bi trebali imati svoje trione, međutim u eksperimentu dosad nisu primjećeni trioni ekscitona B [56]. Pri velikim iznosima dopiranja nastaju i ekscitonske molekule koje se zovu biekscitoni, vezana stanja dva ekscitona, vidi sliku 1.12a). Biekscitoni su opaženi kao oštri vrh u spektru fotoluminiscencije, nastaju od ekscitona A i od ekscitona B te imaju energiju vezanja ~40 meV [60].

Trioni nastaju putem energetski povoljnog procesa iz ekscitona, koji je bitan ekscitonski populacijsko relaksacijski kanal. Razumijevanje spomenutog procesa bitno je za pravilnu interpretaciju dinamike raspada ekscitona i relativne spektralne težine triona i ekscitona u fotoluminiscencijskom spektru.

1.6.3 Elektronsko dopiranje

Elektronska i optička svojstva jednosloja TMD ovise o koncentraciji slobodnih nosioca naboja. Kontroliranim dopiranjem možemo mjenjati koncetraciju nosioca naboja i time utjecati na optička svojstva. Dopiranje je ustaljena metoda promjene koncetracije nosioca naboja korištena u klasičnim poluvodičima te 2D materijalima. Jedna od metoda dopiranja je električno dopiranje jednosloja MoS₂ u konfiguraciji tranzistora s efektom polja (eng. field effect transistor - FET). Mak i suradnici su prvi ispitivali optička svojstva MoS₂ FET mjereći spektre fotoluminiscencije i apsorpcije. U ovisnosti o naponu vratiju (eng. gate voltage) MoS₂ FET moguće je postići n ili p tip dopiranje uzorka koje uzrokuje promjenu koncetracije nosioca naboja. Korišteni naponi vratiju su bili od -100 V što odgovara neutralnom stanju (fermi energija nula) do 80 V kada se postiže n-tip dopiranost od ~ 10^{13} cm⁻². Povećavanjem napona vratiju u spektru fotoluminiscencije i apsorpcije opazili su smanjivanje intenziteta ekscitona A i pojavu nove niže energetske rezonancije koja je identificirana kao trionsko stanje. Eksciton A potpuno nestaje u pozadini za veće iznose napona vratiju dok njegov spektraln udio preuzima trion. Opisana kontrola intenziteta fotoluminiscencije i apsorpcije ekscitona A i triona je opažena na niskim temperaturama, vidi sliku 1.13a), i sobnim, vidi sliku 1.13d) i e). Povećanje dopiranosti uzorka uzrokuje smanjivanje intenziteta fotoluminiscencije i apsorpcije ekscitona A te pojavu triona, objašnjenje tog procesa je u [15] pripisano zajedničkim efektima Pauli blokiranja i višečestičnim

Slika 1.13: a) Ovisnost spektra apsorpcije i fotoluminiscencije o dopiranju jednosloja MoS_2 na 10 K. b) Ovisnost energija pobuda ekscitona A i triona A⁻ o naponu vratiju. c) Razlika energija pobuda ekscitona A i triona A⁻ u ovisnosti o Fermi energiji. Spektri apsorpcije d) i fotoluminiscencije e) jednosloja MoS_2 za različite napone vratiju. f) i g) Apsorpcijski spektar jednosloja WS_2 na T=50 K za različite napone vratiju. Ovisnost položaja ekscitona A i triona A⁻ je označeno iscrtkanom linijom. h) Shematska ilustracija cijepanja vodljive vrpce WS_2 i njeno dopiranje te energetski prijelaz ekscitona A. Cijepanje valentne vrpce nije prikazano na slici jer se nalazi na nižim energijama. Preuzeto iz [15][61].

Slika 1.14: a) Spektar fotoluminiscencije jednosloja MoS_2 prije i nakon dopiranja F_4TCNQ . b) Analiza PL spektra iz a) dvjema Lorentzian krivuljama koje odgovaraju ekscitonu A i trionu A⁻. c) Shematski prikaz prijenosa naboja između jednosloja MoS_2 i F_4TCNQ molekula. Preuzeto iz [62].

interakcijama. Na slici 1.13b) prikazane su energije ekscitona A i triona u ovisnosti naponu vratiju koji je proporcionalan dopiranju, opaža se pomak ekscitona A u plavo na veće energije i blagi pomak energije triona u crveno na manje energije.

Nakon jednoslojnog MoS_2 FET korišten je i jednosloj WS_2 koji ima konačno cijepanje vodljive vrpce u iznosu od 30 - 40 meV. Pri najvećem dopiranju od 8×10^{12} cm⁻² više od 75 % elektrona se nalazi u nižoj vodljivoj vrpci što čini jednosloj WS_2 idealnim za proučavanjem odvojeno efekte zasjenjenja i Pauli blokiranja, vidi sliku 1.13h). Slika 1.13f) i g) prikazuje pomak ekscitona A na više energije i triona na niže energije u apsorpcijskom spektru porastom napona vratiju koji uzrokuje dopiranje. Pomak ekscitona A i triona je uzrokovan rezultatnim efektom od smanjivanja energije vezanja i renormalizacije energetskog procjepa (eng. band gap renormalization - BGR). Zbog viška slobodnih elektrona dolazi do zasjenjenja privlačne interakcije koja smanjuje ekscitonsku oscilatornu snagu i energiju vezanja ekscitona [61].

1.6.4 Kemijsko dopiranje

Dodatan unos slobodnih nosioca naboja moguć je kemijskim dopiranjem. Ova metoda je korištena u promjeni koncentracije nosioca naboja za ultratanke materijale poput karbonskih nanocijevi [63] i grafena[64]. Između monokristala i dopanata dolazi do prijenosa naboja koji mjenja Fermi energiju, vidi sliku 1.14c). Promjenom Fermi energije opažamo promjene u elektronskim i optičkim svojstvima molekula. Kemijsko dopiranje se u većini slučajeva vrši metodom kapanja (eng. drop-cast method) otopine koja sadrži kemijske dopante [65]. Spektar fotoluminiscencije jednosloja MoS₂ je moguće kontrolirati pomoću n-tip dopiranja s NADA molekula ili p-tip dopiranjem s F₄TCNQ i TCNQ molekulama metodom kapanja na uzorak [62]. Prilikom p-tip dopiranja intenzitet fotoluminiscencije MoS₂ je jako porastao vidi sliku 1.14a), dok pri dopiranju n-tip molekulama intenzitet se smanjio. Naraštani MoS₂ je n-tip dopiran te se spektar fotoluminiscencije sastoji od triona i ekscitona A, međutim trioni su zastupljeniji. Prilikom p-tip dopiranja dolazi do promjene spektra fotoluminiscencije i eksciton A postaje dominantan potpis spektra kao što se vidi na slici 1.14b).

2 Eksperimentalni postav

2.1 Priprema uzoraka

2.1.1 Kemijsko taloženje iz plinske faze (CVD)

Kemijsko taloženje iz plinske faze je proces deponiranja plinovitih reaktanata na podlogu. Služi za stvaranje gustih, stabilnih i visoko kvalitetnih slojeva i tankih filmova. Molekule plina prekursora često se transportiraju inertnim pozadinskim plinom u područje komore gdje se nalazi podloga i dolazi do kemijske reakcije. Mješanjem molekula plina prekursora pri dodiru s grijanom podlogom dolazi do kemijske reakcije koja stvara film materijala na površini podloge. Nusproizvodi reakcije i višak plinova se zatim otkalanja iz komore putem pumpanja ili usmjerenog toka inertnog pozadinskog plina kako bi se smanjila onečišćenja i neželjeni produkti. Vrsta reakcija koja će se odviti primarno ovisi o temperaturi podloge, stoga je bitan parametar pri samom procesu CVD. CVD proces možemo podijeliti na dva tipa, ovisno o tlaku na kojem se sinteza odvija: CVD pri niskom tlaku i CVD pri ultravisokom vakuumu. CVD pri niskom tlakom se izvodi pri tlakovima manjima od atmosferskog što pridonosi sprječavanju neželjenih reakcija i stvara više uniformne debljine premaza na supstratu. CVD pri ultra visokom vakuumu se odvija pri izuzetno niskom tlakom u rangu 10⁻⁶ Pa.

Prednosti CVD procesa su visoka kvaliteta, velika čistoća i pojačana čvrstoća u usporedbi s ostalim metodama narastanja slojeva. Nedostatak CVD metode je da su plinoviti nusprodukti obično vrlo toksični zbog potrebe za korištenjem prekursornih plinova koji su lako isparavajući kako bi mogli reagirati sa supstratom.

U zadnjih 40 godina, od kada je u upotrebi ovaj proces rasta napredovao je od jednostavnih tehnika ekstrakcije do naprednijiih tehnika premazivanja za izradu tankih filmova i modifikacije površine. U početku se CVD metoda koristila većim dijelom za proizvodnju poluvodičkih komponenata te zaštitnih elektroničkih komponenata. Danas vidimo primjenu CVD metode rasta u naprednim procesima koji se odvijaju pri visokim temperaturama i zastupljeni su u području mikrofluida i nanofluida [66].

2.1.2 Sinteza CVD MoS₂

Na Institutu za fiziku sintetizirali smo jednoslojni i dvoslojni MoS_2 na SiO_2/Si podlozi, koristeći postav za CVD sintezu kućne izrade. Koristili smo metodu kemijskog taloženja iz plinske faze CVD potpomognutu aerosolima za dobivanje uzoraka MoS_2 . Kao podlogu na kojoj se narašta MoS_2 koristi se 500 μ m debeli sloj dopiranog silicija

Slika 2.1: CVD postav za rast MoS_2 . (a) Shema postava. (b) Slika postava. Preuzeto iz [66].

na kojem se nalazi sloj SiO₂ debljine 285 nm. SiO₂/Si podloga takvih debljina slojeva je pogodna za optičko promatranje atomski tankih slojeva MoS_2 zbog nastalog interferencijskog efekta zbog kojeg nastaje razlika u kontrastu između uzoraka i podloge [67].

Na slici 2.1a) je prikazana shema i na slici 2.1b) fotografija CVD sustava korištenog za sintezu TMD [66]. Za sintezu MoS₂ koristili smo nekoliko miligrama praha MoO3 koji se nalazio u lađici unutar četvrtaste kvarcne cijevi nedaleko od SiO₂/Si podloge te se korištenjem laserske diode za lokalno grijanje praha stvara aerosol. Laserska dioda ima snagu 0.5 W i valnu duljinu 450 nm. Između 50-100 mg sumpora se nalazi u posebnoj keramičkoj lađici nekoliko centimetara udaljenoj od podloge. Posuda sa sumporom se grije posebnim grijačem na temperaturu isparavanja (140°C) te se sumpor u plinovitom stanju dovodi pomoću struje inertnog plina argona s protokom od 10-100 s.c.c.m (standardni kubični centimetar) na podlogu u kvarcnoj cijevi. Tlak unutar same kvarcne cijevi je atmosferski i većim dijelom od argona. Prostor oko podloge i kvarcne cijevi je zagrijan na radnu temperaturu od 750°C gdje se aerosolizirani MoO3 taloži na podlozi te kemijskom reakcijom u prisustvu zagrijanog plina sumpora nastaje MoS₂. Na kraju kvarcne cijevi nalazi se mjerač protoka plina kroz koji prolazi plin kako bi se omogućila precizna kontrola procesa rasta uzorka. Spomenuti grijači su spiralno omotani oko kvarcne cijevi, grijač korišten za grijanje podloge je s vanjske strane zatvorem visokotemperaturnom izolacijom koja osigurava usmjerenje nastale topline prema uzorku. Nakon rasta podloga se hladi na 200°C u toku plina Ar prije uklanjanja iz kvarcne cijevi. Izvor napona grijača je standardno PC napajanje od 12 V spojeno na standardni kontroler. Regulacija temperature odvija se putem termočlanka tipa K spojenog na podlogu. K tip termočlanka nalazimo u široj primjeni te ima osjetljivost od ~ 41 μ V/°C za raspon pouzdanog mjerenja temperature od -200°C do 1350°C. Cijeli postav je tako napravljen da se može u stvarnom vremenu promatrati rast MoS₂ i time mjenjati pojedini uvjeti kako bi se optimizirao rast. U kvarcnoj cijevi, na mjestu točno iznad podloge nalazi se optički prozor kroz kojeg je omogućen pristup mikroskopskom objektivu s dugačkom

Slika 2.2: Mikroskopske slike rasta MoS_2 CVD metodom u trajanju od 2 minute. Slike a), b), c), d), g), e), f) prikazuju rast u vremenskom razmaku od 20 sekundi. Preuzeto iz [66].

radnom duljinom (eng. work distance) pomoću kojeg se može gledati uvećana slika podloge. To nam omogućava praćenje detalja rasta u realnom vremenu. Na slici 2.2 je prikazan rast MoS₂ koji u prosjeku traje nekoliko minuta, u ovisnosti u vremenu mogu se postići različiti postoci pokrivenosti podloge s kristalima MoS₂.

Pri izrastanju jednoslojnog MoS₂ dobivene strukture kreću se od jednostavnih trokutastih do kompliciranih zvjezdastih oblika veličina od desetak μ m do stotinjak μ m. Oštrina rubova spomenutih oblika indirektno nam govori o dinamici rasta. Dobivene strukture jedne fleke dijelimo na monokristalna i polikristalna zrna. Trokutasti oblici fleka su monokristalna zrna dok zvjezdasti oblici su polikristalna zrna, odnosno više spojenih monokristala što zaključujemo iz kristalne simetrije MoS₂ i simetrije povoljnijeg stabilnog ruba[68, 66].

