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Xenopus laevis was studied in this research. The study was conducted in 2016 on 
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have adjusted to colder temperature conditions in France where they have been introduced 
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1. Introduction 

 

 Biological diversity is the variety of life on Earth including all organisms, species, 

and ecosystems. The importance of biodiversity manifests itself in the interdependence of 

all living organisms and their balanced activity as the key to the health of the whole planet 

(cbd.int). Besides habitat loss, over-exploitation and pollution, one of the main causes of 

biodiversity loss are invasive species (also known as alien species) who replace numerous 

local species and often cause their extinction (Heinrichs et al., 2016; Paul & Kar, 2016; Dias 

et al., 2017). An invasive species of frog, Xenopus laevis which originates from southern 

Africa has been successfully colonizing North America, South America, Asia, and Europe 

in the past few decades (Measey et al., 2012; Ihlow et al., 2016). It is recognized as a major 

threat to local faunas (Measey et al., 2012). Whether the species will manage to colonize 

novel habitat largely depends on their locomotor traits, which are highly dependent on 

temperature of the environment when it comes to ectothermic amphibians (Angiletta et al., 

2002a). Since it is expected that global temperature fluctuations will have a negative impact 

on the ecosystems in the next few decades (Beaumont et al., 2011), it is necessary to 

determine the impacts of temperature change on physiological traits such as locomotor 

performance of this invasive species in order to predict species potential for further 

colonization and spreading. 

 

 Here we study endurance capacity in Xenopus laevis at two different temperatures to 

quantify how locomotor capacity is impacted by temperature. Endurance is particularly 

relevant in the context of this invasive species as its ability to spread and colonize new areas 

will be impacted by its endurance. Furthermore, we test whether differences between sexes 

and populations from the center and the periphery of the invasive range can be detected. 

Previous studies on closely related species (Herrel et al., 2014) have shown that male 

individuals are typically more performant than female individuals for a given body size. As 

such this may also be the case in X. laevis which is known to be sexually dimorphic in body 

size. Finally, as individuals on the invasion front are considered locomotor specialists we 

could expect for them to show narrower temperature~performance breadths than individuals 

from the center of the invasion area. 
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1.1. Biological diversity 

 

 1.1.1. Totality of biological diversity 

 

 

 By Convention on Biological Diversity (cdb.int) biological diversity is the variability 

among living organisms from all sources including inter alia, terrestrial, marine and other 

aquatic ecosystems and the ecological complexes of which they are part; this includes 

diversity within species, between species and of ecosystems. Diversity within species is 

commonly defined as the diversity between alleles, genes and organisms, while diversity 

between species refers to complete amount of all different species. Biodiversity is 

heterogeneously distributed over the planet, with some regions being more rich with 

different organisms (Gaston, 2000; Tittensor et al., 2010). In broader sense than 

biodiversity, natural heritage includes even geology and geomorphology. It is estimated that 

there are over 10 million species on planet Earth and in the oceans, with 1,4 million 

catalogued to date (Mora et al., 2011), with decrease in their number (Dirzo et al., 2014; 

Pimm et al., 2014). Besides contributing to the global ecological balance, organisms 

worldwide are used for food and contribute to the well-being of human race. Consequently, 

a global reduction in the number and abundance of plant and animal species is an 

undesirable phenomenon. 

 

 

 

 1.1.2. Invasive species as a threat to biological diversity 

 

 Threats to biological diversity are numerous and include habitat loss and destruction, 

over-exploitation of species, pollution or contamination of the environment, global climate 

change, alterations in ecosystem composition and invasive alien species (Dirzo et al., 2014; 

Pimm et al., 2014; Heinrichs et al., 2016; Paul & Kar, 2016). Human fluctuations together 

with transport of animals and plants in the recent century have resulted in the introduction 

of non-indigenous species in nearly every country, either with purpose or by accident. By 

direct predation on native species or through competing with them, invasive organisms 
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significantly influence other animals’ survival rates (Ihlow et al., 2016) unquestionably 

creating new interspecies interactions which may lead to extinctions. In order to prevent 

further invasions, the import of non-native species is illegal in many countries. On the other 

hand, eradication of invasive species usually has many types of negative and unwanted 

consequences on native species and ecosystems (Zavaleta et al., 2001) and removing one 

species can lead to significant increase in abundance of other species (Cole & Litton, 2013) 

causing ecological imbalance.  

