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Graphene is a novel two-dimensional material with fascinating electrody-
namic properties like the ability to support collective electron oscillations (plas-
mons) accompanied by tight con�nement of electromagnetic �elds. Our goal
is to explore light-matter interaction in graphene in the context of plasmonics
and other technological applications but also to use graphene as a platform for
studying many body physics like the interaction between plasmons, phonons
and other elementary excitations. Plasmons and plasmon-phonon interaction
are analyzed within the self-consistent linear response approximation. We
demonstrate that electron-phonon interaction leads to large plasmon damping
when plasmon energy exceeds that of the optical phonon but also a pecu-
liar mixing of plasmon and optical phonon polarizations. Plasmon-phonon
coupling is strongest when these two excitations have similar energy and mo-
mentum. We also analyze properties of transverse electric plasmons in bilayer
graphene. Finally we show that thermally excited plasmons strongly mediate
and enhance the near �eld radiation transfer between two closely separated
graphene sheets. We also demonstrate that graphene can be used as a thermal
emitter in the near �eld thermophotovoltaics leading to large e�ciencies and
power densities. Near �eld heat transfer is analyzed withing the framework of

uctuational electrodynamics.
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Grafen je tek nedavno otkriveni dvo-dimenzionalan materijal s vrlo zan-
imljivim elektrodinami�ckim svojstvima poput mogu�cnosti podr�zavanja kolek-
tivnih oscilacija elektronskog plina (plazmona) pra�cenih s jakom loklizacijom
elektromagnetskog polja. Cilj ovog doktorata je prou�citi interakciju svjetlosti
i materije u grafenu u konteksu plazmonike i drugih tehnolo�skih primjena ali
takoder upotrijebiti grafen kao platformu za ista�zivanje pojava �zike mno�stva
�cestica kao �sto su interakcija izmedu plazmona, fonona i drugih elementarnih
pobudenja. Plazmone i plazmon-fonon interakciju analiziramo u kontekstu
aproksimacije samo-konzistentnog linearnog odziva. Pokazujemo da elektron-
fonon interakcija vodi k jakom gu�senju plazmona kada energija plazmona
prijede energiju opti�ckog fonona ali takoder neobi�cno mije�sanje polarizacija
plazmona i opti�ckog fonona. Plazmon-fonon vezanje je najja�ce kad ta dva
pobudenja imaju usporedivu energiju i impuls. Takoder analiziramo svojstva
transverzalnog elektri�cnog plazmona u dvo-sloju grafena. Kona�cno pokazu-
jemo da termalno pobudeni plazmoni kanaliziraju i bitno pospje�suju radiativni
transfer topline izmdu dvije bliske ravnine grafena. Takoder pokazujemo da se
grafen mo�ze koristiti kao termalni emiter u termofotovoltaicima bliskog polja
�sto vodi k velikim e�kasnostima i gusto�ci snage. Prijenos topline u bliskom
polju analiziramo u kontekstu 
uktuacijske elektrodinamike.
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Chapter 1

Introduction

Carbon is a basic ingredient of life and all organic chemistry which is con-
sequence of its abundance in nature and his chemical reactivity. With four
valence electrons distributed to one 2s and three 2p orbitals, which can hy-
bridize in many di�erent ways, carbon is characterized by a large 
exibility
of chemical bonding. One particularly interesting case is sp2 hybridization
which creates three strong �-bonds in plane, while the remaining p orbital is
weakly bound with neighboring atoms creating �-bond. In this thesis we will
be studying graphene: a two-dimensional (2D) crystal of carbon atoms assem-
bled in a honeycomb structure. While �-bond is responsible for the most of
the structural integrity of graphene, �-bond determines low-energy electric and
optical properties. Very peculiar property of graphene is that its low-energy
electrons behave as massless Dirac particles [1, 2] (near the corners of the Bril-
louin zone). Since graphene is essentially a 2D material, one can simply tune
its Fermi level through an electrostatic gating which brings about large con-
trol over electrical and optical properties, important for various technological
applications.

1.1 Experimental realization

Scientists were puzzled for long time whether nature allows existence of a two-
dimensional crystal. In 1930’s Peierls [3] and Landau [4] showed that thermal

uctuations would destroy long range order and essentially melt 2D lattice
at any �nite temperature. Therefore it came as a surprise when Geim and
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Novoselov announced [5, 6, 7] in 2004 a discovery of a �rst 2D crystal made
of carbon atoms - graphene. Scientist were further astonished by a shear sim-
plicity of the experimental method which essentially used a scotch tape to
exfoliate graphite (graphite can be viewed as a simple stack of weakly bound
graphene planes). The 2010 Nobel prize in physics came as a credit for this
great discovery but it is interesting that even today in 2012 experimentalists
still use this "scotch tape technique" since it o�ers exceptionally pure graphene
samples on a small scale, important for fundamental research. Of course it is
impractical on a large scale production which is required by various industrial
applications, and soon after the discovery of graphene several other methods
were developed for graphene production, most notably chemical vapor deposi-
tion (CVD) [8], segregation by heat treatment of carbon-containing substrates
[9] and liquid phase exfoliation [10]. The most promising of these methods, for
large scale graphene growth, is CVD which is also used [11] by the group of
Dr. Marko Kralj from the Institute of Physics in Zagreb, Croatia. They heat
ethylene (C2H4) gas, up to a temperature of 1000�C, above the metal surface
which serves both as a catalyst for ethylene decomposition and substrate for
graphene growth.

It is interesting to note that various groups claim they have seen graphene in
their experiments prior to 2004 but it wasn’t until Geim and Novoselov ground-
breaking experiments that the true potential and importance of graphene was
recognized.

While graphene’s intriguing mechanical properties are still debated, this the-
sis concerns primarily with electrical and optical properties which are a subject
of intense research and numerous practical applications.

1.2 Plasmonics

Plasmonics studies collective electron surface charge oscillations (surface plas-
mons at surfaces of bulk materials or plasmons in a pure 2D materials like
graphene) accompanied by tight con�nement of electromagnetic (EM) �elds.
In recent years, an enormous interest has been surrounding the �eld of plas-
monics, because of the variety of tremendously exciting and novel phenomena
it could enable. On one hand, plasmonics seems to be the only viable path
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toward realization of nanophotonics: control of light at scales substantially
smaller than the wavelength [12, 13, 14, 15]. On the other hand, plasmonics is
a crucial ingredient for implementation of most metamaterials, and thereby all
the exciting phenomena that they support [16, 17, 18, 19], including negative
refraction, superlensing, and cloaking. However, there is one large and so far
insurmountable obstacle towards achieving this great vision: plasmonic mate-
rials (most notably metals) have enormous losses in the frequency regimes of
interest. This greatly motivates us to explore plasmons and their losses in a
newly available material with unique properties: graphene [5, 6, 7].

Plasmons are also very interesting phenomenon from the point of view of
many-body physics. Since losses are in a large manner determined by phonons
we will encounter interactions between various elementary excitations and in-
teresting many-body e�ects like plasmon-phonon coupling.

1.3 Near �eld thermo-photo-voltaics

Radiative heat transfer between two bodies can be greatly enhanced in the
near �eld, i.e. by bringing the surfaces close together to allow tunneling of
evanescent photon modes [20, 21, 22]. This happens because near �eld radi-
ation transfer involves thermal excitation of various surface modes which can
have much greater wave vectors (and density of states) than the freely propa-
gating modes (limited by the light line). Since each wave vector corresponds
to a heat channel, vacuum becomes better heat conductor in the near �eld.
However, due to their localization and evanescent nature, it is only at sub-
wavelength separations that these modes become relevant. While measuring
near �eld transfer has been experimentally di�cult [23, 24, 25, 26], the promise
of order-of-magnitude enhancements over the far �eld Stefan-Boltzman black
body limit has made transfer in the near �eld the topic of much research.

With the current world energy demand and large environmental impact of
fossil fuels there is a worldwide shift toward renewable energy sources. In
that respect, thermo-photo-voltaics (TPVs) are a promising class of heat to
electricity conversion devices [27, 28] where Sun can heat up an emitter that
selectively re-radiates frequencies matched to the band gap of the photo-voltaic
cell thus minimizing the thermalization losses. TPVs are not limited by the
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Sun source and can use any hot (terrestrial) object like a factory furnace or
various hot car parts as a heat source. From the perspective of future energy
crisis there is a large demand for more e�cient energy management where
TPVs can play important role by turning wasted heat into electricity.

Near �eld TPVs [29, 30, 31] further o�er greater power densities since the
near �eld heat transfer can be orders of magnitude larger than the far �eld
limit. Finally, due to evanescent nature of EM modes, one does not need to
worry about losing energy through modes with frequencies below the photo-
voltaic band gap, resulting in even larger device e�ciencies.

1.4 Objectives and results

The objective of this research is to study electrodynamic properties of graphene
and especially high-frequency collective oscillations of electrons (plasmons).
We will analyze plasmon excitations in the context of plasmonics and other
technological applications, but we will also look at the same problem from
the point of view of many-body physics as an interaction between various
elementary excitations (plasmons, phonons, etc.). Finally we study near �eld
heat transfer with graphene (mediated by thermally excited plasmons) in the
context of TPVs.

We study plasmon excitations in graphene in the context of the Random
Phase Approximation (RPA) [56] and number-conserving relaxation-time ap-
proximation [34] and we show that plasmons in doped graphene can have both
low losses and large localization for frequencies below optical phonon energy at
0.2 eV. Large plasmon damping occurs in the regime of interband single parti-
cle excitations which can be shifted towards larger energies for stronger doping
values. We demonstrate that for su�ciently large doping there is a frequency
interval from optical phonon frequency to boundary of interband regime, where
the plasmon damping is dominated by emission of optical phonon and electron-
hole pair. To describe impurity scattering we use DC relaxation time since we
don’t expect signi�cant frequency dependance. The phonon contribution is es-
timated from the electron self-energy induced by electron-phonon interaction.

We also explore electron-phonon interaction in graphene as an interesting
problem from the aspect of many-body physics. By measuring Raman shift of
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optical phonon energy it was demonstrated that Born-Oppenheimer approxi-
mation (BOA) is not a valid approximation in graphene [32]. The measured
Raman shift is a consequence of the interaction with single particle excitations,
however the breakdown of BOA means that electrons and phonons move on
comparable energy scales which leads to a possibility of interaction between
phonons and collective electron excitations (plasmons). We show that a pecu-
liar type of hybridization of plasmon and optical phonon modes occurs around
the point where the two modes cross in energy and momentum simultaneously
since then the electron-phonon interaction will be drastically increased due to
collective electron response. We demonstrate that the electron-phonon interac-
tion leads to polarization mixing of the two modes so that longitudinal plasmon
(LP) couples exclusively to the transverse optical phonon (TO) mode, while
the tranverse electric mode, also referred to as the transverse plasmon (TP),
couples exclusively to longitudinal optical phonon (LO) mode; thus there is no
coupling between LPs and LO modes. Formally, we analyze plasmon-phonon
coupling in the self-consistent linear-response formalism which describes inter-
action of phonons with both single particle and collective electronic excitations.
We emphasize that the phonon interaction with collective excitations is much
larger than the phonon interaction with single particle excitations (measured
by Raman) which means that plasmon-phonon interaction can serve as a mag-
ni�er for exploring electron-phonon interaction in graphene. Further on, our
calculations give a slight correction to the standard result of Raman shift of
the optical phonon energy since the longwave phonons can interact also with
radiative EM modes so that we predict increasing Raman linewidths for higher
dopings. Finally we note that LO phonon decouples from all (single particle
and collective) electronic excitations when its dispersion crosses the light line.

While longitudinal charge density oscillation can be referred to as longitudi-
nal plasmon, which is also polarized like transverse-magnetic (TM) EM mode,
we also analyze properties of the unusual transverse plasmon in 2D systems
[48], which is polarized like transverse-electric (TE) mode, and accompanied
by transverse current density oscillation. These kind of modes are possible
only if the imaginary part of 2D conductivity is negative which in principle
requires interband transitions. From that perspective bilayer graphene is an
interesting candidate for exploring these modes, because it has a rich band
structure and particularly two perfectly nested bands with a gap of 0.4 eV
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which results in large joint density of states considering the vertical interband
transitions. We show that plasmon properties (localization) of TE modes are
much more pronounced in bilayer than in single layer graphene.

We also show that thermally excited plasmons strongly mediate and enhance
the near �eld radiation transfer between two closely separated graphene sheets.
Near �eld heat transfer is analyzed within the framework of 
uctuational elec-
trodynamics and we predict several orders of magnitude larger values of heat
transfer between two graphene sheets in the near �eld than the case of heat
transfer between two black bodies, of the same temperatures, in the far �eld.
Finally we demonstrate that graphene can be used as a thermal emitter in the
near �eld thermophotovoltaics leading to large e�ciencies and power densities.

The thesis is organized into chapters as follows. In Chapter 2 we present
theoretical methods and tools that will be used throughout the text. We �rst
calculate electron dispersion and electron-phonon interaction Hamiltonian in
graphene within the tight binding approximation. Next we give the density-
density and current-current response functions in the linear approximation
and use 
uctuation-dissipation theorem to calculate current-current correlation
function due to thermal 
uctuations in the system. Finally we use this to
calculate the radiative heat transfer between two graphene sheets. In Chapter
3 we calculate plasmon dispersion and damping due to electron-impurity and
electron-phonon scattering. In Chapter 4 we calculate dispersion od TE modes
in single and bilayer graphene. In Chapter 5 we calculate plasmon-phonon
interaction within the self-consistent linear response formalism. In Chapter
6 we calculate near �eld heat transfer between two graphene sheets and we
analyze near �eld TPV device with graphene as a thermal emitter. Finally, in
Chapter 7 we summarize.
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Chapter 2

Methods

In this chapter, for the sake of the clarity of the presentation, we derive basic
physical quantities used to describe graphene such as the low energy Dirac
Hamiltonian and the electron-phonon interaction. We will also de�ne standard
response functions, like the conductivity, density-density, and current-current
response functions, that will be used in later chapters. This chapter is intended
to provide an introduction and overview of these concepts so the reader already
familiar with them can skip the corresponding sections. Finally we will derive
an expression for the radiative heat transfer between two graphene sheets at
di�erent temperatures by employing the 
uctuation-dissipation theorem.

2.1 Tight binding approximation in graphene

In this section we use the tight-binding approximation to derive the electron
band structure of graphene, Dirac equation valid at low energies and electron-
phonon interaction.

2.1.1 Electron band structure

Graphene crystal structure is determined by a Bravais lattice with two atoms
in a basis (see �gure 2.1). We can choose unit cell vectors as a1 = a(1; 0) and
a2 = a(�1=2;

p
3=2), while the vectors connecting �rst neighbors are given by

� 1 = a(0; 1=
p

3), � 2 = a(�1=2;�1=2
p

3), and � 3 = a(1=2;�1=2
p

3). Here
a = 0:25 nm is a lattice constant while the nearest neighbor carbon-carbon
distance is j� lj = b = a=

p
3 = 0:14 nm.
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Unit cell vectors of reciprocal lattice are given by c1 = (2�=a)(1; 1=
p

3)
and c2 = (2�=a)(0; 2=

p
3), while we are primarily interested in the vertex

points of the Brillouin zone i.e. vectors K = (2�=a)(1=3; 1=
p

3) and K0 =
(2�=a)(2=3; 0). The remaining four vertex points are equivalent to the points
K i K0 since they are connected to them by a simple translation with the
reciprocal vector n1c1 + n2c2, where n1 and n2 are integers.

Figure 2.1: a) Graphene crystal structure. Unit cell vectors are a1 and a2 while
A and B are atoms of the basis. b) Brillouin zone. We mark high symmetry
points K and K0 where the low-energy electron excitations are described by
massless Dirac equation.

As we already pointed out in the introduction, sp2 hybridization is responsi-
ble for the mechanical stability of graphene by creating three strong � bonds in
xy plane while the remaining pz orbital weakly interacts with the neighborings
pz orbitals creating the � bond. Since we are particularly interested in � bond,
the entire problem is very well described with the tight binding approximation
[1].

Let us de�ne now an operator cy
R that creates a free pz orbital at the lattice

point R, i.e. jpz(R)i = cy
Rj0i. Let us further denote by �
0 the hopping inte-

gral between nearest neighbor pz orbitals (next-nearest neighbor interaction is
negligible and 
0 � 2:8 eV [1]). Since we are only interested in the behavior of
the electron energies near the pz orbital energy, our system is well described
by a tight binding Hamiltonian

H = �
0

X

RA;� l

cy
RA�� l

cRA
� 
0

X

RB;� l

cy
RB+� l

cRB
; (2.1)

where the sum over lattice points is divided into two parts that contain di�erent
basis atoms i.e. RA = n1a1 +n2a2 + � 1 and RB = n1a1 +n2a2 (n1 and n2 are
integers). In equation (2.1), we have assumed that zero energy corresponds to
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pz orbital energy (i.e. E(pz) = 0) and we have neglected overlapping of the
two neighboring orbitals. We have also omitted the notion of electron spin
since it only plays the role of additional degree of freedom. Eigenstates of the
Hamiltonian (2.1) must take the form of the linear combination of pz orbitals
that satisfy the Bloch condition

cy
k =

1
p
N

X

RA

eik�RAcy
RA
fA(k) +

1
p
N

X

RB

eik�RBcy
RB
fB(k)Z; (2.2)

where we have explicitly separated the phase Z (Z�Z = 1) which will be
de�ned later so that analytical expressions would look as simple as possible.
Let us de�ne now Fourier transform of operators cy

RA
and cy

RB
as

Ay
k =

1
p
N

X

RA

eik�RAcy
RA
; and (2.3)

By
k =

Z
p
N

X

RB

eik�RBcy
RB
: (2.4)

Then, the Bloch eigenstate (2.2) is cy
k = fA(k)Ay

k + fB(k)By
k, and we can also

write the inverse Fourier transforms (since Z�Z = 1) as

cy
RA

=
1

p
N

X

k

e�ik�RAAy
k; and (2.5)

cy
RB

=
Z�

p
N

X

k

e�ik�RBBy
k: (2.6)

Let us look now at the �rst sum from (2.1) and notice that every vector RA�� l

is in fact one of the RB vectors, so we have

X

RA;� l

cy
RA�� l

cRA
=
X

RA;� l

 
Z�

p
N

X

k0

e�ik0�(RA�� l)By
k0

! 
1

p
N

X

k

eik�RAAk

!