2.1.3 Transfer MoS₂

Jednosloj MoS₂ na podlozi SiO₂/Si dobiven CVD metodom je transferiran na nekorištenu SiO₂/Si podlogu korištenjem komercijalnog PDMS filma (X0 Gel-Film proizvođač GelPak)[69]. Podloga s naraštanim jednoslojnim MoS₂ prekrivena s PDMS filmom je nakratko puštena da pluta u deioniziranoj vodi [70, 71]. Prodiranje vode između MoS₂ i površine podloge SiO₂/Si uzrokuje odvajanje MoS₂ pričvršćenog na PDMS film, koji služi kao potpora, unutar nekoliko minuta. Odvojeni PDMS film je dignut s pincetom i nakon sušenja stavljen u kontakt s nekorištenom SiO₂/Si podlogom. Proces prenošenja je završen sporim i pažljivim dizanjem, odnosno odvajanjem PDMS filma koristeći mikromanipulator. Na slici 2.3. je prikazan uzorak pod optičkim mikroskopom prije transfera, slike 2.3a) i c), te nakon transfera, slike 2.3b) i d), vidi se gotovo potpun transfer uzorka. Proces transfera nije savršen, na slici 2.3d) ne-

Slika 2.3: Optičke slike jednoslojnog MoS₂ dobivenog CVD metodom na podlozi SiO₂/Si sa skoro potpunom prekrivenošću podloge. a) Slika prije transfera na skali od 200 μ m. b) Slika nakon transfera PDMS filmom na čistu SiO₂/Si podlogu na skali od 200 μ m. c) Slika prije transfera na skali od 20 μ m. d) Slika nakon transfera PDMS filmom na čistu SiO₂/Si podlogu na skali od 200 μ m.

dostaju dijelovi jednosloja MoS_2u odnosu na sliku 2.3c) te se vidi unos dodatnih nečistoća i nastanak novih pukotina. Slika 2.4 prikazuje jednosloj MoS_2 dobivenog CVD metodom na podlozi SiO₂/Si u obliku trokuta snimljenog skenirajućim elektronskim mikroskopom (SEM).

2.2 Raman spekrometar

Za mjerenje optičkih svojstva MoS₂ koristili smo Raman spektrometar kućne izrade na Institutu za fiziku u Zagrebu, koji se sastoji od konfokalnog mikroskopa i lasera valne duljine 532 nm (Sapphire Coherent) te spektrografa sa spektrometrom (Andor Shamrock). Shema mikroskopa prikazana je na slika 2.5. Konfokalni mikroskop ima mogućnosti 10x i 50x povećanja, pri mjerenjima je korišten objektiv 50x povećanja s numeričkom aperturom 0.75 (Olympus) koji fokusira lasersku zraku u točku promjera < 2 μ m. Uzorak je postavljen u invertiranoj konfiguraciji te ga promatramo u reflektiranoj svjetlosti. Laserska zraka nakon izlaza iz lasera prvo upada na laserski filter (532/3 BrightLine HC Semrock) kako bi se uklonile sekundarne emisije i pozadinsko zračenje i time izlazna svijetlost učinila više monokromatskom. Lasersku zraku zatim propuštamo kroz kružni sivi filter (eng. neutral density) kojim možemo kontrolirati atenuaciju, odnosno možemo mjenjati intenzitet upadne zrake na uzo-

Slika 2.4: Slika jednoslojnog MoS_2 dobivenog CVD metodom na podlozi SiO_2/Si u obliku trokuta snimljena skenirajućim tunelirajućim mikroskopom (SEM). Preuzeto iz [66].

Slika 2.5: Shema Raman spektrometra kućne izrade na Institutu za fiziku Zagreb.

rak. Pobudna svjetlost potom upada na dihroičko zrcalo (Raman RazorEdge Beams 532 nm Semrock) koje reflektira lasersku zraku i propušta valne duljine veće od laserske zrake (532 nm) odnosno reflektirani signal koji nastaje kao rezultat interakcije materijala i svjetlosti. Zbog nesavršenosti dihroičkog zrcala signal prolazi kroz visokopropusni filter (RazorEdge LP Edge Filter Semrock) kako bi se dodatno atenuirala laserska zraka i time lakše opazio signal koji je puno slabijeg intenziteta. Na kraju signal odvodimo u kameru spojenu s kompjuterom za optičku sliku ili optičkim vlaknom u (Andor Shamrock SR303i) spektrograf s fokalnom duljinom f=303 mm. Optičko vlakno s 50 μ m promjerom jezgre služi kao konfokalna detekcijska pukotina. Spektrograf raspršuje mjereni signal i projicira ga na (Andor iDus DV420A) CCD detektor koji je ohlađen na -45°C termoelektričnim efektom. Za snimanje fotoluminiscencijskog spektra je korišten Raman spektrometar s difrakcijskom rešetkom 300 zareza/mm, dok za snimanje Raman spektra korištena je difrakcijska rešetka s 1800 zareza/mm.

2.3 Vremenski razlučiva fotoluminiscencija (TRPL)

Mjerenja vremenski razlučive fotoluminiscencije su izvršena na Italian Institute of Technology u Milanu u laboratoriju za vremenski razlučivu fotoluminiscenciju pod vodstvom dr. sc. C. D'Andrea . TRPL mjerenja su vršena na sistemu koji koristi streak kameru za vremensku detekciju upada fotona te femtosekundni pulsni laser za pobudu [72], vidi shemu postava na slici 2.6. Streak kamera omogućava snimanje profila vremenskih raspada za različite valne duljine. Izvor pulsne pobudne svjetlosti je Ti:Sapphire laser Chameleon Ultra II Coherent koji emitira svjetlosne pulseve duljine trajanja ~ 140 fs, s valnom duljinom između 680-1080 nm, frekvencijom repeticije 80 MHz i maksimalnom energijom od ~ 50 nJ po pulsu. Moguće je smanjivanje brzine repeticije propuštanjem laserske zrake kroz akusto-optički modularijući birač snopova (APE). Optički signal na izlazu iz lasera ima valnu duljinu 940 nm, koja se frekventno udvostručava pomoću nelinearnog β -barium borat (BBO) kristala za generaciju drugog harmonika. Infracrveno zračenje preostalo nakon udvostručavanja frekvencije je uklonjeno niskopropusnim filterom (Schott). Pulsevi valne duljine 470 nm su zatim fokusirani na uzorak putem epifluorescentnog mikroskopa kućne izrade. Pri mjerenjima korišten je objektiv 20x povećanja (Zeiss LD EC EPIPLAN NEOFLUAR) numeričke aperture 0.22 koji fokusira lasersku zraku u točku promjera $\sim 3\mu$ m. Reflektirani signal odnosno fotoluminiscencija uzorka je odvojena od laserske zrake pomoću dihroičkog zrcala koje propušta svjetlost valne duljine veće od 500 nm i visokopropusnim filterom koji propušta svjetlost valne duljine veće od 550 nm. Signal fotoluminiscencije je zatim fokusiran na prorez spektrometra (Acton SP2300 Princeton Instruments) fokalne duljine f=300 mm, f/3.9, 150 zareza/mm sa spektralnom rezolucijom od 1 nm. Spektrometar je vezan sa streak kamerom (C5680 Hamamatsu) koja radi u sinkroskan operacijskom modu na 80 MHz. U vremenskom prozoru od 160 ps postiže najbolju vremensku rezoluciju od ~ 2 ps, za vremenski prozor od 2 ns rezolucija je ~ 20 ps te za vremenski prozor od 800 ps rezolucija je ~ 8 ps. Dio laserske zrake na 940 nm usmjerava se na fotodiodu koja služi kao signal okidač (eng. trigger) za streak kameru [73, 74, 75, 72].

2.3.1 Streak kamera

Streak kamera je uređaj koji mjeri ultra-brze svjetlosne pojave iz kojeg možemo dobiti informacije o intenzitetu u ovisnosti o vremenu i poziciji (ili valnoj duljini). Kada se koristi zajedno sa spektrometrom i odgovarajućom optikom moguće je mjeriti vremenski i prostorno razlučive događaje. Svjetlosni signal koji mjerimo prolazi kroz pukotinu te se putem sustava optičkih leća formira slika pukotine na fotokatodi, vidi sliku 2.7.a). Prolazeći kroz pukotinu na fotokatodu u tom trenutku upadaju 4 optička pulsa koja se razlikuju u vremenu, prostoru i intenzitetu. Fotokatoda služi kako bi se optički signal pretvorio u elektrone redoslijedom upada na fotokatodu, odnosno elektronski puls, pri čemu je broj nastalih elektrona proporcionalan intenzitetu upadne

Slika 2.6: Shema postava za mjerenje vremenski razlučive fotoluminiscencije na talijanskom institutu tehnologije u Milanu. Preuzeto iz [74].

svjetlosti. Stvoreni elektroni zatim prolaze kroz jako električno polje ubrzavajućih elektroda te dolaze u prostor dvije elektrode na kojima se narine visoki napon čime se elektroni otklanjaju (eng. sweep) vremenski sinkronizirano s upadnom svjetlošću, kao što je prikazano na slici 2.7b). Tijekom jako brzog procesa otklanjanja elektrona u jakom električnom polju između dviju elektroda, elektroni koji dolaze u različitim trenucima skreću pod različitim kutevima u smjeru okomitom na smjer kretanja te s velikom brzinom udaraju na višekanalni detektor (eng. multi-channel plate - MCP). Na taj način, vremenski različiti događaji zabilježe se na prostorno drugačijim dijelovima detektora. U MCP elektroni se pri prolasku umnožavaju nekoliko tisuća puta i time se povećava intenzitet elektronskog signala koji zatim upada na fosforni ekran i time natrag pretvoren u optički signal, svjetlost. Na fosfornom ekranu prostorna pozicija fosforne slike odgovara vremenskoj poziciji. Slike koje se formiraju na najgornjoj poziciji odgovaraju optičkom pulsu koji je najranije stigao, dok ostali optički pulsevi koji su došli kasnije u vremenu prikazani su od odozgo prema dolje, odnosno prostorna vertikalna os odgovora vremenskoj osi. Horizontalna prostorna os na fosfornom ekranu odgovara horizontalnoj lokaciji (ili valnoj duljini) upadnog svjetla, dok je intenzitet nastale slike proporcionalan intenzitetu upadnog svjetlosnog signala.

Slika 2.7: Opis rada streak kamere. a) Princip rada streak cijevi b) Vremenska sinkronizacija napona otklanjanja. Slika a) i b) preuzete iz [76].

3 Rezultati

3.1 Karakterizacija uzoraka optičkom mikroskopijom, Raman spektroskopijom i mikroskopijom atomskom silom (AFM)

U svrhu lakšeg vizualnog promatranja kristala i radi lakše izrade uređaja, jednoslojevi i višeslojevi MoS₂ i drugih dihalkogenida prijelaznih metala obično se sintetiziraju CVD tehnikom ili se prenose na SiO₂/Si podlogu [68, 77]. Prvo susutavno istraživanje optičkog kontrasta jednoslojnih i višeslojnih (do 200 slojeva) kristala NbSe₂ i MoS₂ koji su dobiveni naraštanjem na SiO₂/Si podlogu učinjeno je u radu [78] pri čemu je izmjeren optički kontrast uzoraka kristala NbSe₂ i MoS₂ za različite valne duljine osvjetljenja u vidljivom spektru i za dvije različite debljine SiO₂ (90 nm i 290 nm). Da bi istražili optički kontrast tih atomski debelih kristala, primjenjuje se Fresnelov zakon na način na kojeg su ga razvili Blake i suradnici [79]. Intenzitet reflektiranog signala za okomitu upadnu monokromatsku zraku može se prikazati relacijom:

$$I = \left| \frac{r_{01}e^{i(\phi_1 + \phi_2)} + r_{12}e^{-i(\phi_1 - \phi_2)} + r_{23}e^{-i(\phi_1 + \phi_2)} + r_{01}r_{12}r_{23}e^{i(\phi_1 - \phi_2)}}{e^{i(\phi_1 + \phi_2)} + r_{01}r_{12}e^{-i(\phi_1 - \phi_2)} + r_{01}r_{23}e^{-i(\phi_1 + \phi_2)} + r_{12}r_{23}e^{i(\phi_1 - \phi_2)}} \right|^2$$
(3.1)

gdje se indeksi 0, 1, 2, and 3 odnose redom na zrak, uzorak, sloja SiO $_2$ i

Slika 3.1: Shematski prikaz primjenjenog Fresnelovog zakona refleksije za upadnu svjetlost te refleksiju iz točke na dubini x u jednosloju MoS_2 na SiO_2/Si podlozi. Preuzeto iz [80].

Si, vidi sliku 3.1. Uvedene su pokrate $r_{ij} = \frac{n_i - n_j}{n_i + n_j}$ i $\phi_i = 2d_i n_i / \lambda$ gdje jen_i kompleksni indeks loma medija i, a d_i debljina medija i.

Možemo definirati i kontrastnu refleksivnost kao

$$C_{\rm R} = \frac{I_{\rm podloga} - I_{\rm uzorak}}{I_{\rm podloga}}$$
(3.2)

gdje se intenzitet I_{uzorak} može direktno izračunati primjenom relacije (3.1), a I_{podloga} se može dobiti primjenom relacije (3.1) pri čemu je medij 1 zrak, a ne kristal. U istom članku pokazalo se da se najbolji kontrast za istraživanje MoS2, čak 60%, postiže za 90 ili 220 nm debeli sloj SiO₂ te za valnu duljinu pobude od 500 nm. Debljina sloja SiO₂ u našem slučaju iznosi standardnih 290 nm, što se pokazalo da nije idealna debljina sloja za istraživanja Raman i PL [80], ali se ta podloga uvriježeno koristi kao podloga za sintezu uzoraka. Svjetlost koju koristimo za snimanje optičkih slika je širokopojasni nekoherentni izvor bijele svjetlosti - kvarcna volfram-halogena lampa (Thorlabs) koja posjeduje široki emisijski spektar u području od 400-2200 nm. U takvim uvjetima moguće je postići optički kontrast i do 30% za jedan sloj MoS₂. Na slici 3.2. a) prikazan je spektar kontrastne refleksivnost za jednosloj i dvosloj MoS_2 . Vidimo da različite debljine uzorka imaju različite vrijednosti kontrastne refleksivnosti pa se na ovaj način mogu razlikovati i dijelovi uzorka s različitim brojem slojeva. Slike 3.2b) i 3.2c) prikazuje optičke slike jednoslojnog i dvoslojnog MoS₂ na SiO₂/Si podlozi na kojoj smo vršili mjerenja. Razlika između jednoslojnog, dvoslojnog MoS₂ i SiO₂/Si podloge se lako može uočiti zbog razlike u optičkim kontrastima.

Skenirajuće tehnike, poput skenirajuće elektronske mikroskopije mogu se načelno koristiti za određivanje debljine slojeva uzoraka, međutim, mala gustoća tih atomski debelih slojeva mogu učiniti ovu tehniku nepraktičnom. Iako se skenirajuća elektronska mikroskopija odlikuje velikim rasponom skeniranja i brzim radom, izlaganje površine uzorka elektronskoj zraci obično završi s kontaminacijom i oštećenjem uzorka. S druge strane, optička mikroskopija i Raman spektroskopija u kombinaciji s mikroskopijom atomske sile (AFM) smatraju se vrlo korisne metode za određivanje

Slika 3.2: a) Kontrastna refleksivnost jednosloja i dvosloja MoS_2 . Optičke slike jednosloja (b) i dvosloja (c) MoS_2 .

