
Machine learning in solid-state physics and statistical
physics

Vrček, Lovro

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:394430

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-31

Repository / Repozitorij:

Repository of the Faculty of Science - University of
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:394430
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:4667
https://repozitorij.unizg.hr/islandora/object/pmf:4667
https://dabar.srce.hr/islandora/object/pmf:4667

UNIVERSITY OF ZAGREB
FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

Lovro Vrček

Machine learning in solid-state physics and
statistical physics

Master Thesis

Zagreb, 2018.

SVEUČILIŠTE U ZAGREBU
PRIRODOSLOVNO-MATEMATIČKI FAKULTET

FIZIČKI ODSJEK

Lovro Vrček

Strojno učenje u fizici čvrstog stanja i statističkoj
fizici

Diplomski rad

Zagreb, 2018.

UNIVERSITY OF ZAGREB
FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

INTEGRATED UNDERGRADUATE AND GRADUATE UNIVERSITY

PROGRAMME IN PHYSICS

Lovro Vrček

Master Thesis

Machine learning in solid-state
physics and statistical physics

Advisor: Vinko Zlatić, dr. sc.

Co-Advisor: Ivo Batistić, prof. dr. sc.

Master Thesis grade:

Committee: 1.

2.

3.

Master Thesis defence date:

Zagreb, 2018.

I would like to express special appreciation and thanks to Dr. Ivor

Lončarić on guidance through this project and hours spent dis-

cussing all the problems we have encountered and ideas to over-

come these problems.

Also, I would like to thank Dr. Vinko Zlatić for his expert advice

and encouragement throughout the project, as well as Dr. Predrag

Lazić on help regarding parallel computing.

Furthermore, I would like to thank Dr. J.I. Juaristi and Dr. M.

Alducin for providing the data used in this project.

Finally, I would like to thank all my family and friends, espe-

cially my parents Vesna and Neven, brother Janko, and girlfriend

Kristin, for all the support throughout the years.

Strojno učenje u fizici čvrstog stanja i statističkoj
fizici

Sažetak

U ovom radu proučavamo alternativni pristup simuliranju molekularne dinamike

velikih sustava preko dugih vremenskih perioda; korištenje strojnog učenja umjesto

DFT-a. Proučavani sustav sastoji se od površine rutenija koja med̄udjeluje s atomima

vodika. Za konstruiranje regresijskog modela koristimo neuronske mreže te treni-

ramo nekoliko različitih arhitektura mreža kako bismo našli optimalnu. Kao ulaz

koristimo Gaussove deskriptore koji kartezijeve koordinate atoma pretvore u oblik

pogodniji za opis sustava. U ovom slučaju, postoji 20 deskriptora za svaku vrstu

atoma, što znači da u ulaznom sloju neuronske mreže imamo 40 čvorova. Pokazano

je da optimalna arhitektura neuronske mreže sadrži tri skrivena sloja, od kojih prvi

ima 50 čvorova, drugi 30, a treći 10. Osim toga, pokazano je kako se taj regresi-

jski model ponaša ovisno o broju koraka prilikom treniranja, analizirana je važnost

korištenih deskriptora te je proučeno ponašanje modela u slučaju korištenja Zernike

deskriptora umjesto Gaussovih, ili mijenjanja polumjera obuhvaćanja atoma.

Ključne riječi: DFT, molekularna dinamika, neuronske mreže, deskriptori

Machine learning in solid-state physics and
statistical physics

Abstract

In this work, we study an alternative approach to simulating molecular dynam-

ics of large systems over long time periods; the one using machine learning instead

of DFT. Studied system is a ruthenium surface which is interacting with hydrogen

atoms. We use neural networks to obtain the regression model for the studied sys-

tem, and train several different architectures of neural networks in order to find the

optimal one. For input we use Gaussian descriptors which take Cartesian coordinates

of the atoms and translate them in a more suitable form. In this case, there are 20

descriptors for each type of atoms, meaning that input layer of neural network has

in total 40 nodes. Optimal architecture was found to be the one with three hidden

layers with 50, 30, and 10 nodes, respectively. It was shown how our regression

model behaves depending on number of training steps, importance of used descrip-

tors was analyzed, and it was shown how model behaves if Zernike descriptors are

used instead of Gaussian, or if cutoff radius is altered.

Keywords: DFT, molecular dynamics, neural networks, descriptors

Contents

1 Introduction 1

2 Machine learning 6

2.1 Types of machine learning . 6

2.2 Artificial neural networks . 8

2.2.1 Structure of neural networks 9

2.2.2 Learning algorithms . 9

3 Applying machine learning to physics 12

3.1 Descriptors . 13

4 Data and software used 18

4.1 Data . 18

4.2 Software . 20

4.2.1 Atomic Simulation Environment 20

4.2.2 Atomistic Machine-learning Package 20

5 Results 22

5.1 Finding the optimal neural network . 22

5.2 Analyzing the optimal configuration 28

5.3 Alternative approaches . 31

6 Conclusion 34

7 Prošireni sažetak 36

7.1 Uvod . 36

7.2 Strojno učenje i primjena u fizici . 37

7.3 Korišteni podaci i paketi . 39

7.4 Rezultati . 40

7.5 Zaključak . 41

Bibliography 42

1 Introduction

In recent years, we have witnessed the fast development of artificial intelligence and

impact it has on our everyday lives. With each day we more and more often hear

about data science that needs machine learning methods to analyze huge datasets,

self-driving cars, optical character recognition and many other aspects of modern

world. All these problems are undergoing intense study in computer science re-

search and regularly produce some new discoveries that could help not only in the

mentioned problems, but also in many other branches of science.

Meanwhile, molecular dynamics is an important field of research in physics and

chemistry with many applications in material science, biology and medicine. For

example, molecular dynamics is used for simulating the growth of thin films [1], re-

fining structures of proteins and computer-assisted drug design [2]. Systems that are

studied typically consist of large number of atoms for which it is impossible to use

accurate quantum-mechanical methods and usually semi-empirical force fields are

used.

Transition metals are particularly hard to model accurately in this way, but on

the other hand, they are some of the most common elements researched in physics

and chemistry, and will also be topic of this work. As defined by IUPAC, transition

metals are "elements whose atom has partially filled d sub-shell, or which can give rise

to cations with an incomplete d sub-shell", [3]. Most of these elements have large

range of complex ions in various oxidation states and catalytic properties either as

the elements or as ions. Although some of them, such as platinum and ruthenium,

are mostly inert, they are extremely important as catalysts for the industrially and

ecologically most important reactions.

A simple theory that describes some of the properties of metals is Drude-Sommerfeld

model in which electron-electron interaction and periodic potential of the lattice are

neglected. This means that electrons in the metal move as in infinite potential well.

1

In such case, result of solving Schrödinger equation are plane waves

ψ~k(~r) ∝ ei
~k~r, (1.1)

with energies

E~k =
~2~k2

2me

, (1.2)

where ~r is a position vector, ~k is wave vector, ~ is Planck’s constant and me is mass of

electron. Here we have used periodic Born-von Karman boundary conditions

ψ~k(~r +Ni~ai) = ψ~k(~r), (1.3)

where ~ai is a unit vector describing the lattice and Ni is number of unit cells in the

direction of ~ai. These boundary constraints allow only quantized wave numbers,

meaning that

~k = α1
~b1 + α2

~b2 + α3
~b3, (1.4)

αi =
ni
Ni

, ni = 0,±1,±2, ... (1.5)

where ~b are unit vectors in reciprocal space.

However, even though Drude-Sommerfeld model can give us basic understanding

of metals, most of the properties still remain unexplained. The reason for that is

electronic structure of the material is not taken into account. More importantly, this

model can’t treat molecules, covalent bonds, etc. While there is still no computation-

ally cheap universal method for calculating the electronic structure for all possible

materials, the density functional theory (DFT) is applicable for most systems and is

widely used today as its computational cost is modest. DFT is a computational quan-

tum mechanical modeling method used in physics, chemistry and material science

which provides us the ground state properties of the system. The foundation of the

theory of electronic structure of matter is non-relativistic Schrödinger equation for

the many-electron wavefunction Ψ. If Born-Oppenheimer approximation is applied,

heavy nuclei are fixed in space while electrons are free to move, and this yields the

2

many-electron time-independent Schrödinger equation [4]:

ĤΨ =

(
− ~2

2me

∑
j

∇2
j −

∑
j,l

Zle
2

|~rj − ~Rl|
+

1

2

∑
j 6=j′

e2

|~rj − ~rj′|

)
= EΨ, (1.6)

where Ĥ is the Hamiltonian, ~rj are positions of electrons, ~Rl and Zl are positions

and atomic numbers of the nuclei, e is elementary charge and is the total E is energy

of the system. First term in equation (1.6) is kinetic energy T̂ , second term is the

potential energy from the external field due to positively charged nuclei V̂ , and the

last one is the electron-electron interaction energy Û . It is easy to see that, for any

larger number of particles, solving equation (1.6) is a troublesome task. Luckily, DFT

gives us a way around. Crucial fact for DFT is that many physical properties, like

electron density n(~r), depend only on ~r, whereas Ψ depends on ~r1, ~r2, ... ~rn. For

normalized wave function, electron density which plays a key role in DFT is obtained

by tracing over all other variables:

n(~r) = N

∫
d3r2 . . .