=
X

k;k0;� l

Z�eik
0�� lBy

k0Ak

X

RA

1
N
ei(k�k0)�RA : (2.7)

However, since
X

RA

1
N
ei(k�k0)�RA = �k;k0 ; (2.8)
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we obtain in the �rst sum

X

RA;� l

cy
RA�� l

cRA
=
X

k;� l

Z�eik�� lBy
kAk: (2.9)

In a similar manner we get the second sum

X

RB;� l

cy
RB+� l

cRB
=
X

RB;� l

 
1

p
N

X

k0

e�ik0�(RB+� l)Ay
k0

! 
Z

p
N

X

k

eik�RBBk

!

=
X

k;� l

Ze�ik�� lAy
kBk: (2.10)

Finally, the Hamiltonian (2.1) becomes

H = �
0

X

k

 
X

l

Z�eik�� l �By
kAk +

X

l

Ze�ik�� l � Ay
kBk

!

: (2.11)

Relation (2.11) contains a specially important function

T (k) = �
0

X

l

Ze�ik�� l ; (2.12)

so �nally we can write equation (2.11) in a matrix form

H =
X

k

�
Ay

k By
k

� 0 T (k)
T �(k) 0

! 
Ak

Bk

!

: (2.13)

Now, since the Bloch state cy
k = fA(k)Ay

k + fB(k)By
k has to diagonalize this

Hamiltonian, we can also write

H =
X

k

E(k)cy
kck =

X

k

E(k)
�
Ay

k By
k

� fA(k)
fB(k)

!�
f�
A(k) f �

B(k)
� Ak

Bk

!

:

(2.14)
By comparing equations (2.13) and (2.14) we need to have:

 
0 T (k)

T �(k) 0

! 
fA(k)
fB(k)

!

= E(k)

 
fA(k)
fB(k)

!

: (2.15)

So we have reduced entire problem to the matrix diagonalization, while the
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Figure 2.2: Graphene electron band structure with Dirac cones around K point
(magni�ed). Intrinsic graphene has Fermi level EF = EK = 0.

eigenvalues (i.e. energies) are given by:
�����

�E(k) T (k)
T �(k) �E(k)

�����
= 0: (2.16)

Solution of the determinant equation (2.16) determines the electron band struc-
ture in graphene as [1]:

E�(k) = �
p
T (k)T �(k) = �
0

s

1 + 4 cos
akx
2

cos
aky

p
3

2
+ 4 cos2 akx

2
:

(2.17)

Figure 2.2 shows the function E(k) and we can notice the peculiar behavior
of the bands at the Brillouin zone vertex points K and K0. Further on, since
each graphene unit cell contains two atoms in basis and each atom donates one
free electron into the band, Fermi energy is de�ned such that there are enough
electrons to �ll precisely one Brillouin zone in the reciprocal space. Relation
(2.17) tells us that electron bands are divided into positive and negative states
that touch precisely at the the vertex point of the Brillouin zone (see also
�gure 2.2), such that we have EF = EK = 0. Because of the fact that electron
states around the Fermi energy determines the low-energy properties, we will
focus precisely on the area around the K and the K0 points. Finally we note
that, since valence (negative) and conduction (positive) band touch at only
6 points (K, K0 and the remaining four equivalent vertex points), that are
located precisely at the Fermi level, the intrinsic graphene is an unusual zero
gap semiconductor.
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2.1.2 Dirac electron dispersion in graphene

We can write equation (2.15) as an eigenvalue equation: Hk k = Ek k, where
the Hamiltonian and the wave function (eigenfunction) are given by

Hk =

 
0 T (k)

T �(k) 0

!

; and (2.18)

 k =

 
fA(k)
fB(k)

!

: (2.19)

Let us focus now on the area around the K point and change the origin of our
wave vector as k ! k + K, so that we have jkj << jKj. Now we can make a
Taylor expansion of the function T (k) as follows:

T (k) = �
0

X

l

Ze�i(k+K)�� l � �
0

X

l

Ze�iK�� l(1 � ik � � l): (2.20)

Next we calculate the following sums:

X

l

e�iK�� l = 0; and (2.21)

X

l

� le�iK�� l = e�i2�=3

p
3

2
a(ix̂+ ŷ): (2.22)

Now we will choose the phase Z = e�i�=3 so that we have

X

l

� lZe�iK�� l = e�i�

p
3

2
a(ix̂+ ŷ) =

p
3

2
a(�ix̂� ŷ): (2.23)

Finally we get expressions for the function T (k) and the e�ective Hamiltonian
Hk in the vicinity of point K:

T (k) = 
0ik �
X

l

� lZe�iK�� l =
p

3
2
a
0(kx � iky); and (2.24)

Hk =
p

3
2
a
0

 
0 kx � iky

kx + iky 0

!

: (2.25)
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It is now convenient to introduce new variable: ~vF �
p

3
2 a
0, where vF � 106

m/s since 
0 � 2:8 eV [1]. Hamiltonian (2.25) now becomes

Hk = ~vF

" 
0 1
1 0

!

kx +

 
0 �i
i 0

!

ky

#

; (2.26)

that is,
Hk = ~vF� � k; (2.27)

where � = �xx̂+�yŷ, while �x =

 
0 1
1 0

!

and �y =

 
0 �i
i 0

!

are the Pauli

spin matrices. Here we note the remarkable property of graphene around K
point where electrons behave precisely like massless Dirac particles of spin 1/2
[33]! We can also �nd energies (eigenvalues) and wave functions (eigenvectors)
from the equation Hk k = Ek k:

En;k = n � ~vF jkj = n � ~vF
q
k2
x + k2

y; and (2.28)

 n;k(r) = hrjnki =
1

L
p

2

 
n

ei�(k)

!

eik�r: (2.29)

Here L2 is the area of graphene, n = 1 (n = �1) denotes the conduction (va-
lence) band, respectively, and the angle �(k) = tan�1(ky=kx). Further on, we
note that behavior around K 0 point is easily found if we move the wave vector
origin so that k ! k + K0. In that case it is more convenient to choose the
phase Z = 1 and the Hamiltonian (2.18) turns into H 0

k = ~vF�� � k. Hamil-
tonian H 0

k has eigenvalues: E 0
n;k = n � ~vF jkj = En;k that are degenerate with

eigenvalues of Hamiltonian Hk so that K0 point represents only an additional
degree of freedom like electron spin. In other words we can limit ourself to the
behavior around K point if we note that each state is four fold degenerate i.e.
two spin and two valley (K � K0) degenerate.

Finally, let us �nd the electron density and electron current density operators
for Dirac electrons in graphene. To start, note that the electron momentum is
p = ~k, which can be written as an operator in the coordinate representation
p = �i~r, so the Dirac Hamiltonian (2.27) can be written as: H = �i� � r.
If we now describe this Dirac electron by a wave function  �(r) = hrj�i, then
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the electron particle density is simply �� = j �(r)j2 so the density operator is

�op(r) = �(r � rop): (2.30)

To �nd the electron current density we can apply the equation of continuity:
�e@�@t + r � j = 0 (here we take e > 0 so that �e denotes the electron charge),
with an equation of motion H = i~@ @t . This yields the electron current
density: j� = �evF �(r)�� �(r), i.e. the current density operator:

jop(r) = �evF��(r � rop): (2.31)

At last, the Fourier transforms of these quantities are given by

�op(q) =
1
L2 e

�iq�rop ; and (2.32)

jop(q) = �
evF
L2 �e�iq�rop : (2.33)

2.1.3 Electron-phonon interaction

Since graphene is a 2D crystal with two atoms per basis, there are also two
optical phonon branches (transverse and longitudinal) that are degenerate at
energy ~!0 = 0:196 eV and mostly independent of wave vector q (for long wave
modes q << 2�=a). Let us denote by u(R) = [uA(R) � uB(R)]=

p
2 motion of

the basis atom A relative to the atom B in the unit cell at the position R (see
�gure 2.3). If A and B where oppositely charged ions like in polar crystals,
then their motion would result in the electric dipole moment i.e. electric
�eld in the direction of the vector u and strong electron-phonon interaction.
However, since A and B are completely equivalent carbon atoms, graphene
belongs to the class of covalent crystals, and electron-phonon interaction is
considerably reduced compared to the case of polar crystals. We will also
see that electron-phonon interaction in graphene acquires unusual form in the
vicinity of the Dirac (K and K0) point and we will demonstrate that optical
phonon oscillation creates e�ective electric �eld that is perpendicular to the
vector u. That fact will lead to peculiar mixing of plasmon and optical phonon
polarizations.

The rigorous calculation of electron-phonon interaction in graphene is given
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Figure 2.3: a) Atom motion in graphene during the longitudinal optical phonon
oscillations. b) Motion of basis atoms described by a vector u in the real space
induces vector potential A that moves Dirac points in the reciprocal space.
Dirac point symmetry causes unusual polarization of this vector potential:
A ? u.

in references [52, 53], while we only sketch here the main steps. Let us start
with the tight binding Hamiltonian (2.18)

Hk =

 
0 T (k)

T �(k) 0

!

: (2.34)

The e�ect of phonon on the electron motion can be simply found by consid-
ering the change in the hopping integral (�
0) with the change in the nearest
neighbor distance. Let us now observe atom A at a position RA and a neigh-
boring atom B at a position RB = RA �� l whose equilibrium relative distance
is simply j� lj = b. If we move these two atoms out of equilibrium positions,
new distance is: j� l + uA(RA) � uB(RA � � l)j, and the leading order change
in the hopping integral is

�
 = �
0 �
@
0(b)
@b

[j� l + uA(RA) � uB(RA � � l)j � b]

� �
0 �
@
0(b)
@b

1
b
� l � [uA(RA) � uB(RA � � l)] : (2.35)

Since we are interested in long wavelength optical phonons (q << 2�=a),
then instead of discrete vector R, we can write a continuous coordinate r in
the expression u(R) = [uA(R) � uB(R)]=

p
2, i.e. we write

uA(RA) � uB(RA � � l) � uA(r) � uB(r � � l) � u(r)
p

2: (2.36)

Finally the change in the hopping integral (2.35), in the long wavelength limit,
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is given by:

�
 � �
0 �
@
0(b)
@b

p
2
b

� l � u(r): (2.37)

Note here that all three neighboring carbon atoms (l = 1; 2; 3) see the same
phonon amplitude u(r), which will not be true in the case of �nite wavevector
q. However this change in amplitude will come with an extra factor q � a, so
unless we are working with phonon wavevectors on the order of Brillouin zone,
the long wavelength limit is a great approximation concerning the interaction
between electrons and optical phonons.

We can write phonon motion u(r) as a sum over normal modes

u(r) =
X

q;�

1
p
NM

Qq�eq�eiq�r: (2.38)

Here M is the mass of a carbon atom, � = L; T denotes longitudinal i.e.
transverse polarization, and if we de�ne an angle ’(q) = tan�1(qy=qx), then
polarization vectors are given by

eqL = i(cos’(q)x̂+ sin’(q)ŷ); and (2.39)

eqT = i(� sin’(q)x̂+ cos’(q)ŷ): (2.40)

Finally we can write the phonon amplitude Qq� through the creation (by
q�) and

annihilation operators (bq�) as

Qq� =
r

~
2!0

(bq� + by
�q�): (2.41)

To �nd how the phonon motion u(r) in
uences the electrons around the K
point let us change the origin of wave vector as before: k ! k + K. Now the
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function T (k) becomes

T (k; r) =
X

l

(�
)Ze�i(k+K)�� l

=
X

l

 

�
0 �
@
0(b)
@b

p
2
b

� l � u(r)

!

Ze�i(k+K)�� l

�
X

l

 

�
0 �
@
0(b)
@b

p
2
b

� l � u(r)

!

Ze�iK�� l(1 � ik � � l): (2.42)

By looking at the leading order expansion in the phonon motion u(r) and
electron wave vector k we have

T (k; r) =

 


0ik �
@
0(b)
@b

p
2
b

u(r)

!

�
X

l

� lZe�iK�� l : (2.43)

We recognize the �rst part of the expression (2.43) from the equation (2.24)
for bare Dirac electrons

T0(k) = 
0ik �
X

l

� lZe�iK�� l =
p

3
2
a
0(kx � iky); (2.44)

while the other part of the sum (2.43) gives

Te�ph(r) = �
@
0(b)
@b

p
2
b

u(r) �
X

l

� lZe�iK�� l

= �
@
0(b)
@b

p
2
b

p
3

2
a(�iux � uy): (2.45)

With the substitution: ~vF =
p

3
2 a
0, expressions above transform into a sim-

pler form
T0(k) = ~vF (kx � iky); and (2.46)

Te�ph(r) = ~vF
@
0(b)
@b

p
2

b
0
(iux + uy): (2.47)

Finally since T (k; r) = T0(k) +Te�ph(r), we can also write for the total Hamil-

17



tonian Hk = H0
k +He�ph where

H0
k =

 
0 T0(k)

T �
0 (k) 0

!

= ~vF

 
0 kx � iky

kx + iky 0

!

; and (2.48)

He�ph =

 
0 Te�ph

Te�ph 0

!

= ~vF
@
0(b)
@b

p
2

b
0

 
0 uy + iux

uy � iux 0

!

:

(2.49)
If we introduce here the notation � � u = �xuy � �yux , then we can write
equation (2.49) in a convenient form [51, 52, 53]:

He�ph = �~vF
@
0(b)
@b

p
2

b
0
� � u(r): (2.50)

From this expression we can immediately see the unusual property of the
electron-phonon interaction in the vicinity of Dirac point. Namely the to-
tal Hamiltonian Hk in the presence of the phonons, can be obtained from the
bare Hamiltonian H0

k = ~vF� � k, by a simple substitution:

kx ! kx +Kuy; (2.51)

ky ! ky �Kux; (2.52)

where K = @
0(b)
@b

p
2

b
0
. But this is precisely equivalent to the action of the vector

potential A:
~k ! ~k + eA: (2.53)

In other words in
uence of phonons on the electron motion is equivalent to
the presence of vector potential with components: Ax / uy and Ay / �ux.
This will in turn lead to the unusual mixing of plasmon and optical phonon
polarizations. To understand this let us assume that the phonon wave vector
is oriented in the y direction (q = qŷ) and let us look at the longitudinal
optical phonon motion that have ux = 0 and uy 6= 0 (see �gure 2.3). Then
the phonon in
uence is given by transverse vector potential since Ax 6= 0 and
Ay = 0. In other words longitudinal phonon oscillation is equivalent to the
transverse vector potential oscillation i.e. transverse electric �eld. On the other
hand, since plasmons are collective charge density oscillations, accompanied by
a longitudinal electric �eld, there won’t be any interaction between plasmon
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and longitudinal optical phonon. We will further show that there is a strong
interaction of plasmon and transverse optical phonon which is a very counter
intuitive result from the perspective of polar crystals.

The simplest way to analyze the electron-phonon interaction in graphene is to
show how the phonon amplitude couples to the electron current density. In that
regards let us take electron-phonon Hamiltonian (2.50) and write expansion
of the phonon motion u(r) over the normal modes from equation (2.38) to
obtain:

He�ph = �~vF
@
0(b)
@b

p
2

b
0

1
p
NM

X

q;�

eiq�r� � eq�Qq�: (2.54)

Here we recognize the current density operator jy
q = � evF

L2 �eiq�r from equation
(2.33), and if we introduce the factor F = ~

e
@
0(b)
@b

p
2

b
0

1p
NM

, we can �nally write
for the electron-phonon interaction Hamiltonian:

He�ph = L2F
X

q;�

jy
q � eq�Qq�: (2.55)

A more convenient way to write electron-phonon interaction is to show how
the phonon amplitude couples to the electron density. In that respect, let us
de�ne the quantities:

EqL � eqL � ŷ + ieqL � x̂ = i sin’(q) � cos’(q) = �e�i’(q); and (2.56)

EqT � eqT � ŷ + ieqT � x̂ = i cos’(q) + sin’(q) = ie�i’(q): (2.57)

Then by using the normal mode expansion (2.38) we obtain

uy + iux =
X

q;�

1
p
NM

Qq�(eq� � ŷ + ieq� � x̂)eiq�r =
X

q;�

1
p
NM

Qq�Eq�eiq�r:

(2.58)
Finally the electron-phonon interaction Hamiltonian (2.49) can be written as:

He�ph = ~vF
@
0(b)
@b

p
2

b
0

X

q;�

1
p
NM

Qq�

 
0 Eq�

E�
q� 0

!

eiq�r: (2.59)

If we now de�ne

g � ~vF
@
0(b)
@b

p
2

b
0

1
p
NM

; and (2.60)
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Mq� �

 
0 Eq�

E�
q� 0

!

; (2.61)

then we can write electron-phonon interaction as a coupling between phonon
amplitude Qq� and electron density operator �y

q from equation (2.32) as:

He�ph = L2
X

q;�

gMq��y
qQq�: (2.62)

Formula (2.55) and (2.62) are equivalent. However, the response of the sys-
tem to the interaction Hamiltonian (2.55) is most easily described by utilizing
the current-current response function while the response to the interaction
Hamiltonian (2.62) is most easily described by the density-density response
function.

2.2 Response functions

In this section we present response functions which describe response of our
system to an external perturbation. Speci�cally we calculate graphene’s con-
ductivity, density-density, and current-current response functions in the weak
coupling approximation i.e. linear response theory. These three functions are
all connected by simple relations, however it will be more convenient to use
one or another depending on the speci�c nature of the problem being studied.

2.2.1 Conductivity

Semiclassical model - Drude conductivity

If we are only interested in the response of the graphene under the in
uence
of external electromagnetic �eld, we can simply calculate the conductivity
function �(!). The semiclassical model gives a simple relation for the Drude
conductivity [38]

�D(!) = e2
Z

4
dk
4�2

v(k)v(k)
1=� � i!

�
�
@f
@E

�

E=E(k)
; (2.63)

where � is the relaxation time, v(k) = 1
~
@E(k)
@k is the electron velocity, f(E) =

1
e(E��)=kT +1 is the Fermi-Dirac distribution function, and factor 4 stands for two
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spin and two valley degeneracy. Semiclassical model is simply a generalization
of the Drude model for free electrons to the case of an arbitrary band structure
E(k), however we will see that it can describe lot of interesting phenomena in
a qualitatively correct way. At zero temperature one has �@f=@E = �(E��)
and it is straightforward to show that for the case of Dirac electrons in graphene
Hk = ~vF� � k, the Drude conductivity is given by

�D(!) = e2 �
�~2

1
1=� � i!