Slika 3.3: a) AFM slika jednoslojnog MoS_2 . b) Visinski profil jednoslojnog i dvoslojnog MoS_2 .

broja slojeva na brz i neinvanzivan način.

Slika 3.3 a) prikazuje AFM topološku sliku jednoslojnog MoS_2 . Visinska razlika izmedu slojeva i podloge izmjerena "tapping" modom AFM-a je prikazana na Slici 3.3 b). Dobivena visina MoS_2 jednosloja na SiO_2/Si podlozi je 0,8-1,0 nm, dok je izmjerena visina MoS_2 jednosloja na postojećem jednosloju MoS_2 0,5-0,7 nm što odgovara teorijskoj debljini jednosloja od 6,5 °A. Odstupanje od teorijske debljine jednosloja MoS_2 na podlozi [81] implicira da SiO_2/Si podloga na svojoj površini ima adsorbirane čestice koje uzrokuju veću debljinu jednosloja MoS_2 na podlozi [48].

Još jedna optička metoda često se koristi za karakterizaciju uzoraka dihalkogenida prijelaznih metala, a to je Raman spektroskopija. Kao što sam spomenuo u uvodnom poglavlju, MoS₂ posjeduje dva aktivna Raman moda: E_{2g}^1 i A_{1g}, koji se tipično nalaze na energijama 387 cm⁻¹, odnosno 405 cm⁻¹ [82]. U radu [45] utvrđeno je da ova dva vibracijska moda pokazuju abnormalnu ovisnost debljine slojeva: kada se debljina slojeva povećava, frekvencija E_{2g}^1 moda se smanjuje (crveni pomak), dok se A_{1g} povećava (plavi pomak). Ta promjena frekvencije, odnosno, povećanje frekvencijskog razmaka između karakterističnih Raman mododva u ovisnosti o broju slojeva uzorka pokazala se vrlo korisnom metodom za identifikaciju broja slojeva MoS₂ i u skladu je s karakterizacijom uzoraka optičkim mikroskopom,

Slika 3.4: a) Razlika u Raman spektrima jednoslojnog i dvoslojnog MoS_2 te b) naraštanog i prenesenog jednosloja MoS_2 .

mikroskopijom atomske sile i mjerenjem fotoluminescencije [14]. Na Slici 3.4a) vidi se Raman spektar jednoslojnog i dvoslojnog MoS₂. Spektar dvoslojnog MoS₂ je vertikalno pomaknut radi jasnoće. Vidimo da se razmak između karakterističnih modova povećava u slučaju dvoslojnog MoS₂, odnosno razmak u iznosu od 20.6 cm⁻¹ za jednoslojni MoS2 povećava se na 23.7 cm⁻¹ za dvoslojni MoS₂. Na slici 3.4b) prikazani su Raman modovi jednoslojnog MoS₂ koji je naraštan na SiO₂/Si podlozi i MoS₂ koji je prenesen s podloge na kojoj je naraštan na SiO₂/Si podlogu. Spektar prenesenog MoS₂ je vertikalno pomaknut radi jasnoće. Razmak između modova iznosi 20.6 cm⁻¹ i 19.9 cm⁻¹, što odgovara razlici u položaju modova za jednoslojni MoS₂ . Možemo uočiti da je odnos intenziteta Raman modova u slučaju prenesenog MoS₂ veći u korist A_{1g} moda, što upućuje na slabije vezanje prenesenog uzorka na podlogu, odnosno veću amplitudu vibracije izvan ravnine.

3.2 Utjecaj fotodopiranja na optički odziv MoS₂

Atomski tanki jednoslojevi dihalkogenida prijelaznog metala su 2D materijali koji su analog grafenu po strukturi rešetke i privukli su veliki interes znastvene javnosti jer imaju potencijal u primjeni u nanoelektronici i optoelektronici. Za razliku od grafena, energetska struktura jednoslojnih TMDa potvrđuje postojanje energetskog procjepa, što je pokazano i teorijski i eksperimentalno [14, 20]. Poznato je da se veliki uspjeh moderne tehnologije poluvodiča temelji na izvanrednoj sposobnosti kontrole dopiranja u proizvodnim procesima. To bi također trebalo vrijediti i za slučaj TMD monoslojeva. Drugim riječima, primjena TMD kristala, pa čak i grafena u nanoelektronici i optoelektronici također ovisi o mogućnosti kontrole dopiranja uzoraka. Dopiranje je proces povećavanja koncentracije nosioca naboja u poluvodiču. U uvodnom poglavlju su opisana elektronska i kemijska dopiranja, a u ovom diplomskom radu smo se bavili fotoinduciranim dopiranjem uzoraka MoS₂. Uzorci MoS₂ dobiveni su na dva načina: prvi način je direktnom sintezom pomoću CVD tehnike na SiO₂/Si podlozi. Među takvim uzorcima uspješno su sintetizirani i dvosloji pa smi bili u mogućnosti ispitati i utjecaj fotodopiranja na indirektne poluvodiče. Drugi tip uzoraka smo do-
bili prenošenjem CVD sintetiziranog uzrorka na svježu podlogu SiO₂/Si. Spomenute tehnika sinteze i transfera detaljno su opisane su u drugom poglavlju ovog diplomskog rada. Jednoslojevi i dvoslojevi su pažljivo odabrani ispod optičkog mikroskopa, zahvaljujući interferencijskim kontrastima, a njihova debljina je dodatno potvrđena korištenjem Raman spektroskopije i AFM-a. Optička karakterizacija uzoraka uslijed fotodopiranja rađena je na eksperimentalnom postavu Raman spektrometra kućne izrade na Institutu za fiziku u Zagrebu, opisanom u poglavlju Eksperimentalni postav. Koristili smo spomenuti Sapphire Coherent kontinuirani laser valne duljine $\lambda = 532$ nm za snimanje fotoluminiscenskog spektra pri različitim snagama laserske zrake, odnosno, pri različitim uvjetima dopiranja. Izlazna snaga laserske zrake na izlazu iz lasera iznosila je 2.5 mW te se ta vrijednost mogla smanjivati pomoću sivog filtera koji je smješten na optičkom putu zrake. Snaga lasera se dodatno atenuira pri prolasku kroz dihroičko zrcalo i objektiv (50x, Olympus, NA 0,75) te je stoga potrebno odrediti faktor konverzije snage laserske zrake prije ulaska u konfokalni mikroskop i nakon objektiva, odnosno na samom uzorku. Pomoću dobivenog faktora konverzije 1.51 kasnije smo mogli odrediti snagu laserske zrake koja upada na uzorak mjereći snagu lasera prije ulaska u konfokalni mikroskop. Raspon snaga laserske zrake na uzorcima kretao se od 1 μ W do 500 μ W i upravo te vrijednosti su dane na grafovima koji prikazuju fotoluminiscencijske spektre.

3.2.1 Utjecaj fotodopiranja na jednoslojni naraštani MoS₂

U ovom poglavlju prikazani su rezultati eksperimentalnog rada kojim se demonstrira fotoinducirani efekt dopiranja jednosloja MoS2 dobivenog CVD tehnikom. Ovisnost signala fotoluminiscencije (PL) o snazi lasera prikazana je na slici 3.5a) pri čemu je vidljivo da intenzitet PL signala raste s povećanjem snage optičke pobude. Dva maksimuma koja se uočavaju na PL signalima odgovaraju A i B ekscitonskim pobuđenjima u MoS₂, odnosno, emisijskim spektrima koji nastaju prilikom direktnog optičkog prijelaza u K točki simetrije Brillouinove zone između minimuma vodljive i dva maksimuma rascijepane valentne vrpce. Ta dva glavna maksimuma se pojavljuju otprilike na 680 nm (eksciton A) i 620 nm (eksciton B). Na niskim ekscitacijskim snagama B ekscitonski maksimum se jedva opaža, a A ekscitonski maksimum je također mali, što upućuje na to da pri niskim snagama imamo i nisku koncentracija fotoinducranih nositelja naboja, a time i ekscitona. Pažljivom analizom PL signala i činjenice da postoji asimetrija A ekscitonskog maksimuma u crvenom krilu vodi do zaključka da se A eksciton sastoji od dva maksimuma koji se pripisuju ekscitonu A i nabijenom A⁻ ekscitonu (trionu). Na slici 3.5b) prikazana je prilagodba PL signala za maksimalnu snagu pobude na tri Lorencijana, kojima je određen položaj A i B ekscitonskih maksimuma i A- trionskog maksimuma. Prikazana prilagodba na slici 3.5b) načinjena je pomoću Origin Pro programskog paketa. Istu analizu moguće je napraviti za sve mjerene snage u rasponu od 1 μ W do 500 μ W . Takvom analizom moguće je dobiti informaciju o položaju ekscitonskih i trionskih maksimuma, njihovoj širini te ukup-

Slika 3.5: a) Ovisnost PL signala o snazi pobudnog lasera. b) Fit na 3 Lorencijana PL signala pri optičkoj pobudi snage 500 μ W.

Slika 3.6: a) PL signal normiran na snagu pobudnog lasera. b) Saturacija ukupnog PL intenziteta u ovisnosti o snazi optičke pobude.

nom intenzitetu.

Ukoliko eksperimentalne krivulje normiramo sa snagom, slika 3.6a), vidimo da se normirani PL signali smanjuju s porastom snage optičke pumpe. Porast signala nije linearan sa snagom, već on saturira, vidi sliku 3.6b). Na slici 3.6b) prikazan je ukupni integrirani intenzitet PL signala za različite pobudne snage lasera, odnosno za različite intenzitete fotopobuđenja. Ta saturacija signala posljedica je saturacije apsorpcije unutar monosloja za velike snage optičke pobude[83].

Na slici 3.7 prikazan je spektar fotoluminiscencije normaliziran na jedinicu, dobiven dijeljenjem intenziteta fotoluminiscencije s maksimalnim iznosom intenziteta. Dvije su osnovne značajke normiranih PL spektara: (i) porastom snage lasera, odnosno optičke injekcije nositelja naboja, dolazi do pomicanja krivulja u desno, što upućuje na pomak položaja trionskog vrha u crveno u odnosu na spektre pri niskom optičkom injekcijom slobodnih nositelja naboja te (ii) povećanje intenziteta fotoluminiscencije ekscitona B s povećanjem optičke pobudne snage, o čemu će kasnije biti više riječi.

Prikazane spektre na slici 3.5a) smo prilagođavali na tri Lorentziana za sve mjerene snage u rasponu od 1 μ W do 500 μ W čime smo dobili informaciju o položaju ekscitonskih i trionskih maksimuma, njihovoj širini te ukupnom intenzitetu. Na

Slika 3.7: Normirani PL signal prikazan na slici 3.4a).

slici 3.8 su prikazani položaji pojedinih maksimuma Lorentziana u ovisnosti o snazi optičke pobude. Slika 3.8a) prikazuje pomak položaja maksimuma koji pripisujemo emisiji ekscitona B, vidimo pomak u plavo do $150 \,\mu\text{W}$ te nakon toga pomak u crveno. Međutim, maksimalni pomak je reda veličine pogreške fita i stoga smatramo da ne sadrži nikakvu bitnu informaciju. Slika 3.8b) prikazuje pomak u plavo položaja maksimuma emisije ekscitona A za 0.74 nm s porastom snage laserske zrake. Povećanjem intenziteta fotodopiranja povećava se broj nosioca naboja, a time dolazi do stvaranja sve većeg broja elektrona u vodljivoj vrpci, što zbog Paulijevog principa isključenja vodi na povećanje energije optičkog procjepa, odnosno, položaj maksimuma A ekscitona se pomiče u plavo. Slika 3.8c) prikazuje pomak trionskog vrha u crveno s povećanjem snage laserske zrake za 1.32 nm te je po svom iznosu veći nego pomak ekscitona A u plavo. Kao rezultat, cijeli konvoluirani maksimum koji objedinjuje A i A⁻ emisijske spektre se pomiče u crveno. Taj pomak položaja trionskog maksimuma u odnosu na ekcitonski maksimum u ovisnosti o snazi optičke pobude prikazan je i na Slici 3.8d). Pri porastu snage laserske zrake od 1 μ W do oko 200 μ W vidimo da je razmicanje položaja vrhova ekscitona A i pripadnog triona jače, dok pri većim snagama razlika između položaja maksimuma A i A⁻ emisijskih linija i dalje raste, ali ne značajno. Pri opisu spektra fotoluminiscencije normaliziranog na jedinicu na slici 3.2d) opazili smo pomak trionskog vrha u crveno koji je na slikama 3.8c) i d) dodatno potvrđen. U uvodnom poglavlju navedeno je da se energija disocijacije triona definira kao razlika između energije pobude ekscitona A i triona A⁻. Na slici 3.8d) vidimo rast te razlike s većom snagom laserske zrake, odnosno raste energija disoci-

Slika 3.8: Položaji maksimuma emisijskih linija B ekscitona a), A ekscitona b), A⁻ triona c). d) Razmak između položaja A⁻ i A maksimuma u ovisnosti o snazi lasera za jednoslojni MoS_2 .

jacije triona. Energija disocijacije triona za najmanju snagu je 8.75 nm te poraste za iznos od 2.125 nm na 10.875 nm za najveću snagu laserske zrake. Porastom snage laserske zrake i koncentracija nosioca naboja (elektrona u vodljivoj vrpci) raste zbog čega se povećava vjerojatnost vezanja ekscitona s viškom elektrona u trione [84, 85].

Osim položaja maksimuma emisijskih spektara, iz prilagodbe na Lorentziane možemo dobiti informaciju o ukupnom intenzitetu pojedinog emisijskog spektra koji odgovaraju populaciji ekscitona, odnosno triona [83]. U tom smislu, zanimljivo je pogladati kako se mijenja populacija nabijenih ekscitona u odnosu na ekscitone s porastom fotodopiranja, odnosno s porastom snage lasera. Na slici 3.9 vidi se spektar A i A^- emisijsih linija dobivenih prilagodbom na Lorentzijane za različite snage lasera.