∫
d3rNΨ∗(~r, ~r2, . . . , ~rN)Ψ(~r, ~r2, . . . , ~rN). (1.7)

The Hohenberg-Kohn theorems state that the total energy is a unique functional

of the electron density, and that the functional that delivers the ground state energy

of the system gives the lowest energy if and only if the input density is true ground

state density n0 [5]. With this in mind, and by knowing n0, it is possible to calculate

ground-state expectation of any other observable Ô:

O[n0] =
〈

Ψ[n0]
∣∣∣Ô∣∣∣Ψ[n0]

〉
. (1.8)

In particular, for total energy that would mean:

E0 = E[n0] =
〈

Ψ[n0]
∣∣∣T̂ + V̂ + Û

∣∣∣Ψ[n0]
〉
, (1.9)

where the contribution of the external potential
〈

Ψ
∣∣∣V̂ ∣∣∣Ψ〉 , in case of more general

density function, can be written as:

V [n] =

∫
V (~r)n(~r)d3r. (1.10)

3

The functional V [n] differs from system to system, while T [n] and U [n] are universal.

For a specified system, we have to minimize the functional

E[n] = T [n] + U [n] +

∫
V (~r)n(~r)d3r (1.11)

with respect to n(~r), which will yield ground-state electron density n0, from which we

can obtain all other ground-state observables. Problem of minimizing the functional

in (1.11), first we consider an energy functional that does not explicitly have an

electron-electron interaction term:

Es[n] =
〈

Ψs[n]
∣∣∣T̂ + V̂s

∣∣∣Ψs[n]
〉
, (1.12)

where V̂s is an external effective potential in which the particles are moving so that

ns(~r) = n(~r). After that, we solve the Kohn-Sham equation [6]:

[
− ~2

2m
∇2 + Vs(~r)

]
φi(~r) = εiφi(~r), (1.13)

where φi are orbitals and εi their corresponding energies. From solving this equation

we obtain the orbitals φi that reproduce the density of the original many-body system,

n(~r):

n(~r) = ns(~r) =
N∑
i

|φi(~r)|2. (1.14)

Since the first appearance of the DFT in 1964 [5], there have been many improve-

ments of the method, such as in [7], but it still faces difficulties while describing

intermolecular interactions, which is why improving the DFT is still an active re-

search topic.

In this work, we will show how machine learning methods can be used in statis-

tical and solid-state physics, and compare accuracy, speed and adaptability of these

methods with some other frequently used techniques, such as DFT. Specifically, we

will study the system consisting of hydrogen atoms which are interacting with a slab

of ruthenium. Ruthenium is an element with symbol Ru and atomic number 44, be-

longing to the group 8 and period 5 of the periodic table. It is a transition metal

belonging to the platinum group of the periodic table of elements, and is inert to

4

most other chemicals. Commercially, it is obtained from a sulfide of nickel and iron

called pentlandite, and is unaffected by air, acids and water. However, it does react

with molten alkali and halogen, oxidizes explosively and is suspected to be carcino-

gen. So far, it has found its application in electronic industry for manufacturing chip

resistors and in chemical industry for use as anodes for chlorine production in elec-

trochemical cells [8].

The reason for focusing on ruthenium is that it is one of the most important

catalysts in the Fischer-Tropsch process. Fischer-Tropsch process is a collection of

chemical reactions for making hydrocarbon fuels from carbon monoxide and hydro-

gen. The process was first introduced in 1933. by Franz Fischer and Hans Tropsch

and used by Germany in World War II. to produce replacement motor fuel [9]. It

is important in coal liquefaction, gas-to-liquids technology and many other chemical

processes aimed at producing compounds based on hydrocarbon chains [10], and

could potentially be used for obtaining low-sulfur diesel fuel [11]. Fischer-Tropsch

process occurs only in the presence of a certain metal catalysts, most common being

ruthenium, cobalt and iron. Advantage of ruthenium over other catalysts is that it

is the most active catalyst and works at the lowest temperatures. It acts as a pure

metal providing the simplest catalytic system of Fischer-Tropsch synthesis, but also

produces the hydrocarbons of highest molecular weight. However, industrial ap-

plications of ruthenium are limited by its low world resources and, hence, its high

price [12].

Since the aim of this work is to not just study static systems using machine learn-

ing, but to also apply it to molecular dynamics, it is important to note that tempera-

ture of this system would no longer be zero, as is the case of the static system. This

means it is possible to study the system in microcanonical or canonical ensemble,

and calculate its thermal properties, such as entropy and Gibbs energy, which are

computationally difficult to obtain using DFT.

5

2 Machine learning

Machine learning is a field of computer science that uses statistical techniques to give

computers the ability to learn with data, without being explicitly programmed [13].

It evolved from the study of pattern recognition and computational learning the-

ory, and explores the study and construction of algorithms that overcome follow-

ing strictly static program instructions by making data-driven predictions or deci-

sions [14]. With this ability it has become crucial in many aspects of everyday life,

such as web-page ranking and email filtering, but also in some state-of the art re-

search fields, like computer vision [15] and speech recognition [16]. These tasks

can usually be divided into three categories, which will be explained in the following

subsection.

2.1 Types of machine learning

First type that will be discussed here is supervised learning, and it is used to learn a

model from labeled training data that allows us to make predictions about unseen

or future data [17]. The term supervised refers to a set of samples where the de-

sired output signals are already known. Therefore, in supervised learning we first

create and train a predictive model using machine learning algorithms and already

labeled data, after which we put new, unlabeled data into the model and obtain the

prediction. This can be performed using data with discrete class labels and continu-

ous labels, in which case these subcategories are called classification and regression

respectively. For example, predicting whether an email is spam or non-spam is a clas-

sification problem, whereas predicting the price of a house based on its size in square

meters is a regression problem [18].

Next type is unsupervised learning, in which we are dealing with unlabeled data or

data of unknown structure. In other words, output data is not provided and goal of

algorithms of this type is to find regularities in the input [17]. Often there is a struc-

ture to the input space such that certain patterns occur more frequently than others,

enables us to extract meaningful information from the input only. Most widely used

technique for this is clustering, an exploratory data analysis technique that allows us

to organize a pile of information into meaningful subgroups called clusters without

6

having any prior knowledge of their group membership. Companies often use this

method to profile their customers when only data available is past transactions of

those customers. This allows them to decide which strategy to use on different types

of customers.

Last type that will be discussed here is reinforcement learning. It is used in sys-

tems where output is a sequence of actions. In such case, a single action is not

important, the only thing important is that sequence of correct actions reach the

goal [17]. Therefore, when the system is in some intermediate state, there is not

the best possible action. All those actions that lead to the goal are considered good,

and a reinforcement learning algorithm assesses the goodness of policies from past

good actions which helps it create a strategy to reach the goal. A popular example

of reinforced learning is a chess engine, where the algorithm decides upon a series

of possible moves depending on the state of the board and tries to win the game

of chess. If it succeeds, the algorithm receives the reward and marks the moves as

"good". If some move leads to losing the game, it will be marked as "bad" and will

not be repeated. Some games are more complex, in which case reward system might

also be more complex than just win or lose, but information about the current state

will still include a reward signal [18]. This is the reason why reinforcement learning

is sometimes considered as a subfield of supervised learning. However, in reinforce-

ment learning, reward signal of the current state is not some ground truth label or

value, but a measure of how well the action was measured by a reward function, and

due to this we have observed reinforcement learning separately.

In the following section we will focus ourselves on one of the most common and

most powerful computing systems in machine learning - artificial neural networks.

Although they can be used for solving all three machine learning problems, they are

mostly used for supervised learning, and in this work we have used them for the

same purpose.

7

2.2 Artificial neural networks

Artificial neural networks are computing systems inspired by the biological neural

networks found in brains of humans and animals [19]. Such systems can learn to

perform tasks by considering examples of that task, but without any strict algorithm

telling them what to do. For example, neural networks can tell if there is dog on

some picture just by looking at other pictures of dogs, without specifying what dogs

look like or in what way they differ from cats. That is, artificial neural networks

can solve problems that would be much more difficult with conventional computing

techniques, and for that they use the same method that human brain uses at young

age: learning solely from experience. More formal definition of a neural network

would be, [20]:

"A neural network is a massively parallel distributed processor made up of simple pro-

cessing units, which has a natural propensity for storing experiantial knowledge and

making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning

process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge."

Figure 2.1: A model of a nonlinear artificial neuron. Source: [20].

8

2.2.1 Structure of neural networks

Artificial neural network is structured as a collection of connected artificial neurons,

often called nodes. Artificial neurons are mathematical functions which receive one

or more input, each input is separately weighted and then all inputs are summed

and passed through a non-linear activation function which produces an output of ar-

tificial neuron. The activation function is usually monotonic, increasing, continuous

differentiable and bounded. In most cases, activation function imitates a Heaviside

step function which is 0 for all x < 0 and 1 otherwise. Hence, two most widely used

activation functions are hyperbolic tangent and sigmoid function, defined as:

σ(x) =
1

1 + e−x
, (2.1)

but sometimes other functions, such as Gaussian, can also be used.

In most cases, artificial neural networks are aggregated into layers of neurons.