 

 

1.2. Xenopus laevis  

 

 1.2.1. Characteristics of the species 

 

 "Amphibian" comes from the Greek language (amphi-of both kinds, bios-life), 

referring to the life history of animals generally undergoing metamorphosis from an aquatic 

larval form called tadpoles to a terrestrial air-breathing adult with lungs. Amphibians are 

ectothermic organisms, regulating their body temperature with behavior as they rely on the 

conditions of the environment (Angilletta et al., 2002a; Angilletta et al., 2002b; Herrel & 

Bonneaud, 2012). 

 

 The African clawed frog, Xenopus laevis (Daudin, 1802) is an aquatic frog of the 

Pipidae family, order Anura (Figure 1). The name Xenopus laevis (xeno-strange, pous-foot, 

laevis-smooth) is derived from its very smooth skin and three black claws on their feet. 

Adult individuals are around 10 cm long and have generation time of 2 years. Eggs and 

embryos of this species are key in vitro systems for studies of fundamental aspects of 

developmental, cell and molecular biology today because they are big and simple for 

manipulation (Gurdon, 1996; Collart et al., 2017; Ratzan et al., 2017; Wuest et al., 2017). 

Although recently much has been published on Xenopus laevis (Measey et al., 2012; Ihlow 

et al., 2016; Collart et al., 2017; Wuest et al., 2017), its ecology remains largely unknown 

partially due to animals’ dependence on aquatic environment which makes them hard to 

study. This is predator species which feeds with variety of invertebrates, zoobenthic and 

zooplankton, as well as with small fish (Gurdon 1996; Measey, 1998) making it a major 

threat to indigenous species.  
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Figure 1. Xenopus laevis (flickr.com) 

 

 

1.2.2. Invasion process 

  

 This predator and scavenger is native to Southern Africa, but has become invasive 

world-wide and succeeded to inhabit rivers, lakes and swamps all over the world (Measey et 

al., 2012). Xenopus laevis has been exported from South Africa when discovered by 

Europeans and eventually became one of the most used and studied laboratory animal today.  

 At the beginning of 20th century Xenopus was brought to Europe to be studied as 

every newly found species, soon to be used in medical purposes and later on, their usage has 

spread through numerous scientific areas. Only one injection of urine containing human 

chorionic gonadotropin (pregnancy hormone) induces the laying of eggs in frogs which was 

the quickest and simplest pregnancy test for many years. Consequently, this species had 

been wastly exported to numerous laboratories, first in Europe and North America and later 

worldwide (Gurdon & Hopwood, 2000). Colonies of this species were initially established 

for pregnancy testing but were later used for studies in experimental medicine and many 

fields of biology including embryology, neurobiology, and genetics (Horn, 2004). Over the 

years, individuals have escaped from laboratories and with the development of new 
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pregnancy tests many were deliberately released (Measey & Tinsley, 1998). Since then this 

species has become an invasive and can be considered a threat to other species in an 

ecosystem (Mack et al., 2000). 

 

 

1.3. Impact of temperature on animals’ physiological traits 

 

 Predicted increases in global temperature, as well as direct anthropogenic impacts 

such as deforestation, will most probably increase the vulnerability of ecoregions in the next 

decades (Beaumont et al., 2011). Thus, it is relevant to determine the effect of temperature 

on animal’s locomotor capacity. Moreover, the thermal characteristics of environment 

determine thermal performance breadth; temperature range within an individual can perform 

80% or more of their maximal performance. Depending on whether they perform at narrow 

or wide temperature ranges, organisms may be classified as thermal specialists or 

generalists (Huey & Herz, 1984; Angilletta et al., 2002b). Species that are not often 

confronted with temperature fluctuations have most often evolved narrow thermal 

performance breadths, as a wide thermal range of performance demands a greater amount of 

energy due to the production of multiple enzymes included at different temperatures (Van 

Damme et al., 1991; Angilletta et al., 2003).  Otherwise, widening the temperature range 

where an organism maintains its one function at maximum is often accompanied by trade-

offs with other physiological traits (Starostova et al., 2003).  