Krivulje pomaknute više u plavi dio spektra odnosno lijevo odgovaraju ekscitonu A, dok krivulje pomaknute u crveni dio spektra odgovaraju trionima. Prisutnost trionske populacije pri malim snagama laserske zrake upućuje na intrinzično dopiranje našeg uzorka jednoslojnog MoS_2 uzrokovano podlogom SiO_2/Si [86]. Povećanjem snage laserske zrake fotodopiranje raste i unosimo sve više nosioca naboja u vodljivu vrpcu šta se primjećuje kao povećanje populacije triona u odnosu na populaciju ekscitona (omjer A/A^- pada). Pri najvećoj snazi imamo povećanje trionske populacije koja postaje dominantna u spektru fotoluminiscencije, spektralni udio triona raste, dok se istovremeno spektralni udio ekscitona A smanjuje [15], što se vidi pomakom u crveno krivulje koja se sastoji od ekscitona A i triona. Činjenica da se relativni

Slika 3.9: Fotodopiranje naraštanog jednosloja MoS_2 dobivenog CVD metodom na SiO_2/Si podlozi. Raspon snaga laserske zrake na uzorku kreću se od 1 μ W do 500 μ W. Prikazane su populacije ekscitona A i triona A⁻ dobivene prilagodbom na Lorentziane za različite snage laserske zrake te navedeni omjeri populacija dobiveni iz integrala površina krivulja ekscitona A i triona. Emisijski spektri su vertikalno razmaknuti radi jasnoće.

Slika 3.10: Prikaz ovisnosti omjera površina krivulja prilagodbe ekscitona A i triona A⁻ o snazi laserske zrake a) i ukupna površina krivulje dobivene prilagodbom na B ekscitonski b), A ekscitonski (c) i A⁻ trionski d) emisijski spektar u ovisnosti o snazi laserske zrake za jednosloj naraštanog MoS₂.

intenziteti ove dvije spektralne linije mijenjaju s porastom snage implicira da se stanja, odnosno kvazičestična optička pobuđenja u obliku ekscitona i triona, formiraju ovisno jedan o drugome [83]. Dobiveni omjeri površina krivulja prilagodbe koji predstavljaju omjer populacija ekscitona A i triona prikazani su na slici 3.10a) prikazuju brže smanjenje populacije ekscitona A pri malom povećanju snage fotopobude, dok s daljnjim porastom snage laserske zrake populacija ekscitona slabije pada, odnosno proces stvaranja triona iz ekscitona i slobodnih nositelja naboja saturira. Interpolacijom možemo vidjeti da je za 32.4 μ W omjer A : A⁻ = 50 : 50.

Površine dobivene iz prilagodbi eksperimentalnih emisijskih spektara na 3 Lorentziana u ovisnosti o snazi laserske zrake, daju informaciju o populaciji pojedine kvazičestice nakon fotopobude. Populacija ekscitona B u ovisnosti o pobudnoj snazi lasera prikazana je na slici 3.10b). Porastom snage lasera populacija ekscitona B linearno raste, odnosno ne dolazi do saturacije popunjavanja energetskih stanja. Populacija ekscitonskih A stanja saturira s porastom snage što se vidi na slici 3.10c), što je posljedica preferiranog stvaranja trionske populacije uslijed fotodopiranja, vidi sliku 3.9. Trionska populacija slabije saturira s fotodopingom, slika 3.10d), međutim dodatno povećanje snage laserske zrake vjerojatno bi rezultiralo i saturiranjem trionskog signala. Daljnjim povećanjem snage laserske zrake trebali bi vidjeti uz saturiranje populacije triona i pojavu biekscitona [87].

Slika 3.11: Energija disocijacije triona u naraštanom jednosloju MoS_2 u ovisnosti o fotodopiranju.

Ukoliko iskoristimo definiciju energije disocijacije triona, po kojoj energija disocijacije triona odgovara razlici između energije ekscitonskog (E_A) i trionskog (E_{A-}) emisijskog maksimuma, možemo dobiti informaciju o iznosu energije disocijacije triona u ovisnosti o snazi, vidi sliku 3.11. Energija disocijacije triona za male snage lasera iznosi oko 23.5 meV te raste s povećanjem fotodopiranja. Porastom fotodopiranja raste koncentracija nosioca naboja i time Fermi energija E_F raste što opažamo kao porast energije disocijacije triona. Taj porast je puno brži za niže snage pobudnog lasera što je i za očekivati jer se povećanjem broja slobodnih nositelja naboja povećava i vjerojatnost za stvaranje elektron-eksciton vezanog sustava. Dodatno dopiranje istovremeno stvara veći broj ekscitona, ali i slobodnih nositelja naboja, što vodi do saturacije ekscitonske populacije na račun trionske, vidi sliku 3.10c). Istovremeno, zbog jakog fotodopiranja položaji ekscitonskih maksimuma se pomiču prema višim energijama, slika 3.8b), što, prema definiciji, znači i povećanje energije disocijacije triona. Pri jakom fotodopiranju, energija disocijacije triona naraste i do 29 meV.

3.2.2 Utjecaj fotodopiranja na dvoslojni naraštani MoS₂

Dobiveni uzorci MoS_2 CVD metodom na kojima smo radili mjerenja većinom su jednoslojni, međutim moguće je i pronaći dvosloje MoS_2 . Ponovili smo mjerenje fotodopiranja kao i za jednosloj kako bih proučili koji je utjecaj optičke pobude različitih intenziteta u slučaju poluvodičkog materijala s indirektnim energetskim procjepom. Dvoslojni MoS₂ je poluvodič indirektnog energetskog procjepa te je zbog toga intenzitet fotoluminiscencije smanjen, kao što je prikazano i na slici 3.12a) koja prikazuje intenzitete fotoluminiscencije dvoslojnog MoS₂ za raspon snaga laserske zrake od 1 μ W do 500 μ W. Porastom snage laserske zrake na slici 3.12a) se vidi očekivani porast intenziteta fotolomuniscencija ekscitona A \sim 676 nm i B \sim 630 nm. Iz grafa intenziteta fotoluminiscencije normiranih na snagu laserske zrake na slici 3.12b) primjećujemo da intenzitet fotoluminiscencije oko ekscitonskog A i trionskog vrha nije linearan u ovisnosti o snazi te za najmanju snagu imamo najveći porast intenziteta, dok pri većim snagama dolazi do saturacije intenziteta. Usporedujući slike 3.6a) i 3.12b) koje prikazuju intenzitet fotoluminiscencije normiran na snagu jednosloja i dvosloja MoS₂ primjećuje se za isti raspon snaga manja saturacija emisijskih maksimuma u slučaju dvosloja. Razlog tome je što je dvosloj MoS₂ poluvodič indirektnog energetskog procjepa te se fotopobuđeni elektroni u vodljivoj vrpci, kao i šupljine u valentnoj vrpci, slijede drugačije relaksacijske puteve u odnosu na jednosloj MoS₂, odnosno, elektroni se većim dijelom relaksiraju u minimum vodljive vrpce smješten izmedu K i Γ točke, te samo manjim dijelom u K točku koja više nije minimum vodljive vrpce [88]. Time je broj elektrona koji formiraju ekscitone bitno smanjen za iste snage laserske zrake u odnosu na jednosloj te primjećujemo manju saturaciju pri istom rasponu snaga. Intenzitet fotoluminiscencije normiran na jedinicu je prikazan na slici 3.12c) gdje se opažaju dvije specifičnosti normiranih PL signala u ovisnosti o snazi pobudnog lasera: (i) s porastom intenziteta fotopobude, dolazi do širenja crvenog krila linije A ekscitonskog maksimuma, što je posljedica jačeg dopiranja uzorka, odnosno, doprinosa trionskih stanja te (ii) porast B ekscitonske emisije pri porastu snage pobudnog lasera iznad 10 μ W.

U kontekstu opažanja trionskih stanja u dvoslojima MoS₂, koji su po našem saznanju do sada samo razmatrani u radu [88] iz grafa prikazanog na slici 3.12b) i c) vidljivo je da se emisijski spektri A ekscitona za snage veće od 10 μ W zaista šire u crveno krilo te da postoji mala asimetrija u ekscitonskoj liniji. Zbog toga možemo tvrditi da iako se radi o indirektnoj prirodi poluvodiča, dodatno dopiranje, u ovom slučaju fotodopiranje omogućava nam opažanje triona u dvoslojima MoS₂ čak i na sobnoj temperaturi. Da bi zaista potvdrili da se u dva različita režima optičke pobude naš uzorak ponaša različito, na slici 3.13 prikazani su PL spektri za dvije različite snage lasera: snagu od 10 μ W gdje se ne uočava dopiranje te za snagu od 500 μ W gdje je prisutno jako fotodopiranje pa se kod prilagodbe emisijskog spektra dvosloja treba uključiti i trionska populacija, kao što je vidljivo iz grafova prikazanih na slici 3.13.

Prikazane spektre na slici 3.12a) smo prilagođavali na dva Lorenziana za slučaj malih snaga (1 μ W i 10 μ W), odnosno na tri Lorentziana za preostale mjerene snage u rasponu od 50 μ W do 500 μ W čime smo dobili informaciju o položaju ekscitonskih i trionskih maksimuma, njihovoj širini te ukupnom intenzitetu. Na slici 3.14 su prikazani položaji pojedinih maksimuma Lorentziana u ovisnosti o snazi optičke

Slika 3.12: Ovisnost PL signala o snazi pobudnog lasera za naraštani dvosloja MoS_2 Spektar fotoluminiscencije za različite snage laserske zrake a), spektar fotoluminiscencije za različite snage laserske zrake normaliziran na snagu optičke pobude b) i uvećani dio za veće snage c) te d) spektar fotoluminiscencije za različite snage laserske zrake normaliziranna jedinicu.

Slika 3.13: Ovisnost PL signala o dvije snage pobudnog lasera za naraštani dvosloja MoS₂. Iz usporedbe spektara uočava se prisutnost trionske populacije u slučaju jačeg fotodopiranja.

pobude. Slika 3.14a) prikazuje pomak položaja maksimuma koji pripisujemo emisiji ekscitona B, pri čemu je vidljivo da se energija B emisijskog maksimuma ne mijenja s povećanjem snage lasera. Iz grafa je vidljivo da je položaj B ekscitonskog maksimuma za pobudnu snagu od 10 μ W pomaknut u odnosu na položaje B ekscitonskih maksimuma pri jačoj fotoionizaciji, koji imaju maksimume na otprilike 630 nm. Ta razlika u položaju emisijskih maksimuma je posljedica renormalizacije elektronske strukture kod jačeg dopiranja koja dovodi do pomicanja emisijske linija B ekscitona. Na slici 3.14b) je prikazana ovisnost položaja maksimuma ekscitona A o snazi laserske zrake iz koje se vidi da promjena snage ne utječe značajno na položaj ekscitona A, koji se kreće oko 676 nm, što je u suprotnosti s opaženim pomakom u jednoslojnom MoS₂. Razlog tome je što za indirektni procjep manje elektrona se relaksira u minimum valentne vrpce u K točki inverznog prostora te ne dolazi do njenog popunjavanja koje bi onda dovelo do pomaka prema većim energijama zbog Paulievog principa isključenja kakvo se opaža u jednosloju MoS₂, vidi sliku 3.8b). Slika 3.14c) prikazuje ovisnost položaja trionskog vrha o snazi laserske zrake te vidimo njegov pomak u crveno s porastom snage, što je u skladu s očekivanjima te istu pojavu opažamo u slučaju jednosloja MoS₂, vidi sliku 3.8c). Razlika položaja ekscitona A i triona A⁻ u ovisnosti o snazi laserske zrake je dana na slici 3.14d) te prikazuje povećanje razlike s porastom snage, što upućuje na porast energije disocijacije triona, kao i u slučaju jednosloja MoS₂, vidi sliku 3.8d).

Slika 3.14: Položaji maksimuma emisijskih linija B ekscitona a), A ekscitona b), A⁻ triona c) te razmak između položaja A⁻ i A maksimuma u ovisnosti o snazi lasera d) za dvoslojni MoS_2 .

Osim položaja maksimuma emisijskih spektara, iz prilagodbe na Lorentziane možemo dobiti informaciju o ukupnom intenzitetu pojedinog emisijskog spektra koji odgovaraju populaciji ekscitona, odnosno triona [83]. Osim pomaka prema većim valnim duljinama (za 17.5 nm), u slučaju jačeg fotodopiranja uočava se povećanje relativnog intenziteta B ekscitonske emisije, koji linearno raste s povećanjem snage pobudnog lasera. Populacija ekscitona B u ovisnosti o pobudnoj snazi lasera prikazana je na slici 3.15a). Porastom snage lasera populacija ekscitona B linearno raste, odnosno ne dolazi do saturacije popunjavanja energetskih stanja za dani interval optičke pobude. Populacija ekscitonskih A stanja također raste s porastom snage što se vidi na slici 3.15b). Porast obje ekscitonske populacije s fotodopiranjem može se razumijeti kroz povećanje populacije slobodnih nositelja naboja (elektrona i šupljina), a time i povećanu vjerojatnost relaksacije slobodnih nositelja naboja prema energetski nepovoljnijoj K točki prostora, što se manifestira kao povećanje A i B ekscitosnkih emisijskih spektara uslijed fotodopiranja, čak i u slučaju indirektnog poluvodiča. Trionska populacija na slici 3.15 c) raste s fotodopingom i tek za velike snage pobudnog lasera dolazi do blage saturacije signala. Iz omjera populacija ekscitona A i triona A⁻ vidimo da je u slučaju dvosloja taj omjer konstantan sa snagom lasera i iznosi otprilike 3, vidi sliku 3.15d).

Ukoliko iskoristimo definiciju energije disocijacije triona, po kojoj energija disocijacije triona odgovara razlici između energije ekscitonskog (E_A) i trionskog (E^{A-})

Slika 3.15: Ukupna površina krivulje dobivene prilagodbom na B ekscitonski a), A ekscitonski b) i A^- trionski c) emisijski spektar u ovisnosti o snazi laserske zrake za dvosloj naraštanog MoS₂. Prikaz ovisnosti omjera površina krivulja prilagodbe ekscitona A i triona A^- o snazi laserske zrake d).

emisijskog maksimuma, možemo dobiti informaciju o iznosu energije disocijacije triona u ovisnosti o snazi, vidi sliku 3.16. Energija disocijacije triona za manje snage lasera iznosi oko 32.5 meV te raste s povećanjem fotodopiranja. Taj porast je kontinuiran te pri maksimalnom iznosu snagle optičke pobude (pri najjačem dopiranju) iznos energije trionskog vezanje je 41.5 meV. Ove dobivene vrijednosti su u skladu s literaturom [15, 85].