The first layer, called input layer, receives "raw" data as input. Output of the neural

network is produces in the output layer, which can emit either a single value or

an output vector with multiple values. Between these two, there can be one or

more hidden layers. In the most simple case of neural networks, a feedforward

neural network, connections between neurons do not form a cycle and all values are

propagated in only one direction, from the input nodes through the hidden nodes to

the output nodes. Each of these neurons performs a series of operation explained

in the previous paragraph and sends output either to another neuron or emits it as

output of a whole neural network. Except feedforward, there are many other types

of neural networks such as recurrent which have cycles between nodes and modular

neural networks consisting of series of independent neural networks moderated by

some intermediary. Those types of neural networks are not important for this work,

and will not be analyzed here.

2.2.2 Learning algorithms

Specifying number of hidden layers and number of nodes (neurons) per layer is not

enough for a neural network to work. We still have to find out which weights should

be when sending a signal between two neurons. In other words, we have to apply

9

Figure 2.2: A feedforward artificial neural network with one hidden layer. Circles
represent neurons and arrows represent connection between neurons. Source: [21].

learning algorithm to train the neural network .

Most popular learning algorithm is gradient descent, a first-order iterative opti-

mization algorithm for finding the minimum of a function. In each iteration of the

algorithm we take a step proportional to the negative of the function’s gradient,

which lets us approach the local minimum. The function we want to minimize is the

cost function which describes the error of the fitting model. There are many types of

cost functions, but the most popular one is mean-squared error function, defined as:

J(θ) =
1

m

m∑
i=1

(hθ(x
(i))− y(i))2, (2.2)

where m is number of training examples, θ is a parameter vector, hθ is hypothesis of

model, x(i) is the vector of independent variables of i-th training example and y(i) is

dependent variable of the same training example. With every step to the minimum

of the cost function, we have to modify parameters θ. We have already said that

this step is proportional to the negative gradient of the cost function, but we also

need to control how quickly we approach the minimum. Therefore, we introduce the

learning rate α as factor that multiplies cost function gradient and obtain formula for

10

updating the parameters θ:

θj → θj − α
∂

∂θj
J(θ) (2.3)

We see that, if α is too small, it will take a long time for the algorithm to converge, but

if it is too large, algorithm may overshoot the minimum and never converge. From

equation (2.3) we see that for successful training of our machine-learning model we

only need the gradient of the cost function and the suitable learning rate.

When performing gradient descent on neural networks, most frequently used

method for finding cost function gradients is by using backpropagation. Backprop-

agation is sometimes also called backward propagation of errors, because the error

is calculated at the output and distributed back through the network layers. This

algorithm can be described as follows:

First, let us define a(l) as input vector of l-th layer of neural network, δ(l)j as "error"

of node j in layer l. In neural networks, parameters of the model θ(l)ij are in fact

weights between node i in layer l and node j in layer l + 1. We also define ∆
(l)
ij as

"accumulation of error" which will be used to calculate gradient for θ(l)ij . We start with

training set of m training examples(x(i), y(i)), and set ∆
(l)
ij = 0 for all i, j, and l. Then,

for each training example we perform the following tasks:

1. Set the current training example as input for neural network, a(1) = x(i)

2. Perform forward propagation to compute a(l) for l > 1

3. Calculate δ(L) = a(L) − y(i)

4. Calculate errors δ(l) for 1 < l < L

5. Calculate ∆
(l)
ij := ∆

(l)
ij + aljδ

l+1
i

After performing this for all m training examples, we easily calculate gradient as:

∂

∂θ
(l)
ij

J(θ) =
1

m
∆

(l)
ij . (2.4)

With this, we have all that is necessary to successfully train the neural network.

11

3 Applying machine learning to physics

In solid-state physics, the potential energy surface (PES) is defined as the function

yielding the potential-energy of an atomic configuration, if the atomic coordinates are

provided [22]. It is one of the most important quantities of chemical systems, and

knowing PES we can determine all the other system’s properties by different com-

puter simulations. Furthermore, even the reliability of molecular dynamics strongly

depends on the accuracy of the calculated PES. The most precise technique for molec-

ular dynamics simulation are ab initio methods based on DFT, but those are limited

to relatively small number of molecules and are very computationally expensive. An-

other problem with ab initio methods is that information about the PES is not stored,

meaning that at each time step the electronic structure problem has to be solved from

the beginning. This problem was solved with introduction of empirical PES, in which

information from the electronic structure calculations can be stored. That enables us

to reduce computational costs and perform simulations with larger length and time

scales. However, construction of a reliable empirical potential is a difficult, time-

consuming task which often relies on fitting the parameters of a guessed functional

form for the interaction potential. Further, numerical accuracy of such calculations

is limited by the approximations made while selecting the functional form, and func-

tional form for one system is rarely transferable to another system.

In recent years, a new idea for constructing a DFT-based PESs has emerged. It is

based on machine learning methods and using artificial neural networks to construct

PESs with ab initio accuracy and can describe all types of bonding [23]. Until re-

cently, neural networks have been limited only to low-dimensional PESs [24,25], but

by combining neural networks with a PES representation inspired by empirical po-

tentials, this method can be generalized to high-dimensional problems as well. Using

this, we can obtain many-body potentials which are functions of all atomic coordi-

nates and can be used on systems of arbitrary size.

In the most simple method which uses neural networks, we start with a set of

atom coordinates, send them to neural network with randomly generated weights

which calculates total energy of the system. This value is compared to value obtained

12

with DFT and error is calculated. By repeating this process for many different atomic

configuration, we can minimize the error stored in cost function. After this, the

neural network is trained and we obtain the optimal weights which give the best

prediction of total energy of the model. However, there are several disadvantages

in this method, which do not allow using it on high-dimensional systems. The first

one is that all weights in neural network are usually different, meaning that order

in which the atomic coordinates are fed to the network is not arbitrary. Even if we

switch order of coordinates of two identical atoms, different total energy will be

obtained. Fixed structure of a neural network also implies that once it is optimized

for a certain number of atoms, it can’t be used to predict energies of system with

another number of atoms. Hence, a new architecture of neural network ought to be

built, which is another disadvantage of such model.

3.1 Descriptors

Main idea for solving the mentioned limitations is based on dividing total energy E

into atomic contributions Ei [23], as

E =
∑
i

Ei. (3.1)

Same approach is used in empirical potentials. Furthermore, it is easy to see that

coordinates of the atoms are not suited to be the input parameters. Hence, instead

of coordinates α of atom i {Rα
i }, descriptors {Gµ

i } are introduced. These descriptors

are values of symmetry functions for each atom i, and describe energetically relevant

local environment of each atom. They depend on the positions of all atoms, as can

be seen by dotted arrows on Figure 3.1, which depicts topology of the new neural

network for a system consisting of three atoms and all associated degrees of freedom.

Now there is a "standard" neural network Si for each atom in the system which yields

energy contribution Ei. These subnets all have the same structure and weight values,

which ensures the invariance of the total energy with respect to interchanging two

atoms. Total energy of the system is obtained by summing all the energy contribu-

tion, as in Equation (3.1).

It is still important to determine symmetry function necessary to calculate de-

13

Figure 3.1: Structure of a neural network proposed for generalization to high-
dimensional systems. The Cartesian coordinates of atom i are given by {Rα

i }, and
are translated into a set of µ descriptors {Gµ

i } which enter the subnet Si yielding the
energy contribution Ei. Energy contributions are then summed into total energy E.
Source: [23].

scriptors. Although there exist some other types of symmetry functions [24], the

most popular ones with following features [23]:

• descriptors obtained from identical structures of atoms should yield the same

energies,

• symmetry functions should invariant with respect to the translation or rotation

of the system,

• number of symmetry functions must be independent of the coordination of the

atom, due to possibility of coordination number to change during the molecular

dynamics.

One example of such symmetry function is a Gaussian symmetry function in-

troduced by Behler [22, 23]. Prior to defining them, we introduce cutoff function

fc which defines energetically relevant local environment of the interatomic dis-

tance Rij. There are also several possible types of cutoff functions, one used by

Behler [22,23]:

fc(Rij) =

0.5 ·
[
cos
(
πRij

Rc

)
+ 1
]

for Rij ≤ Rc,

0 for Rij ≥ Rc,

(3.2)

where Rc is a cutoff radius, which has to be sufficiently large to include several

14

nearest neighbors. The other, more general one [26,27]:

fc(Rij) =

1 + γ(Rij/Rc)
γ+1 − (γ + 1)(Rij/Rc)

γ for Rij ≤ Rc,

0 for Rij ≥ Rc,

(3.3)

where γ is user-specified parameter that determines the rate of decay of the cutoff

function as it extends from Rij = 0 to Rij = Rc. There are also other possible types of

cutoff functions, but in order to have a continuous force-field, the cutoff function and

its first derivative should be continuous in Rij [27], such as those defined in Equa-

tions (3.2) and (3.3). We can also see that both cutoff functions yield a value one for

Rij = 0 and zero for Rij ≥ Rc, meaning that distanced atoms are less energetically

relevant.