 

 All physiological processes in amphibians are highly dependent on environmental 

temperature (Huey et Hertz, 1984; Navas et al., 2008; Angilletta et al., 2002a; Angiletta et 

al., 2012). The introduction of species to new environments thus confronts them with novel 

climatic conditions. However, the spread of an introduced population depends highly on 

locomotion possibilities which are influenced by temperature (Navas et al., 2008; Herrel et 

al., 2012). Probably invasive species introduced into novel environments could be able to 

either rapidly adapt to new temperature regimes or show significant phenotypic plasticity 

allowing them to perform well over a wide range of temperatures.  
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 On the other hand, phenotypic plasticity is induced by both biotic and abiotic factors. 

For example, presence of predators in frog tadpoles (Miner et al., 2005) result with growth 

of longer tails and smaller body sizes. The result is slower growth rate as they invest less in 

foraging (Miner et al., 2005). Phenotypic plasticity can also be induced by variation in 

temperature through impact on organisms in early stages of development, and can be 

divided into two categories: developmental plasticity that occurs during the gametic or 

embryonic development, and reversible plasticity, also called acclimation, induced in 

juvenile or mature organisms. Both are linked, however, as acclimation capacity may be 

altered by conditions which occur during early development (Beaman et al., 2016).  
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1.4. Aims 

 

The aims of this research are: 

 

1. Compare locomotor performance of Xenopus laevis generally at 18 and 23 °C. 

 

2. Determine the effect of population origin (center and periphery of invaded area), 

body mass and sex on performance at lower temperature (average 18 °C). 

 

3. Determine the effect of population origin (center and periphery of invaded area), 

body mass and sex on performance at higher temperature (average 23 °C). 
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2. Study area 

 

 This research was conducted on individuals from the territory in northwestern France 

(Figure 2). Part of the invaded territory belongs to regional natural park Loire-Anjou-

Touraine, protected by UNESCO since 2000 and characterized by extremely rich natural 

heritage such as forest, grasslands, limestone steppes, agricultural fields and finally river 

Loire and its affluents. Invaded territory includes urban areas of Doue-la-Fontaine, Saumur 

and Thouars, so as rivers Loire, Layon, Argenton, Thouet and Dive, all inhabited by 

numerous flora and fauna. 

 

  

Figure 2. Map showing the localities of the populations of Xenopus laevis in the northwest 

of France that were used in the present study. 
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3. Materials and methods 

 

3.1. Experimental set up  

 

 Xenopus laevis individuals studied in this research project were captured in France in 

2015 in ponds and bodies of standing water within their current range using fykes. 

Individuals were taken from the center of their invasive range, as well as from the periphery 

in order to study characteristics and potential divergence of two populations living in 

different environmental conditions.  

  

 Individual specimens were housed at the Function and Evolution (FUNEVOL) 

laboratory at the Muséum National d’Histoire Naturelle in Paris, France. In the laboratory 

animals were kept in aquariums at temperature of 24 °C, a temperature similar to the water 

temperature in the animal’s natural habitat. Frogs were housed up to 10 individuals in 50 

litre aquariums and fed twice a week with beef heart and earthworms. Each individual was 

pit-tagged (Nonatec, Lutonic International, Rodange, Luxembourg) allowing them to be 

unambiguously identified. There were 82 individuals in total (Table 1) which variate in 

weight from 8 to 112 grams.  

 

Table 1. Numeric distribution of center, periphery, male and female individuals tested. 

  Number of individuals 

Sex f 39 

m 43 

Origin center 34 

periphery 48 

 

3.2. Measurements 

 

 Before the onset of each trial, every individual was identified and placed in a box 

with water in an incubator set at the target temperature. Two conditions were chosen, 7 °C 

and 26 °C. Animals were left in the incubator for 2 to 3 hours in order for them to reach the 

target temperature. However, at the end of the performance trials the body temperature of 
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the animals changed to 18 °C and 23 °C respectively. Animals were chased manually until 

fatigued in a 3 meter long circular track (Figure 3). Frogs were considered to be fatigued 

when unable to turn over after having been placed on their back. The total distance which 

they jumped and the time passed were then recorded as an estimate of the animal's maximal 

endurance capacity. We measured the body temperature and weight of each animal after 

each performance trial after which animals were returned to their aquarium and left to rest 

one week before another trial. For each temperature three trials were done for each 

individual. Room temperature was around 21 °C. 