3.2.3 Utjecaj fotodopiranja na jednoslojni MoS₂ trasnferiran na SiO₂/Si podlogu

Kako bi bili korak bliže primjeni 2D TMD-a u različite svrhe potrebno je savladati proces transfera uzorka jednoslojnog MoS_2 te ispitati fizikalna svojstva prenesenog jednosloja MoS_2 . U ovom dijelu poglavlja uspoređujemo razlike između naraštanog i prenesenog jednosloja MoS_2 na SiO_2/Si podlozi prilikom fotodopiranja. Korišteni eksperimentalni postav i raspon snaga laserske zrake je isti kao i za slučaj naraštanog jednosloja MoS_2 . Proces prenošenja je opisan u poglavlju Eksperimentalni postav. Slika 3.17a) prikazuje spektre fotoluminiscencije prenesenog jednosloja MoS_2 za različite snage fotodopiranja. Porastom snage laserske zrake na slici 3.17a) se vidi očekivani porast intenziteta fotolomuniscencija ekscitona A ~670 nm i B ~615 nm. Iz grafa intenziteta fotoluminiscencije normiranih na snagu laserske zrake (vidi

Slika 3.16: Energija disocijacije triona u naraštanom dvosloju MoS_2 u ovisnosti o fotodopiranju.

Slika 3.17: Ovisnost PL signala o snazi pobudnog lasera za jednosloj MoS_2 trasnferiran na SiO₂/Si podlogu. Spektar fotoluminiscencije za različite snage laserske zrake a), spektar fotoluminiscencije za različite snage laserske zrake normaliziran na snagu optičke pobude b) i uvećani dio za veće snage c) te d) spektar fotoluminiscencije za različite snage laserske zrake normalizirana jedinicu.

Slika 3.18: Položaji maksimuma emisijskih linija B ekscitona a), A ekscitona b), A⁻ triona c) te razmak između položaja A⁻ i A maksimuma u ovisnosti o snazi lasera d) za jednosloj MoS_2 transferiran na SiO_2/Si podlogu.

Sliku 3.17b) primjećujemo da intenzitet fotoluminiscencije oko ekscitonskog A i trionskog A- vrha nije linearan u ovisnosti o snazi te za najmanju snagu imamo najveći porast intenziteta, dok pri većim snagama dolazi do saturacije intenziteta. Intenzitet fotoluminiscencije normiran na jedinicu je prikazan na slici 3.17c) gdje se opažaju dvije specifičnosti normiranih PL siganla u ovisnosti o snazi pobudnog lasera: (i) s porastom intenziteta fotopobude, dolazi do širenja crvenog krila linije A ekscitonskog maksimuma, što je posljedica jačeg dopiranja uzorka, odnosno, doprinosa trionskih stanja te (ii) porast B ekscitonske emisije pri porastu snage pobudnog lasera.

Prikazane spektre na slici 3.17a) smo prilagođavali na tri Lorentziana za sve mjerene snage u rasponu od 1 μ W do 500 μ W čime smo dobili informaciju o položaju ekscitonskih i trionskih maksimuma, njihovoj širini te ukupnom intenzitetu. Na slici 3.18 su prikazani položaji pojedinih maksimuma Lorentziana u ovisnosti o snazi optičke laserske zrake. Slika 3.18a) prikazuje pomak položaja maksimuma koji pripisujemo emisiji ekscitona B, pri čemu je vidljivo da se energija B emisijskog maksimuma asimptotski približava valnoj duljini 612 nm, odnosno da s povećanjem snage lasera dolazi do kontinuiranog pomaka B ekscitonskog maksimuma. Taj pomak linije doalzi od dopiranja, uslijed kojeg se mijenja i elektronske strukture samog materiajla. Na slici 3.18b) je prikazana ovisnost položaja maksimuma ekscitona A o snazi laserske zrake iz koje je, kao i u slučaju naraštanopg jednosloja MoS₂ vidljiv pomak u plavo položaja maksimuma emisije ekscitona A za 3,39 nm s porastom snage laser

Slika 3.19: Fotodopiranje prenesenog jednosloja MoS_2 na na SiO_2/Si podlogu. Raspon snaga laserske zrake na uzorku kreću se od 1 μ W do 500 μ W. Prikazane su populacije ekscitona A i triona A⁻ dobivene prilagodbom na Lorentziane za različite snage laserske zrake te navedeni omjeri populacija dobiveni iz integrala površina krivulja ekscitona A i triona. Emisijski spektri su vertikalno razmaknuti radi jasnoće.

ske zrake. Povećanjem intenziteta fotodopiranja povećava se broj nosioca naboja, a time dolazi do stvaranja sve većeg broja elektrona u vodljivoj vrpci, što zbog Paulijevog principa isključenja vodi povećanja energije optičkog procjepa, odnosno, položaj maksimuma A ekscitona se pomiče u plavo. Slika 3.18c) prikazuje ovisnost položaja trionskog vrha o snazi laserske zrake te vidimo njegov pomak u crveno s porastom snage, što je u skladu s očekivanjima te istu pojavu opažamo u slučaju naraštanog jednosloja MoS₂, vidi Sliku 3.8c. U slučaju prenešenog MoS₂ pomak trionskog vrha u crveno s povećanjem snage laserske zrake iznosi 3,42 nm i usporediv je s pomakom ekscitona A u plavo. Kao rezultat, cijeli konvoluirani maksimum koji objedinjuje A i A⁻ emisijske spektre se širi s povećanjem snage, vidi sliku 3.17d), i pomiče u crveno. Taj pomak položaja trionskog maksimuma u odnosu na ekcitonski maksimum u ovisnosti o snazi optičke pobude prikazan je i na slici 3.18d). Vidimo da se razmak između emisijske linije ekscitona i triona povećava, što ima za posljedicu da se ukupni konvoluirani spektar ekscitona i triona širi i pomiče u crveno s fotodopiranjem.

Ako usporedimo položaje maksimuma emisijskih spektara za A i B eksciton i A^- triona između naraštanog uzorka i transferirarnog MoS_2 , vidimo da su u sva tri slučaja u transferirarnom uzorku linije pomaknute u plavo. U slučaju najmanje snage lasera, dakle u odsustvu značajnog dopiranja i posljedične renormalizacije energetskog procjepa, pomak B ekscitona iznosi 28 nm, pomak A ekscitona je 19 nm, a po-

Slika 3.20: a) Prikaz ovisnosti omjera intenziteta fitanih krivulja ekscitona A i triona o snazi laserske zrake. b) Površina fitane krivulje ekscitona A u ovisnosti o snazi laserske zrake. c) Površina fitane krivulje triona A⁻ u ovisnosti o snazi laserske zrake. Jednosloj MoS₂ transferiran na SiO₂/Si podlogu.

mak trionskog maksimuma je 14 nm prema području manjih valnih duljina. Prilikom naraštanja jednosloja MoS_2 CVD metodom na podlozi SiO_2/Si dolazi do stvaranja napetosti (eng. strain) u uzorku, prilikom procesa prenošenja u kojem pomoću PDMS filma odvajamo jednosloje MoS_2 s podloge SiO_2/Si dolazi do otpuštanja te stvorene napetosti pri procesu rasta što se opaža kao pomak u plavo energija ekscitona A, B i triona[89, 90].

Osim položaja maksimuma emisijskih spektara, iz prilagodbe na Lorentziane možemo dobiti informaciju o ukupnom intenzitetu pojedinog emisijskog spektra koji odgovaraju populaciji ekscitona, odnosno triona [83]. U tom smislu, zanimljivo je pogledati kako se mijenja populacija nabijenih ekscitona u odnosu na ekscitone s porastom fotodopiranja, odnosno s porastom snage lasera. Na slici 3.19 vidi se spektar A i A⁻ emisijsih linija dobivenih prilagodbom na Lorentzijane za raspon snaga laserske zrake od 1 μ W do 500 μ W. za najmanju snagu opažamo 3.37 puta veću populaciju ekscitona A u odnosu na trionsku populaciju što ukazuje slabo dopiranje. Povećanjem snage laserske zrake, povećavamo fotodopiranje prenesenog uzorka MoS2 što je vidljivo u porastu populacije triona u odnosu na eksciton A. Fotopobuda stvara višak slobodnih nosioca naboja koji povećava stvaranja triona. Opažamo brzi rast trionske populacije, brži nego za slučaj naraštanog uzorka MoS₂, te već za snagu od 10 μ W odnos populacija ekscitona A i triona je jednak, pri najvećoj snazi od 500 μ W, imamo

Slika 3.21: Energija vezanja triona za jednosloj MoS_2 transferiran na SiO_2/Si podlogu u ovisnosti o fotodopiranju.

12.5 puta više populacije triona nego ekscitona A. Unatoč skoro jednakim pomacima ekscitona A u plavo i triona u crveno zbog naglog rasta intenziteta triona s porastom snage laserske zrake opažamo pomak cijele krivulje u crveno, što je vidljivo na slici 3.17c).

Slika 3.20a) prikazuje omjere površina krivulja prilagodbi ekscitona A i triona A^- , odnosno populacija u ovisnosti o snazi laserske zrake iz prethodne slike 3.19. Površina krivulja ekscitona A dobivenih prilagodbom na eksperimentalne spektre u ovisnosti o snazi laserske zrake je prikazana na slika 3.20b). Vidimo nagli porast površine odnosno populacije ekscitona A s porastom snage te nakon 150 μ W saturaciju porasta populacije, što je u skladu s objašnjenjem o popunjavanju vodljive vrpce elektronima i stanja ekscitona A koje smo prethodno naveli. Saturaciju površine krivulja prilagodbi ekscitona A, odnosno populacije ekscitona A smo zapazili u slučaju naraštanog jednoslojnog MoS₂, medutim, u slučaju prenesenog uzorka saturacija je puno brža i izraženija, što je u skladu sa naglim porastom trionske populacije koja je primjetna na slici 3.19 i 3.20a). Linearnu ovisnost površine tj. populacije triona primjećujemo na Slici 3.20c) što također primjećujemo i u slučaju naraštanog uzorka MoS₂ te je u skladu s naglim porastom trionske populacije u odnosu na populaciju ekscitona A na slici 3.19b). Prilikom procesa prenošenja, na uzorak se dodatno unose donorske nečistoće te ih ima više u odnosu na naraštani MoS₂. Posljedica toga je da prilikom fotopobude uzorka, dolazi do stvaranja više fotoioniziranih donorskih elektrona, a time i veće koncetracije slobodnih naboja što uzrokuje rast Fermi energije E_F . Povećanje koncentracije fotoioniziranih slobodnih nosioca naboja povećava vjerojatnost stvaranja triona. Također, i energija disocijacije triona raste s većom koncetracijom slobodnih nosioca naboja, kao što se vidi na slici 3.21 [84, 85]. Zbog dovoljno velike koncetracije donorskih nečistoća, energija disocijacije triona na slici 3.21 izrazito raste s povećanjem snage lasera.

3.3 Ispitivanje dinamike fotodopiranja u jednosloju MoS₂

Vremenski razlučiva fotoluminiscencija (engl. Time Resolved Photoluminescence-TRPL) je eksperimentalna tehnika koja nam pruža informaciju o spektralnoj i temporalnoj ovisnosti emisije uzorka nakon obasjavanja s kratkim pulsom svjetlosti. Kratki svjetlosni pulsevi generirani pulsnim laserom stvaraju elektron-šupljina parove koji se raspadaju u niža energetska stanja uzorka te se naknadno radijativno rekombiniraju. Emitirana svjetlost, odnosno fotoluminiscencijski signal, se sastoji od valnih duljina koje odgovaraju energijama prijelaza u tom uzorku. Mjerenje optičkog spektra u ovisnosti o vremenu daje nam mogućnost mjerenja energija prijelaza između pobuđenih i osnovnog stanja te njihovih vremena života. Vremena raspada su reda veličine pikosekundi i nanosekundi, intenzitet emitirane svjetlosti je slab te je potrebno koristiti posebnu, brzu kameru (tzv. streak kameru) kao brzi detektor umjesto konvencionalnih analizatora spektra.

TRPL omogućava nedestruktivnu, neinvazivnu i bezkontaktnu metodu optičke karakterizacije materijala. Ova tehnika se može koristiti za određivanje kvalitete materijala (visokokvalitetni materijali imaju duže vrijeme emisije tj. vrijeme života), identificiranje spektralne emisije posebnih radijativnih stanja ili ispitivanje prijenosa energije iz jedne komponente u drugu. Vremenski razlučiva mjerenja nam daju mogućnost promatranja fizikalnih procesa u vremenu s maksimalnom vremenskom razlučivošću od 2 ps. Vremenski razlučiva mjerenja fotoluminiscencije nam pružaju uvid u vremensku dinamiku nosioca naboja u 2D poluvodičima koja je direktan potpis kvalitete materijala i njegove fizikalne prirode. Precizne i efikasne mjerne tehnike vremena života slobodnih nosioca naboja su stoga esencijalne za karakterizaciju poluvodiča. Karakteristično vrijeme života nosioca naboja je ovisno fizikalnoj prirodi i dimenzijama materijala, površinskim efektima, pasivizaciji površinskih veza, efikasnosti prijenosa energije, prisutnosti dopanata, nečistoća i defekata.

Unatoč limitiranoj vremenskoj razlučivosti, streak kamera je vrlo osjetljiva što nam omogućava mjerenja na niskim intenzitetima laserske zrake. Korišteni postav je opisan u poglavlju Eksperimentalni postav, s objektivom 20x povećanja i numeričke aperture 0.22, valna duljina laserske zrake nakon udvostručavanja frekvencije je iznosila 470 nm, dok je snaga lasera iznosila 2600 μ W. Pri toj snazi lasera sigurni smo da je fotodopiranje bilo značajno te nam upravo to mjerenje omogućava ispitivanje ekscitonske i trionske dinamike.

Slika 3.22: Normirani TRPL spektri za MoS_2 , za vremenski prozor $\Delta t = 100$ ps i različite trenutke nakon fotopobuđenja: od 200-1000 ps a), od 1000-1800 ps b) i od 1800-2400 ps c). Spektri su vertikalno pomaknuti radi preglednosti. d) Spektralni i vremenski odziv brze kamere za pobudu jednoslojnog MoS_2 u vremenskom prozoru od 2400 ps i spektralnom području od 620-740 nm.

3.3.1 Karakterizacija spektralnog odziva

Da bi mogli razumjeti što se dešava u kratkom vremenskom prozoru Δt u trenutcima Δt , $2\Delta t$, $3\Delta t$ itd. nakon pobude potrebno je prikazati spektre za različite vremenske intervale. Na slici 3.22. prikazani su normirani TRPL spektri za vremenski prozor t =100 ps, za različite trenutke nakon fotopobuđenja: od 200-1000 ps, od 1000-1800 ps i od 1800-2400 ps. Spektri su vertikalno pomaknuti radi preglednosti. Slika 3.22d) prikazuje fosforni ekran streak kamere s ovisnošću signala od valnoj duljini, vremenu i intenzitetu.