: (2.64)

It is a slightly more tedious task to show that at �nite temperature T one has

�D(!) = e2 2kT
�~2 ln

�
2 cosh

�
2kT

� 1
1=� � i!

: (2.65)

Fermi’s golden rule - interband conductivity

The semiclassical model has a serious limitation since it cannot describe transi-
tions between di�erent bands [38], which is particularly important in graphene
that has zero band-gap between valence and conduction bands. To take into
account these interband transitions we will calculate the response of graphene
to an external electric �eld, in the �rst order perturbation theory (using the
Fermi’s golden rule).

Let us imagine that an electromagnetic plane wave of frequency ! is incident
under the normal angle onto the graphene sheet. We can choose the gauge so
that the scalar potential ’ = 0, while the vector potential A = A0e�i!t,
so that the electric �eld is given by E = �@A

@t = i!A = E0e�i!t , and
E0 = i!A0. Electrons in graphene are described by a Dirac Hamiltonian
(2.27) H0 = ~vF� �k = vF� �p, where p is the graphene’s electron momentum
so that the interaction with the vector potential is simply described by a sub-
stitution p ! p + eA. In other words, the total Hamiltonian in the presence
of electromagnetic �eld can be written as H = vF� � (p + eA) = H0 + Hint,
where the interaction part of the Hamiltonian is given by

Hint = evF� � A =
evF
i!

� � E0e�i!t: (2.66)

Here we have kept only the time dependent part (e�i!t) responsible for the
absorption process. Then the Fermi’s golden rule [68] gives the probability for
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a transition from an initial state i to the �nal state f , with an absorption of a
photon:

dwi!f

dt
=

2�
~

jhijHintjfij2�(~!if � ~!)fi(1 � ff ): (2.67)

The total power absorbed from the incident wave can be written in two ways.
First, one can write

Pa =
X

i;f

~!
dwi!f

dt
: (2.68)

On the other hand, since j(!) = �(!)E(!), one can write (for harmonic �elds)
[67]

Pa = 2<
Z

j(!) � E�(!)dr = 2<�(!)jE0j2L2; (2.69)

where L2 is the area of graphene sheet, and we used the fact that E(!) = E0 is
uniform along the graphene plane for the case of normal incident wave. Finally
we have

<�(!) =
~!

2jE0j2L2

X

i;f

2�
~

jhijHintjfij2�(~!if � ~!)fi(1 � ff ): (2.70)

Now, let us denote the initial (�nal) state of the electron by a band index n
(n0) and a wave vector k (k0) i.e. jii = jnki (jfi = jn0k0i). Without loss
of generality we can assume that the electric �eld is polarized along the x
direction: E0 = E0x̂. Then we can write for the matrix element:

hijHintjfi =
evF
i!

E0hn0k0j�xjnki: (2.71)

Further on, by using explicit form (2.29) for the Dirac electron wave function
 n;k, it is simple to show that

hn0k0j�xjnki =
Z
 �
n0;k0(r)�x n;k(r)dr =

1
2
�k;k0(ne�i�k + n0ei�k); (2.72)

so we obtain expressions for the matrix element

jhijHintjfij2 =
e2v2

F

!2 jE0j2�k;k0
1
2

(1 + nn0 cos 2�k); (2.73)
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and conductivity

<�(!) =
~!
2

4
X

n;n0

1
4�2

Z
kdk

Z
d�k

2�
~
e2v2

F

!2

1
2

(1 + nn0 cos 2�k)�

�(n0~vFk � n~vFk � ~!)fnk(1 � fn0k); (2.74)

where we also took into account 2 spin and 2 valley degeneracy. We now
take into account only (interband) transitions between conduction and valence
bands, because the intraband transitions are already taken into account by the
Drude conductivity. After lengthy but straightforward calculation, one obtains
simple expression for the real part of the conductivity

<�(!) =
e2

4~
f(�~!=2)[1 � f(~!=2)]: (2.75)

It is instructive to look at this result at zero temperature

<�(!) =
e2

4~
�(~! � 2�): (2.76)

Here �(x) is a simple step function [�(x < 0) = 0 and �(x > 0) = 1]. The real
part of the conductivity provides us with absorption of the electromagnetic �eld
incident on a graphene sheet. We see that there is no absorption for ~! < 2�
which is result of the Pauli exclusion principle. On the other hand above this
threshold, when ~! > 2� one will have uniform absorption. Since the incident
energy 
ux is given by Wi = 2jE0j2=�0c (see reference [67]), and the absorbed
energy per unit time per unit area is given by Wa = Pa=L2 = 2<�(!)jE0j2 (see
equation (2.69)), the absorption coe�cient can be written as

jaj2 =
Wa

Wi
=
�0ce2

4~
= 2:3%: (2.77)

This result has been con�rmed by experiment [37]. Further on, note that if we
include the emission process, then we obtain the following expression for the
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conductivity:

<�(!) =
e2

4~
[f(�~!=2)[1 � f(~!=2)] � [1 � f(�~!=2)]f(~!=2)]

=
e2

4~
[f(�~!=2) � f(~!=2)]: (2.78)

Finally we can obtain the imaginary part of the conductivity by using the
Kramers-Kronig relations [56]:

=�(!) = �
2!
�

P
Z 1

0

<�(!0)
!02 � !2d!

0

= �
e2

4~
4~!
�

P
Z 1

0

f(��) � f(�)
(2�)2 � (~!)2d�: (2.79)

It is convenient to introduce the following function:

G(�) � f(��) � f(�) =
sinh �

kT

cosh �
kT + cosh �

kT
: (2.80)

Then, we can simply write for the total interband conductivity (see also [61]):

�I(!) =
e2

4~

�
G(!=2) + i

4~!
�

Z 1

0

G(�) �G(~!=2)
(2�)2 � (~!)2 d�

�
: (2.81)

In the last expression, we took into account that principal value of the integral
with G(~!=2) equals to zero, which removes singularities from the integral in
the imaginary part of the conductivity.

2.2.2 Density-density response function

We now proceed to a more formal, but powerful, aspect of linear response
theory by looking into the density-density response function. In the last section
we assumed that there is no spatial dependence of external perturbation and
calculated only frequency dependence of the conductivity. Let us assume that
graphene is placed in an external scalar potential of arbitrary spatial and time
dependence

’ext(r; t) =
Z
e�i!td!

X

q

eiq�r’ext(q; !): (2.82)
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Now, scalar potential simply couples to the electron charge density so one can
write the interaction Hamiltonian [56]

Hint =
Z
e�i!td!L2

X

q

(�e’ext(q; !))�y
q: (2.83)

We now assume the weak coupling between the system (electron density) and
a probe (external potential) so that we can focus on a single (q; !) component.
The induced electron particle density is then given by

h�ind(q; !)i = �(q; !)(�e’ext(q; !)); (2.84)

where the density-density response function is given by [56]

�(q; !) = L2
X

a;b

e��Eb

Z
jhaj�y

qjbij2
�

1
~! � ~!ab + i�

�
1

~! + ~!ab + i�

�
:

(2.85)
Here Z =

P
b e

��Eb is the partition function, and ~!ab = Ea �Eb. Further on
jai, and Ea are exact many body state, and energy of the system in the presence
of the perturbation. In other words we can write Hjai = Eajai where H =
H0 +Hint is the total system Hamiltonian given by the sum of the Hamiltonian
in the absence of perturbation (H0) and the interaction term (Hint). Equation
(2.85) is exact in the limit of weak coupling (i.e. linear response), however one
�rst needs to �nd the exact eigenstates of the total Hamiltonian H which is
not an easy task. We shall deal with this issue by working in the self-consistent
approximation i.e. by introducing simple, yet powerful, concept of screening.
In that regard let us note that the induced charge density h�ind(q; !)i will
be accompanied by an scalar potential ’ind(q; !) which can act back on the
electrons through the interaction Hamiltonian (2.83). In other words, instead
of equation (2.84) we should write the self-consistent equation for the total
induced particle density

h�ind(q; !)i = �(q; !)(�e’ext(q; !) � e’ind(q; !)): (2.86)

However, �(q; !) is now the screened density-density response function which
is again given by the equation (2.85), only ja; bi are now simply the eigenstates
of the noninteracting Hamiltonian H0. This is the lowest order approximation
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which can also be traced down to the random phase approximation. For a
system of Dirac electrons, described by a wave functions  n;k given by equation
(2.29), one then obtains for the screened response function [56]:

�(q; !) =
1
L2 4

X

nn0k

jhn0k + qjeiq�rjnkij2
fnk � fn0k+q

~! � En0k+q + Enk + i�

=
1
L2 4

X

nn0k

1
2

[1 + nn0 cos(�k+q � �k)]
fnk � fn0k+q

~! � En0k+q + Enk + i�
: (2.87)

We will be particularly interested in the dielectric function of this system so
we need to �nd the relation between the scalar potential ’ind and the induced
surface charge density �eh�ind(r; t)i = �eh�ind(q; !)ieiq�re�i!t. Let us de�ne
here the vector r = xx̂ + yŷ which lies in the graphene plane (located at
z = 0) while z axis is perpendicular to graphene plane. Further on we assume
graphene is sitting in between two dielectrics of permittivities �r1 (z < 0) and
�r2 (z > 0). If we work in the electrostatic approximation (q >> !=c) then
the scalar potential induced by the surface charge density located at the plane
z = 0 is simply given by

’ind(r; z; t) = ’ind(q; !)eiq�r�qjzje�i!t: (2.88)

The electric �eld is given by E = �r’. We can now separate the electric �eld
E = Er +Ezẑ into component along the graphene plane Er = �rr’ which is
given by expression

Eind
r (r; z; t) = �’ind(q; !)iqeiq�r�qjzje�i!t; (2.89)

and component perpendicular to the graphene plane Ez = �@’=@z which is
given by expressions

Eind
z (r; z > 0; t) = ’ind(q; !)iqeiq�r�qze�i!t; (2.90)

Eind
z (r; z < 0; t) = �’ind(q; !)iqeiq�r+qze�i!t: (2.91)

Further on, the Gauss law can be written as a boundary condition across the
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graphene plane as [67]

�eh�ind(r; t)i = [Dind(r; z = 0+; t) � Dind(r; z = 0�; t)] � ẑ

= �0�r1Eind
z (r; z = 0+; t) � �0�r2Eind

z (r; z = 0�; t): (2.92)

Then by using the decomposition into Fourier components and equations (2.90)
and (2.91) we obtain desired relation between the induced charge density and
corresponding induced scalar potential:

�eh�ind(q; !)i = q’ind(q; !)2��r�0: (2.93)

Here ��r = (�r1 + �r1)=2, and we can introduce the external charge density
corresponding to the external potential by the same relation

�e�ext(q; !) = q’ext(q; !)2��r�0: (2.94)

Let us now de�ne the graphene dielectric function �(q; !) as [56]:

�(q; !)
��r

=
�ext(q; !)

�ext(q; !) + h�ind(q; !)i
: (2.95)

Then from equations (2.86), (2.93) and (2.94) we obtain

�(q; !)
��r

= 1 �
e2

2 ��r�0q
�(q; !): (2.96)

Note that the zero of dielectric function (�(q; !) = 0) de�nes the collective
electron oscillation (plasmon) which is the core subject of this thesis.

Finally let us �nd the relation between density-density response function
�(q; !) and conductivity �(q; !). If we introduce the total scalar poten-
tial ’tot = ’ext + ’ind, then by using equation (2.86), we can write the in-
duced surface charge density as �eh�ind(q; !)i = �(q; !)e2’tot(q; !). On the
other hand Ohm’s law gives the induced surface current density hjind(q; !)i =
�(q; !)Etot

r (q; !) , while the electric �eld can be found from equation (2.89):
Etot

r (q; !) = �’tot(q; !)iq. Finally, equation of continuity can be written with
Fourier components as �eh�ind(q; !)i = q � hjind(q; !)i=!, so we obtain desired
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relation:
�(q; !) = i

!e2

q2 �(q; !): (2.97)

Note however that �(q; !) refers only to the longitudinal conductivity since
the scalar potential alone is not enough to decribe the transverse �elds.

2.2.3 Current-current response function

In the last section we described response to the external scalar potential which
we now supplement by calculating response to the external vector potential.
Let us then start with the Hamiltonian (2.27) describing free Dirac particles:
H0 = vF� � p, where p is the electron momentum. In the presence of external
vector potential Aext(r; t), one can write for the total Hamiltonian H = vF� �
(p + eAext(r; t)) = H0 + Hint, where the interaction part of the Hamiltonian
is given by: Hint = evF� � Aext(r; t). We can now decompose vector potential
into Fourier components to obtain:

Hint =
X

q

eiq�revF� � Aext(q; t); (2.98)

then by using the current density operator from equation (2.33) we can write

Hint = �L2
X

q

jy
q � Aext(q; t): (2.99)

It is now convenient to introduce the longitudinal (VL = V�e�
qL) and transverse

(VT = V � e�
qT ) vector components by using the polarization vectors from

equations (2.39) and (2.40). We can now write the interaction Hamiltonian

Hint = �L2
X

q;�

jy
q;� � Aext;�(q; t)

=
Z
e�i!td!(�L2)

X

q;�

jy
q;� � Aext;�(q; !): (2.100)

Finally, by assuming the weak coupling between the external probe and our
system, precisely like in the last section, we obtain the induced current density:

hjind;�(q; !)i = ��(q; !)(�Aext;�(q; !)): (2.101)
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Here the current-current response function is given by [56]

��(q; !) = L2
X

a;b

e��Eb

Z
jhajjy

q;�jbij2
�

1
~! � ~!ab + i�

�
1

~! + ~!ab + i�

�
:

(2.102)
We can now use the free electron states to write the screened function:

��(q; !) = L24
X

nn0k

jhn0k + qjjy
q;�jnkij2

fnk � fn0k+q

~! � En0k+q + Enk + i�
: (2.103)

At last, by using the exact form of the electron wave function from equa-
tion (2.29), we obtain di�erent expressions for the longitudinal and transverse
current-current response functions:

�L(q; !) =
e2v2

F

L2 4
X

nn0k

1
2

[1 + nn0 cos(�k + �k+q)]
fnk � fn0k+q

~! � En0k+q + Enk + i�
;

(2.104)

�T (q; !) =
e2v2

F

L2 4
X

nn0k

1
2

[1 � nn0 cos(�k + �k+q)]
fnk � fn0k+q

~! � En0k+q + Enk + i�
:

(2.105)

Note here that expressions (2.104) and (2.104) actually diverge if we use
Dirac states (2.29) instead of actual electron states in graphene limited by
some band cut-o�. However, his subtlety can be easily solved by subtracting
from �L(q; !) [�T (q; !)] the value �L(q; ! = 0) [�T (q ! 0; ! = 0)] to take
into account that there is no current response to the longitudinal [transverse]
time [time and space] independent vector potential, see [54, 55] for details.

Let us also �nd relation between the conductivity and the current-current
response function. Note that the electric �eld is given by E = �@A=@t so that
E(q; !) = i!A(q; !). Then we can write equation (2.101) as hjind;�(q; !)i =
��(q; !) i!Eext;�(q; !). In other words desired relation is simply:

��(q; !) =
i
!
��(q; !): (2.106)

Note here that longitudinal conductivity �L(q; !) (describing response of a
system to the longitudinal �eld) is generally di�erent from the transverse con-
ductivity �T (q; !) (describing response of a system to the transverse �eld),
unless we are working in the limit of small wave vectors (q ! 0).

29



2.2.4 Fluctuation-dissipation theorem

In this section we derive relation between current-current correlation function
and the current-current response function at �nite temperature, which is given
by the 
uctuation-dissipation theorem. We will use this result later to calculate
the radiative heat transfer between two graphene sheets.

We start with the current-current correlation function:

K�(r; t; r0; t0) = hj�(r; t)jy
�(r0; t0)i: (2.107)

Due to translational invariance in space and time we can write K�(r; t; r0; t0) =
K�(r � r0; t � t0) = K�(d; �) , where we have denoted by: d = r � r0 and
� = t� t0. Then the Fourier transforms from the space and time domains are
respectively given by

K�(q; �) =
1
L2

Z
K�(d; �)e�iq�ddd; (2.108)

K�(q; !) =
1

2�

Z
K�(q; �)ei!�d�: (2.109)

It will be more convenient for us to use these relations in a slightly di�erent
form. In that regards let us use relations (2.108) and (2.109) with translational
invariance in space and time, respectively, to show that

hj�(q)jy
�(q0)i =

1
L4

Z Z
hj�(r)jy

�(r0)ie�iq�reiq
0�r0
drdr0

=
1
L2

Z
ei(q

0�q)�r0
dr0 1

L2

Z
K�(r � r0)e�iq�(r�r0)dr

= �q;q0K�(q); (2.110)

hj�(!)jy
�(!0)i =

1
4�2

Z Z
hj�(t)jy

�(t0)iei!te�i!0t0dtdt0

=
1

2�

Z
ei(!�!0)t0dt0

1
2�

Z
K�(t� t0)e�i!(t�t0)dt

= �(! � !0)K�(!): (2.111)

Relations (2.110) and (2.111) simply state that there is no correlation between
di�erent q or di�erent ! components. We can join these two relations in a
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single one
hj�(q; !)jy

�(q0; !0)i = �q;q0�(! � !0)K�(q; !): (2.112)

To �nd the K�(q; !) let us note that evolution of current operator, in the
Heisenberg picture, is given by j�(q; �) = eiH�=~jy

�(q; 0)e�iH�=~. Now we can
write

K�(q; �) = hj�(q; �)jy
�(q; 0)i

= heiH�=~jy
�(q; 0)e�iH�=~jy

�(q; 0)i

=
X

a;b

e��Eb

Z
hbjeiH�=~j�(q)jaihaje�iH�=~jy

�(q)jbi

=
X

a;b

e��Eb

Z
jhajjy

�(q)jbij2ei!ab� : (2.113)

Finally, the Fourier transform of this expression is given by

K�(q; !) =
X

a;b

e��Eb

Z
jhajjy

�(q)jbij2�(! � !ab): (2.114)

Note however that the imaginary part of the response function, calculated in
equation (2.102), is given by

=��(q; !) = L2
X

a;b

e��Eb

Z
jhajjy

�(q)jbij2
��
~

[�(! � !ab) � �(! + !ab)]: (2.115)

We immediately see that correlation function is related to a response function
in a simple manner:

=��(q; !) = �
�
~
L2 [K�(q; !) �K�(q;�!)] : (2.116)

By applying the detail balancing condition here, we can write

=��(q; !) = �
�
~
L2 �1 � e��~!�K�(q; !): (2.117)

Finally we have

K�(q; !) = �
~
�

1
1 � e��~!