 

 

 

  

Figure 3. Circular track with distance marks used to measure stamina. 
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3.3. Data processing and analysis 

 

 We used log10-transformed data for all analyses. Data was first tested for correlation 

between time and distance using a Pearson correlation coefficient. Several outliers were 

detected based on the time versus distance plot and removed from the subsequent analysis. 

First, we ran a repeated measures ANOVA to compare performance at low and high (18 °C 

and 23 °C) body temperature. Given that the results were significant, they were then 

separately analysed for low and high temperature.  

 

 MANCOVAs were subsequently run to test for differences between sexes and 

populations in endurance capacity. For performance at low temperature we first ran full 

factorial models that included population and sex as factors and body weight and 

temperature as co-variables. Non-significant effects (population: Wilks' lambda = 0.99; 

F2,76= 0.57; P = 0.57; population x sex: Wilks' lambda = 0,95, F2,76 = 1.95, P = 0.15; 

temperature: Wilks' lambda = 0,96; F2,75 =1,64; P = 0,20) and interactions were removed 

from the final model which retained only sex as main factor and body weight as a co-

variable. For performance at high temperature we ran a similar model and detected a 

significant sex / population interaction effect (Wilks' lambda = 0.89, F2,76 = 4,54, P = 

0,014). Thus, analyses (MANCOVA) testing for differences between populations were run 

for both sexes separately. In each case subsequent ANCOVA's were run to test which 

variables differed between sexes and populations. All analyses were performed in SPSS v. 

15. 0. (IBM, Armonk, NY, USA). 
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4. Results 

 

4.1. General comparison of 18 and 23 °C 

  

 Animals were chased manually until fatigued in a 3 meter long circular track. The 

mean time and mean distance jumped before exhaustion were higher and longer at low 

temperature (18 °C) than at high temperature (23 °C). Individuals of both origins (center 

versus periphery) and sexes have a better overall performance for time and distance at 18 °C 

than at 23 °C (Table 2).  

  

 

Table 2. General comparison of frogs’ jumping time and distance for lowest and highest 

trial temperatures. 

Dependent variable Mean value ± S.D. 

Max. Time Lowest Temperature (s) 373.89 ± 69.37 

Max. Time Highest Temperature (s) 218.43 ± 67.7 

Max. Distance Lowest Temperature (cm) 3641.83 ± 764.63 

Max. Distance Highest Temperature (cm) 3277.8 ± 786.02 

 

 

 

4.2. Performance at lower temperature (average 18 °C) 

 

 Both sex and body mass impacted the performance of X. laevis at low temperature 

(Table 3). The effect of population was not significant, however. 

The variable of animal body mass affects time that the individuals are capable of 

performing more than it affects the distance they manage to cover. In contrast, the sex of the 

individuals has a larger impact on the distance jumped compared to the time (Table 3). At 

18 °C male individuals performed better than female individuals. (Table 3). 
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Table 3. Tests for lowest trial temperatures of Xenopus laevis jumping performance. 

Multivariate tests for males and females at 18 °C. 

 Wilks’ λ F d.f. P 

Weight 0.918 3.473 2,78 0.036 

Sex 0.909 3.908 2,78 0.024 

 Tests of between-subject effects for males and females performing at 18 °C. 

 Dependent 

variable 

F d.f. P 

 

Weight 

Time 5.488 1,79 0.022 

Distance 5.050 1,79 0.027 

 

Sex 

Time 5.711 1,79 0.019 

Distance 6.149 1,79 0.015 

Comparison of males and females at 18 °C. 

Dependent variable Sex Mean value ± S.D. 