Sa slike 3.22a) vidi se da je za vremenske intervale od 300-400 te 400-500 ps postoji proširenje linije u crvenom dijelu krila emisijskog spektra A ekscitona jednosloja MoS₂ . Na slici 3.23 prikazani su normirani TRPL spektri za vremenski interval od 200 do 1000 ps, s vremenskim prozorom od $\Delta t = 100$ ps iz koje se vidi da se najznačajnija promjena u spektru PL dešava u vremenima od 300-500 ps. Za sve kasnije vremenske intervale, normirani intenziteti se preklapaju što upućuje na izostanak bitnih spektralnih promjena. Slično preklapanje normiranih spektara PL događa se i za ostale vremenske intervale veće od 1000 ps pa se ovdje oni izostavljaju u daljnjoj analizi.

S obzirom na uočenu dinamiku u intervalima od početka pobuđenja do 1000

Slika 3.23: Normirani TRPL spektri za MoS_2 , za vremenski prozor $\Delta t = 100$ ps i različite trenutke nakon fotopobuđenja: od 200-600 ps (a) te od 600-1000 ps (b)

ps, razmatrali smo posebno slučaj za vremenski prozor od $\Delta t = 50$ ps ne bi li dobili detaljniji uvid u zbivanja koja se dešavaju na ovim kraćim vremenskim skalama. Na slici 3.24. prikazani su normirani TRPL spektri za vremenski prozor $\Delta t = 50$ ps, za različite intervale nakon fotopobuđenja: od 300-350 ps, 350-400 ps, 400-450 ps, 450-500 ps, 500-550 ps i 550-600 ps. Spektri su vertikalno pomaknuti radi preglednosti.

Svaki od emisijskih PL spektara za pojedini vremenski interval je moguće prilagoditi na tri (3) Lorentziana čime se dobije informacija o položaju maksimuma emisijskih linija (B i A ekscitona te A⁻ triona), njihov intenzitet i širina maksimuma. Primjer jednog takvog emisijskog spektra, zajedno s prilagodbom, dan je za slučaj vremenskog intervala 400-450 ps, vidi sliku 3.25.

Zahvaljujući krivuljama prilagodbe za različite emisijske linije, moguće je rekonstruirati dinamiku ekscitonske i trionske populacije uslijed fotopobuđenja pulsnim laserom za dane vremenske intervale. Prikaz tih teorijskih spektara dobivenih prilagodbom na eksperimentalne rezultate dani su na slici 3.26.

Kao što se vidi sa slike 3.26, iznosi populacija (koji se dobiju kao integrali pojedinih krivulja prilagodbe) se drastično mijenjaju unutar dva prikazana vremenska prozora. U ranim vremenima nakon fotopobude, signal se sastoji od pretežno A ekscitona: najprije signal A ekscitona raste, nakon čega dosegne svoj maksimum i vrlo brzo nakon toga dolazi i do porasta trionskog signala, što je posljedica uhvata slobodnih nositelja naboja na ekscitone, odnosno stvaranje trionske populacije. Trioni nastaju u vrlo uskom vremenskom prozoru, od par desetaka ps, što se vidi kao porast crvenog krila linije, koje se opaža i na slikama 3.23 a) i 3.24. Nakon toga, trionski maksimumi se ponovo smanjuju (to smanjenje je vidljivo već u idućem vremenskom prozoru) te se u sustavu uspostavlja dugotrajno stacionarno stanje, odnosno omjeri dugoživućih komponenti ekscitonske i trionske populacije se ne mijenjaju. Taj stalni omjer je prisutan unutar cijelog eksperimentalnog vremenskog prozora od 2400 ps. Radi objašnjenja pojava koje nam omogućavaju razumijevanje vremenske dinamike nastajanja i nestajanja fotopobuđenih kvazičestica, predložili smo slikoviti

Slika 3.24: Normirani TRPL spektri za MoS_2 , za vremenski prozor $\Delta t = 50$ ps i različite trenutke nakon fotopobuđenja: od 300-350 ps, 350-400 ps, 400-450 ps, 450-500 ps, 500-550 ps te 550-600 ps. Spektri su vertikalno pomaknuti radi preglednosti.

Slika 3.25: Primjer prilagodbe normiranog TRPL spektri za MoS_2 na tri Lorentziana. Prikazan je spektar za vremenski prozor t =50 ps, za vremenski interval od 400-450 ps nakon pobuđenja.

Slika 3.26: Prilagodba na normirane TRPL eksperimentalne spektre za MoS_2 , za vremenski prozor $\Delta t = 50$ ps i različite trenutke nakon fotopobuđenja: od 300-350 ps, 350-400 ps, 400-450 ps, 450-500 ps, 500-550 ps te 550-600 ps. Spektri su vertikalno pomaknuti radi preglednosti. Crtkana linija spaja maksimume ekscitonskog i trionskog signala i služi lakšem praćenju pomaka linija.

Slika 3.27: Shema vremenske dinamike ekscitona i triona nakon fotopobude.

prikaz odvijanja procesa, vidi sliku 3.27.

Osim integrala površine, iz kojih se može dobiti informacija o populaciji, rezultati prilagodbe nam daju i položaje maksimuma emisijskih linija za različite vremenske intervale nakon fotopobude, vidi sliku 3.28. Vidimo da povećanje trionske populacije vodi do približavanja trionskih maksimuma ekscitonskim, nakon čega se ponovno razmaknu. To približavanje maksimuma A i A⁻ emisijskih linija se vidi i na slici 3.26 gdje crtkana linija omogućava lakše praćenje položaja maksimuma. To znači da se i energija disocijacije triona mijenja u vremenu i da doseže najmanju vrijednost upravo u onom vremenskom intervalu za koji se postiže najveći intenzitet trionske populacije, vidi sliku 3.29.

3.3.2 Karakterizacija vremenskog odziva

Na slici 3.30 prikazana su dva vremenska traga koja su dobivena iz TRPL spektara uprosječavanjem signala dobivenih za spektralni prozor određen valnim duljinama od 675-680 nm i 705-715 nm. Prvi spektralni prozor odgovara maksimumima za A eksciton, dok drugi odgovara A⁻ trionu. Iz oblika TRPL vremenskih tragova, vidimo da je integrirani intenzitet A⁻ triona manji u odnosu na A eksciton. Signale smo prilagođavali na krivulju dvostrukog eksponencijalnog pada i dobivena vremena koja proizlaze iz prilagodbe su: τ_1 (A eksciton)=18.9 ps; τ_2 (A eksciton) =164 ps; τ_1 (A⁻ trion) = 19.9 ps i τ_2 (A⁻ trion) = 160 ps, prikazana na slici 3.31. Obje fotopobuđene populacije imaju kratkoživuću komponentu koja brzo trne, unutar vremena od 20-tak

Slika 3.28: Ovisnost položaja maksimuma emisijskih linija za različite vremenske intervale nakon fotopobude.

Slika 3.29: Ovisnost energije disocijacije triona za različite vremenske intervale nakon fotopobude.

Slika 3.30: Ovisnost vremenske dinamike za ekscitonski i trionski signal za različite duljine vremenskih intervala a) 1000 ps i b) 400 ps.

Slika 3.31: Prilagodba ekscitonskog i trionskog signala na bieksponencijalnu funkciju pada. Vremenske konstante iznose τ_1 (A eksciton)=18.9 ps; τ_2 (A eksciton) =164 ps; τ_1 (A⁻ trion)= 19.9 ps i τ_2 (A⁻ trion)= 160 ps.

ps, te dugoživuću komponentu od otprilike 160 ps.

U literaturi se mogu naći vrijednosti vremena života ekscitonskih stanja, pri čemu se posebno razmatraju slučajevi pri niskim temperaturama i pri sobnim temperaturama. U članku [91] uspoređuju teorijske, izračunate vrijednost radijativnih vremena za jednoslojne TMDs s eksperimentalnim vrijednostima, s posebnim osvrtom na MoS₂. Na niskim temperaturama, pronašli su vrlo dobro slaganje teorijskog vremena života s eksperimentalnim radom Korna i suradnika [83], koji su iz mjerenja TRPL na MoS₂ jednosloju pri 4 K dobili vrijednosti od ~5 ps. U teorijskom članku, izračunata vrijednost za niske temperature iznosi 3.7 ps. Korn i suradnici daju hipotezu da se na tako kratkim vremenskim skalama početno stvoreni ekscitoni još nisu termalizirani. Međutim, novija mjerenja s femtosekundnom rezolucijom upućuju na to da se termalizacija pri 3 eV pobudom dešava u vremenima kraćim od 1 ps [92], što upućuje da se ovih 5 ps izmjerenih u članku [83] može pripisati vremenu života ekscitona. U članku [93] također su izmjerena vremena života ekscitona na jednosloju MoS₂ i njihove vrijednosti iznose isto 4.5 ps, što je u odličnom slaganju s teorijski izračunatom vrijednošću od 3.7 ps. Nama su ipak zanimljiviji rezultati koji se dobivaju pri sobnim temperaturama, s obzirom na naše eksperimentalne uvjete. Naime, povećanjem temperature pokazalo se da mjerenja TRPL ukazuju na dulja vremena života ekscitonskih stanja, točnije za temperaturu od 180 K vrijeme života iznosi 50 ps, za 270 K preko 100 ps, a na sobnoj temperaturi se opet smanjuje na 70 ps [83]. Povećanje vremena života se pripisuje efektima ekciton-fonon raspršenja koji usporavaju radijativnu rekombinaciju (sudari umanjuju vjerojatnost da se eksciton nađe u uvjetima sačuvanja energije i momenta, koji su nužni za emisiju fotona). Mjerenjem tranzijentne spektroskopije [92] na samostojećem jednosloju MoS₂, ekscitonski signal je trnuo kao trieksponencijalna funkcija, s konstantama 2 ps, 75 ps i 850 ps. Vrijednost konstante 2 ps pripisuje se uhvatu ekscitona na defektima, vrijednost 75 ps se pripisuje termalizacijskim efektima vrućih ekscitona, dok se 850 ps pripisuje dugoživućim ekscitonskim stanjima, odnosno radijativnoj ekscitonskoj rekombinaciji, što je u skladu s teorijskim predviđanjima [91]. Ovi rezultati sugeriraju da se ekscitonski radijativni procesi na sobnoj temperaturi odvijaju na vremenskim skalama od skoro 1 ns te je upravo to razlog zašto se u TRPL mjerenjima vidi dugoživuća ekscitonska komponenta [83]. Dugoživuća komponenta se vidi i u našim mjerenjima, međutim ona iznosi svega 160 ps. Postoje mnogi faktori koji utječu na razlike između navedenih teorijskih i eksperimentalnih vrijednosti za relaksacijske konstante, kao što su prisustvo defekata, nečistoća, utjecaj rubova kristala, utjecaj podloge kroz dielektričnu konstantu itd. Naše eksperimentalne vrijednosti za vremenske konstante su u skladu s radom [94]. U uvjetima sobnih temperatura, i ekscitoni i trioni postaju mobilniji, što povećava vjerojatnost neradijativnih raspada, jer mogu lakše završiti na nečistoćama i drugim neradijativnim centrima. To je ujedno i razlog zašto PL na sobnim temperaturama ima niži intenzitet nego na niskim temperaturama. To smanjenje lokalizacije ekscitona i triona smanjuje radijativnu konstantu na naše opažene vrijednosti (160 ps). Osim toga, pri višim temperaturama, trionska stanja imaju manju vjerojatnost nastajanja, jer povećanje temperature vodi do povećanja vjerojatnosti za disocijaciju triona. Imajući na umu sve rečeno, možemo zaključiti da se kratkoživuća komponenta ($\tau_1 \sim 20$ ps) može pripisati termalizacijskim efektima vrućih ekscitona, a time i triona, dok se dugoživuća komponenta ($\tau_1 \sim 160$ ps) može se pripisati radijativnoj rekombinaciji ekscitona i triona koja je ipak kraća zbog efekta smanjenja lokalizacije. Naša mjerenja vremenske dinamike na poluvodičkim materijalima baziranim na dihalkogenidima prijelaznih metala su tek u začetku i vjerujemo da ćemo razvojem novih eksperimentalnih procedura (vremenski razlučive spektroskopije) kao i nabavom kriostata za mjerenja u širokom temperaturnom pojasu dobiti potpuniju sliku o relaksacijskoj dinamici u TMD materijalima i njihovim heterostrukturama.

4 Zaključak

U ovom diplomskom radu ispitivali smo ovisnost spektra fotoluminiscencije naraštanih jednosloja, dvosloja i prenesenih MoS₂ uzoraka prilikom fotodopiranja te utjecaj fotodopiranja na populacije ekscitona A i triona koje su se pri tome mjenjale. Korišteni uzorci su dobiveni na CVD postavu kućne izrade na Institutu za fiziku. Naraštanje jednosloja i dvosloja MoS₂ je izvršeno na SiO₂/Si podlozi, jednoslojeve smo također i prenijeli PDMS filmom na čistu SiO₂/Si podlogu. Osnovna karaterizacija uzoraka je napravljena optičkim i zatim mikroskopom atomskih sila (AFM) kojim smo mjerili debljine slojeva i utvrdili da se radi o jednoslojevima i dvoslojevima MoS2 te da na podlozi ima adsorbiranih čestica koje povećavaju debljinu izmjerenog jednosloja MoS₂ u odnosu na teorijsku debljinu. Koristili smo Raman spektrometar kućne izrade na Institutu za fiziku za mjerenje Raman spektar koji uz karakterizaciju uzoraka je i komplementarna tehnika AFM-u za određivanje broja slojeva 2D MoS2 pomoću razlike Raman aktivnih modova E_{2g}^1 i A_{1g} . Dobiveni rezultati su u skladu s onima dobivenim optičkim i mikroskopom atomskih sila te dodatno ukazuju na slabije vezanje prenesenog MoS₂ i SiO₂/Si podloge. Također, pri mjerenju kontrastne reflektivnosti pomoću širokopojasnog nekoherentng izvora bijele svjetlosti kvarcne volframhalogene lampe uočava se razlika energija ekscitona A i B za jednosloj i dvosloj MoS₂ te se može komplementarno koristiti uz AFM i Raman mjerenja za potvrdu broja slojeva 2D MoS₂.