Finally, we can define Gaussian symmetry functions that were mentioned pre-

viously. Radial symmetry functions are constructed as sum of Gaussian with the

parameters η for width and Rs for mean value:

G1
i =

∑
j 6=i

e−η(Rij−Rs)2/R2
cfc(Rij). (3.4)

These descriptors capture the interaction of atom i with all atoms j as the sum of

Gaussians with width η and center at Rs. Summing over all j ensures the indepen-

dence of coordination number. Angular terms describe three-atom interactions, and

are constructed for all triplets of atoms i, j and k by summing over the cosine values

of the angles θijk = cos−1
(
~Rij · ~Rjk

RijRjk

)
centered at atom i, with ~Rij = ~Ri − ~Rj:

G2
i = 21−ζ

∑
j,k 6=i

(1 + λ cos θijk)
ζe−η(R

2
ij+R

2
ik+R

2
jk)/R

2
cfc(Rij)fc(Rik)fc(Rjk), (3.5)

with parameters λ = ±1, η and ζ. These descriptors can be seen on Figure 3.2, where

they are plotted for a few different parameters. Three cutoff functions and the Gaus-

sian ensure smooth decay to zero in case of large interatomic separations. Gaussian

descriptors are the ones that are most commonly used, but some other descriptors

exist as well, such as three-dimensional Zernike [28] and four-dimensional bispec-

trum [29] descriptors.

15

Figure 3.2: Radial (left) and angular (right) Gaussian descriptors for a few different
parameters. Source: [27].

Zernike descriptor components for each integer degree are defined as norm of

Zernike moments with the same corresponding degree, while Zernike moments are

products between spherical harmonics and Zernike polynomials. For calculating

Zernike moments, the density function ρi(~r) is defined for each atomic level envi-

ronment as:

ρi(~r) =
∑
j 6=i

ηjδ(~r − ~Rij)fc(‖~Rij‖2). (3.6)

This density function represents local chemical environment of atom i, and ηj is a

weight parameter. This type of descriptors can be seen on Figure 3.3. Bispectrum

of four-dimensional spherical harmonics are invariant under rotation of local atomic

environment, as has been suggested by Bartok et al. [29]. Hence, it was shown

that bispectrum of mapping the atomic distribution in Equation (3.6) to the four-

dimensional unit sphere can also be used as descriptor.

Figure 3.3: Dependence of Zernike descriptors on pair-atom distance (left), three-
atom angle (middle), and four-atom dehidral angle (right). Source: [27].

16

Finally, this method with neural networks and Gaussian descriptors was tested

in [23] on a silicon bulk. For training the neural network the DFT energies were

used and obtained root-mean-square error of about 5 meV. It was also shown that

number of DFT energies needed for optimizing the neural network was large in com-

parison to empirical potentials, but once trained neural networks can be used with-

out modifications even if new DFT data is provided. While this method appears to

be general, meaning it can applied to crystals, liquids, surfaces, etc., it lacks extrapo-

lation abilities to structures different than those in training set. Neural networks are

also easily parallelized which enables them to calculate energies much faster than

the DFT, while the accuracy seems to be limited only by the accuracy of DFT energies

used in training set. All this results seem like a giant breakthrough in studying the

molecular dynamics of large systems on long scales, and provide a motivation for

further research of application of neural networks and other machine learning tech-

niques in physical and chemical problems that have not been successfully solved by

now.

17

4 Data and software used

4.1 Data

The system we will be studying consists of 48 ruthenium atoms and 16 hydrogen

atoms. Ruthenium atoms are arranged in a slab with dimension 4 × 4 × 3, while

hydrogen atoms are added on the surface. This system can be seen on Figure 4.1.

The importance of interaction between ruthenium and hydrogen, and their appli-

cation in Fischer-Tropsch process has already been debated in introduction. Due to

this, systems such as that seen on Figure 4.1, are undergoing thorough research,

both experimentally [30] and with help of computer simulations [31]. In [30], Den-

zler et al. investigated a mechanism of recombinative desorption of hydrogen from

a Ru(0001) surface, induced by a femtosecond-laser excitation. This mechanism

was then compared to thermally initiated desorption. It was shown that, for the laser

driven process, the hot substrate electrons mediate the reaction within a few hundred

femtoseconds resulting in a huge isotope effect between H2 and D2 in the desorption

yield. In mixed saturation coverages, it was shown that this ratio crucially depends

on the proportions of H and D. Denzler et al. have also propsed a concentration de-

pendent rate constant k which accounts for the faster excitation of H versus D, but

also state that a crucial test for that proposition would be ab initio calculation.

Figure 4.1: A depiction of a slab of 48 ruthenium atoms (blue circles) and 16 hydro-
gen atoms (white circles).

18

This same system describing desorption of H2, D2 and HD from a H:D-saturated

Ru(0001) surface was also simulated using ab initio molecular dynamics extended

with electronic friction by Juaristi et al. in [31]. While performing ab initio molecular

dynamics, DFT was used at every step to obtain energy and forces acting in the

system. This way, they obtained more than 1 million DFT energy points stored in

OUTCAR files (339 trajectory files, each containing 8000 points). Data from one

trajectory file can be seen on Figure 4.2. This is the same dataset we have started

with. In order to train the neural network and find optimal architecture, we have

divided the initial dataset into three parts: training set, validation set and test set.

Training set included data from 240 trajectory files, validation set from 50 files, and

test set from the remaining 50 files. However, we didn’t take all points from trajectory

files, but only every 100th point. The reason for this is that we didn’t want to have

correlated data, since the points are obtained from molecular dynamics simulation

and neighoboring steps would have very similar energies which is unfit for training

the neural network. Furthermore, for each dataset we will use, first 2000 points from

the OUTCAR files were read only from the OUTCAR file first used for obtaining the

dataset, while afterwards they were skipped. This is due to the fact that first 2000

steps are almost identical in every trajectory file, and by including them every time

we would get too many similar points in the used datasets. Finally, we have obtained

three datasets which we will use, training set containing ∼ 11000 points, validation

set of ∼ 3000 points and test set of also ∼ 3000 points.

Figure 4.2: A plot showing total energy of the system E for each step in trajectory
file. Plot obtained using [35].

19

4.2 Software

In this work, all codes have been written in Python, an object-oriented, interpreted

programming language [32]. Aside from standard Python functionality, use has also

been made of NumPy package for numerical computing and Matplotlib. NumPy pack-

age is fundamental for scientific computing in Python, which contains many useful

tools for linear algebra, random number generating, integration with C/C++ and

Fortran codes, and also efficient implementations of high dimensional arrays [33].

Matplotlib is a 2D plotting library that can easily produce high-quality plots, his-

tograms, scatterplots, bar charts etc, and it provides you with full control over line

styles, fonts and other features. However for analyzing DFT data, creating neural net-

works and training them, we needed packages designed specifically for that purpose.

Thus, we have used ASE and Amp packages for Python.

4.2.1 Atomic Simulation Environment

The Atomic Simulation Environment (ASE) is an open-source set of command-line

tools and Python modules for setting up, manipulating, running, visualizing and an-

alyzing atomistic simulations [35]. These command-line tools can be used to obtain

graphical user interface, manipulate ASE-database, build molecular crystals and run

simple calculations. Central object in ASE package is Atoms, which defines a col-

lection of atoms and specifies their positions, atomic numbers, velocities, masses,

charges etc., but also unit cell of a crystal and boundary conditions. To Atoms object

we can attach a Calculators object with purpose of calculating energies and forces

on the atoms. ASE provides many different calculators, some of which are based

on DFT, such as Abinit [36], NWChem [37] and Gaussian [38], while some others

like ASAP [39] are based on empiricial potentials. In this work, the DFT data was

obtained with VASP [40] calculator and read with help of ASE package.

4.2.2 Atomistic Machine-learning Package

Atomistic Machine-learning Package (Amp) is another open source package for Python

designed to easily bring machine-learning to atomistic calculations [27]. This allows

us to predict calculations on the potential energy surface. First step is to make Amp

calculator learn from any other calculator on a training set of atomic images. Af-

20

terwards, Amp calculator is trained and can make predictions on energy and forces

with arbitrary accuracy, approaching that of the original calculator. One of the great-

est features of Amp is that it was designed to integrate closely with the ASE pack-

age, meaning that any calculator that works in ASE can easily be used as the parent

method in Amp. Thus, we can use Amp calculator as a substitute for some other

calculator in molecular dynamics, global optimization, phonon analyses etc.

Idea behind Amp is that, as discussed in previous section, potential energy of an

atomic configuration is specified solely by the coordinates of the nuclei. While DFT

calculations provide good approximation to the ground-state potential energy, these

calculations are expensive for large systems and/or long dynamics. Thus, Amp takes

a different approach and, given enough example calculations from any electronic

structure calculator, approximates potential energy with a much faster regression

model:

R
Regression−−−−−→ E(R). (4.1)

Another advantage of Amp is that most of its tasks are suitable for parallel processing,

which gives a great performance boost if running calculations on multi-core proces-

sors or computer clusters. This is, for example, really suitable for training neural

networks, which are the central regression model in Amp package.

21

5 Results

First part of this work consists of training multiple neural networks with different ar-

chitectures, in order to find the optimal one. Here we use Gaussian descriptors, with

cutoff radius of 6.5 Å, and feed-forward neural networks. There are 40 descriptors in

total used as input for neural networks, 20 for each type of atom. Role and impor-

tance of these descriptors will be discussed in second part of the work. In third and

final part of the work, we will investigate some alternative possibilities for training

the neural networks, such as using Zernike descriptors and lowering cutoff radius.

