Zlodi, Leonarda

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:404206

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-30

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Geološki odsjek

Leonarda Zlodi

NAFTNOGEOLOŠKI POTENCIJAL PODRUČJA VELIKA CIGLENA

Diplomski rad

Zagreb, 2018.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK

Leonarda Zlodi

NAFTNOGEOLOŠKI POTENCIJAL PODRUČJA VELIKA CIGLENA

Diplomski rad predložen Geološkom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja akademskog stupnja magistra geologije

> Mentor: Prof. dr. sc. Vlasta Ćosović

> > Zagreb, 2018.

Ovaj diplomski rad izrađen je u sklopu diplomskog studija na smjeru geologija-paleontologija, pod vodstvom prof. dr. sc. Vlaste Ćosović i neposrednim vodstvom dr. sc. Tamare Troskot-Čorbić, u Službi istraživanja stijena i fluida, Sektora istraživanja i razvoja portfelja upstrem-a, Istraživanja i proizvodnje nafte i plina INA-Industrija nafte d.d.

Zahvale:

Zahvaljujem se prof. dr. sc. Vlasti Ćosović na mentorstvu, brojnim savjetima, utrošenom vremenu, podršci i razumijevanju prilikom izrade ovog rada.

Zahvaljujem se dr. sc. Tamari Troskot-Čorbić na neposrednom vodstvu, utrošenom vremenu, brojnim savjetima i pomoći kod geokemijske metode.

Hvala dipl. ing. Krešimiru Krizmaniću, na utrošenom vremenu, savjetima i pomoći kod biostratigrafskih podataka.

Hvala dipl. ing. Ninoslavu Sabolu i dipl. ing. Mariu Matoševiću na savjetima i pomoći prilikom mikroskopiranja petrografskih preparat.

Hvala svim dragim i bliskim ljudima koji su mi bili podrška.

Hvala mojim roditeljima Đurđici i Draženu na strpljenju i podršci tijekom cijelog studija.

Hvala!

TEMELJNA DOKUMENTACIJSKA KARTICA

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Geološki odsjek

Diplomski rad

NAFTNOGEOLOŠKI POTENCIJAL PODRUČJA VELIKA CIGLENA

Leonarda Zlodi

Rad je izrađen: INA-Industrija nafte d.d., Istraživanje i proizvodnja nafte i plina, Sektor istraživanja i razvoja portfelja upstrem-a, Služba istraživanja stijena i fluida, Lovinčićeva 4, 10 000 Zagreb

Sažetak:

Na području Bjelovarske subdepresije nalaze se bušotine od interesa Velika Ciglena-1 (VC-1), Velika Ciglena-1alfa (VC-1 α), Velika Ciglena-2 (VC-2) i Patkovci-1 (Ptk-1). Kako bi se odredio naftnogeološki potencijal područja Velika Ciglena korištene su petrografsko-sedimentološke i biostratigrafske te organskogeokemijske metode na odabranim jezgrovnim intervalima i uzorcima stijena sa sita. Mikroskopirani odabrani petrografski preparati klasificirani su na temelju mikropetrografskih svojstava, a biostratigrafski podaci preuzeti su iz završnih biostratigrafskih izvještaja i provjerni su u WORMS bazi podataka za svaku bušotinu. Za organskogeokemijsku metodu načinjene su na odabranim uzorcima sljedeće analize: sadržaj organskog ugljika, Rock Eval piroliza, ispitivanje netopljive organske tvari (kerogena), mikroskopska analiza organske tvari, ispitivanje bitumena i GC analiza. Prema dobivenim rezultatima određeni su matični intervali za svaku pojedinu bušotinu: VC-1 i VC-1 α od 2400 do 2500 m, za VC-2 od 2355 do 2425 m i Ptk-1 od 2200 do 2305 m. Matične stijene područja Velika Ciglena su gornjomiocenski lapori, kalcitom bogati lapori i glinoviti vapnenci i srednjomiocenski fosiliferni šejlovi i fosiliferni lapori. Matične stijene su prosječnog do dobrog generativnog potencijala u višem stupnju katageneze.

Ključne riječi: Bjelovarska subdepresija, Velika Ciglena, ugljikovodici, organskogeokemijska metoda, matična stijena

Rad sadrži: 52+VII stranica, 24 slika, 21 tablica i 58 literaturnih navoda

Jezik izvornika: hrvatski

Rad je pohranjen u: Središnjoj geološkoj knjižnici Prirodoslovno-matematičkog fakuleteta, Sveučilište u Zagrebu, Horvatovac 102a, 10 000 Zagreb, Republika Hrvatska.

Mentor: prof. dr. sc. Vlasta Ćosović

Ocjenjivači: prof. dr. sc. Vlasta Ćosović

prof. dr. sc. Nenad Tomašić

doc. dr. sc. Đurđica Pezelj

Datum završnog ispita: 12.11.2018.