U spektru fotoluminiscencije 2D MoS₂ opažamo ekscitone A i B te pri dopiranim uzorcima pojavljuju se i trioni. U ovom radu se ispituje ovisnost spektra fotoluminiscencije o fotoinduciranom dopiranju koje smo postizali rasponom snaga lasera valne duljine 532 nm od 1 μ W do 500 μ W. Na niskim ekscitacijskim snagama, ekscitonski maksimum B se jedva opaža, a A ekscitonski maksimum je također mali, što upućuje na to da pri niskim snagama imamo i nisku koncentraciju fotoinduciranih nositelja naboja. Povećanjem intenziteta fotodopiranja povećava se broj nosioca naboja, a time dolazi do stvaranja većeg broja elektrona u vodljivoj vrpci. Asimetrija A ekscitonskog maksimuma u crvenom krilu vodi na zaključak da se A eksciton sastoji od dva maksimuma koji se pripisuju ekscitonu A i nabijenom A⁻ ekscitonu (trionu). Povećanjem koncentracije nosioca naboja odnosno broja elektrona u vodljivoj vrpci raste vjerojatnost stvaranja triona te njihova energija vezanja koja se opaža kroz razliku maksimuma A ekscitona i A⁻ triona. Zbog Paulijevog principa isključenja dolazi do povećanja energije optičkog procjepa, odnosno položaj maksimuma A ekscitona se pomiče u plavo, također opažamo i pomak trionskog maksimuma u crveno. Pri naraštanom i prenesenom jednosloju MoS₂, prilikom povećanja fotodopiranja, opažamo jači pomak trionskog A⁻ maksimuma u crveno od ekscitonskoga A pomaka u plavo uz istovremeni rast intenziteta triona, dok su kod naraštanog dvosloja pomaci trionskog maksimuma u crveno i ekscitona usporedivi, međutim intenzitet triona također raste s fotodopiranjem te za sva tri uzorka MoS₂ dolazi do rezultatnog pomaka cijelog konvoluiranog maksimuma koji objedinjuje A i A⁻ emisijske spektre u crveno. U slučaju naraštanog dvoslojnog MoS₂, koji je indirektni poluvodič, dolazi do slabije saturacije emisijskih maksimuma za isti raspon snaga. Razlog tome je što fotopobuđeni elektroni slijede drugačije relaksacijske puteve u odnosu na naraštani jednosloj MoS₂ odnosno, elektroni se većim dijelom relaksiraju u minimum vodljive

vrpce smješten između K i Γ točke, te samo manjim dijelom u K točku koja više nije minimum vodljive vrpce. U prikazu intenziteta fotoluminiscencije normiranog na jedinicu na slici 3.12 opaža se porast B ekscitonske emisije pri porastu snage lasera i širenje crvenog krila linije A ekscitonskog maksimuma. Širenje crvenog krila A ekscitonskog maksimuma ukazuja na postojanje triona u naraštanom dvosloju MoS₂ na sobnoj temperaturi. Zorniji prikaz tog zaključka je dan s usporedbom PL spektra za snagu lasera 10 μ W i 500 μ W. Energije disocijacije triona u naraštanom MoS₂ za jednosloj su u rasponu od 23.5 meV do 29 meV te za dvosloj od 31.5 meV do 41.5 meV te porastom fotopobude dolazi do saturacije. Za slučaj prenesenog jednosloja MoS₂ raspon energije disocijacije triona je od 35 meV do 52 meV te ima brži rast, odnosno za isti raspon snaga lasera ne dolazi do saturacije. Brži rast energije disocijacije triona u ovisnosti o fotopobudi upućuje na veće količine donorskih nečistoća u odnosu na naraštane uzorke MoS₂, odnosno unos dodatnih donorskih nečistoća prilikom procesa transfera. Dobivene energije disocijacije triona su u skladu s rezultatima u literaturi za električno, kemijsko i fotoinducirano dopiranje.

Vremenski razlučiva fotoluminiscencija nam omogućava proučavanje vremenske dinamike populacije ekscitona i triona u spektru te njihovih vremena života. Eksperimenatlni postav korišten u tu svrhu se nalazi na Talijanskom institutu za tehnologiju u Milanu, korišten je pulsni laser s repeticijom 80 MHz, valna duljina kojom smo obasjavali jednosloj MoS₂ je 470 nm, dinamika je promatrana u vremenskom prozoru od 2400 ps. U vremenskom intervalu od 350 ps do 450 ps opažamo proširenje crvenog krila spektra fotoluminiscencije što prepoznajemo kao potpis triona, shematski prikaz vremenske dinamike je dan slikom 3.27. Karakterizacija vremenskog odziva daje rezultate dva vremena života, možemo zaključiti da se kratkoživuća komponenta ($\tau_1 \sim 20$ ps) može pripisati termalizacijskim efektima vrućih ekscitona, a time i triona, dok se dugoživuća komponenta ($\tau_1 \sim 160$ ps) može se pripisati radijativnoj rekombinaciji ekscitona i triona koja je ipak kraća zbog efekta smanjenja lokalizacije.

Bibliografija

- [1] L.D. Landau and E.M. Lifshitz. CHAPTER I THE FUNDAMENTAL PRINCIPLES OF STATISTICAL PHYSICS. In *Course of Theoretical Physics*, pages 1–33. 1980.
 1.1
- [2] A.K. Geim and K.S. Novoselov. The Rise of Graphene. Nature Materials, 6(3):183–191, mar 2007. 1.1
- [3] Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C. Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen, and Feng Wang. Direct observation of a widely tunable bandgap in bilayer graphene. *Nature*, 459(7248):820–823, jun 2009. 1.1
- [4] Gordon E Moore. Cramming more components onto integrated circuits. *Proceedings of the IEEE*, 86(1):82–85, 1998. 1.1
- [5] Gordon Moore. Progress In Digital Integrated Electronics [Technical literaiture, Copyright 1975 IEEE. Reprinted, with permission. Technical Digest. International Electron Devices Meeting, IEEE, 1975, pp. 11-13.]. *IEEE Solid-State Circuits Newsletter*, 20(3):36–37, sep 2006. 1.1
- [6] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer MoS2 transistors. *Nature Nanotechnology*, 6(3):147–150, mar 2011. 1.1, 1.2, 1.4, 1.2
- [7] Dominik Lembke and Andras Kis. Breakdown of high-performance monolayer MoS2 transistors. *ACS Nano*, 6(11):10070–10075, nov 2012. 1.1
- [8] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N Coleman, and Michael S Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. *Nature Nanotechnology*, 7(11):699–712, 2012. 1.1, 1.1, 1.6, 1.4
- [9] Kin Fai Mak and Jie Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. *Nature Photonics*, 10(4):216–226, 2016. 1.1
- [10] Zhipei Sun, Amos Martinez, and Feng Wang. Optical modulators with twodimensional layered materials. *Nature Photonics*, 10(4):227–238, 2016. 1.1
- [11] Zhongying Wang, Wenpeng Zhu, Yang Qiu, Xin Yi, Annette von dem Bussche, Agnes Kane, Huajian Gao, Kristie Koski, and Robert Hurt. Biological and environmental interactions of emerging two-dimensional nanomaterials. *Chem. Soc. Rev.*, 45(6):1750–1780, mar 2016. 1.1

- [12] Frank Ceballos and Hui Zhao. Ultrafast Laser Spectroscopy of Two-Dimensional Materials Beyond Graphene. *Advanced Functional Materials*, 27(19):1604509, may 2016. 1.2
- [13] Tawinan Cheiwchanchamnangij and Walter R. L. Lambrecht. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. *Physical Review B Condensed Matter and Materials Physics*, 85(20):205302, may 2012. 1.1, 1.8, 1.6, 1.6.1
- [14] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim, Chi Yung Chim, Giulia Galli, and Feng Wang. Emerging photoluminescence in monolayer MoS2. *Nano Letters*, 10(4):1271–1275, apr 2010. 1.1, 1.2, 1.4, 1.8, 1.6.1, 3.1, 3.2
- [15] Kin Fai Mak, Keliang He, Changgu Lee, Gwan Hyoung Lee, James Hone, Tony F Heinz, and Jie Shan. Tightly bound trions in monolayer MoS2. *Nature Materials*, 12(3):207–211, 2012. 1.1, 1.6.2, 1.6.2, 1.6.3, 1.13, 3.2.1, 3.2.2
- [16] Jingzhi Shang, Xiaonan Shen, Chunxiao Cong, Namphung Peimyoo, Bingchen Cao, Mustafa Eginligil, and Ting Yu. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. *ACS Nano*, 9(1):647–655, jan 2015. 1.1
- [17] Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh, and Hua Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. *Nature Chemistry*, 5(4):263–275, mar 2013. 1.2, 1.3, 1.6, 1.3
- [18] Branimir Radisavljevic, Michael Brian Whitwick, and Andras Kis. Integrated circuits and logic operations based on single-layer MoS 2. ACS Nano, 5(12):9934–9938, dec 2011. 1.2
- [19] Oriol Lopez-Sanchez, Dominik Lembke, Metin Kayci, Aleksandra Radenovic, and Andras Kis. Ultrasensitive photodetectors based on monolayer MoS2. 2013.
 1.2
- [20] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz. Atomically Thin MoS 2 : A New Direct-Gap Semiconductor. *Physical Review Letters*, 105(13):136805, sep 2010. 1.2, 1.2, 1.4, 1.4, 1.11, 3.2
- [21] A. H. Castro Neto. Charge Density Wave, Superconductivity, and Anomalous Metallic Behavior in 2D Transition Metal Dichalcogenides. *Physical Review Letters*, 86(19):4382–4385, may 2001. 1.2
- [22] Simone Bertolazzi, Jacopo Brivio, and Andras Kis. Stretching and breaking of ultrathin MoS2. ACS Nano, 5(12):9703–9709, dec 2011. 1.2

- [23] K S Novoselov, D Jiang, F Schedin, T J Booth, V V Khotkevich, S V Morozov, and A K Geim. Two-dimensional atomic crystals. *Proceedings of the National Academy of Sciences of the United States of America*, 102(30):10451–3, jul 2005.
 1.2
- [24] M M Benameur, B Radisavljevic, J S H?ron, S Sahoo, H Berger, and A Kis. Visibility of dichalcogenide nanolayers. *Nanotechnology*, 22(12):125706, mar 2011. 1.2
- [25] Hai Li, Gang Lu, Zongyou Yin, Qiyuan He, Hong Li, Qing Zhang, and Hua Zhang. Optical identification of single- and few-layer MoS2 sheets. *Small*, 8(5):682–686, mar 2012. 1.2
- [26] Claudia Backes, Beata M. Szydowska, Andrew Harvey, Shengjun Yuan, Victor Vega-Mayoral, Ben R. Davies, Pei Liang Zhao, Damien Hanlon, Elton J. G. Santos, Mikhail I. Katsnelson, Werner J. Blau, Christoph Gadermaier, and Jonathan N. Coleman. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. *ACS Nano*, 10(1):1589–1601, jan 2016. 1.5, 1.2
- [27] Jonathan N. Coleman, Mustafa Lotya, A. O'Neill, Shane D. Bergin, Paul J. King, Umar Khan, Karen Young, Alexandre Gaucher, Sukanta De, Ronan J. Smith, Igor V. Shvets, Sunil K. Arora, George Stanton, H.-Y. Kim, Kangho Lee, Gyu Tae Kim, Georg S. Duesberg, Toby Hallam, John J. Boland, Jing Jing Wang, John F. Donegan, Jaime C. Grunlan, Gregory Moriarty, Aleksey Shmeliov, Rebecca J. Nicholls, James M. Perkins, Eleanor M. Grieveson, Koenraad Theuwissen, David W. McComb, Peter D. Nellist, and Valeria Nicolosi. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. *Science*, 331(6017):568–571, 2011. 1.5, 1.2
- [28] Ronan J. Smith, Paul J. King, Mustafa Lotya, Christian Wirtz, Umar Khan, Sukanta De, Arlene O'Neill, Georg S. Duesberg, Jaime C. Grunlan, Gregory Moriarty, Jun Chen, Jiazhao Wang, Andrew I. Minett, Valeria Nicolosi, and Jonathan N. Coleman. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. *Advanced Materials*, 23(34):3944–3948, sep 2011. 1.2
- [29] Peter May, Umar Khan, J. Marguerite Hughes, and Jonathan N. Coleman. Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. *Journal of Physical Chemistry C*, 116(20):11393–11400, may 2012. 1.2
- [30] Claudia Backes, Ronan J. Smith, Niall McEvoy, Nina C. Berner, David McCloskey, Hannah C. Nerl, Arlene O'Neill, Paul J. King, Tom Higgins, Damien Hanlon, Nils Scheuschner, Janina Maultzsch, Lothar Houben, Georg S. Duesberg,

John F. Donegan, Valeria Nicolosi, and Jonathan N. Coleman. Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. *Nature Communications*, 5:4576, aug 2014. 1.2

- [31] Goki Eda, Takeshi Fujita, Hisato Yamaguchi, Damien Voiry, Mingwei Chen, and Manish Chhowalla. Coherent atomic and electronic heterostructures of singlelayer MoS2. ACS Nano, 6(8):7311–7317, aug 2012. 1.6
- [32] Daniele Vella. Photophysics of atomically thin MoS2 devices. *Doktorski rad. Ljubljana: Institut Jožef Stefan*, 2017. 1.6
- [33] Roscoe G. Dickinson and Linus Pauling. The crystal structure of molybdenite. *Journal of the American Chemical Society*, 45(6):1466–1471, jun 1923. 1.3
- [34] J.A. Wilson and A.D. Yoffe. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. *Advances in Physics*, 18(73):193–335, may 1969. 1.3
- [35] Andrey N. Enyashin, Lena Yadgarov, Lothar Houben, Igor Popov, Marc Weidenbach, Reshef Tenne, Maya Bar-Sadan, and Gotthard Seifert. New route for stabilization of 1T-WS 2 and MoS2 phases. *Journal of Physical Chemistry C*, 115(50):24586–24591, dec 2011. 1.3
- [36] R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, and Y. Iwasa. Valleydependent spin polarization in bulk MoS2 with broken inversion symmetry. *Nature Nanotechnology*, 9(8):611–617, 2014. 1.7
- [37] S. Lebègue and O. Eriksson. Electronic structure of two-dimensional crystals from ab initio theory. *Physical Review B - Condensed Matter and Materials Physics*, 79(11):115409, mar 2009. 1.4
- [38] Agnieszka Kuc, Nourdine Zibouche, and Thomas Heine. How does quantum confinement influence the electronic structure of transition metal sulfides TmS2. apr 2011. 1.4
- [39] Frank Schwierz. Graphene transistors. *Nature Nanotechnology*, 5(7):487–496, jul 2010. 1.4
- [40] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. *Physical Review B Condensed Matter and Materials Physics*, 84(15):153402, oct 2011. 1.4
- [41] A.D. Yoffe. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and

some quasi-two-dimensional systems. *Advances in Physics*, 42(2):173–262, apr 1993. 1.4