5.1 Finding the optimal neural network

After specifying what calculator will be used, we have to decide on an architecture

of a neural network. it is almost impossible to know a priori which architecture will

yield the best results, so it is necessary to train several neural networks on test set

and check their performance on validation set to see which one produces the smallest

error. After we find the optimal one using validation set, we run it one more time on

the test set, and obtain final error.

First we have trained neural networks with two hidden layers and equal number

of nodes in each hidden layer. Number of nodes ranged from 2 per layer to 50 per

layer. Results of these calculations can be seen on Figures 5.1 and 5.2. We can see

how at low number of nodes per layer root-mean-square (RMS) error is much higher

than at other architectures. This is a sign of the underfitting problem, meaning that

architecture of neural network is too simple and cannot reproduce a function that

would properly fit the training data. Interesting fact is that for higher number of

nodes per layer, error doesn’t change much.

Afterwards, we have examined neural networks with three hidden layers, again

with equal number of nodes per layer. Again, for each architecture we have calcu-

lated maximal and RMS error, both total and per hydrogen atom. These calculations

can be seen on Figures 5.3 and 5.4. Once again, we notice how both maximal and

RMS error barely change with increase in number of nodes per layer. However, un-

derfitting is visible for 2 nodes per hidden layer, and for 50 nodes per hidden layer we

22

Figure 5.1: Plots showing how total energy of the system predicted by neural net-
works differs from actual energy obtained with DFT, for different neural network
architectures: (a) 2-2, (b) 5-5, (c) 10-10, (d) 20-20.

see signs of overfitting, as both maximal and RMS error are much higher than before.

Some other architectures, with different number of nodes per layer, have also

been tested and it was found that the optimal configuration is the one with three

hidden layers and 50 nodes in the first layer, 30 in the second, and 10 in the third.

This is reasonable, because to the neural network we feed the previously mentioned

descriptors, meaning that input layer has 40 nodes. Output, however, is just the total

energy of the system, meaning that output layer has only one node. Thus, we need

enough nodes in the first hidden layer to successfully process all the information

stored in the descriptors, but need just a few nodes in the last hidden layer in order

23

Figure 5.2: Plots showing how total energy of the system predicted by neural net-
works differs from actual energy obtained with DFT, for different neural network
architectures: (a) 30-30, (b) 40-40, (c) 50-50.

to produce a valid single-value output. On validation set, errors per hydrogen atom

obtained are following:

Max error per H atom = 23.6 meV, (5.1)

RMS error per H atom = 4.3 meV. (5.2)

From Table 5.1, where one can systematically see errors per hydrogen atom obtained

for all previously mentioned architectures of neural networks, it is easy to see these

are the lowest errors obtained on the analyzed architectures. After running this

24

Figure 5.3: Plots showing how total energy of the system predicted by neural net-
works differs from actual energy obtained with DFT, for different neural network
architectures: (a) 2-2-2, (b) 5-5-5, (c) 10-10-10, (d) 20-20-20.

configuration on the test set, we obtain the total errors:

Max error total = 438.8 meV, (5.3)

RMS error total = 55.3 meV. (5.4)

and errors per hydrogen atom:

Max error per H atom = 27.4 meV, (5.5)

RMS error per H atom = 3.5 meV. (5.6)

25

Figure 5.4: Plots showing how total energy of the system predicted by neural net-
works differs from actual energy obtained with DFT, for different neural network
architectures: (a) 30-30-30, (b) 40-40-40, (c) 50-50-50.

Errors per hydrogen atom are of interest to us because they are the only moving parts

of the system; ruthenium atoms are fixed. Hence we could, in principle, construct a

system with arbitrary number of atoms and perform the same analysis as here. This

way, if we change number of hydrogen atoms, we can no longer compare goodness of

fit based on the total error, but must use scaled errors. Results of fitting the regression

model to the test set can also be seen on the Figure 5.5.

26

Figure 5.5: Results of fitting the regression model obtained from training the 50-30-
10 neural network on the test set.

Neural network Max error per H atom [meV] RMS error per H atom [meV]
2-2 28.4 5.1
5-5 27.0 4.2

10-10 27.6 4.3
20-20 28.6 4.4
30-30 24.8 4.2
40-40 28.5 4.4
50-50 24.8 4.3
2-2-2 36.0 5.2
5-5-5 32.1 4.2

10-10-10 29.1 4.3
20-20-20 30.9 4.4
30-30-30 25.1 4.4
40-40-40 31.2 4.4
50-50-50 50.2 5.8
50-30-10 23.6 4.3

Table 5.1: Maximal and RMS errors for neural networks which were used in this
problem. All calculations in the table were performed on the validation set.

27

5.2 Analyzing the optimal configuration

Now when we have found optimal neural network for the problem we are solving,

we want to investigate properties of this network. For example, one aspect worth

looking into are descriptors and what role they play in this problem. As previously

stated, there are 20 descriptors per type of atom. Descriptors for hydrogen atoms can

be seen on Figure 5.6, while those for ruthenium can be seen on Figure 5.7.

Figure 5.6: Plots showing how total energy of the system predicted by neural net-
works differs from actual energy obtained with DFT, for different neural network
architectures: (a) 2-2-2, (b) 5-5-5, (c) 10-10-10, (d) 20-20-20.

On both figures, we can see which descriptors are the most important, and which

are irrelevant. In case of hydrogen descriptors, it is easy to see that descriptors with

index 10 and 11 are crucial for the observed system, while those with index 7 and

8 could be ignored. Investigating the log file produced by Amp calculator, it is easy

to see which descriptor represents which function. Descriptors with indexes from 1

to 8 represent radial Gaussian descriptors representing two-atom interactions, while

those from 9 to 20 are angular descriptors which account for three-atom interactions.

28

By reading parameters from the log file, we can also write descriptors that are of our

interest explicitly. Those unimportant descriptors, with indexes 7 and 8, are radial

descriptors G1
i with parameter η=80.0, where G1

7 describes interaction between two

hydrogen atoms, while G1
8 describes interaction between hydrogen and ruthenium

atoms. Cutoff radius used for these calculations was Rc = 6.5 Å. The other two hy-

drogen descriptors of out interest, G2
10 and G2

11, both have the parameters η=0.005,

λ=1.0 and ζ=1.0, whereas G2
10 describes three atom interaction between two hydro-

gen and one ruthenium atom and G2
11 describes interaction between one hydrogen

and two ruthenium atoms.

Figure 5.7: Plots showing how total energy of the system predicted by neural net-
works differs from actual energy obtained with DFT, for different neural network
architectures: (a) 2-2-2, (b) 5-5-5, (c) 10-10-10, (d) 20-20-20.

Inspecting the Figure 5.7, we see a large difference with respect to the previous

case. Most of the ruthenium descriptors seem like they are insignificant in this prob-

lem. This statement is logical, if we take a look at the system we are analyzing. It

consists of hydrogen atoms interacting with a slab of ruthenium atoms, which are

29

all fixed in space. Since all of the ruthenium atoms are fixed, it is reasonable that

their descriptors won’t be crucial for simulating the system. Even so, we recognize

that again descriptors with indexes 10 and 11 play a more important role than the

others, especially 5, 6, 7, and 8. Same as before, from 1 to 8 are radial descrip-

tors, while the rest are angular. Descriptors with the index 5 and 6 have parameter

η=20.0, and 7 and 8 have η = 80.0. Descriptors 5 and 7 represent interaction of

ruthenium with hydrogen, while 6 and 8 represent interaction between two ruthe-

nium atoms. Descriptors indexed with 10 and 11 have, same as before, parameters

η=0.005, λ=1.0 and ζ=1.0. In analogy with the previous case, G2
10 represents in-

teraction of ruthenium atom with one ruthenium and one hydrogen atom, while G2
11

represents interaction of three ruthenium atoms.

Another property of the model worth looking into is how it converges with the

number of training steps. If the model is not good enough, i.e. if our neural network

has not enough hidden layers and nodes per layer, it will fail to converge and we

will face the problem of underfitting. However, if our model is "too good", with each

new training step cost function calculated on the training set will become lower and

lower, but if calculated on the validation set, at some point it could start to rise.

This means we have entered the regime of overfitting, and should have stopped at

some value of cost function, i.e. at some lower number of steps. How cost functions

calculated on training and validation set varies with number of training steps can be

seen on Figure 5.8.

On this figure we can see that the cost function calculated on the training set,

marked with blue dots, continues to fall with number of steps, while cost function

calculated on validation set and marked with red crosses, starts to rise somewhere

around 2500 steps. This point is marked with black arrow, and represents optimal

number of steps required for training the 50-30-10 neural network. Hence, points

on the plot left from the optimum correspond to he underfitting regime, while those

right of the optimum correspond to the overfitting regime.

30

Figure 5.8: Dependence of cost function calculated on the training set (blue) and
validation set(red). Arrow marks the spot of minimal cost function calculated on the
validation set.

5.3 Alternative approaches

From previous discussion, we see that there are many alternative ways to solve this

problem. One of them, and probably the most obvious one, is using different de-

scriptors as input for neural network. In previous simulations, we have used Gaus-

sian descriptors, but now we will solve the same problem with Zernike descriptors

instead. Aside from two and three-atom interactions, which are taken into account

in Gaussian descriptors, Zernike descriptors calculate four-atom interactions as well.