BASIC DOCUMENTATION CARD

University of Zagreb Faculty of Science Department of Geology

Graduated Engineer Thesis

Petroleum potential of Velika Ciglena area

Leonarda Zlodi

Thesis completed in: INA-Industrija nafte d.d, Exploration & Production, Exploration & Upstream Portfolio Development, Rock & Fluid Analysis, Lovinčićeva 4, 10 1000 Zagreb

Abstract:

In the area of Bjelovar subdepression are wells of interest: Velika Ciglena-1 (VC-1), Velika Ciglena-1 alph (VC-1 α), Velika Ciglena-2 (VC-2) and Patkovci-1 (Ptk-1). In order to determine the petroleum potential of the Velika Ciglena area, petrographic-sedimentologic and biostratigraphic and organic geochemical interpretations were done on selected core intervals and ditch samples. Studied samples were classified based on their micropetrographical characteristics, whereas biostratigraphical data were taken from internal reports and checked according to WORMS data base. For organic geochemical study, on chosen samples the following analyses were preformed: Total organic carbon (TOC), Rock Eval pyrolysis, insoluble organic matter (kerogen), microscopic organic matter analysis, bitumen and GC analysis. According to the results, the source intervals for each well were defined: VC-1 and VC-1 α between 2400 and 2500 m, for VC-2 between 2355 and 2435 m and Ptk-1 between 2200 and 2305 m. The source rocks in Velika Ciglena area are of upper Miocene (marl, calcium rich marls and clayey limestone) and middle Miocene (fossiliferous shale and fossiliferous marl) ages. The source rocks have average to good generative potential in upper phase of katageneza.

Keywords: Bjelovar subdepression, Velika Ciglena area, hydrocarbons, organic geochemical method, source rock

Thesis contains: 52+VII pages, 24 figures, 21 tables and 58 references

Original in: Croatian

Thesis deposited in: Central Geological Library, Faculty of Science University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia

Supervisor: Ph.D, Vlasta Ćosović, Professor

Reviewers: Ph.D, Vlasta Ćosović, Professor

Ph.D, Nenad Tomašić, Professor

Ph.D, Đurđica Pezelj, Assistant Professor

Date of the final exam: 12.11.2018.

Sadržaj

1.	Uvoc	11						
2.	Geog	grafske i geološke značajke istraživanog prostora3						
2	2.1.	Geografski smještaj						
2	2.2.	Geološke osobine područja5						
	2.2.1	. Panonski bazenski sustav5						
	2.2.2	Hrvatski dio Panonskog bazenskog sustava7						
	2.2.3	. Bjelovarska subdepresija9						
3.	Metc	ode i materijali istraživanja10						
	3.1.	Biostratigrafske i petrografske-sedimentološke metoda10						
	3.2.	Organskogeokemijske metode						
4.	Rezu	ltati istraživanja17						
2	4.1.	Rezultati biostratigrafskih i petrografsko-sedimentoloških istraživanja17						
2	4.2.	Rezultati organskogeokemijskih istraživanja						
	4.2.1	. Sadržaj ukupne organske tvari26						
	4.2.2	. Rock Eval piroliza						
	4.2.3	. Rezultati mikroskopskih ispitivanja						
	4.2.4	. Rezultati plinsko-kromatografske analize						
5.	Inter	pretacija rezultata organskogeokemijskih istraživanja42						
4	5.1.	Velika Ciglena-1 i 1α						
5	5.2.	Velika Ciglena-243						
4	5.3.	Patkovci-1						
6.	Zaklj	jučak46						
7.	7. Popis literature:							
7	7.1.	Iz fonda i arhiva stručne dokumentacije INA d.d51						
7	7.2. WWW Izvori							