1
L2 =��(q; !); (2.118)
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or if we use the relation ��(q; !) = �i!��(q; !) we can write this in a more
convenient form as

K�(q; !) =
1
�

~!
1 � e��~!

1
L2 <��(q; !): (2.119)

This is in fact the well know 
uctuation-dissipation theorem stating that the
correlation function (K�) due to thermal 
uctuations is directly related to
the dissipation in the system (<�� or =��). This result will be of use in the
following section.

2.3 Radiative heat transfer

In this section we analyze the radiative heat transfer between two graphene
sheets separated by a distance D and held at temperatures T1 and T2 (see
�gure 2.4). To calculate the heat transfer we shall start by looking into cor-
relations between electric currents induced by the thermal 
uctuations in the
�rst graphene sheet. Following that we shall use Green function technique to
�nd the electromagnetic �elds in the second graphene sheet, induced by the

uctuating currents from the �rst sheet. Finally heat transfer can be found
by calculating Ohmic losses, induced by this electromagnetic �eld, within the
second graphene sheet.

In the last section we calculated current-current correlation function due to
thermal 
uctuations. Fluctuation-dissipation theorem (2.119) and equation
(2.112) give the correlation function of the 
uctuating currents in the �rst
graphene sheet:

hj1�(q; !)jy
1�(q; !0)i = �(! � !0)

1
�

~!
1 � e��1~!

1
L2 <�1�(q; !): (2.120)

To �nd the electromagnetic �elds induced by these 
uctuating currents we
can use classical electrodynamics so we shall start with classical quantities and
return to the quantum values only later when necessary. Since the system is
translational invariant we can focus on a single q; !-component and write the
Fourier transform of the surface current density from the �rst graphene sheet
as

j1(r; t) =
Z
e�i!td!

X

q

eiq�rj1(q; !): (2.121)
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Further on, let us assume the most simple case where there is only vacuum in
between and around graphene sheets. Then the electric �eld satis�es a simple
wave equation

(r2 + !2=c2)E(r; z) = 0: (2.122)

This equation has a plane wave solution E(r; z) = E(q; !)eiq�r+i
z, where we
took into consideration that the periodicity in the xy direction is determined
by the wave vector q. In other words we can write for the total wave vector:
w = q + 
ẑ, while the equation (2.122) requires: w2 = jwj2 = q2 + 
2 = !2=c2

i.e. the z component of the wave vector w is given by:


 =
p
!2=c2 � q2: (2.123)

Further on, since there is no free charge around graphene sheets, the Gauss
law states that r � E(r; z) = 0. This means that E(q; !) � w = 0 i.e. electric
�eld is transversely polarized so it is convenient to introduce unit vectors ŝ
and p̂ that are perpendicular to wave vector w:

ŝ = q̂ � ẑ; and (2.124)

p̂ = w�1(�
q̂ + qẑ): (2.125)

In this way (ŝ; ŵ; p̂) is a set of right-handed orthonormal triad (see �gure 2.4)
where

ŵ =
w
w

= w�1(qq̂ + 
ẑ): (2.126)

We also note that there is a simple connection with the longitudinal and trans-
verse wave vectors introduced before in this chapter: eqL = iq̂, eqT = �iŝ.

To match the boundary conditions given by the surface current density
j1(q; !) from the �rst graphene plane (z = �D) in the presence of the second
graphene sheet (z = 0), we use the Green function technique from reference
[60] which is particularly convenient for the layered structures like ours. In
that manner one obtains di�erent electric �eld component E(q; !) depending
whether we are located below the �rst graphene sheet (z < �D), in between
the sheets (�D < z < 0), or above the second sheet (z > 0). Since we are
interested in the �eld in the second sheet (z = 0), it is easiest to look into the
expression for the �eld above the second graphene sheet (z > 0) where one

33



Figure 2.4: (a) Schematic diagram of the radiation transfer problem: a free
standing sheet of graphene at temperature T1 is radiating to another free stand-
ing graphene sheet at temperature T2 and distance D away. (b) Polarization
vectors de�ned in the text.

obtains
E(q; !) = �

!
2�0c2


(ŝT s12ŝ + p̂T p12p̂) � j1(q; !): (2.127)

Here we have explicitly separated s and p polarizations which have very di�er-
ent behavior, and T12 is a transmission coe�cient for a system of two parallel
graphene sheets given by [60]

T12 =
t1t2ei
D

1 � r1r2e2i
D : (2.128)

Note that the same expression is valid for s and p polarization, but re
ection
r and transmission t coe�cients are di�erent for di�erent polarizations. It is
a simple manner of elementary electrodynamics to demonstrate that these are

rs =
� !�T

2
�0c2

1 + !�T
2
�0c2

; (2.129)

ts =
1

1 + !�T
2
�0c2

; (2.130)

rp =

�L
2�0!

1 + 
�L
2�0!

; and (2.131)

tp =
1

1 + 
�L
2�0!

: (2.132)
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Note also that transverse conductivity (�T ) determines the s-polarization, and
longitudinal conductivity (�L) determines the p-polarization. Finally the total
electric �eld in the space above the second graphene sheet (z > 0) is given by

E(r; z; t) =
Z
e�i!td!

X

q

eiq�r+iwzE(q; !): (2.133)

So the �eld, precisely at the second sheet (z = 0) is

E(r; t) = E(r; z = 0+; t) =
Z
e�i!td!

X

q

eiq�rE(q; !): (2.134)

At last, the heat transfer from the �rst graphene sheet to the second graphene
sheet is simply given by Ohmic losses induced by this electric �eld. The power
dissipated per unit area is given by [67]

H1!2 =
1
L2

dEmech
dt

=
1
L2

Z
j2(r; t) � E(r; t)dr

=
Z Z

d!d!0e�i(!�!0)t
X

q

j2(q; !) � E�(q; !0): (2.135)

Let us now take into account that current densities j1;2(q; !) have only vector
components along the graphene (xy) plane. Then due to equation (2.125) one
has p̂ � j1(q; !) = � 


w q̂ � j1(q; !), and we can write equation (2.127) again as

E(q; !) = �
!

2�0c2


�
ŝT s12ŝ +

�

2

w2 q̂ �
q

w2 ẑ

�
T p12q̂

�
� j1(q; !): (2.136)

Further on, the scalar product in the equation (2.135) can be written as j2�E� =
j2 � E�

r, where Er = E � (E � ẑ)ẑ is the projection of the electric �eld vector to
the graphene (xy) plane. In that way we can write equation (2.136) as

Er(q; !) = �
!

2�0c2


�
ŝT s12ŝ +


2

w2 q̂T p12q̂
�

� j1(q; !): (2.137)

Let us note here again that q̂ = ie�
qL and ŝ = �ie�

qT while the longitudinal
(� = L) and transverse (� = T ) components of the current density are de�ned
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as: j�(q; !) = j(q; !) � e�
q�. Then we can write equation (2.137) as

Er(q; !) = �
!

2�0c2


�
�e�

qTT
s
12j1T (q; !) + �


2

w2 e�
qLT

p
12j1L(q; !)

�
: (2.138)

Finally due to Ohm’s law j2�(q; !) = �2�(q; !)Er;�(q; !) we have

hj2(q; !) � E�
r(q; !0)i =

!2

4�2
0c4j
j2

�2T (q; !)hj1T (q; !)j1T (q; !0)�ijT s12j2

+
j
j2

4�2
0!2�2L(q; !)hj1L(q; !)j1L(q; !0)�ijT p12j2: (2.139)

Here we have explicitly written the ensemble average which requires us to
calculate precise quantum correlations of the current density operator. We
have also used relation (2.112) which states that there is no correlation between
di�erent ! components due to translational invariance in the time domain. In
fact the current-current correlation function (2.120) is given by

hj1�(q; !)jy
1�(q; !0)i = �(! � !0)

1
�

~!
1 � e��1~!

1
L2 <�1�(q; !): (2.140)

Since the �nal result has to be a real quantity, we can simply look into real
part of the expression (2.139)

<hj2(q; !) � E�
r(q; !0)i =�(! � !0)

1
�

~!
1 � e��1~!

1
L2 �

(
!2

4�2
0c4j
j2

<�2T (q; !)<�1T (q; !)jT s12j2+

+
j
j2

4�2
0!2 <�2L(q; !)<�1L(q; !)jT p12j2): (2.141)

This can be written in a more transparent form by using re
ection and trans-
mission coe�cients (2.129) - (2.132). However, since 
 =

p
!2=c2 � q2 we have

to distinguish between the case of propagating waves in the far �eld (!=c > q)
and evanescent waves in the near �eld (!=c < q). In the �rst case (!=c > q)
one has

!
2�0c2j
j

<�T =
1 � jrsj2 � jtsj2

2jtsj2
; and (2.142)

j
j
2�0!

<�L =
1 � jrpj2 � jtpj2

2jtpj2
: (2.143)
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It is convenient here to de�ne the following quantities

hsff (q; !) �
!2

4�2
0c4j
j2

<�1T (q; !)<�2T (q; !)jT s12j2

=
(1 � jrs1j2 � jts1j2)(1 � jrs2j2 � jts2j2)

4j1 � rs1rs2e2i
Dj2
; and (2.144)

hpff (q; !) �
j
j2

4�2
0!2 <�1L(q; !)<�2L(q; !)jT p12j2

=
(1 � jrp1j2 � jtp1j2)(1 � jrp2j2 � jtp2j2)

4j1 � rp1r
p
2e2i
Dj2

; (2.145)

where we have used expression (2.128) for the transmission coe�cient T12. In
the second case (!=c < q) one has

!
2�0c2j
j

<�T =
=rs

jtsj2
; (2.146)

j
j
2�0!

<�L =
=rp

jtpj2
; (2.147)

hsnf (q; !) �
!2

4�2
0c4j
j2

<�1T (q; !)<�2T (q; !)jT s12j2 =
=rs1=rs2e�2j
jD

j1 � rs1rs2e�2j
jDj2
; and

(2.148)

hpnf (q; !) �
j
j2

4�2
0!2 <�1L(q; !)<�2L(q; !)jT p12j2 =

=rp1=rp2e�2j
jD

j1 � rp1r
p
2e�2j
jDj2

: (2.149)

At last we obtain for the heat transfer (equation (2.135)) from the �rst graphene
sheet to the second graphene sheet

H1!2 = H1!2;ff +H1!2;nf ; (2.150)

where the far �eld (!=c > q) and near �eld (!=c < q) contributions are
respectively given by

H1!2;ff =
1
�

Z
d!

~!
1 � e��1~!

1
L2

X

q;�

h�ff (q; !); and (2.151)

H1!2;nf =
1
�

Z
d!

~!
1 � e��1~!

1
L2

X

q;�

h�nf (q; !): (2.152)
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In the same manner one can calculate heat transfer from the second graphene
sheet to the �rst graphene sheet H2!1, so the total heat transfer (H = H1!2 �
H2!1) between two graphene sheets can be written as

H = Hff +Hnf ; (2.153)

Hff =
2
�

Z 1

0
d![�(!; T1) � �(!; T2)]

1
(2�)2

Z !=c

0
2�qdq

X

�

h�ff (q; !); (2.154)

Hnf =
2
�

Z 1

0
d![�(!; T2) � �(!; T1)]

1
(2�)2

Z 1

!=c
2�qdq

X

�

h�nf (q; !): (2.155)

Here we have introduced the Boltzman factor: �(!; T ) = ~!=(e�~!�1), which
comes about since the zero point energy cancels when taking the di�erence
between emission and absorption. We write here again functions h�ff and h�nf
for the sake of clearance

h�ff (q; !) �
(1 � jr�1 j2 � jt�1 j2)(1 � jr�2 j2 � jt�2 j2)

4j1 � r�1 r
�
2 e2i
Dj2

; (2.156)

h�nf (q; !) �
=r�1 =r�2 e�2j
jD

j1 � r�1 r
�
2 e�2j
jDj2

: (2.157)

Note that for the case of black body which has perfect absorption 1 = jaj2 =
1 � jrj2 � jtj2, i.e. zero re
ection or transmission (r = t = 0), equation (2.154)
simply gives the Stefan-Boltzman law:

Hff =
�2k4

60c2~3 (T 4
1 � T 4

2 ) (2.158)

To summarize, in this section we have calculated the total heat transfer,
that is, the transfer of heat energy per unit time per unit area between two
graphene sheets at di�erent temperatures. Total heat transfer H = Hff +
Hnf has a contribution from the propagating waves in the far �eld (Hff )
and evanescent waves in the near �eld (Hnf ), given by equations (2.154) and
(2.155), respectively.
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Chapter 3

Plasmonics in graphene

In this chapter we investigate plasmons in doped graphene and demonstrate
that they simultaneously enable low-losses and signi�cant wave localization
for frequencies of the light smaller than the optical phonon frequency ~!Oph �
0:2 eV. Interband losses via emission of electron-hole pairs (1st order process)
can be blocked by su�ciently increasing the doping level, which pushes the
interband threshold frequency !inter toward higher values (already experimen-
tally achieved doping levels can push it even up to near infrared frequen-
cies). The plasmon decay channel via emission of an optical phonon together
with an electron-hole pair (2nd order process) is inactive for ! < !Oph (due
to energy conservation), however, for frequencies larger than !Oph this decay
channel is non-negligible. This is particularly important for large enough dop-
ing values when the interband threshold !inter is above !Oph: in the interval
!Oph < ! < !inter the 1st order process is suppressed, but the phonon decay
channel is open. In this chapter, the calculation of losses is performed within
the framework of a random-phase approximation (RPA) and number conserv-
ing relaxation-time approximation [34]; the measured DC relaxation-time from
Ref. [5] serves as an input parameter characterizing collisions with impurities,
whereas the optical phonon relaxation times are estimated from the in
uence
of the electron-phonon coupling [35] on the optical conductivity [36].

In Sec. 3.1, we provide a brief review of conventional surface plasmons and
their relevance for nanophotonics. In Sec. 3.2 we discuss the trade o� between
plasmon losses and wave localization in doped graphene, as well as the optical
properties of these plasmons. We conclude and provide an outlook in Sec. 3.3.
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3.1 Surface plasmons

Figure 3.1: (a) Schematic description of a surface plasmon (SP) on metal-
dielectric interface. (b) SP dispersion curve (solid blue line) for Ag-Si inter-
faces; dotted blue is the light line in Si; dashed red line denotes the SP reso-
nance. (c) Wave localization and propagation length for SPs at Ag-Si interface
(experimental Ag losses are taken into account).

Surface plasmons (SPs) are electromagnetic (EM) waves that propagate
along the boundary surface of a metal and a dielectric [see Fig. 3.1(a)]; these
are transverse magnetic (TM) modes accompanied by collective oscillations of
surface charges, which decay exponentially in the transverse directions (see,
e.g., Refs. [12, 13] and Refs. therein). Their dispersion curve is given by:

qsp =
!
c

s
�r�(!)
�r + �(!)

(3.1)

[see Fig. 3.1(b)]; note that close to the SP resonance (! = !SP ), the SP wave
vector [solid blue line in Fig. 3.1(b)] is much larger than the wave vector of the
same frequency excitation in the bulk dielectric [dotted blue line in Fig. 3.1(b)].
As a result, a localized SP wave packet can be much smaller than a same
frequency wave packet in a dielectric. Moreover, this shrinkage is accompanied
by a large transverse localization of the plasmonic modes. These features
are considered very promising for enabling nano-photonics [12, 13, 14, 15],
as well as high �eld localization and enhancement. A necessary condition
for the existence of SPs is �(!) < ��r (i.e., �(!) is negative), which is why
metals are usually used. However, SPs in metals are known to have small
propagation lengths, which are conveniently quanti�ed (in terms of the SP
wavelength) with the ratio <qsp==qsp; this quantity is a measure of how many
SP wavelengths can an SP propagate before it loses most of its energy. The
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wave localization (or wave "shrinkage") is quanti�ed as �air=�sp, where �air =
2�c=! (the wavelength in air). These quantities are plotted in Fig. 3.1(c) for
the case of Ag-Si interface, by using experimental data (see [14] and references
therein) to model silver (metal with the lowest losses for the frequencies of
interest). Near the SP resonance, wave localization reaches its peak; however,
losses are very high there resulting in a small propagation length l � 0:1�sp �
5nm. At higher wavelengths one can achieve low losses but at the expense of
poor wave localization.

3.2 Plasmons and their losses in doped graphene

Graphene behaves as an essentially 2D electronic system. In the absence of
doping, conduction and valence bands meet at a point (called Dirac point)
which is also the position of the Fermi energy. The band structure, calculated
in the tight binding approximation is shown in Fig. 2(b); for low energies the
dispersion around the Dirac point can be expressed as En;k = nvF~jkj, where
the Fermi velocity is vF = 106m/s, n = 1 for conduction, and n = �1 for the
valence band. Recent experiments [37] have shown that this linear dispersion
relation is still valid even up to the energies (frequencies) of visible light, which
includes the regime we are interested in.