Time (s) female 362.64 ± 70.38  

 male 384.09 ± 67.63 

Distance (cm) female 3509.74 ± 849.68 

 male 3761.63 ± 665.93 

d.f.: degrees of freedom. 
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4.3. Performance at higher temperature (average 23 °C) 

 

 Sex and population origin (center or periphery) both affected individual performance 

and showed a significant interaction effect, as well as the variation in temperature during the 

measurement (Table 4). Effects of body size were, however not significant. 

 

 

4.3.1. Male performance 

 

 For males, the only variable that affected performance was the variation in body 

temperature at the end of the run. This specifically impacted the distance jumped to 

exhaustion. (Table 4). No differences between center and periphery populations were 

observed, however (Table 4). 

 

 

4.3.2. Female performance 

 

 Female X. laevis showed significant differences between center and periphery 

populations. Moreover, the temperature at the end of the measurement also significantly 

impacted performance. The origin of the population had the biggest impact on the 

endurance time. The effect of temperature, however, was only noticeable as a global effect 

(Table 4). Females from the periphery show better locomotor performance in terms of the 

time spent moving until exhaustion compared to individuals from the center of invaded area 

(Table 4). 
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Table 4. Tests for highest trial temperatures of Xenopus laevis jumping performance. 

Multivariate tests for male and female populations at 23 °C. 

 Wilks’ λ F d.f. P 

Highest Temperature 0.830 7.763 2,76 0.001 

Sex*Origin 0.893 4.539 2,76 0.014 

Sex 0.942 2.345 2,76 0.103 

Origin 0.956 1.739 2,76 0.183 

Multivariate tests for males performing at 23 °C. 

 Wilks’ λ F d.f. P 

Temperature at end of 

experiment 

0.856 3.282 2,39 0.048 

Tests of between-subject effects for center and periphery male populations at 23 °C. 

 Dependent variable F d.f. P 

Highest Temperature Distance (cm) 4.286 1,40 0.045 

Time (s) 0.006 1,40 0.940 

Comparison of center and periphery male populations at 23°C; mean values for time and distance. 

 Origin Mean value ± S.D. 

Distance (cm) Center 3312.14 ± 807.48 

Periphery 3416.2 ± 763.87 

Time (s) Center 231.93 ± 64.41 

Periphery 230.66 ± 70.26 

 

Multivariate tests for females at 23°C. 

 Wilks’ λ F d.f. P 

Temperature at end of trial 0.704 7.368 2,35 0.002 

Population origin 0.721 6.775 2,35 0.003 

Tests of between-subject effects for center and periphery female populations performing at 23 °C. 

 Dependent variable F d.f. P 

Temperature at end of trial Distance (cm) 0.778 1,36 0.384 

Time (s) 1.472 1,36 0.233 

 

Origin 

Distance (cm) 1.728 1,36 0.197 

Time (s) 8.624 1,36 0.006 

Comparison of center and periphery female populations at 23°C; mean values for time and distance. 

 Origin Mean value ± S.D. 

Distance (cm) Center 3012 ± 718.85 

Periphery 3321.05 ± 862.52 

Time (s) 

 

 

Center 176.15 ± 41.3 

Periphery 234.32 ± 74.25 

d.f.: degrees of freedom. 
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5. Discussion 

 

 The locomotor physiology of amphibians is highly sensitive to temperature (Huey & 

Hertz, 1984; Angiletta et al., 2002b). This is also the case for Xenopus laevis where 

temperature is an abiotic factor modifying an individual's endurance capacity. Despite the 

effect of temperature on performance, the strong correlations observed between 

measurements at the two temperatures (18 °C and 23 °C) indicate that performance is 

repeatable across temperatures. Indeed, an animal that is a good performer will generally 

perform well despite variation in temperature.  

 

 Although Xenopus laevis originates from South Africa which is characterized by a 

warm climate, its overall performance was higher at 18 °C compared to 23 °C for the 

invasive population of France. This suggests that individuals have been thermally adapted to 

colder environment in which they have been introduced. According to that, animals which 

have been living and breeding in France for over 30 years, are able to adapt to new 

environment over several generations (Measey et al., 2012).  