Hence, we expect these calculations to be more accurate, but also to require much

more time. Results can be seen on Figure 5.9. Obviously, this is not in agreement

with expectations, as errors are huge compared to the errors obtained with Gaussian

descriptors:

Max error =5839.3 meV (5.7)

RMS error =290.7 meV (5.8)

31

Figure 5.9: Results of fitting the regression model with Zernike descriptors on a test
set.

Reason for this is that, while neural networks work well for interpolation problems,

they fail often fail to extrapolate data. Thus, even though we used more advanced

form of descriptors, we tried to calculate energies for configurations that were not

learned well by the network. One possible solution for this is to gather more data.

With larger and more diverse training dataset, more configurations would be learned

and our regression model could be more widely used.

Another parameter worth studying is cutoff radius. It determines how close atoms

have to be in order to be taken into account while calculating descriptors. Thus,

by lowering the cutoff radius we expect results to be worse than before. This was

tested on the 50-30-10 neural network with Gaussian descriptors and cutoff radius

of 5.5 Å (it can be seen on Figure 5.10(a)), while previously it was 6.5 Å, and can

once again, for the sake of comparison, be seen on Figure 5.10(b). Total maximal

32

Figure 5.10: Results of fitting the regression model with Gaussian descriptors on a
test set, using cutoff radius of (a) Rc=5.5 Å, (b) Rc=6.5 Å.

and RMS errors obtained with cutoff of 5.5 Å are:

Max error =495.6 meV (5.9)

RMS error =57.2 meV (5.10)

Although they do not differ much from previous results, we see that both errors are

slightly higher then with Rc = 6.5 Å, which is in agreement with our assumption.

However, although results are slightly worse, calculation time was much faster than

previously. Thus, in some cases, this could be preferable option.

With all this in mind, it is easy to see how further improvements can be made on

this method, and that various modifications are possible, depending on whether we

need more speed or accuracy. We have shown that using machine learning can faith-

fully produce energies of the system, where accuracy is limited only by the accuracy

of the training set. With this regression model which yields total energy of the sys-

tem from its configuration, it is possible to perform molecular dynamics simulations,

which is left for future research.

33

6 Conclusion

For simulating molecular dynamics, the most commonly used technique is density

functional theory. However, when it is performed on systems with large number of

particles and simulated over long period of time, the simulations become very slow

and computationally expensive. Hence, in this work we study an alternative ap-

proach to simulating large systems through longer periods. This approach is based

on machine learning methods, or more specifically on obtained the regression model

by training the neural networks. Crucial point that enables neural networks to solve

such problems is introduction of descriptors, functions which take Cartesian coordi-

nates of the atoms in the system and translate them in a form which is more suitable

to be used as input for the network.

System upon which we are performing simulations consists of slab of ruthenium

interacting with hydrogen atoms. Such system is of great importance in Fisher-

Tropsch process which could potentially be used for obtaining low-sulfur diesel fuel,

because ruthenium is one of the most promising catalysts for this process. Hence,

various research has already been done on this system, both experimentally and the-

oretically. One such theoretical research is based on simulation using ab initio molec-

ular dynamics, in which DFT was used at every step to obtain energy and forces

acting in the system. DFT data that was obtained in this research [31], was the same

dataset that we have used for training and testing the neural networks. However, one

of the great advantages of a method proposed here is that, once the neural networks

is trained on the known data, it can easily be used for other similar systems, without

need of performing new DFT calculations.

In this work, first we have trained numerous neural networks with Gaussian de-

scriptors and different architectures in order to determine which one suits us best.

All these networks were first trained on a training set, their performances were com-

pared on validation set and finally, after finding the optimal one, it was used on test

set to obtain the maximal and root-mean-square errors that we could expect when

applying this network to some completely new data. Afterwards, we have analyzed

what roles do descriptors play in the trained regression model, which are more im-

34

portant, and how cost functions calculated on the training and the test set behave

with respect to number of training steps. Finally, we have studied how changing

some properties of the model changes the obtained results.

We have found that optimal neural network architecture for this problem is the

one with three hidden layers, with 50, 30, and 10 nodes in first, second and third

hidden layer, respectively. Upon analyzing descriptors, we concluded that most of the

descriptors for ruthenium atoms are unimportant and could be left out or replaced

by some other functions. This is due to the fact that in our system ruthenium atoms

remain fixed. Moreover, we have managed to show how cost function calculated on

the training set falls with number of training steps, while cost function calculated on

the validation set starts to rise at one point. From this we can conclude at which

number of steps we enter the overfitting regime and what is the optimal number of

steps to perform while training the model. Finally we have shown how accuracy of

the network falls with lowering the cutoff radius, and how results were significantly

worse when using Zernike descriptors. This was unexpected, but from this we can

conclude that we have tried to use the trained model for extrapolation of data and

should provide more training data to the model.

To sum things up, we conclude that this method could be used in various types of

problems and shows possibilities of great improvement with respect to other, widely

used methods, when performing molecular dynamics on large systems. It can be

subjected to various modifications allowing it to rise in accuracy and speed, while

accuracy of the model is limited only by that of the training set. Therefore, with

future improvements and optimizations, it is easily possible that machine learning

will become crucial for solving complex problems in solid-state physics, statistical

physics and other branches of science as well.

35

7 Prošireni sažetak

7.1 Uvod

U posljednje vrijeme, svjedočili smo brzom razvoju umjetne inteligencije i učinku

na naš svakodnevni život, kao što je recimo znanost o podacima ili prepoznavanje

objekata. Takva istraživanja su trenutno goruća tema u računarstvu koja redovito

pronalaze nova otkrića. No osim što se ta otkrića mogu koristiti na rješavanju spomenu-

tih problema iz računarstva, takod̄er bi mogla naći primjenu u drugim granama

znanosti. S druge strane, u fizici se mnogo pažnje posvećuje molekularnoj dinam-

ici koja se može koristiti za simuliranje rasta tankih filmova [1], računalni dizajn

lijekova [2], i u brojne druge svrhe. Med̄utim, takvi se sustavi najčešće sastoje od ve-

likog broja atoma za koje je gotovo nemoguće koristiti precizne kvantno-mehaničke

metode.

Elementi koje je naročito teško modelirati na taj način su dosta često metali. Jed-

nostavna teorija kojom se oni opisuju je Drude-Sommerfeldov model, no on ne daje

dobre rezultate jer ne uzima u obzir elektronsku strukturu materijala. Jedna od

metoda koja omogućuje izračun elektronske gustoće jest teorija funkcionala gustoće

(DFT) [4], koja je primjenjiva na većinu sustava te je danas u širokoj upotrebi. Ona

se bazira na nerelativističkoj Schrödingerovoj jednadžbi za mnogoelektronsku valnu

funkciju Ψ. Ključna činjenica u ovoj teoriji jest da, dok Ψ ovisi o pozicijama svih

elektrona, elektronska gustoća n(~r) ovisi o 3 prostorne koordinate. Takod̄er, prema

Hohenberg-Kohn teoremima [5], uz poznatu elektronsku gustoću u osnovnom stanju

n0, moguće je odrediti očekivanje bilo koje opservable Ô u osnovnom stanju koristeći:

O[n0] =
〈

Ψ[n0]
∣∣∣Ô∣∣∣Ψ[n0]

〉
. (7.1)

Unatoč brojnim poboljšanjima od prvog spominjanja ove metode 1964. godine, po-

moću DFT-a se još uvijek teško mogu opisati med̄umolekulske interakcije. Zbog toga

se unaprijed̄ivanje DFT-a i danas aktivno istražuje.

U ovom radu promatrat ćemo sustav koji se sastoji od površine rutenija koja

med̄udjeluje sa 16 atoma vodika te ćemo usporediti preciznost, brzinu i primjenjivost

36

strojnog učenja, s drugim učestalo korištenim metodama u problemima ovakvog tipa,

kao što je DFT. Razlog za promatranje rutenija jest taj što je on jedan od najvažnijih

katalizatora u Fischer-Tropsch procesu [9], procesu koji se sastoji omogućuje dobi-

vanje ugljikovodičnih goriva iz ugljičnog monoksida i vodika. Osim toga, budući da

cilj ovog rad nije promatranje samo statičnih sustava na temperaturi nula, već i prim-

jena na molekularnu dinamiku u kojoj su temperature veće od nule, mogli bismo

konstruirati mikrokanonski ili kanonski ansambl sustava. Time bismo omogućili i

računanje termodinamičkih svojstava sustava, kao što su entropija i Gibssova en-

ergija.

7.2 Strojno učenje i primjena u fizici

Strojno učenje je grana računarstva koja koristi statističke metode kako bi računalima

dala mogućnost da sama uče iz podataka. Koristi se u brojnim aspektima svakod-

nevnog života, kao što je rangiranje web stranica i detektiranje nepoželjne elek-

troničke pošte, ali i aktualnim istraživanjima, kao što je recimo računalni vid [15]

i prepoznavanje govora [16]. Takvi su zadaci najčešće podijeljeni u tri kategorije:

nadzirano, nenadzirano i potpomognuto učenje.