Here we consider TM modes in geometry depicted in �gure 3.2 (a), where
graphene is surrounded with dielectrics of constants �r1 and �r2. Throughout
the paper, for de�niteness we use �r1 = 4 corresponding to SiO2 substrate, and
�r2 = 1 for air on top of graphene, which corresponds to a typical experimental
setup. TM modes are found by assuming that the electric �eld has the form

Ez = Aeiqz�Q1x; Ey = 0; Ex = Beiqz�Q1x; for x > 0;

Ez = Ceiqz+Q2x; Ey = 0; Ex = Deiqz+Q2x; for x < 0: (3.2)

After inserting this ansatz into Maxwells equations and matching the boundary
conditions [which include the conductance of the 2D graphene layer, �(!; q)],
we obtain the dispersion relation for TM modes:

�r1q
q2 � �r1!2

c2

+
�r2q

q2 � �r2!2

c2

= �
�(!; q)i
!�0

(3.3)

41



Figure 3.2: (a) Schematic of the graphene system and TM plasmon modes.
Note that the pro�le of the �elds looks the same as the �elds of an SP [Fig.
3.1(a)]. (b) Electronic band structure of graphene; to indicate the vertical
scale we show the Fermi energy level for the case EF = 1 eV. (c) Sketch of the
intraband (green arrows) and interband (red arrows) single particle excitations
that can lead to large losses; these losses can be avoided by implementing a suf-
�ciently high doping. (d) Plasmon RPA and semiclassical dispersion curves.
Black solid (RPA) and black dot-dashed (semiclassical) lines correspond to
�r1 = �r2 = 1; Blue dashed (RPA) and blue dotted (semiclassical) lines corre-
spond to �r1 = 4 and �r2 = 1. The green (lower) and rose (upper) shaded areas
represent regimes of intraband and interband excitations, respectively.

By explicitly writing the dependence of the conductivity on the wave vector
q we allow for the possibility of nonlocal e�ects, where the mean free path of
electrons can be smaller than q�1 [38]. Throughout this work we consider the
nonretarded regime (q � !=c), so equation (3.3) simpli�es to

q � Q1 � Q2 � �0
�r1 + �r2

2
2i!

�(!; q)
: (3.4)

Note that a small wavelength (large q) leads to a high transversal localization
of the modes, which are also accompanied by a collective surface charge os-
cillation, similar to SPs in metals; however, it should be understood that, in
contrast to SPs, here we deal with 2D collective excitations, i.e. plasmons. We
note that even though �eld pro�les of plasmons in graphene and SPs in metals
look the same, these two systems are qualitatively di�erent since electrons in
graphene are essentially frozen in the transverse dimension [39]. This fact and
the di�erences in electronic dispersions (linear Dirac cones vs. usual parabolic)
lead to qualitatively di�erent dispersions of TM modes in these two systems
[see Fig. 3.1(b) and Fig. 3.2(d)]. To �nd dispersion of plasmons in graphene
we need the conductivity of graphene �(!; q), which we now proceed to ana-
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lyze by employing the semiclassical model [38] (in subsection 3.2.1), RPA and
number conserving relaxation-time approximation [34] (in subsection 3.2.2),
and by estimating the relaxation-time due to the in
uence of electron-phonon
coupling [35] on the optical conductivity [36] (in subsection 3.2.3).

3.2.1 Semiclassical model

For the sake of the clarity of the presentation, we �rst note that by employing
a simple semi-classical model for the conductivity (see Ref. [38]), one obtains
a Drude-like expression:

�(!) =
e2EF
�~2

i
! + i��1 (3.5)

(the semiclassical conductivity does not depend on q). Here � denotes the
relaxation-time (RT), which in a phenomenological way takes into account
losses due to electron-impurity, electron-defect, and electron-phonon scatter-
ing. Equation (3.5) is obtained by assuming zero temperature T � 0, which
is a good approximation for highly doped graphene considered here, since
EF � kBT . From Eqs. (3.4) and (3.5) it is straightforward to obtain plasmon
dispersion relation:

q(!) =
�~2�0(�r1 + �r2)

e2EF
(1 +

i
�!

)!2; (3.6)

as well as losses,
<q
=q

= !� =
2�c�
�air

: (3.7)

In order to quantify losses one should estimate the relaxation time � . If the
frequency ! is below the interband threshold frequency !inter, and if ! < !Oph,
then both interband damping and plasmon decay via excitation of optical
phonons together with an electron-hole pair are inactive. In this case, the
relaxation time can be estimated from DC measurements [5], i.e., it can be
identi�ed with DC relaxation time which arises mainly from impurities (see
Refs. [5]). It is reasonable to expect that impurity related relaxation time will
not display large frequency dependence. In order to gain insight into the losses
by using this line of reasoning let us assume that the doping level is given by
EF = 0:64 eV (corresponding to electron concentration of n = 3 � 1013 cm�2);
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the relaxation time corresponds to DC mobility � = 10000 cm2/Vs measured in
Ref. [5]: �DC = �~

p
n�=evF = 6:4 � 10�13s. As an example, for the frequency

~! = 0:155 eV (�air = 8�m), the semiclassical model yields <q==q � 151 for
losses and �air=�p � 42 for wave localization. Note that both of these numbers
are quite favorable compared to conventional SPs [e.g., see Fig. 3.1(c)]. It will
be shown in the sequel that for the doping value EF = 0:64 eV this frequency
is below the interband loss threshold, and it is evidently also smaller than the
optical phonon loss threshold ~!Oph � 0:2 eV, so both of these loss mechanisms
can indeed be neglected.

3.2.2 RPA and relaxation-time approximation

In order to take the interband losses into account, we use the self-consistent
linear response theory, also known as the random-phase approximation (RPA)
[38], together with the relaxation-time (�nite �) approximation introduced by
Mermin [34]. Both of these approaches, that is, the collisionless RPA (� ! 1)
[40, 41], and the RPA-RT approximation (�nite �) [46], have been applied to
study graphene. In the � ! 1 case, the RPA 2D polarizability of graphene is
given by [41]:

��(q; !) =
e2

q2 �(q; !); (3.8)

where

�(q; !) =
4



X

k;n1;n2

f(En2;k+q) � f(En1;k)
~! + En1;k � En2;k+q + i�

� jhn1;kje�iq�rjn2;k + qij2: (3.9)

Here f(E) = (e(E�EF )=kBT + 1)�1 is the Fermi distribution function, EF is the
Fermi energy and factor 4 stands for 2 spin and 2 valley degeneracies. Note
that polarizability ��(q; !) is simply related to the density-density response
function �(q; !), introduced in chapter 2, since �(q; !) = ��(q; !).

Now, in Eq. (3.8) ! is given an in�nitesimally small imaginary part which
leads to the famous Landau damping; that is, plasmons can decay by exciting
an electron-hole pair (interband and intraband scattering) as illustrated in
Fig. 3.2(c). The e�ects of other types of scattering (impurities, phonons) can
be accounted for by using the relaxation-time � as a parameter within the
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RPA-RT approach [34], which takes into account conservation of local electron
number. Within this approximation the 2D polarizability is

��� (q; !) =
(1 + i=!�)��(q; ! + i=�)

1 + (i=!�)��(q; ! + i=�)=��(q; 0)
: (3.10)

The 2D dielectric function and conductivity are respectively given by (see [42]):
and

�RPA(q; !) = �i! ��� (q; !): (3.11)

We note here that throughout the text only �{bands are taken into consid-
eration; it is known that in graphite, higher �{bands give rise to a small
background dielectric constant [43] at low energies, which is straightforward
to implement in the formalism. Using Eqs. (3.4) and (3.11) we obtain that
the properties of plasmons (i.e., dispersion, wave localization and losses) can
be calculated by solving

�RPA(q; !) = 0; (3.12)

with complex wave vector q = q1 + iq2. The calculation is simpli�ed by lin-
earizing Eq. (3.12) in terms of small q2=q1, to obtain,

�r1 + �r2
2

+
e2

2�0q1
<[�(q1; !)] = 0; (3.13)

for the plasmon dispersion, and

q2 =
=[�(q1; !)] + 1

�
@
@!<[�(q1; !)] + 1

!�<[�(q1; !)(1 � �(q1; !))=�(q1; 0)]
1
q1

<[�(q1; !)] � @
@q1

<[�(q1; !)]
(3.14)

yielding losses. Note that in the lowest order the dispersion relation (and
consequently �air=�p and the group velocity vg) does not depend on � . This
linearization is valid when q2 � q1; as the plasmon losses increase, e.g., after
entering the interband regime [the rose area in Fig. 3.2(d)], results from Eqs.
(3.13) and (3.14) should be regarded as only qualitative. The characteristic
shape of the plasmon dispersion is shown in Fig. 3.2(d). Note that the semi-
classical model and the RPA model agree well if the system is su�ciently
below the interband threshold [for small q, !(q) � pq as in Eq. (3.6)]. By
comparing Figs. 3.2(d) and 3.1(b) we see that the dispersion for SPs on silver-
dielectric surface qualitatively di�ers from the plasmon dispersion in graphene

45



[39]. While SPs’ dispersion relation approaches an asymptote (! ! !SP )
for large q values [Eq. (3.1)], graphene plasmon relation gives !(q) which
continuously increases [Fig. 3.2(d)].

Theoretically predicted plasmon losses <q==q and wave localization �air=�p
are illustrated in Fig. 3.3 for doping level EF = 0:135 eV and relaxation
time � = 1:35 � 10�13 s. We observe that for this particular doping level, for
wavelengths smaller than �inter � 7:7�m, the system is in the regime of high
interband losses (rose shaded region). Below the interband threshold, both
losses and wave localization obtained by employing RPA-RT approach are
quite well described by the previously obtained semiclassical formulae. Since
the frequencies below the interband threshold are (for the assumed doping
level) also below the optical phonon frequency, the relaxation time can be
estimated from DC measurements.

Figure 3.3: Properties of plasmons in doped graphene. Solid-lines are obtained
with the number-conserving RPA calculation, and the dashed lines with the
semiclassical approach. Losses (a), �eld localization (wave "shrinkage") (b),
and group velocity (c) for doping EF = 0:135 eV, and relaxation time � =
1:35�10�13 s, which corresponds to the mobility of 10000 cm2=Vs. The upper
scale in all �gures is frequency � = !=2�, whereas the rose shaded areas denote
the region of high interband losses.

At this point we also note that in all our calculations we have neglected
the �nite temperature e�ects, i.e., T � 0. To justify this, we note that for
doping values utilized in this paper the Fermi energies are 0:135 eV� 5:2kBTr
(n = 1:35 � 1012 cm�2) and 0:64 eV� 25kBTr (n = 3 � 1013 cm�2) for room
temperature Tr = 300 K. The e�ect of �nite temperature is to slightly smear
the sharpness of the interband threshold, but only in the vicinity (� kBTr) of
the threshold.

By increasing the doping, EF increases, and the region of interband plas-
monic losses moves towards higher frequencies (smaller wavelengths). How-
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ever, by increasing the doping, the interband threshold frequency will eventu-
ally become larger than graphene’s optical phonon frequency !Oph: there will
exist an interval of frequencies, !Oph < ! < !inter, where it is kinematically
possible for the photon of frequency ! to excite an electron-hole pair together
with emission of an optical phonon. This second order process can reduce the
relaxation time estimated from DC measurements and should be taken into
account, as we show in the following subsection.

3.2.3 Losses due to optical phonons

In what follows, we estimate and discuss the relaxation time due to the electron-
phonon coupling. This can be done by using the Kubo formula which has
been utilized in Ref. [36] to calculate the real part of the optical conductivity,
<�(!; q = 0). The calculation of conductivity <�(!; 0) involves the electron
self-energy �(E), whose imaginary part expresses the width of a state with
energy E, whereas the real part corresponds to the energy shift. Let us as-
sume that the electron self-energy stems from the electron-phonon coupling
and impurities,

�(E) = �e�ph(E) + �imp(E): (3.15)

For �e�ph we utilize a simple yet fairly accurate model derived in Ref. [35]: If
jE � EF j > ~!Oph, then

=�e�ph(E) = 
jE � sgn(E � EF )~!Ophj; (3.16)

while elsewhere =�e�ph(E) = 0; the dimensionless constant 
 = 18:3 � 10�3

[35] is proportional to the square of the electron-phonon matrix element [35],
i.e., the electron-phonon coupling coe�cient. In order to mimic impurities,
we will assume that =�imp(E) is a constant (whose value can be estimated
from DC measurements). The real parts of the self-energies are calculated
by employing the Kramers-Kr�onig relations. In all our calculations the cut-
o� energy is taken to be 8:4 eV, which corresponds to the cut-o� wavevector
kc = �=a, where a = 2:46 �A. By employing these self-energies we calculate
the conductivity <�(!; q = 0), from which we estimate the relaxation time by
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using Eq. (3.5), i.e.,

�(!) �
e2EF
�~2!2

1
<�(!; 0)

(3.17)

for the region below the interband threshold; in deriving (3.17) we have as-
sumed �! � 1.

Figure 3.4 plots the real part of the conductivity and the relaxation time
for two values of doping: EF = 0:135 eV (n = 1:35 � 1012 cm�2, solid line)
and EF = 0:64 eV (n = 3 � 1013 cm�2, dashed line). In order to isolate
the in
uence of the electron-phonon coupling on the conductivity and plas-
mon losses, the contribution from impurities is assumed to be very small:
=�imp(E) = 10�6 eV. The real part of the conductivity has a universal value
�0 = �e2=2h above the interband threshold value ~! = 2EF (for q = 0),
e.g., see [37, 44]. We clearly see that the relaxation time is not a�ected by
the electron-phonon coupling for frequencies below !Oph, that is, we conclude
that scattering from impurities and defects is a dominant decay mechanism for
! < !Oph (assuming we operate below the interband threshold). However, for
! > !Oph, the relaxation times in Fig. 3.4 are on the order of 10�14 � 10�13 s,
indicating that optical phonons are an important decay mechanism.

Figure 3.4: (a) The real part of the conductivity in units of �0 = �e2=2h in
dependence of frequency ~!=EF , and (b) the corresponding relaxation time as
a function of wavelength. The contribution to <�(!) from impurities is chosen
to be negligible. The displayed graphs correspond to two di�erent values of
doping which yield EF = 0:135 eV (solid blue line), and EF = 0:640 eV
(dashed red line). The position of the optical phonon frequency ~!Oph � 0:2
eV is depicted by the dotted vertical line in (b); dot-dashed lines depict the
values of wavelengths corresponding to 2EF , that is, the interband threshold
value (for q = 0) for the two doping concentrations.

It should be emphasized that the exact calculated values should be taken
with some reservation for the following reason: strictly speaking, one should
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calculate the relaxation times �(!; q) along the plasmon dispersion curve given
by Eq. (3.13); namely the matrix elements which enter the calculation depend
on q, whereas the phase space available for the excitations also di�er for q = 0
and q > 0. Moreover, the exact value of the matrix element for electron
phonon coupling is still a matter of debate in the community. Therefore, the
actual values for plasmon losses could be somewhat di�erent for ! > !Oph.
Nevertheless, fairly small values of relaxation times presented in Fig. 3.4 for
! > !Oph indicate that emission of an optical phonon together with an electron-
hole pair is an important decay mechanism in this regime. Precise calculations
for q > 0 and ! > !Oph are a topic for a future paper.

Figure 3.5: Properties of plasmons in doped graphene. Solid-lines are obtained
with the number-conserving RPA calculation, and the dashed lines with the
semiclassical approach. Losses (a), �eld localization (wave "shrinkage") (b),
and group velocity (c) for doping EF = 0:64 eV; losses are calculated by
using the relaxation time ��1 = ��1

DC + ��1
e�ph, where �DC = 6:4 � 10�13 s,

and �e�ph is the relaxation time from the electron-phonon coupling for the
given parameters. In the white regions (right regions in all panels), losses
are determined by �DC . In the yellow shaded regions (central regions in all
panels), losses are determined by the optical phonon emission, i.e., �e�ph. The
rose shaded areas (left region in all panels) denote the region of high interband
losses. Dotted vertical lines correspond to the optical phonon frequency !Oph �
0:2 eV. The upper scale in all �gures is frequency � = !=2�. See text for
details.

Plasmonic losses and wave localization calculated from the RPA-RT approx-
imation are illustrated in Fig. 3.5 for doping level EF = 0:64 eV and the
relaxation time � given by ��1 = ��1

DC + ��1
e�ph, where �DC = 6:4 � 10�13 s

(mobility 10000 cm2=Vs), whereas �e�ph is frequency dependent and corre-
sponds to electron-phonon coupling assuming very clean samples [see dashed
line in Fig. 3.4(b)]. Interband losses [left (rose shaded) regions in all panels]
are active for wavelengths smaller than �inter � 1:7�m. In the frequency in-
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terval !inter > ! > !Oph [central (yellow shaded) regions in all panels], the
decay mechanism via electron phonon coupling determines the loss rate, i.e.,
� � �e�ph. For ! < !Oph [right (white) regions in all panels], the DC relaxation
time �DC can be used to estimate plasmon losses.

It should be noted that the mobility of 10000 cm2=Vs could be improved,
likely even up to mobility 100000 cm2=Vs [47], thereby further improving plas-
mon propagation lengths for frequencies below the optical phonon frequency.
However, for these larger mobilities the calculation of losses should also include
in more details the frequency dependent contribution to the relaxation time
from acoustic phonons (this decay channel is open at all frequencies); such a
calculation would not a�ect losses for ! > !Oph where optical phonons are
dominant.

3.3 Conclusion and Outlook

In conclusion, we have used RPA and number-conserving relaxation-time ap-
proximation with experimentally available input parameters, and theoretical
estimates for the relaxation-time utilizing electron-phonon coupling, to study
plasmons and their losses in doped graphene. We have shown that for suf-
�ciently large doping values high wave localization and low losses are simul-
taneously possible for frequencies below that of the optical phonon branch
! < !Oph (i.e., Eplasmon < 0:2 eV). For su�ciently large doping values, there is
an interval of frequencies above !Oph and below interband threshold, where an
important decay mechanism for plasmons is excitation of an electron-hole pair
together with an optical phonon (for ! < !Oph this decay channel is inactive);
the relaxation times for this channel were estimated and discussed. We point
out that further more precise calculations of plasmon relaxation times should
include coupling to the substrate (e.g., coupling to surface-plasmon polaritons
of the substrate), a more precise shape of the phonon dispersion curves, and
dependence of the relaxation time via electron-phonon coupling on q > 0 (see
subsection 3.2.3).