 

 Peterson et al. (1993) and Witters & Sievert (2001) reported ‘the presence of multiple 

optima’ in some ectotherms, implying that animals select certain temperatures for 

optimizing some function. For example, many species will choose higher body temperatures 

during digesting or gestating (Van Damme et al., 1991). Adjusting to novel temperature 

may involve a widening of performance breadth (Angiletta et al., 2002b). If so, then this 

may come at the cost of a reduction of absolute performance according to the 'jack of all 

trades master of none' hypothesis (Huey, 1984).  

  

 Interestingly, at 18 °C small variations in temperature do not affect the performance 

of the animals suggesting that animals may be performing close to the optimal body 

temperature for locomotion for this species. The wide distribution range of Xenopus laevis 

is certainly facilitated by phenotypic plasticity, but its possible extent remains unknown. In 

the beginning of the invasion, a reversible phenotypic plasticity most probably allows 

animals to establish and survive under new environmental conditions. After several 

generations long-term thermal adaptation might have occurred, resulting that new 
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generations have better locomotor performance at lower temperatures, as suggested by our 

results.  

 

 Sexes were consistently different in locomotor performance. Previous studies have 

shown that this is the due to the relatively longer limbs in males (Herrel et al., 2014). 

Indeed, longer legs allow for a longer acceleration time and thus a higher take-off velocity 

and longer jump distance (Alexander, 2003; Toro et al., 2004; James et al., 2007). Our 

results match those from the study on the closely related species Xenopus tropicalis (Herrel 

et al., 2014). However, in X. tropicalis optimal performance for endurance was shifted 

towards slightly higher temperatures, what is consistent with the tropical nature and habitat 

of this species.    

 

 At 23 °C males outperformed females. When in undesirable conditions, females 

probably reduce certain performances as they generally have to invest more energy in 

reproductive output (Shine, 1979). Consequently, they pay the cost of keeping their 

reproduction level elevated. Interestingly and surprisingly, body mass impacted temperature 

only at higher temperature. This again suggests that at near-optimal temperature (18°C) 

animals are less susceptible to variation in body weight and in overall may be able to 

optimize their performance. These results demonstrate the complexity of how temperature 

affects the physiological processes in ectotherms.  

 

 Also, differences between animals from the center and the periphery populations 

were only observed at higher temperature. However, as the population from the center of the 

range has been maintained at the same temperature (23-24 °C) for over 1 year they may 

have acclimated to this temperature. However, in that case they would show higher, not 

lower performance at the acclimation temperature relative to animals from the periphery, 

which is not what was observed here.  

  

 Individuals from periphery represent the migration front and are first to colonize new 

environments. Therefore, they may be encountering variations in the environment which 

may induce phenotypic plasticity in their response to temperature as well as other traits. On 

the other hand, population from the center remains at the same place and experiences more 



23 

 

stable conditions and may effectively adapt and specialize, losing some of its plasticity and 

narrowing its temperature performance breadth. Why, however only females show this 

pattern remains unclear. One of the possible explanations is that as the cost of reproductive 

investment in females is high and they may not be able to shift their physiological 

parameters. Despite the interesting initial results from our study, additional experiments at 

different temperatures are needed to establish a full temperature~performance curve for 

individuals from the two environmentally different populations. Moreover, testing the 

ability of the individuals from the two populations to acclimation would be worth 

investigating.  
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6. Conclusion 

 

 

 This study showed significant differences in locomotor performance in sexes, as well 

as between central and peripheral populations of Xenopus laevis. These results indicate that, 

like in other invasive species, individuals with improved locomotion are situated on the 

periphery of the habitat. Although the individuals are sensitive to temperature change, this 

study suggests that further invasion of species will not be disrupted due to their capability to 

adapt to new temperature regimes.  

 Whereas our results are restricted to only one physiological trait in adult individuals, 

they demonstrate the complexity of how temperature affects the physiological processes of 

this species.  

 Our data note differences in locomotor performance only for higher temperature 

amongst females, indicating that lower tested temperature might be thermal optima for 

locomotion of this species.  

 Whether these differences imply the possibility of trade-offs with other traits such as 

reproductive investment, needs to be tested, however.  
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