Nadzirano učenje je vrsta učenja u kojem model učimo na temelju označenih

podataka, kako bi ga se kasnije moglo koristiti na novim podacima. U nenadzira-

nom učenju nemamo označene podatke te je cilj algoritama nenadziranog učenja da

samo pronad̄u pravilnosti u strukturama podataka te ih razvrstaju u skupine. Pot-

pomognuto učenje se koristi u sustavima u kojima je izlaz sekvenca radnji. U tom

slučaju svaka pojedina radnja nije nije važna, već je samo važno da algoritam dod̄e

do željenog cilja. To se postiže na način da algoritam svakoj mogućoj radnji pridijeli

parametar koji opisuje koliko je ta radnja dobra, odnosno kolika je vjerojatnost da će

nas dovesti do željenog cilja. Tip strojnog učenja kojim se bavimo u ovom rado jest

nadzirano strojno učenje; krenut ćemo od poznatih, označenih podataka te na njima

istrenirati regresijski model izgrad̄en pomoću najmoćnijeg sustava strojnog učenja -

umjetnih neuronskih mreža.

Umjetne neuronske mreže su računski sustavi inspirirani biološkim neuronskim

37

mrežama kakve se nalaze u mozgu ljudi i životinja. One mogu rješavati probleme

koji bi bili prekompleksni za uobičajene računarske metode, a najčašće su orga-

nizirane u slojeve neurona, koji se dijele na ulazni sloj, izlazni sloj, i proizvoljan

broj skrivenih slojeva izmed̄u njih. Pritom se neurone mogu promatrati kao matem-

atičke funkcije s jednom ili više ulaznih varijabli, od kojih se svaki skalira nekim

parametrom, zbroje se te proslijede nelinearnoj funkciji aktivacije, koja generira

izlaz neurona. Na početku su svi parametri skaliranja u neuronskoj mreži nasum-

ično odabrani te je mrežu potrebno trenirati. To znači da joj proslijedimo označeni

set podataka, uspored̄ujemo izračunate vrijednosti s prije označenim i optimiziramo

parametre mreže. Pritom je cilj dobiti što manju funkciju cijene

J(θ) =
1

m

m∑
i=1

(hθ(x
(i))− y(i))2, (7.2)

gdje su θ parametri skaliranja u mreži, x(i) su ulazne varijable, hθ(x(i)) su izračunate

vrijednosti, a y(i) su označene vrijednosti.

U ovom ćemo radu iskoristiti neuronske mreže za dobivanje plohe potencijalne

energije (PES), funkcije koja za dane koordinate atoma vraća energiju te atomske

konfiguracije [22]. Znajući PES, moguće je računalnim simulacijama odrediti sva

druga svojstva sustava. O preciznosti dobivene plohe velike ovisi i vjernost simu-

lacije molekularne dinamike. Najpreciznije metode odred̄ivanja PES-a su ab initio

metode bazirane na DFT-u, no njima smo ograničeni na sustave s relativno malim

brojem atoma. Osim toga, ab initio metode ne čuvaju podatke o PES-u. Ti problemi

su riješeni uvod̄enjem empirijskih potencijala, no da bi oni bili iskoristivi potrebno

je puno truda i vremena za njihovo konstruiranje. Stoga ćemo iskoristiti metode

strojnog učenja kako bismo premostili te prepreke te konstruirali PES s ab initio pre-

ciznošću koji opisuje sve tipove veza [23].

Med̄utim, u slučaju da kao ulaz za neuronsku mrežu koristimo kartezijeve koor-

dinate, brzo uočavamo da čak i ako dva identična atoma zamjene mjesto, mreža će

proizvesti drugačiji rezultat. Osim toga, kad jednom istreniramo mrežu na nekom

broju atoma, ne možemo ju primijeniti sustav s drugačijim brojem. To rješavamo

uvod̄enjem deskriptora kao ulaza umjesto kartezijevih koordinata. Deskriptori su

38

rezultati primjene funkcija simetrije na kartezijeve koordinate atoma koji opisuju en-

ergetski relevantnu okolinu svakog atoma. Najčešće korišteni deskriptori su Gaussovi

deskriptori koje je uveo Behler [22, 23]. Oni se dijele na radijalne koji opisuju

dvoatomna med̄udjelovanja i dani su izrazom:

G1
i =

∑
j 6=i

e−η(Rij−Rs)2/R2
cfc(Rij), (7.3)

i na angularne koji opisuju troatomna med̄udjelovanja i opisani su s:

G2
i = 21−ζ

∑
j,k 6=i

(1 + λ cos θijk)
ζe−η(R

2
ij+R

2
ik+R

2
jk)/R

2
cfc(Rij)fc(Rik)fc(Rjk). (7.4)

Pritom su ~Rij vektor koji spaja i-ti atom s j-tim, η, λ i ζ su parametri, Rc odred̄uje

polumjer obuhvaćanja atoma, a Rs centar Gaussove raspodjele. Funkcija fc(Rij) jest

funkcija obuhvaćanja koja opisuje koliko su relevantni atomi koji se nalaze od pro-

matranog i-tog atoma, a θijk opisuje kut izmed̄u tri atoma. Osim Gaussovih, postoje

i druge vrste deskriptora, kao što su recimo Zernike deskriptori [28]. Oni uzimaju u

obzir i interakcije izmed̄u četiri atoma. Iako su u fokusu ovog rada Gaussovi deskrip-

tori, na kraju ćemo proučiti i rezultate dobivene pomoću Zernike deskriptora.

7.3 Korišteni podaci i paketi

Promatrani sustav sastoji se od 48 atoma rutenija složenih u konfiguraciju 4 × 4 × 3

i 16 atoma vodika smještenih na površinu rutenijske pločice. Računalne DFT simu-

lacije su provedene na tom sustavu u članku [31] te su nam autori tog rada ustupili

podatke pomoću kojih ćemo trenirati neuronske mreže. Ti su podaci dobiveni po-

moću ab initio molekularne dinamike proširene elektronskim trenjem, pri čemu je u

svakom koraku napravljen DFT račun. Time je dobiveno 339 datoteka s trajektori-

jama, pri čemu je u svakoj 8000 točaka. Iz tog smo seta podataka odbacili početnih

2000 točaka i uzeli svaku stotu točku iz preostalih, s ciljem dobivanja što raznolikijih

podataka za treniranje mreže. Takod̄er podijelili smo početni set u tri manja: set za

treniranje, set za validaciju i set za testiranje neuronskih mreža.

Svi kodovi korišteni u ovom radu pisani su u programskom jeziku Python. Ko-

39

rišteni su Python paketi NumPy za numeričke izračune i Matplotlib za stvaranje

grafova, no daleko najveću ulugu u ovom radu imali su paketi ASE i Amp. Paket

ASE (Atomic Simulation Environment) je Python paket namjenjen konstruiranju, ma-

nipuliranju i vizualiziranju atomskih simulacija. Osim toga, omogućuje korištenje

brojnim kalkulatorima kao što je VASP [40], koji je iskorišten za dobivanje ranije

spomenutih trajektorija korištenih u ovom radu. Amp (Atomistic Machine-learning

Package) je paket koji uvodi strojno učenje u atomske izračune i simulacije. On nam

omogućuje da umjesto kalkulatora iz paketa ASE koristimo Amp kalkulator baziran

na neuronskim mrežama.

7.4 Rezultati

U prvom dijelu rada treniramo razne arhitekture neuronskih mreža u želji da pron-

ad̄emo optimalnu. Koristimo Gaussove deskriptore i polumjer obuhvaćanja atoma

od 6.5 Å. Istrenirane su razne arhitekture s dva i tri skrivena sloja, a rezultati su

prikazani u tablici 5.1. Ispitivanjem na validacijskom setu pronad̄eno jest da je op-

timalna konfiguracija ona s tri skrivena sloja i 50, 30, odnosno 10 čvorova u prvom,

drugom, odnosno trećem sloju. Od interesa nam je najveća dobivena pogreška i

pogreška kvadratne sredine (RMS), obje skalirane s brojem atoma vodika. Razlog

zašto skaliramo s brojem atoma vodika jest što bismo, u principu, ovom metodom

mogli promatrati sustave s proizvoljnim brojem atoma pa takve pogreške daju bolji

uvid u vjerodostojnost modela. Pokretanjem optimalnog 50-30-10 modela nad setom

za testiranje dobivamo pogreške:

Maksimalna pogreška po H atomu = 27.4 meV, (7.5)

RMS pogreška po H atomu = 3.5 meV. (7.6)

Osim toga, na optimalnoj konfiguraciji analizirana je i uloga pojedinih deskriptora,

što je vidljivo na Slikama 5.6 i 5.7. Uočeno je da deskriptori za atome rutenija nisu

od velike važnosti za ovaj sustav, što je logično jer su atomi rutenija fiksirani. Takod̄er

je pokazano da su med̄u deskriptorima za vodik najzastupljeniji oni s indeksima 10 i

11, dok su najmanje zastupljeni s indeksima 7 i 8. Pritom su u oba slučaja deskriptori

od 1 do 8 radijalni, a od 9 do 20 angularni.

40

Nadalje, na Slici 5.8 je pokazano kako pogreška izračunata nad setom za treni-

ranje i setom za validaciju ovisi o broju koraka pri treniranju. Vidljivo je da sa svakim

novim korakom pogreška nad setom za treniranje pada, no pogreška nad setom za

validaciju u jednom trenu počne rasti. To znači da smo ušli u režim pretreniranosti

neuronske mreže te da ona radi izuzetno dobre predikcije samo na podacima na ko-

jima je istrenirana, dok na novim podacima to ne uspijeva. Isto tako, ne lijevoj strani

grafa vidljivo je područje podtreniranosti, koje ukazuje da model još nije dovoljno

dobar što se uočava u visokim pogreškama na oba seta podataka.