The main results, shown in Figures 3.3 and 3.5 point out some intriguing
opportunities o�ered by plasmons in graphene for the �eld of nano-photonics
and metamaterials in infrared (i.e. for ! < !Oph). For example, we can see in
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those �gures that high �eld localization and enhancement �air=�p � 200 [see
Figure 3.3(b)] are possible (resulting in �p < 50 nm), while plasmons of this
kind could have propagation loss-lengths as long as � 10�p [see Fig. 3.5(a)];
these values (albeit at di�erent frequencies) are substantially more favorable
than the corresponding values for conventional SPs, for example, for SPs at
the Ag/Si interface �air=�p � 20, whereas propagation lengths are only �
0:1�sp [see Fig. 3.1(c)]. Another interesting feature of plasmons in graphene is
that, similar to usual SP-systems [15], wave localization is followed by a group
velocity decrease; the group velocities can be of the order vg = 10�3 � 10�2c,
and the group velocity can be low over a wide frequency range, as depicted
in Figs. 3.3(c) and 3.5(c). This is of interest for possible implementation of
novel nonlinear optical devices in graphene, since it is known that small group
velocities can lead to savings in both the device length and the operational
power [45]; the latter would also be reduced because of the large transversal
�eld localization of the plasmon modes.
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Chapter 4

Transverse-electric plasmons

In Chapter 3 we were studying longitudinal charge density oscillations i.e.
longitudinal plasmons or TM modes. However, due to unusual electron dis-
persion, graphene can also support transverse plasmons or TE modes [48].
These excitation are possible only if the imaginary part of the conductivity of
a thin sheet of material is negative [48]. On the other hand, such a conduc-
tivity requires some complexity of the band structure of the material involved.
For example, TE plasmons cannot occur if the 2D material possesses a single
parabolic electron band. From this perspective, bilayer graphene, with its rich
band structure and optical conductivity (e.g., see [49] and references therein),
seems as a promising material for exploring the possibility of existence of TE
plasmons. Here we predict the existence of TE plasmons in bilayer graphene.
We �nd that their plasmonic properties are much more pronounced in bilayer
than in monolayer graphene, in a sense that the wavelength of TE plasmons
in bilayer can be smaller than in monolayer graphene at the same frequency.

Throughout this work we consider bilayer graphene as an in�nitely thin sheet
of material with conductivity �(q; !). We assume that air with �r = 1 is above
and below bilayer graphene. Given the conductivity, by employing classical
electrodynamics, one �nds that self-sustained oscillations of the charge occur
when (see [48] and references therein)

1 +
i�(q; !)

p
q2 � !2=c2

2�0!
= 0 (4.1)
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for TM modes, and

1 �
�0!i�(q; !)

2
p
q2 � !2=c2

= 0 (4.2)

for TE modes. The TM plasmons can considerably depart from the light line,
that is, their wavelength can be considerably smaller than that of light at the
same frequency. For this reason, when calculating TM plasmons it is desirable
to know the conductivity as a function of both frequency ! and wavevector q.
However, it turns out that the TE plasmons (both in monolayer [48] and bilayer
graphene, as will be shown below) are quite close to the light line q = !=c,
and therefore it is a good approximation to use �(!) = �(q = 0; !). Moreover,
these plasmons are expected to show strong polariton character, i.e., creation
of hybrid plasmon-photon excitations. At this point it is worthy to note that if
the relative permittivity of dielectrics above and below graphene are su�ciently
di�erent, so that light lines di�er substantially, then TE plasmon will not exist
(perhaps they could exist as leaky modes).

4.1 Optical conductivity of bilayer graphene

The conductivity �(!) = <�(!) + i=�(!) is complex, and plasmon disper-
sion is characterized by the imaginary part =�(!), whereas <�(!) determines
plasmon losses, or more generally absorption of the sheet. From Eq. (4.2) it
follows that the TE plasmons exist only if =�(!) < 0 [48].

-1 0 1

-1

0

1

k/q
0

e(
k)

/g

Figure 4.1: The band-structure of bilayer graphene. The two upper bands (as
well as the two lower bands) are perfectly nested and separated by 
 � 0:4 eV;
q0 = 
=~vF . Horizontal line depicts one possible value of the Fermi level, and
arrows denote some of the possible interband electronic transitions. See text
for details.
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In order to calculate the imaginary part of the conductivity, we employ
Kramers-Kronig relations and the calculation of absorption by Nicol and Car-
botte [49], where <�(!) [see Eqs. (19)-(21) in Ref. [49]] was calculated by
using the Kubo formula. The optical conductivity has rich structure due to
the fact that the single-particle spectrum of graphene is organized in four bands
given by [49],

�(k)



= �

s
1
4

+
�

~vFk



�2

�
1
2
; (4.3)

where vF = 106 m/s, the parameter 
 � 0:4 eV is equal to the separation
between the two conduction bands (which is equal to the separation between
the valence bands). The band structure (4.3) is calculated from the tight
binding approach, where vF is connected to the nearest-neighbour hopping
terms for electrons to move in each of the two graphene planes, and the distance
between Carbon atoms in one monolayer (see Ref. [49]), whereas 
 is the
hopping parameter corresponding to electrons hoping from one layer to the
other and vice versa [49]. The two graphene layers are stacked one above the
other according to the so-called Bernal-type stacking (e.g., see Ref. [50]). We
emphasize that the perfect nesting of bands gives rise to the stronger plasmon
like features of TE plasmons in bilayer than in monolayer graphene. The four
bands are illustrated in Fig. 4.1 along with some of the electronic transitions
which result in absorption. Absorption depends on 
 and the Fermi level �;
the latter can be changed by applying external bias voltage.

The imaginary part of the conductivity can be calculated from <�(!) by
using the Kramers-Kronig relations

=�(!) = �
2!
�

P
Z 1

0

<�(!0)
!02 � !2d!

0; (4.4)
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which yields

=�(!)
�0

= f(
; 2�) + g(
; �; 
)

+ [f(
; 2
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)]�(
 � �)

+ [f(
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+

2


2
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)
+ f(
; 2�� 
)

�
�(�� 
)

+
a(�)
�


+
2
b(�)

�(
2 � 
2)
; (4.5)

where

f(x; y) =
1

2�
log
����
x� y
x+ y

���� ;

g(x; y; z) =
z

2�
(x� z) log jx� 2yj + (x+ z) log jx+ 2yj � 2x log j2y + zj

x2 � z2 ;

a(�) =
4�(�+ 
)

2�+ 

+

4�(�� 
)
2�� 


�(�� 
);

b(�) =


2

�
log

2�+ 




� log
2�� 




�(�� 
)
�
; (4.6)

�0 = e2=2~, �(x) = 1 if x � 0 and zero otherwise, and 
 = ~!. Here we
assume zero temperature T � 0, which is a good approximation for su�ciently
doped bilayer graphene where � � kBT . Formulae (4.5) and (4.6) are used to
describe the properties of TE plasmons.

In Figure 4.2 we show the real and imaginary part of the conductivity for
two di�erent values of the Fermi level: � = 0:4
 and � = 0:9
 (we focus on
the electron doped system � > 0). Because plasmons are strongly damped by
interband transitions, it is instructive at this point to discuss the kinematical
requirements for the excitation of electron-hole pairs. If the doping is such
that � < 
=2, a quantum of energy ~! (plasmon or photon) with in-plane
momentum q = 0 can excite an electron-hole pair only if ~! > 2� (excitations
from the upper valence to the lower conduction band shown as red dot-dashed
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line in Fig. 4.1). If � > 
=2, the (q = 0; !)-quantum can excite an electron-hole
pair only for ~! � 
 (excitations from the lower to the upper conduction band
shown as green solid lines in Fig. 4.1 occur at ~! = 
). If the plasmon/photon
has in-plane momentum q larger than zero, then interband transitions are
possible for smaller frequencies (see blue dashed lines in Fig. 4.1). There is a
region in the (q; !)-plane where electron-hole excitations are forbidden due to
the Pauli principle. Because plasmons are strongly damped by these interband
transitions (this is Landau damping), in our search for the TE plasmons, we
focus on their dispersion curve in the regime where electron-hole pair formation
is inadmissible (via �rst-order transition).

4.2 Transverse-electric plasmon dispersion in
bilayer graphene

0 1 2
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0

2

w/w
0

s
/s

0

(a)

0 1 2

-2

0

2

w/w
0

s
/s

0

(b)

Figure 4.2: The real (red dotted lines) and imaginary (blue solid lines) part
of the conductivity of bilayer graphene for two values of doping: � = 0:4

(a), and � = 0:9
 (b). The conductivity is in units of �0 = e2=2~, and
the frequency is in units of !0 = 
=~. The �-functions in <�(!) at ! = 0
(intraband transitions) and ! = 
=~ (transitions from the lower to the upper
conduction band depicted as green solid arrows in Fig. 4.1) are not shown (see
[49]).

In Figure 4.3 we show the plasmon dispersion curves for � = 0:4
 and
� = 0:9
; in the spirit of Ref. [48], we show �q = q � !=c as a function of
frequency !. Plasmons are very close to the light line and thus one can to a
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very good approximation write the dispersion curve as

�q �
!

8�2
0c3 =�(!)2: (4.7)

To the left (right) of the vertical red dotted line in Fig. 4.3, plasmon damping
via excitation of electron-hole pairs is (is not) forbidden.
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Figure 4.3: The plasmon dispersion curve �q = q � !=c vs. ! for � =
0:4
 (a), and � = 0:9
 (b) is shown as blue solid line. To the right of the
vertical red dotted lines plasmons can be damped via excitation of electron-
hole pairs, whereas to the left of this line these excitations are forbidden due
to the Pauli principle. Black dashed line in (b) (which closely follows the blue
line) corresponds to Eq. (4.8). The wave vector is in units of q0 = 
=~vF , and
the frequency is in units of !0 = 
=~.

For � = 0:4
, =�(!) is smaller than zero for ! in an interval of frequencies
just below 2�. From the leading term in =�(!) we �nd that departure of
the dispersion curve from the light line is logarithmically slow: �q0<�<
=2 /
[log j~!�2�j]2. The same type of behavior occurs in monolayer graphene [48].

However, for � = 0:9
, one can see the advantage of bilayer over monolayer
graphene in the context of TE plasmons. The conductivity =�(!) is smaller
than zero in an interval of frequencies below 
. In this interval, the most
dominant term to the conductivity is the last one from Eq. (4.5), that is,

�q
=2<�<
 �
!�2

0

2�2�2
0c3

�
~!b(�)


2 � (~!)2

�2

: (4.8)

This approximation is illustrated with black dashed line in Fig. 4.3, and it
almost perfectly matches the dispersion curve. Note that the singularity in
=�(!) at ~! = 
 is of the form 1=(
�~!), whereas the singularity at ~! = 2�
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is logarithmic (as in monolayer graphene [48]). As a consequence, the departure
of the dispersion curve from the light line in bilayer graphene is much faster for
� > 
=2 than for � < 
=2, and it is faster than in monolayer graphene as well
[note the two orders of magnitude di�erence between the abscissa scales in Figs.
4.3(a) and (b)]. Thus, we conclude that more pronounced plasmonic features
of TE plasmons (shrinking of wave length which is measured as departure of
q from the light line) can be obtained in bilayer graphene. The term in =�(!)
which is responsible for TE plasmons for � > 
=2 corresponds (via Kramers-
Kronig relations) to the absorption term b(�)�(~!� 
) [49], which arises from
the transitions from the �rst to the second valence band (shown as green solid
arrows in Fig. 4.1), which are perfectly nested and separated by 
. Thus,
this unique feature of bilayer graphene gives rise to TE plasmons with more
pronounced plasmon like features than in monolayer graphene.

Before closing this chapter, let us discuss some properties and possible ob-
servation of TE plasmons. First, note that since the electric �eld oscillations
are both perpendicular to the propagation vector q, and lie in the bilayer
graphene plane, the electric current j = �(!)E is also perpendicular to q.
Thus, j � q = 0, and the equation of continuity yields that the charge density is
zero (i.e., one has self-sustained oscillations of the current). In order to excite
plasmons of frequency ! with light of the same frequency, one has to somehow
account for the conservation of the momentum which is larger for plasmons.
Since the momentum mismatch is relatively small, the standard plasmon ex-
citation schemes such as the prism or grating coupling methods (e.g., see [12]
and references therein) could be used for the excitation of these plasmons.

To conclude this chapter, we have predicted the existence of transverse elec-
tric (TE) plasmons in bilayer graphene. Since they exist very close to the light
line, these plasmons are expected to show strong polariton character, i.e., mix-
ing with photon modes. However, due to the perfectly nested valence bands of
bilayer graphene, their dispersion departs much more from the light line than
in monolayer graphene.
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Chapter 5

Plasmon-phonon coupling

In this chapter we analyze the coupling of plasmons with intrinsic optical
phonons in graphene by using the self-consistent linear response formalism.
We �nd that longitudinal plasmons (LP) couple only to transverse optical
(TO) phonons, while transverse plasmons (TP) couple only to longitudinal
optical (LO) phonons. The LP-TO coupling is stronger for larger concentration
of carriers, in contrast to the TP-LO coupling (which is fairly weak). The
former could be measured via current experimental techniques. Thus, plasmon-
phonon resonance could serve as a magni�er for exploring the electron-phonon
interaction, and for novel electronic control (by externally applied voltage)
over crystal lattice vibrations in graphene.

To analyze plasmon-phonon coupling let us start with the Hamiltonian for
the Dirac electrons in graphene

He = ~vF� � k; (5.1)

where vF = 106 m/s, k = (kx; ky) = �ir is the wave-vector operator, � =
(�x; �y), and �x;y are the Pauli spin matrices. We label the eigenstates of
Hamiltonian He by js;ki and the appropriate eigenvalues by Es;k = s~vF jkj,
where s = 1 for the conduction band and s = �1 for the valence band.

The long-wavelength in-plane optical phonon branch in graphene consists of
two modes (LO and TO) which are e�ectively dispersionless and degenerate at
energy ~!0 = 0:196eV . Let u(R) = [uA(R) � uB(R)]=

p
2 denote the relative

displacements of the sub-lattice atoms A and B of a unit cell speci�ed by a
coordinate R [see Fig. 5.1(c)]. Then, in the long-wavelength limit R can be
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replaced by a continuous coordinate r and we have

u(r) =
X

�q

1
p
NM

Q�qe�qeiqr; (5.2)

where N is the number of unit cells, M is the carbon atom mass, q =
q(cos�q; sin�q) is the phonon wave vector, � = L; T stands for the polar-
ization, and the polarization unit vectors are eLq = i(cos�q; sin�q), and
eTq = i(� sin�q; cos�q). The displacement vector u(r) is parallel (perpen-
dicular) to the phonon propagation wave vector q for LO (TO, respectively)
phonons [see Fig. 5.1(c)]. The phonon Hamiltonian is given by

Hph =
1
2

X

�q

(P y
�qP�q + !2

0Q
y
�qQ�q); (5.3)

where Q�q and P�q denote phonon coordinate and momentum. The electron-
phonon interaction takes a peculiar form in graphene (see chapter 2):

He�ph = �
p

2
�~vF
b2 � � u(r); (5.4)

where ��u = �xuy��yux, b = 0:142 nm is the nearest carbon atoms distance,
and � = 2. We �nd it convenient to write Eq. (5.4) as

He�ph = L2F
X

�q

jy
q � e�qQ�q (5.5)

where jq = �evFL�2�e�iqr is the single-particle current-density operator, L2

is the area of the system, e is charge of the electron, and F =
p

2�~
eb2

p
NM

.

The electromagnetic �eld in the plane of graphene is completely described by
the vector potential A =

P
�q e�qA�qeiqr (scalar potential is gauged to zero,

time dependence is implicitly assumed, and � = L; T denote polarizations).
The interaction with Dirac electrons is obtained by substitution ~k ! ~k+eA
in Eq. (5.1), which leads to

He�em = evF� � A = �L2
X

�q

jy
q � e�qA�q: (5.6)

By comparing Eqs. (5.4) and (5.6) it follows that electron-phonon interaction
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Figure 5.1: (a) Schematic illustration of the lattice structure with two sublat-
tices (A and B). (b) The two degenerate Dirac cones are centered at K and K’
points at the edge of the Brillouin zone. (c) A displacement of lattice atoms
u(r) is parallel (perpendicular) to the propagation wave vector q of a LO (TO)
phonon. (d) The displacement u(r) creates an e�ective vector potential Ae�
perpendicular to u(r) (the sign of Ae� for the K’ point is opposite to that for
the K point).

can be regarded as a presence of an e�ective vector potential

Ae� = F
X

q

(eTqQLq � eLqQTq)eiqr; (5.7)

that is, He�ph = evF� �Ae�. It is evident that Ae� �u(r) = 0 that is the e�ective
vector potential Ae� is perpendicular to u(r) as illustrated in Figs. 5.1(c) and
(d) (see also Ref. [50]), which is responsible for the mixing of polarizations in
plasmon-phonon coupling.

As a �rst pass, let us ignore the phonons and focus on the Hamiltonian
H = He+He�em. Without an external perturbation, the electrons in graphene
�ll the Fermi sea according to the Fermi distribution function fsk. A �eld
A�q(!) oscillating at frequency ! will induce an average current density (up
to a linear order in the vector potential)

hJ�(q; !)i = ���(q; !)A�q(!); (5.8)

where the current-current response function (including 2-spin and 2-valley de-
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generacy) is given by [56]

��(q; !) = 4L2
X

s1s2k

fs1k � fs2k+q

~! + ~!s1k � ~!s2k+q + i�

� jhs1kjjq � e�
�qjs2k + qij2: (5.9)

For the response function ��(q; !) we utilize the analytical expression from
Ref. [54]. The subtlety involved with the divergence in Eq. (5.9) is solved by
subtracting from �L(q; !) [�T (q; !)] the value �L(q; ! = 0) [�T (q ! 0; ! = 0)]
to take into account that there is no current response to the longitudinal
[transverse] time [time and space] independent vector potential, see [54, 55]
for details. We would like to note that when working with the current-current
response function, rather than with the density-density response function, the
nature of the plasmon-phonon interaction (especially the mixing of polariza-
tions as shown below) is far more transparent.