- [42] Andor Kormányos, Guido Burkard, Martin Gmitra, Jaroslav Fabian, Viktor Zólyomi, Neil D Drummond, and Vladimir Fal. k . p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Materials, 2(4):49501, 2015. 1.4
- [43] Kin Fai Mak, Keliang He, Jie Shan, and Tony F. Heinz. Control of valley polarization in monolayer MoS2 by optical helicity. *Nature Nanotechnology*, 7(8):494–498, jun 2012. 1.4, 1.6
- [44] Nardeep Kumar, Sina Najmaei, Qiannan Cui, Frank Ceballos, Pulickel M Ajayan, Jun Lou, and Hui Zhao. Second harmonic microscopy of monolayer MoS2.
 Physical Review B - Condensed Matter and Materials Physics, 87(16), 2013. 1.4
- [45] Changgu Lee, Hugen Yan, Louis E. Brus, Tony F. Heinz, James Hone, and Sunmin Ryu. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 4(5):2695–2700, may 2010. 1.9, 1.5, 3.1
- [46] Xin Luo, Yanyuan Zhao, Jun Zhang, Qihua Xiong, and Su Ying Quek. Anomalous frequency trends in MoS2 thin films attributed to surface effects. *Physical Review B Condensed Matter and Materials Physics*, 88(7):075320, aug 2013.
 1.9
- [47] Xin Zhang, Xiao-Fen Qiao, Wei Shi, Jiang-Bin Wu, De-Sheng Jiang, and Ping-Heng Tan. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. *Chem. Soc. Rev.*, 44(9):2757–2785, 2015. 1.5
- [48] Hong Li, Qing Zhang, Chin Chong Ray Yap, Beng Kang Tay, Teo Hang Tong Edwin, Aurelien Olivier, and Dominique Baillargeat. From bulk to monolayer MoS 2: Evolution of Raman scattering. *Advanced Functional Materials*, 22(7):1385–1390, apr 2012. 1.5, 3.1
- [49] Alejandro Molina-Sanchez, Kerstin Hummer, and Ludger Wirtz. Vibrational and optical properties of MoS2: From monolayer to bulk. *Surface Science Reports*, 70(4):554–586, dec 2015. 1.5
- [50] Chengbing Qin, Yan Gao, Zhixing Qiao, Liantuan Xiao, and Suotang Jia. Atomic-Layered MoS2 as a Tunable Optical Platform. *Advanced Optical Materials*, 4(10):1429–1456, 2016. 1.10
- [51] Di Xiao, Gui Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. *Physical Review Letters*, 108(19):196802, may 2012. 1.10

- [52] Hualing Zeng, Junfeng Dai, Wang Yao, Di Xiao, and Xiaodong Cui. Valley polarization in MoS2 monolayers by optical pumping. *Nature Nanotechnology*, 7(8):490–493, jun 2012. 1.6
- [53] Alexey Chernikov, Timothy C. Berkelbach, Heather M. Hill, Albert Rigosi, Yilei Li, Ozgur Burak Aslan, David R. Reichman, Mark S. Hybertsen, and Tony F. Heinz. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. *Physical Review Letters*, 113(7):076802, aug 2014. 1.6.1, 1.12
- [54] Ashwin Ramasubramaniam. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. *Physical Review B - Condensed Matter and Materials Physics*, 86(11):115409, sep 2012. 1.6.1
- [55] Xiaoping Hong, Jonghwan Kim, Su-Fei Shi, Yu Zhang, Chenhao Jin, Yinghui Sun, Sefaattin Tongay, Junqiao Wu, Yanfeng Zhang, and Feng Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. *Nature Nanotechnology*, 9(9):682–686, 2014. 1.6.1
- [56] Tetiana Borzda. Non-equilibrium electron dynamics in semiconducting transition metal dichalcogenides. *Doktorski rad. Ljubljana: Institut Jožef Stefan*, 2017.
 1.12, 1.6.2
- [57] Bogdan Ganchev, Neil Drummond, Igor Aleiner, and Vladimir Fal'Ko. Threeparticle complexes in two-dimensional semiconductors. *Physical Review Letters*, 114(10):107401, mar 2015. 1.6.2
- [58] Ch. Grenier, C. Ciuti, and A. Imamoglu. Trion-polaritons : How strong coupling to a cavity changes the orbital and spin properties of trions. jul 2015. 1.6.2
- [59] V. Huard, R. T. Cox, K. Saminadayar, A. Arnoult, and S. Tatarenko. Bound States in Optical Absorption of Semiconductor Quantum Wells Containing a Two-Dimensional Electron Gas. *Physical Review Letters*, 84(1):187–190, jan 2000. 1.6.2
- [60] Edbert J. Sie, Alex J. Frenzel, Yi Hsien Lee, Jing Kong, and Nuh Gedik. Intervalley biexcitons and many-body effects in monolayer MoS2. *Physical Review B Condensed Matter and Materials Physics*, 92(12):125417, sep 2015. 1.6.2
- [61] Alexey Chernikov, Arend M. Van Der Zande, Heather M. Hill, Albert F. Rigosi, Ajanth Velauthapillai, James Hone, and Tony F. Heinz. Electrical Tuning of Exciton Binding Energies in Monolayer WS2. *Physical Review Letters*, 115(12):126802, sep 2015. 1.13, 1.6.3
- [62] Shinichiro Mouri, Yuhei Miyauchi, and Kazunari Matsuda. Tunable photoluminescence of monolayer MoS2 via chemical doping. *Nano Letters*, 13(12):5944– 5948, dec 2013. 1.14, 1.6.4

- [63] Ryusuke Matsunaga, Kazunari Matsuda, and Yoshihiko Kanemitsu. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. *Physical Review Letters*, 106(3):037404, jan 2011. 1.6.4
- [64] Wei Chen, Shi Chen, Chen Qi Dong, Yu Gao Xing, and Andrew Thye Shen Wee. Surface transfer p-type doping of epitaxial graphene. *Journal of the American Chemical Society*, 129(34):10418–10422, aug 2007. 1.6.4
- [65] Seong Hun Yu, Youngbin Lee, Sung Kyu Jang, Jinyeong Kang, Jiwon Jeon, Changgu Lee, Jun Young Lee, Hyungjun Kim, Euyheon Hwang, Sungjoo Lee, and Jeong Ho Cho. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano, 8(8):8285–8291, aug 2014. 1.6.4
- [66] Borna Radatovic. Sklopovi bazirani na slojevitim 2D materijalima i njihovim heterostrukturama. *Diplomski rad. Zagreb: PMF istraživačka fizika*, 2016. 2.1.1, 2.1, 2.1.2, 2.2, 2.4
- [67] P Blake, E W Hill, A H Castro Neto, K S Novoselov, D Jiang, R Yang, T J Booth, and A K Geim. Making graphene visible. 2007. 2.1.2
- [68] Arend M. van der Zande, Pinshane Y. Huang, Daniel A. Chenet, Timothy C. Berkelbach, YuMeng You, Gwan-Hyoung Lee, Tony F. Heinz, David R. Reichman, David A. Muller, and James C. Hone. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. *Nature Materials*, 12(6):554– 561, may 2013. 2.1.2, 3.1
- [69] Andres Castellanos-Gomez, Michele Buscema, Rianda Molenaar, Vibhor Singh, Laurens Janssen, Herre S J van der Zant, and Gary A Steele. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Materials, 1(1):011002, apr 2014. 2.1.3
- [70] Hai Li, Jumiati Wu, Xiao Huang, Zongyou Yin, Juqing Liu, and Hua Zhang. A Universal, Rapid Method for Clean Transfer of Nanostructures onto Various Substrates. ACS Nano, 8(7):6563–6570, jul 2014. 2.1.3
- [71] Alper Gurarslan, Yifei Yu, Liqin Su, Yiling Yu, Francisco Suarez, Shanshan Yao, Yong Zhu, Mehmet Ozturk, Yong Zhang, and Linyou Cao. Surface-energyassisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano, 8(11):11522–11528, nov 2014. 2.1.3
- [72] Luca De Trizio, Mirko Prato, Alessandro Genovese, Alberto Casu, Mauro Povia, Roberto Simonutti, Marcelo J P Alcocer, Cosimo D'Andrea, Francesco Tassone, and Liberato Manna. Strongly fluorescent quaternary Cu-In-Zn-S nanocrystals

prepared from Cu 1-xInS 2 nanocrystals by partial cation exchange. *Chemistry of Materials*, 24(12):2400–2406, 2012. 2.3

- [73] Maria Vittoria Dozzi, Cosimo D'Andrea, Bunsho Ohtani, Gianluca Valentini, and Elena Selli. Fluorine-Doped TiO 2 Materials: Photocatalytic Activity vs Time-Resolved Photoluminescence. *The Journal of Physical Chemistry C*, 117(48):25586–25595, 2013. 2.3
- [74] Anna Cesaratto, Cosimo D'Andrea, Austin Nevin, Gianluca Valentini, Francesco Tassone, Roberto Alberti, Tommaso Frizzi, and Daniela Comelli. Analysis of cadmium-based pigments with time-resolved photoluminescence. *Anal. Methods*, 6(1):130–138, 2014. 2.3, 2.6
- [75] Emilie Sakat, Ilaria Bargigia, Michele Celebrano, Andrea Cattoni, Stéphane Collin, Daniele Brida, Marco Finazzi, Cosimo D'Andrea, and Paolo Biagioni. Time-Resolved Photoluminescence in Gold Nanoantennas. ACS Photonics, 3(8):1489–1493, 2016. 2.3
- [76] Hamamatsu. Guide to streak cameras. *https://www.hamamatsu.com/resources/pdf/sys/SHSS0006E_STREAK.pdf,*, 04.07.2017. 2.7
- [77] Yijin Zhang, Jianting Ye, Yusuke Matsuhashi, and Yoshihiro Iwasa. Ambipolar MoS2 thin flake transistors. *Nano Letters*, 12(3):1136–1140, mar 2012. 3.1
- [78] A. Castellanos-Gomez, N. Agrat, and G. Rubio-Bollinger. Optical identification of atomically thin dichalcogenide crystals. *Applied Physics Letters*, 96(21), 2010.
 3.1
- [79] P Blake, E W Hill, A H Castro Neto, K S Novoselov, D Jiang, R Yang, T J Booth, and A K Geim. Making graphene visible. *Applied Physics Letters*, 91(6), 2007.
 3.1
- [80] Hui Zhang, Yi Wan, Yaoguang Ma, Wei Wang, Yilun Wang, and Lun Dai. Interference effect on optical signals of monolayer MoS 2. *Applied Physics Letters*, 107(10):101904, sep 2015. 3.1, 3.1
- [81] R. F. Frindt. Single crystals of MoS2 several molecular layers thick. *Journal of Applied Physics*, 37(4):1928–1929, mar 1966. 3.1
- [82] Mingxiao Ye, Dustin Winslow, Dongyan Zhang, Ravindra Pandey, and Yoke Yap. Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films. *Photonics*, 2(1):288–307, mar 2015. 3.1
- [83] T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schller. Low-temperature photocarrier dynamics in monolayer MoS2. *Applied Physics Letters*, 99(10), 2011. 3.2.1, 3.2.1, 3.2.1, 3.2.2, 3.2.3, 3.3.2
- [84] A. A. Mitioglu, P. Plochocka, J. N. Jadczak, W. Escoffier, G. L J A Rikken, L. Kulyuk, and D. K. Maude. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. *Physical Review B - Condensed Matter and Materials Physics*, 88(24):1–5, 2013. 3.2.1, 3.2.3
- [85] Fabian Cadiz, Cedric Robert, Gang Wang, Wilson Kong, Xi Fan, Mark Blei, Delphine Lagarde, Maxime Gay, Marco Manca, Takashi Taniguchi, Kenji Watanabe, Thierry Amand, Xavier Marie, Pierre Renucci, Sefaattin Tongay, and Bernhard Urbaszek. Ultra-low power threshold for laser induced changes in optical properties of 2D Molybdenum dichalcogenides. 2016. 3.2.1, 3.2.2, 3.2.3
- [86] Michele Buscema, Gary A Steele, Herre S J van der Zant, and Andres Castellanos-Gomez. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. *Nano Research*, 7(4):1–11, 2014. 3.2.1
- [87] Yumeng You, Xiao-Xiao Zhang, Timothy C. Berkelbach, Mark S. Hybertsen, David R. Reichman, and Tony F. Heinz. Observation of biexcitons in monolayer WSe2. *Nature Physics*, 11(6):477–481, may 2015. 3.2.1
- [88] Jiajie Pei, Jiong Yang, Renjing Xu, Yong Hui Zeng, Ye Win Myint, Shuang Zhang, Jin Cheng Zheng, Qinghua Qin, Xibin Wang, Wugui Jiang, and Yuerui Lu. Exciton and Trion Dynamics in Bilayer MoS2. *Small*, 11(48):6384–6390, dec 2015. 3.2.2, 3.2.2
- [89] Zheng Liu, Matin Amani, Sina Najmaei, Quan Xu, Xiaolong Zou, Wu Zhou, Ting Yu, Caiyu Qiu, A. Glen Birdwell, Frank J. Crowne, Robert Vajtai, Boris I. Yakobson, Zhenhai Xia, Madan Dubey, Pulickel M. Ajayan, and Jun Lou. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. *Nature Communications*, 5:5246, nov 2014. 3.2.3
- [90] Hiram J. Conley, Bin Wang, Jed I. Ziegler, Richard F. Haglund, Sokrates T. Pantelides, and Kirill I. Bolotin. Bandgap engineering of strained monolayer and bilayer MoS2. *Nano Letters*, 13(8):3626–3630, aug 2013. 3.2.3
- [91] Maurizia Palummo, Marco Bernardi, and Jeffrey C. Grossman. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. *Nano Letters*, 15(5):2794–2800, may 2015. 3.3.2
- [92] Hongyan Shi, Rusen Yan, Simone Bertolazzi, Jacopo Brivio, Bo Gao, Andras Kis, Debdeep Jena, Huili Grace Xing, and Libai Huang. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano, 7(2):1072– 1080, feb 2013. 3.3.2

- [93] D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek. Carrier and polarization dynamics in monolayer MoS 2. *Physical Review Letters*, 112(4):047401, jan 2014. 3.3.2
- [94] T Godde, D Schmidt, J Schmutzler, M. A??mann, J Debus, F Withers, E M Alexeev, O. Del Pozo-Zamudio, O V Skrypka, K S Novoselov, M Bayer, and A I Tartakovskii. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. *Physical Review B - Condensed Matter and Materials Physics*, 94(16), 2016. 3.3.2