Za kraj su još na optimalnoj 50-30-10 konfiguraciji ispitani neki alternativni pris-

tupi rješevanju ovog problema, kao što je recimo korištenje Zernike deskriptora. Kao

što smo rekli, oni uzimaju u obzir i med̄udjelovanja izmed̄u četiri atoma, na temelju

čega bismo očekivali preczinije rezultate nego za Gaussove deskriptore. Med̄utim,

na Slici 5.9 vidi se kako to nije točno. Izuzetno veliku pogrešku u ovom slučaju

opisujemo tome da, ako proučavamo i četveroatomne interakcije, radimo s premalim

setom podataka s kojim nismo pokrili dovoljno mogućih slučajeva. Time je naš model

ušao u režim ekstrapolacije i podbacio. Stoga bismo za uspješno treniranje ovakvog

modela trebali raditi s većim setovima podataka. Zadnja stvar koju smo analizirali

jest ponašanje modela s promjenom polumjera obuhvaćanja. Očekujemo da ako

smanjimo polumjer obuhvaćanja, manje atoma će se smatrati relevantnima pri kon-

struiranju deskriptora, te će preciznost modela biti slabija. To je i potvrd̄eno na Slici

5.10, gdje je za polumjer od 5.5 Å dobivena veća pogreška nego za ranije korišteni

polumjer od 6.5 Å.

7.5 Zaključak

Ovim radom smo pokazali kako se pomoću neuronskih mreža mogu vjerno izračunati

energije sustava, pri čemu je preciznost ograničena jedino točnošću podataka nad

kojima treniramo mrežu. Zaključujemo kako je vjerojatno da će s budućim razvojem

znanosti strojno učenje igrati ključnu ulogu u rješavanju kompleksnih problema fizike

čvrstog stanja, statističke fizike, ali i brojnih drugih znanstvenih područja.

41

Bibliography

[1] Zheng, H. Molecular Dynamic Simulation of Thin Film Growth Stress Evolution.

Theses and Dissertations. Lehigh University, 2011.

[2] Leach, A. R., Comprehensive Medicinal Chemistry II, Volume 4: Computer-

Assisted Drug Design, Elsevier, 2007.

[3] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"),

1997.

[4] Kohn, W. Nobel Lecture: Electronic structure of matter–wave functions and

density functionals, Rev. Mod. Phys. 71, 1253 (1998)

[5] Hohenberg, Pierre; Kohn, W. Inhomogeneous electron gas. // Physical Review.

136 (3B): B864–B871 (1964)

[6] Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Cor-

relation Effects. // Physical Review. 140 (1965)

[7] Grimme, S. Semiempirical hybrid density functional with perturbative second-

order correlation. // Journal of Chemical Physics. 124 (3): 034108, (2006)

[8] Ruthenium (Ru) - Properties, Applications, (13.08.2013), AZo Materials,

https://www.azom.com/article.aspx?ArticleID=9275

[9] Generalic, E. Fischer-Tropsch process, (29.08.2017.) Croatian-English Chem-

istry Dictionary & Glossary. KTF-Split, https://glossary.periodni.com/

glossary.php?en=Fischer-Tropsch+process

[10] Höök, M.; Fantazzini, D.; Angelantoni, A.; Snowden, S. Hydrocarbon liquefac-

tion: viability as a peak oil mitigation strategy. // Philosophical Transactions of

the Royal Society A. 372, (2014)

[11] Leckel, D. Diesel Production from Fischer-Tropsch: The Past, the Present, and

New Concepts. // Energy & Fuels, 23, 2342–2358, (2009)

[12] Schulz, H. Short history and present trends of Fischer-Tropsch synthesis. //

Applied Catalysis A: General. 186: 3–12, (1999)

42

https://www.azom.com/article.aspx?ArticleID=9275
https://glossary.periodni.com/glossary.php?en=Fischer-Tropsch+process
https://glossary.periodni.com/glossary.php?en=Fischer-Tropsch+process

[13] Samuel, A. "Some Studies in Machine Learning Using the Game of Checkers".

IBM Journal of Research and Development. 3 (3): 210–229 (1959)

[14] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, ISBN 0-387-

31073-8, 2006.

[15] Wernick, M. N.; Yang, Y.; Brankov, J. G.; Yourganov, G.; Strother, S. C. Ma-

chine Learning in Medical Imaging.// IEEE Signal Processing Magazine. 27 (4):

25–38, (2010).

[16] Deng, L.; Hinton, G.; Kingsbury, B. New types of deep neural network learning

for speech recognition and related applications: an overview // IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, 2013.

[17] Raschka, S.; Mirjalili, V. Python Machine Learning, 2nd edition, Birmingham:

Packt, 2017.

[18] Alpaydin, E. Introducton to machine learning, 2nd edition, Cambridge: MIT

Press, 2009.

[19] van Gerven, M.; Bohte, S. (Editorial) Artificial Neural Networks as Models of

Neural Information Processing // Front. Comput. Neurosci. 11:114, (2017).

[20] Haykin, S. Neural Netwroks : A Comprehensive Foundation, 2nd edition, Delhi:

Pearson, 2005.

[21] Glosser.ca, Artificial neural network with layer coloring, (28.02.2013),

https://commons.wikimedia.org/wiki/File:Colored_neural_network.

svg#metadata

[22] Behler, J. Neural network potential-energy surfaces in chemistry: a tool for

large-scale simulations. // Phys. Chem. Chem. Phys., 13, 17930–17955, (2011)

[23] Behler, J.; Parrinello M. Generalized Neural-Network Representation of High-

Dimensional Potential-Energy Surfaces. // Phys. Rev. Lett. 98, 146401, (2007)

[24] Lorenz, S.; Groß, A.; Scheffler, M. Representing high-dimensional potential-

energy surfaces for reactions at surfaces by neural networks // Chem. Phys.

Lett. 395, 210 (2004).

43

https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg#metadata
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg#metadata

[25] Blank T.B. et al. Construction of high-dimensional neural network potentials

using environment-dependent atom pairs // J. Chem. Phys. 103, 4129 (1995).

[26] Khorshidi, A., Peterson A. A. Amp: A modular approach to machine learning in

atomistic simulations. // Comput. Phys. Commun. 207, 310–324 (2016)

[27] AMP Theory, Atomistic Machine-learning Package, https://amp.readthedocs.

io/en/latest/theory.html

[28] Novotni, M.; Klein, R. Shape retrieval using 3D Zernike descriptors. //

Computer-Aided Design 36(11), 1047–1062 (2004)

[29] Bart’ok, A.P.; Payne, M.C.; Kondor, R.; Csanyi, G. Gaussian approximation po-

tentials: The accuracy of quantum mechanics, without the electrons. // Phys.

Rev. Lett. 104, 136403 (2010)

[30] Denzler, D. N. et al. Electronic Excitation and Dynamic Promotion of a Surface

Reaction // Phys. Rev. Lett. 91(22), 226102, (2003).

[31] Juaristi, J. I., Alducin, M., Saalfrank, P. Femtosecond laser induced desorption

of H 2, D 2, and HD from Ru (0001): Dynamical promotion and suppression

studied with ab initio molecular dynamics with electronic friction, // Phys. Rev.

B, 95(12), 125439 (2017).

[32] Python programming language, https://www.python.org/

[33] NumPy package, http://www.numpy.org/

[34] Matplotlib plotting library, https://matplotlib.org/

[35] Atomic Simulation Environment, https://wiki.fysik.dtu.dk/ase/index.

html#

[36] Abinit, https://www.abinit.org/

[37] NWChem: Open Source High-Performance Computational Chemistry, http://

www.nwchem-sw.org/index.php/Main_Page

[38] Gaussian, http://gaussian.com/

[39] ASAP - As Soon As Possible, https://wiki.fysik.dtu.dk/asap

44

https://amp.readthedocs.io/en/latest/theory.html
https://amp.readthedocs.io/en/latest/theory.html
https://www.python.org/
http://www.numpy.org/
https://matplotlib.org/
https://wiki.fysik.dtu.dk/ase/index.html#
https://wiki.fysik.dtu.dk/ase/index.html#
https://www.abinit.org/
http://www.nwchem-sw.org/index.php/Main_Page
http://www.nwchem-sw.org/index.php/Main_Page
http://gaussian.com/
https://wiki.fysik.dtu.dk/asap

[40] VASP - Vienna Ab initio Simulation Package, https://www.vasp.at/

45

https://www.vasp.at/

	Introduction
	Machine learning
	Types of machine learning
	Artificial neural networks
	Structure of neural networks
	Learning algorithms

	Applying machine learning to physics
	Descriptors

	Data and software used
	Data
	Software
	Atomic Simulation Environment
	Atomistic Machine-learning Package

	Results
	Finding the optimal neural network
	Analyzing the optimal configuration
	Alternative approaches

	Conclusion
	Prošireni sažetak
	Uvod
	Strojno ucenje i primjena u fizici
	Korišteni podaci i paketi
	Rezultati
	Zakljucak

	Bibliography