Next, it is straightforward to show from the Maxwell equations that an
electric current oscillating in a two-dimensional plane will induce a vector
potential

hALq(!)i = hJL(q; !)i
p
q2 � !2=c2

�2!2�0
; (5.10)

and
hATq(!)i = hJT (q; !)i

�0

2
p
q2 � !2=c2

; (5.11)

where we have assumed that graphene is suspended in air and that there are
no other sources present in space. This induced vector potential in turn acts
on electrons in graphene through the interaction Hamiltonian He�em which
can result in plasmons - self-sustained collective oscillations of electrons. From
Eqs. (5.8) and (5.10) we get the dispersion relation for longitudinal plasmons
[40, 41]

1 �
p
q2 � !2=c2

2!2�0
�L(q; !) = 0: (5.12)

From Eqs. (5.8) and (5.11) we get the dispersion relation for transverse plas-
mons [48]

1 +
�0

2
p
q2 � !2=c2

�T (q; !) = 0: (5.13)

Longitudinal plasmons are also referred to as transverse magnetic modes since
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they are accompanied by a longitudinal electric (E) and a transverse magnetic
�eld (B) in the plane of graphene. Likewise transverse plasmons or transverse
electric modes are accompanied by a transverse electric and a longitudinal
magnetic �eld [48]. Dispersion relation of LP (TP) modes is shown by the
blue dashed line in Fig. 5.2. (Fig. 5.3, respectively). Finally we note that
we are primarily interested in non-radiative modes (q > !=c) in which case
�elds are localized near the graphene plane (z = 0) and decay exponentially:
E(z); B(z) / e�jzj

p
q2�!2=c2 .

In order to �nd the plasmon-phonon coupled excitations we consider the
complete Hamiltonian H = He + He�em + He�ph + Hph. We assume that the
hybrid plasmon phonon mode oscillates at some frequency ! with wavevec-
tor q (which are to be found). From the equation of motion for the phonon
amplitudes Q�q one �nds [56]

(!2 � !2
0)hQTqi = L2F hJL(q; !)i; (5.14)

and
(!2 � !2

0)hQLqi = �L2F hJT (q; !)i: (5.15)

The electron phonon interaction (5.5) is included as the e�ective vector poten-
tial (5.7) in Eq. (5.6), which from Eq. (5.8) immediately yields

hJL(q; !)i = �L(q; !)(�hALq(!)i + F hQTqi); (5.16)

and
hJT (q; !)i = �T (q; !)(�hATq(!)i � F hQLqi): (5.17)

From Eqs. (5.14) - (5.17) it is clear that transverse (longitudinal) phonons
couple only to longitudinal (transverse) plasmons. Apparently, this follows
from the fact that LO (TO, respectively) phonons are equivalent to oscillations
of an e�ective vector potential Ae� [see Eq. (5.7)], and therefore an e�ective
electric �eld, perpendicular (parallel, respectively) to q.

Finally using Eqs. (5.10), (5.14), and (5.16) we get the dispersion relation
for the LP-TO coupled mode

!2 � !2
0 =

L2F 2�L(q; !)

1 �
p
q2�!2=c2

2!2�0
�L(q; !)

; (5.18)
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Figure 5.2: Dispersion lines of hybrid LP-TO plasmon-phonon modes (solid
lines) and of the uncoupled modes (dashed lines) for two values of doping: (a)
n = 5�1012 cm�2, and (b) n = 5�1013 cm�2. The hybridization is stronger for
larger doping values. Grey areas denote the region of single-particle damping.

and from Eqs. (5.11), (5.15), and (5.17) dispersion relation for the TP-LO
coupled mode

!2 � !2
0 =

L2F 2�T (q; !)
1 + �0

2
p
q2�!2=c2

�T (q; !)
: (5.19)

The plasmon dispersions relations (5.12) and (5.13) appear as poles in the
Eqs. (5.18) and (5.19) for the coupled modes, which means that the coupling
is greatest at the resonance point where plasmon momentum and energy match
that of the appropriate phonon mode. We denote this point (where the uncou-
pled plasmon and phonon dispersion cross) by (qc; !0). One can quantify the
strength of the coupling e�ect by calculating the frequency di�erence between
the hybrid modes at the wavevector qc in units of the uncoupled frequency
value: �!=!0. Finally by doping one can change plasmon dispersion which in
turn changes qc and the strength of the plasmon-phonon coupling.

The dispersion lines for the hybrid LP-TO modes are shown in Fig. 5.2
for two values of doping, (a) n = 5 � 1012 cm�2, EF = 0:261 eV, kF =
3:96�108 m�1, and (b) n = 5�1013 cm�2, EF = 0:825 eV, kF = 1:25�109 m�1.
The strength of the coupling increases with increasing values of doping, and
one has for the case (a) �!=!0 = 7:5%, and (b) �!=!0 = 15:5%. To describe
graphene sitting on a substrate (say SiC, which is a polar material), one only
needs to include the dielectric function of the substrate into our calculation.
In that case plasmons can also couple to surface phonon modes of the polar
substrate [57]. However, since these surface phonons have su�ciently smaller
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Figure 5.3: Dispersion lines of hybrid TP-LO plasmon-phonon modes (solid
lines) and of the uncoupled modes (dashed lines) for two values of doping:
(a) n = 7:5 � 1011 cm�2, and (b) n = 9:5 � 1011 cm�2. The plasmon-like
dispersion is very close to the light line q = !=c; therefore, the ordinate shows
�q = q � !=c.

energies than optical phonons in graphene out results are qualitatively un-
changed in that case. LP-TO hybrid modes could be measured by observing
the change in the phonon dispersion with the Neutron Spectroscopy or In-
elastic X-ray Scattering. Alternatively, one could use grating coupler or Elec-
tron Energy Loss Spectroscopy to measure the shift in the plasmon energy.
Our results imply that plasmon-phonon coupling could serve to explore the
electron-phonon interaction (the frequency shifts at resonance are much larger
then the G peak shift recently measured by Raman Spectroscopy [32]), and
that by externally appling voltage one can in
uence the properties of lattice
vibrations.

In spite of the fact that the formal derivation of hybrid TP-LO coupled
modes is equivalent to the derivation of the LP-TO modes, their properties
qualitatively di�er. First, we note that the dispersion of transverse plasmons
is extremely close to the light line, and we plot �q = q � !=c vs. frequency
! following Ref. [48]. For this reason, transverse plasmons are expected to
have strong polariton character and they will be hard to distinguish from free
photons (also, even a small plasmon linewidth will obscure the distinction).
Moreover, they do not exist in graphene between two dielectrics with su�-
ciently di�erent relative permittivity, where the light lines for the dielectrics
are separated. Next, transverse plasmons exist only in the frequency inter-
val 2EF > ~! > 1:667EF [48], which means that the LO phonon energy
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must be in the same interval for the hybridization to occur. Figure 5.3 shows
the dispersion curves of the hybrid TP-LO modes for two values of doping,
(a) n = 7:5 � 1011 cm�2, EF = 0:101 eV, kF = 1:53 � 108 m�1, and (b)
n = 9:5 � 1011 cm�2, EF = 0:114 eV, kF = 1:73 � 108 m�1. We observe that
the trend here is opposite to that of the LP-TO coupling, as the strength of the
coupling decreases with increasing doping; speci�cally, one has for the case (a)
�!=!0 = 0:17%, and (b) �!=!0 = 0:02%. The maximal coupling occurs when
2EF is just above ~!0, and it is zero when ~!0 = 1:667EF . We emphasize that
the strength of the coupling for TP-LO modes is in general much weaker than
in LP-TO modes.

Before closing this chapter, we note another interesting result which is cap-
tured by our calculations. Equations (5.18) and (5.19) for shifts in the energies
of TO and LO modes at q = 0 reduce to

!2 � !2
0 =

L2F 2�L;T (0; !)
1 + i

2!�0c
�L;T (0; !)

; (5.20)

which is identical to the result of Ref. [51], where the coupling of optical
phonons to single-particle excitations was studied, appart from the imaginary
term in the denominator which is zero in [51]. This small but qualitative
di�erence is consequence of phonon coupling to the radiative electromagnetic
modes, which increases the phonon linewidth. For example, for the doping
values of n = 5 � 1012 cm�2, 5 � 1013 cm�2, and 5 � 1014 cm�2, Eq. (5.20)
yields 0:005%, 0:07%, and 0:7%, respectively, for the linewidths, while there is
no linewidth from single-particle damping at these doping values. This e�ect
is qualitatively unchanged for graphene sitting on a substrate and could be
measured by Raman spectroscopy. Finally, we note an interesting solution
of Eq. (5.19) (valid for suspended graphene): when the hybrid TP-LO mode
dispersion crosses the light line it has the same energy as the uncoupled phonon
mode, i.e., ! = !0. In other words, LO phonon at a wavevector q = !0=c
decouples from all (single particle and collective) electron excitations, while
no such e�ect exists for the TO phonons.

In conclusion, we have predicted hybridization of plasmons and intrinsic op-
tical phonons in graphene using self-consistent linear response theory. To the
best of our knowledge, this is the �rst study of such resonance in an isolated 2D
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material. We found that graphene’s unique electron-phonon interaction leads
to unconventional mixing of plasmon and optical phonon polarizations: lon-
gitudinal plasmons couple exclusively to transverse optical phonons, whereas
graphene’s transverse plasmons couple to longitudinal optical phonons; this
contrasts plasmon-phonon coupling in all previously studied systems. The
strength of the hybridization increases with doping in LP-TO coupled modes,
while the trend is opposite for TP-LO modes. The LP-TO coupling is much
stronger than TP-LO coupling, and it could be measured by current experi-
ments, which would act as a magni�er for exploring the electron-phonon in-
teraction in graphene. This coupling is an even more striking example of a
breakdown of Born-Oppenheimer approximation in graphene than the recently
measured sti�ening of the Raman G peak [32]. Moreover, plasmon-phonon in-
teraction can serve to electronically control the frequencies of lattice vibrations
in graphene, which could have interesting technological implications.
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Chapter 6

Near �eld heat transfer

6.1 Near �eld heat transfer between two graphene
sheets

In this chapter we analyze the near �eld heat transfer between two graphene
sheets mediated by thermally excited plasmon modes and demonstrate that
there is a large enhancement of heat transfer compared to the far �eld black
body radiation. The system we analyze, shown in �gure 6.1, consists of a
suspended graphene sheet at temperature T1 emitting to another suspended
graphene sheet held at room temperature T2 = 300K, and a distance D away.

In chapter 2 we calculated the expression for the radiative heat exchange
between two graphene sheets. Total heat transfer H = Hff + Hnf can be
conveniently separated into the contribution from the propagating waves in
the far �eld

Hff =
1
�2

Z 1

0
d![�(!; T1) � �(!; T2)]

Z !=c

0
qdq

X

�

h�ff (q; !); (6.1)

and evanescent waves in the near �eld

Hnf =
1
�2

Z 1

0
d![�(!; T2) � �(!; T1)]

Z 1

!=c
qdq

X

�

h�nf (q; !): (6.2)

Here �(!; T ) = ~!=(e�~! � 1) is the Boltzman factor, � stands for s or p
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polarization and functions h�ff and h�nf are given by:

h�ff (q; !) �
(1 � jr�1 j2 � jt�1 j2)(1 � jr�2 j2 � jt�2 j2)

4j1 � r�1 r
�
2 e2i
Dj2

; and (6.3)

h�nf (q; !) �
=r�1 =r�2 e�2j
jD

j1 � r�1 r
�
2 e�2j
jDj2

: (6.4)

Figure 6.1: (a) Schematic diagram of the radiation transfer problem: a free
standing sheet of graphene at temperature T1 is radiating to another free stand-
ing graphene sheet at temperature T2 and distance D away. (b) Schematic dia-
gram of the �eld pro�le for even mode. (c) Odd mode. (d) Contour plot of the
transfer function hpnf for the case of two graphene sheets at the same chemical
potentials �1;2 = 0:5eV and same temperatures T1;2 = 300K, separated by a
distance of D = 10 nm. Dashed line denotes the plasmon dispersion relation
for a single isolated graphene sheet, while poles of transfer function hpnf show
dispersion relations of the coupled (even and odd) modes of the two sheets.

Let us �rst note that graphene is a poor absorber in the far �eld, since it
is only one atom thick. Indeed, it was experimentally demonstrated [37] that
graphene absorbs only jaj2 � 2% of the incident light (see equation (2.77)).
Since one can also write jaj2 = 1�jrj2 �jtj2 we can simply neglect the far �eld
transfer (see equations (6.1) and (6.3)), at least compared to the black body
case which is characterized by jaBBj2 = 100%. On the other hand, we will see
that near �eld heat transfer can be signi�cantly greater than the black body
case, if graphene sheets are su�ciently close to allow the tunneling of surface
modes (plasmons).

To analyze the near �eld heat transfer between two graphene sheets let us
write the p polarization re
ection coe�cient (2.131) for a single sheet as rp =
(1 � �)=� where � = 1 + 
�=(2�0!) is the dielectric function of graphene [61].
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We immediately see that poles of rp are located at the plasmon dispersion
� = 0 which was derived in chapter 3 but we write it here again for the sake
of clearance:

q = �0
2i!

�(!; T )
: (6.5)

We assumed here 
 =
p
!2=c2 � q2 � iq since we have shown that plasmon

dispersion is mainly located in the non-retarded regime q >> !=c. We have
already pointed out that strong near �eld heat transfer requires graphene sheets
to be very close, which in turn allows coupling of two plasmon modes (see �gure
6.1). In the case when two graphene sheets have identical parameters (rp1 = rp2)
this coupling results in two new modes: even mode described by an equation
rp = eqD, and an odd mode described by an equation rp = �eqD. Naturally,
when sheets are su�ciently far apart (D >>) or the wave vector is su�ciently
large (q >>) so that the coupling becomes irrelevant, these two modes become
degenerate again, described by a pole in rp. Further on, note that these two
equations can be joined in a single one: 1 � (rp)2e�2qD = 0, which is precisely
a denominator in equation (6.4) which determines the poles of the function
hpnf . In other words, these two coupled surface modes, strongly enhance and
dominate the near �eld heat transfer. Note however from equation (6.4) that
hpnf / e�2qD so that graphene sheets have to be very close to have a signi�cant
near �eld heat transfer. In other words plasmon surface modes can act as an
excellent heat conductors, only the graphene sheets have to be very close to
allow the coupling of exponentially decaying (E / e�qD) plasmon �eld.

Finally note that hpnf / =rp1=rp2, while =rp has a pole at the bare plasmon
dispersion so there will be a competition between this factor and a pole at a
dispersion of a coupled mode. Therefore the function hpnf will increase with
increasing wave vector since the coupling between the modes will decrease and
even/odd mode dispersion (and a corresponding pole) will join that of a bare
plasmon (and a corresponding pole). However, when these dispersions meet
(q � 1=D) the function hpnf will start to decrease with the wave vector due
to exponentially decaying factor hpnf / e�2qD. At last note that function hpnf
is multiplied with a Boltzman factor �(!; T ) which shifts everything to lower
frequencies so there are several competing e�ects in action which will be hard
to disentangle in the end when everything gets integrated over all q; ! values.

The same analysis applies to the s polarization however it is easy to see that
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it will have a minor contribution to the total near �eld heat transfer. The
reason for this is a large di�erence in the character of the plasmon disper-
sion relations (compare �gure 5.2 and �gure 5.3). On one hand longitudinal
plasmons, described by a pole in rp, are located in the non-retarded regime
(q >> !=c) with a large density of states, while transverse plasmons, describe
by a pole in rs, are located in the strongly retarded regime (q � !=c) with a
tiny density of states. Since each q value can be thought of as a separate heat
channel, and if graphene sheets are close enough so that all relevant q modes
are active, the p polarization will have many more heat channels and dominate
over the s polarization.

To model graphene we shall use q-independent conductivity which simpli�es
the mathematical calculations and gives a good order of magnitude on the
heat transfer (see discussion below). In chapter 2 we showed that the total
conductivity �(!) = �D(!) + �I(!), can be separated into Drude (intraband)
and interband part, expressed respectively as (see also [61]):

�D(!) =
i

! + i=�
e22kbT
�~2 ln

�
2cosh

�
2kbT

�
(6.6)

�I(!) =
e2

4~

�
G
�

~!
2

�
+ i

4~!
�

Z 1

0

G(�) �G(~!=2)
(~!)2 � 4�2 d�

�
:

where G(�) = sinh(�=kbT )=(cosh(�=kbT ) + cosh(�=kbT )), and � is the chemical
potential. Various electron scattering processes are taken into account through
the relaxation time � . From DC mobility measurements in graphene, one ob-
tains an order-of-magnitude value of � � 10�13s. Now, due to 
uctuation-
dissipation theorem hpnf / =rp and =rp / <� (see equation (2.147)), so we
have to take particular attention to the origin of dissipation (<�) in our system.
At zero temperature the situation is very simple since Drude term (intraband
contribution) and relaxation time � determines the losses for low frequencies,
while interband contribution is dominant for frequencies above the interband
threshold (~! = 2�). However, at �nite temperature, interband processes can
play a leading role even below the absorption threshold ! � 2�, particularly for
small chemical potential where thermal broadening of interband threshold (on
the order of few kbT ) becomes more signi�cant. While the use of q-independent
expression for graphene conductivity (6.6) for intraband processes is a good
approximation, one must take care when applying (6.6) to interband transi-
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tions. Here, the contribution from the �nite wave-vector becomes important
since it broadens the interband threshold from 2� to 2�� ~qvF . On the other
hand, this is similar to �nite temperature e�ects which also broaden the in-
terband threshold, so we do not expect a qualitatively di�erent result with
q-dependent conductivity.

Figure 6.2: Contour plot of the near �eld heat transfer between two graphene
sheets Hnf

gg normalized to the far �eld heat transfer between two black bodies
Hff
BB of the same temperatures, in the log scale. Here T2 = 300K, �1;2 = 0:1eV

and �1;2 = 10�13s.

To quantify the heat exchange in the near �eld we plot in �gure 6.2 the total
transfer Hnf (6.2) normalized to the transfer between two black bodies in the
far �eld. Since the exponentially decaying Boltzman factor shifts all the con-
tributions to the lower frequencies we will focus on the small values of chemical
potential. For �1;2 = 0:1eV , we observe orders-of-magnitude increase in heat
exchange particularly at small separations (�1000 for D = 20nm; T1 = 800K),
but also at separations as large as 0:1�m. In general, dependence of transfer
on separation D is non-uniform and does not seem to yield a simple functional
dependence on the emitter and absorber temperatures (as is the case for two
black bodies). This e�cient heat exchange between two graphene sheets in the
near �eld, together with recently reported advances in hot carrier extraction
from graphene [62], may o�er a potential for a novel, hybrid thermophoto-
voltaic/thermoelectric solid-state heat-to-electricity conversion device.
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6.2 Near �eld thermo-photo-voltaics using graphene
as a thermal emitter

Here we show that graphene can be used as a thermal emitter in the near �eld
thermo-photo-voltaic (TPV) system resulting in high e�ciencies and power
densities. The near �eld heat transfer is mediated by thermally excited plas-
mon modes in graphene similarly to the situation in the last section.

The system we analyze consists of a hot graphene emitter at a temperature
T1 and a photo-voltaic (PV) cell held at room temperature T2 = 300K and
distance D away from graphene. It is interesting to note that the expression
for the near �eld heat transfer between graphene and a PV cell is given by the
same expression (6.2) for the graphene to graphene heat transfer

Hnf =
1
�2

Z 1

0
d!
�

~!
e�1~! � 1

�
~!

e�2~! � 1

� Z 1

!=c
qdqhpnf (q; !); (6.7)

where
hpnf (q; !) �

=rp1=rp2e�2qD

j1 � rp1r
p
2e�2qDj2

: (6.8)

Here we have neglected the contribution from s polarization, and assumed 
 =
p
!2=c2 � q2 � iq since the near �eld heat transfer is mediated by graphene

plasmon modes in the non-retarded regime (q >> !=c). To model graphene
we use q-independent conductivity �(!) from equation (6.6) as before, and the
re
ection coe�cient is given by equation (2.131) which we write again for the
sake of clearance:

rp1(q; !) =
iq�(!)
2�0!

1 + iq�(!)
2�0!

: (6.9)

Above hot graphene emitter we now have PV cell which we model as a simple
direct band-gap semiconductor with parameters:

�2(!) =
�
n+ i

�
2k0

�2

where �(!) =

8
<

:
0 ; ! < !g
�0

q
!�!g
!g

; ! > !g
(6.10)

Here n is the refractive index, k0 = 2�=� = c=! is the photon wavelength
in vacuum, and !g is the bandgap frequency. Speci�cally we will discuss the
case of indium antimonide (InSb) with parameters !g = 0:17eV and �0 �
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0:7 � 104cm�1 (at room temperature [64]). Finally the re
ection coe�cient of
the PV cell, in the non-retarded regime (q >> !=c), is simply given by [67]

rp2(!) =
�2(!) � 1
�2(!) + 1

: (6.11)

When the PV cell is biased at a voltage 1 Vo, we can express the total radiative
power exchange as [65]

Prad =
1
�2

Z 1

0
d!
�

~!
e�1~! � 1

�
~!

e�2(~!�Vo) � 1

� Z 1

!=c
qdqhpnf (q; !): (6.12)

On the other hand we can also write the total photon 
ux into the PV cell as

jph =
1
�2

Z 1

0
d!
�

1
e�1~! � 1

�
1

e�2(~!�Vo) � 1

� Z 1

!=c
qdqhpnf (q; !): (6.13)

In the Shockley-Quiesser limit [69] of ideal PV cell, the only recombination
of the charge carriers happens through the radiative processes so the electron
current is simply: je = ejph. Then the electrical power generated in the PV
cell is PPV = jeVo, and e�ciency of device is

�TPV =
PPV
Prad

=
ejphVo
Prad

: (6.14)

Let us now choose the graphene’s chemical potential to be � = 0:25 eV, and
that the PV cell is held at room temperature T2 = 300K and distance D = 10
nm away from the graphene sheet. Then for the case of graphene’s temperature
T1 = 600 K and biased voltage Vo = 0:08 V, the output power density of our
TPV device is PPV =A = 6 W/cm2 with an e�ciency of � = 35%. We note that
these are remarkably high power densities considering that our thermal emitter
is only one atom thick. To get a better sense of the scales involved we can
compare the far �eld radiative power exchange PBB

rad between two black bodies
held at temperatures T1 and T2 but involving only the photons of energies
above the given PV band gap, and the near �eld radiative power exchange
P gPV
rad between graphene and a PV cell held at these temperatures. For the

1In general, the optimal voltage Vo depends on other parameters in the system. We avoid
the full optimization procedure, and, motivated by the observed dependence of e�ciency on
Vo, choose a voltage slightly below the limitV max

o = ! g(1 � T2=T1).
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temperatures T1 = 600 K and T2 = 300 K one obtains P gPV
rad =PBB

rad = 62 times
increase over the black body case.

Further on, note that the near �eld heat transfer is particularly convenient
since the energy is transfered by the evanescent modes and the photons with
energy below the band gap, that are not absorbed by the PV cell, simply
return to the graphene emitter as heat, unlike the far �eld case where they
are lost in the form of propagating waves. This results in the high e�ciencies
� = 35%, however note that these numbers are still below the Carnot limit
� = 50% for temperatures T1 = 600 K and T2 = 300 K. The reason for this is
the broad band plasmon spectrum contributing to the heat transfer with the
high energy photons (! > !g) wasting the energy di�erence (�E = ~!� ~!g)
on the thermalization losses heating up the system.

To achieve even higher e�ciencies one would need to tailor the emitter prop-
erties so that it selectively radiates only in the small interval around the band
gap of the PV cell. One way to do this would be to use surface plasmons at
metal-dielectric surface, since they have very large density of states around the
surface plasmon resonance; see �gure 3.1 b, and compare it to broad band spec-
trum of graphene plasmon mode from �gure 3.2 d. However, the problem with
metals is that surface plasmon resonance usually falls in the visible/ultraviolet
regime which is impossible to excite thermally. Alternatively one could use
highly doped semiconductors like Indium-Tin-Oxide [70] which has a reso-
nance in the infra-red [71], however due to high doping level there is a lot of
electron-impurity scattering and high losses result in reduced e�ciencies. In
that regards graphene TPV system shows large promise for a new temperature
range (600�1200K) solid state energy conversion, where conventional thermo-
electrics can not operate due to high temperatures and far �eld TPV schemes
su�er from low e�ciency and power density.
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Chapter 7

Summary

We have explored light-matter interaction in graphene in the context of plas-
monics and other technological applications but also used graphene as a plat-
form to explore many body physics phenomena like the interaction between
plasmons, phonons and other elementary excitations. Plasmons and plasmon-
phonon interaction were analyzed within self-consistent linear response ap-
proximation. We demonstrated that electron-phonon interaction leads to large
plasmon damping when plasmon energy exceeds that of the optical phonon but
also a peculiar mixing of plasmon and optical phonon polarizations. Plasmon-
phonon coupling is strongest when these two excitations have similar energy
and momentum. We also analyzed properties of transverse electric plasmons
in bilayer graphene. Finally we have showed that thermally excited plasmons
strongly mediate and enhance the near �eld radiation transfer between two
closely separated graphene sheets. We also demonstrated that graphene can
be used as a thermal emitter in the near �eld thermophotovoltaics leading to
large e�ciencies and power densities. Near �eld heat transfer was analyzed
withing the framework of 
uctuational electrodynamics.

In Chapter 2 we presented analytical methods that were used throughout
the text. We have derived electron band structure and electron-phonon inter-
action using the tight binding approximation. After that we derived the linear
response functions (density-density and current-current) and used the 
uc-
tuation dissipation theorem to calculate the current-current correlation func-
tion induced by the thermal 
uctuations in the system. Finally we employed
these results to calculate radiative heat transfer between two graphene sheets.
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In Chapter 3 we have investigated plasmons in doped graphene and demon-
strated that they simultaneously enable low-losses and signi�cant wave local-
ization for frequencies of the light smaller than the optical phonon frequency
~!Oph � 0:2 eV. Interband losses via emission of electron-hole pairs (1st order
process) were shown to be blocked by su�ciently increasing the doping level,
which pushes the interband threshold frequency !inter toward higher values
(already experimentally achieved doping levels can push it even up to near
infrared frequencies). The plasmon decay channel via emission of an optical
phonon together with an electron-hole pair (2nd order process) is inactive for
! < !Oph (due to energy conservation), however, for frequencies larger than
!Oph this decay channel is non-negligible. This is particularly important for
large enough doping values when the interband threshold !inter is above !Oph:
in the interval !Oph < ! < !inter the 1st order process is suppressed, but the
phonon decay channel is open.

In Chapter 4 we showed that graphene can also support unusual transverse
electric plasmons and we predicted the existence of TE plasmons in bilayer
graphene. We found that their plasmonic properties are much more pro-
nounced in bilayer than in monolayer graphene, in a sense that the wavelength
of TE plasmons in bilayer can be smaller than in monolayer graphene at the
same frequency.

In Chapter 5 we analyzed the coupling of plasmons with intrinsic optical
phonons in graphene by using the self-consistent linear response formalism.
We found that longitudinal plasmons (LP) couple only to transverse optical
(TO) phonons, while transverse plasmons (TP) couple only to longitudinal
optical (LO) phonons. The LP-TO coupling is stronger for larger concentration
of carriers, in contrast to the TP-LO coupling (which is fairly weak). The
former could be measured via current experimental techniques. Thus, plasmon-
phonon resonance could serve as a magni�er for exploring the electron-phonon
interaction in graphene.

In Chapter 6 we analyzed the near �eld heat transfer between two graphene
sheets mediated by thermally excited plasmon modes, and we demonstrated
that there is a large enhancement of heat transfer compared to the far �eld
black body radiation. Finally we showed that graphene can be used as a
thermal emitter in the thermo-photo-voltaic system resulting in high device
e�ciencies and power densities.
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Appendix A

Plasmon-phonon coupling in the
context of Feynman diagrams

In this appendix we give alternative derivation of plasmon-phonon coupling
in the context of Feynman diagrams. In that respect let us start by writing
Coulomb potential

V (r) =
e2

4��0r
; (A.1)

and its Fourier transform in two dimensions

V (q) =
e2

2�0q
: (A.2)

Bare Coulomb interaction V (q) can polarize electron gas by creating electron-
hole pair which in turn screens the bare interaction resulting with an e�ective
interaction W (q; !). This process can happen several times in a row (see �gure
A.1) so we can write self-consistent equation for the e�ective interaction [66]

[�iW (q; !)] = [�iV (q)] + [�iV (q)] [�i�(q; !)] [�iW (q; !)] : (A.3)

If we now use the Random Phase Approximation which neglects higher order
scattering of the created electron-hole pair, then the polarizability �(q; !),
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Figure A.1: (a) Feynman diagram for bare Coulomb interaction V (q). (b)
Polarizability �(q; !). (c) and (d) Screened Coulomb interaction W (q; !) in
the Random Phase Approximation.

depicted with a Feynman diagram in �gure A.1 (b), can be written as

�i�(q; !) = �4
Z

dkd�
(2�)3

X

n;n0

iG0(n0;k + q; ! + �)iG0(n;k; �)

� hn0k + qjeiqrjnkihnkje�iqrjn0k + qi: (A.4)

Here jnki, i.e. the wave function  nk(r) = hrjnki, denotes single particle free
Dirac electron states (see relation (2.29)) and the Green function G0(n;k; �)
is given by expression [66]

G0(n;k; �) =
1 � fnk

~� � Enk + i�
+

fnk

~� � Enk � i�
; (A.5)

where fnk denotes the Fermi-Dirac distribution. After integration over energy
� we obtain

�(q; !) = 4
Z

dk
(2�)2

X

n;n0

fnk � fn0k+q

~! + Enk � En0k+q

� hn0k + qjeiqrjnkihnkje�iqrjn0k + qi; (A.6)
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and then by using the exact wave function for Dirac electrons  nk(r) = hrjnki,
given in equation (2.29), we obtain the polarizability

�(q; !) = 4
Z

dk
(2�)2

X

n;n0

fnk � fn0k+q

~! + Enk � En0k+q

�
1
2

(1 + nn0 cos[’(k + q) � ’(k)]): (A.7)

Further on, by using relation (A.3) we can write the screened interaction

W (q; !) =
V (q)

1 � �(q; !)V (q)
; (A.8)

where we recognize the expression for dielectric function of electron gas

�(q; !) = 1 � �(q; !)V (q) = 1 �
e2

2�0q
�(q; !): (A.9)

Finally, we note that plasmons are simply de�ned as zeros of the dielectric
function: �(q; !) = 0.

Let us �nd now the phonon Green function for free phonons at zero tem-
perature. Since longitudinal and transverse optical phonons are degenerate at
energy ~!0 = 0:196 eV, then the Green function for both branches is given by

D0
�(q; !) =

2~!0

~!(~! + i�) � (~!0)2 : (A.10)

Now, the electron-phonon interaction was given in equation (2.62)

He�ph = L2
X

q;�

gMq��+
qQq�: (A.11)

The phonon motion can in turn polarize the electron gas which is described by
a self-consistent equation for the phonon Green function renormalization (see
�gure A.2)

[�iD�(q; !)] =
�
�iD0

�(q; !)
�

+
�
�iD0

�(q; !)
�

[�i�e�ph(�;q; !)] [�iD�(q; !)] ;
(A.12)
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so the renormalized Green function is given by an expression:

D�(q; !) =
D0
�(q; !)

1 �D0
�(q; !)�e�ph(�;q; !)

=
2~!0

(~!)2 � (~!0)2 � 2~!0�e�ph(�;q; !)
: (A.13)

Finally, the renormalized phonon frequency is de�ned by a pole of the Green
function

!2 � !2
0 = 2

!0

~
�e�ph(�;q; !): (A.14)

Up to the lowest order, the interaction will create virtual electron-hole pair
(see �gure A.2) which can be described with a polarization function

�i�0
e�ph(�;q; !) = �4g2

Z
dkd�
(2�)3

X

n;n0

iG0(n0;k + q; ! + �)iG0(n;k; �)

� hn0k + qjMq�eiqrjnkihnkjM�
q�e

�iqrjn0k + qi:
(A.15)

We note here that Mq� given by equation (2.61) is two by two matrix so that
polarizability �0

e�ph(�;q; !) isn’t simply proportional to the function �(q; !)
which was obtained in relation to the screened Coulomb interaction (see re-
lation (A.4)). In the context of Feynman diagrams we can say that diagram
vertices are di�erent for the case of Coulomb (electron-electron) interaction
from the case of electron-phonon interaction. Further on, we obtain

�0
e�ph(�;q; !) = 4g2

Z
dk

(2�)2

X

n;n0

fnk � fn0k+q

~! + Enk � En0k+q

� hn0k + qjMq�eiqrjnkihnkjM�
q�e

�iqrjn0k + qi: (A.16)

Let us now take the exact form of the wave function  nk and the matrix
element Mq� according to relations (2.29) and (2.61). We can see that the
polarizability depends on the phonon polarization and we obtain

�0
e�ph(L;q; !) = 4g2

Z
dk

(2�)2

X

n;n0

fnk � fn0k+q

~! + Enk � En0k+q

�
1
2

(1 � nn0 cos[2’(q) � ’(k) � ’(k + q)]); and (A.17)
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Figure A.2: (a) Feynman diagrams for phonon Green function renormalization.
(b) Feynman diagrams for polarizability function. Note that the electron-
electron interaction vertex is di�erent from the electron-phonon vertex.

�0
e�ph(T;q; !) = 4g2

Z
dk

(2�)2

X

n;n0

fnk � fn0k+q

~! + Enk � En0k+q

�
1
2

(1 + nn0 cos[2’(q) � ’(k) � ’(k + q)]): (A.18)

If we now imagine that phonon energy and momentum matches plasmon
energy and momentum, then the electron-phonon interaction will be ampli�ed
through the collective electron response. In that case it won’t be su�cient to
calculate only the polarization of single electron hole pair and we will have
to take into consideration contribution from the in�nite sequence of bubble
diagrams (which are in fact necessary to describe plasmon excitation). The
easiest way to do this is to take the electron-phonon interaction which polarizes
a single electron hole pair and include the possibility that Coulomb interaction
can in turn create another electron hole pair. The in�nite sequence of diagrams
can be included if we work from the start with screened Coulomb interaction
instead of bare interaction and one should take special account of the nature of
diagram vertices considering if the electron hole pair was created by Coulomb
or electron-phonon interaction (see �gure A.2). In that way we obtain the
screened electron-phonon polarizability in the Random Phase Approximation

�e�ph(�;q; !) = �0
e�ph(�;q; !)+�1

e�ph(�;q; !)W (q; !)�2
e�ph(�;q; !): (A.19)

Here W (q; !) = V (q)
1��(q;!)V (q) so we immediately see that if phonon disper-
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sion crosses the plasmon dispersion then the electron-phonon interaction will
be ampli�ed due the collective electron response where we have �(q; !) =
1 � �(q; !)V (q) = 0. That part is in fact responsible for the plasmon phonon
coupling. Finally the polarizability describing the bubble with di�erent ver-
tices is given by

�1
e�ph(�;q; !) = �2

e�ph(�;q; !)� = 4g
Z

dk
(2�)2

X

n;n0

fnk � fn0k+q

~! + Enk � En0k+q

� hn0k + qjMq�eiqrjnkihnkje�iqrjn0k + qi:
(A.20)

If we include here the exact wave function  nk and matrix elements Mq�, we
obtain di�erent expressions depending on the phonon polarization:

�1
e�ph(L;q; !) = 4g

Z
dk

(2�)2

X

n;n0

fnk � fn0k+q

~! + Enk � En0k+q

�
i
2

(n sin[’(q) � ’(k)] + n0 sin[’(q) � ’(k + q)]); and

(A.21)

�1
e�ph(T;q; !) = 4g

Z
dk

(2�)2

X

n;n0

fnk � fn0k+q

~! + Enk � En0k+q

�
i
2

(n cos[’(q) � ’(k)] + n0 cos[’(q) � ’(k + q)]):

(A.22)

Let us �rst analyze interaction with the longitudinal optical phonons. In that
respect let us take expression (A.21) and assume, without the loss of generality,
that ’(q) = 0 i.e. vector q is along x̂ direction. We than obtain

�1
e�ph(L;q; !) = 4g

Z
dk

(2�)2

X

n;n0

fnk � fn0k+q

~! + Enk � En0k+q

�
i
2

(�n sin[’(k)] � n0 sin[’(k + q)]): (A.23)

But the function under the integral sign is odd with respect to re
ection across
the x axis, meaning that the entire integral vanishes i.e. �1

e�ph(L;q; !) = 0.
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In other words we have shown analytically that there is no whatsoever cou-
pling of plasmons and longitudinal optical phonons! Finally, to �nd the cou-
pling of plasmons with transverse optical phonons one only needs to solve self-
consistent set of equations (A.14) and (A.19) which was done numerically and
demonstrated to agree with the results of chapter 5, where we used di�erent
gauge to obtain the same result.
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