Popis slika

Slika 2.1	Rasprostiranje Panonskog bazenskog sustava s označenim granicama Republike Hrvatske
	(modificirano i preuzeto s Interneta: Agencija za ugljikovodike https://www.azu.hr/istraživanje-i-
	eksploatacija/geološki-pregled-kopna/)
Slika 2.2	Položaj istražnih bušotina unutar Bjelovarske subdepresije (modificirano prema: Malvić, 2003) 4
Slika 2.3	Litostratigrafska podjela miocena, katovi definirani u Mediteranu i Središnjem Paratethys-u i njihova
	korelacija (modificirano prema: Pavelić i Kovačić, 2018 i Pavelić, 2002)6
Slika 2.4	Karta s glavnim tektonskim osobinama hrvatskog dijela panonskog bazena. Crvena isprekidana linija
	predstavlja granicu između bazena Hrvatskog Zagorja i Sjevernohrvatskog bazena. Prikazani su glavni
	rasjedi i gore koje okružuju Bjelovarsku subdepresiju (modificirano prema: Pavelić i Kovačić, 2018)
Slika 2.5	Geološka karta Bjelovarske subdepresije (modificirano prema: Matoš, 2014)
Slika 3.1	Rock eval 6 pirolizator
Slika 3.2	Olympus BX-51 (gore) i Zeiss Axio Imager + MSP 210 (dolje)14
Slika 4.1	Vremenska skala badena na temelju magnetostratigrafije, planktonskih foraminifera i nanoplanktona
	(preuzeto od: Hohenegger et al., 2014)
Slika 4.2	Palinostratigrafska zonacija i korelacija sa drugim biozonama (dinocista, mekušaca i dr.) (preuzeto od:
	Bakrač et al., 2012)
Slika 4.3	Korelacija litoloških stupova istražnog prostora, a plavom bojom označeni su mikroskopirani intervali 24
Slika 4.4	Siltozni fosiliferni lapor VC-2, J-2
Slika 4.5	Lapor Ptk-1, J-1
Slika 4.6	Fosiliferni šejl VC-1, J-9
Slika 4.7	Glinoviti vapenac VC-1α, J-1
Slika 4.8	Modificirani van Krevelenov dijagram (lijevo), Tmax vs. HI dijagram (desno)
Slika 4.9	Odnos Corg vs. naftni potencijal (S_1+S_2) (lijevo), Odnos Corg vs. Vodikov indeks (HI) (desno) 35
Slika 4.10	Procjena naftnog potencijala
Slika 4.11	Amorfna organska tvar, VC-2, 2403,0-2406,0 III/0,15. Prolazno svjetlo.(lijevo). Reflektirano
	svjetlo, uljna imerzija, 330x
Slika 4.12	Amorfna organska tvar, VC-2 2406,0-2412,0 IV/0,02. Prolazno svjetlo. (lijevo). Reflektirano
	svjetlo, uljna imerzija, 330x
Slika 4.13	Amorfna organska tvar, Ptk-1, 2269,0-2271,0 I/0,80. Prolazno svjetlo. (lijevo). Reflektirano
	svjetlo, uljna imerzija, 330x
Slika 4.14	Odnos Vitrinitna refleksija (%Ro, VR) vs. Vodikov indeks (HI)
Slika 4.15	Profil zrelosti s prozorima
Slika 4.16	Distribucija n-alkana iz odnosnih plinskih kromatografa VC-1, VC-1α, VC-2 i Ptk-140
Slika 5.1	Korelacija matičnih intervala

Popis tablica

Tablica 3.1	Konverzija TAI-%Ro prema Španić i Troskot-Čorbić - interna skala INA d.d. usklađena
	sa konverzijskim skalama u Staplin (1969), Stach et al. (1982), Tissot & Welte (1978) i
	Taylor et al. (1998)15
Tablica 4.1	Odredba litološkog sastava jezgrovnih intervala i uzoraka stijena sa sita iz bušotine VC-1
Tablica 4.2	Odredba litološkog sastava jezgrovnih intervala iz bušotine VC-1α18
Tablica 4.3	Odredba litološkog sastava jezgrovnih intervala iz bušotine VC-2
Tablica 4.4	Odredba litološkog sastava jezgrovnih intervala i uzoraka stijena sa sita iz bušotine Ptk-1
Tablica 4.5	Kronostratigrafski slijed naslaga bušotine VC-1 i VC-1α19
Tablica 4.6	Kronostratigrafski slijed naslaga bušotine VC-221
Tablica 4.7	Kronostratigrafski slijed naslaga bušotine Ptk-123
Tablica 4.8	Određivanje organskog ugljika (Leco metoda) Velika Ciglena-1(VC-1) i Velika Ciglena-
	1α (VC-1α)
Tablica 4.9	Određivanje organskog ugljika (Leco metoda) Velika Ciglena-2 (VC-2)27
Tablica 4.10	Određivanje organskog ugljika (Leco metoda) Patkovci-1 (Ptk-1)28
Tablica 4.11	Rezultati Rock Eval pirolize VC-1 (crno) i VC-1a (ljubičasto) (žutom bojom označeni
	panonski, a narančastom badenski matični intervali),(e-ekstrahirano)29
Tablica 4.12	Rezultati Rock Eval pirolize VC-2 (žutom bojom označeni panonski, a narančastom
	badenski matični intervali),(e-ekstrahirano)
Tablica 4.13	Rezultati Rock Eval pirolize Ptk-1 (žutom bojom označeni panonski, a narančastom
	badenski matični intervali),(e-ekstrahirano)
Tablica 4.14	Mikroskopska ispitivanja organske tvari VC-1 i VC-1α36
Tablica 4.15	Mikroskopska ispitivanja organske tvari VC-2
Tablica 4.16	Mikroskopska ispitivanja organske tvari Ptk-1
Tablica 4.17	Popis kratica korištenih u tablicama mikorskopskih ispitivanja organske tvari37
Tablica 4.18	Rezultati plinske kromatografije VC-1 i VC-1a (modificirano prema izvještaju
	Rumenjak, 1991 i Španić, 2010)40
Tablica 4.19	Rezultati plinske kromatografije VC-2 (modificirano prema izvještaju Barić, 1996 i
	Španić, 2010)40
Tablica 4.20	Rezultati plinske kromatografije Ptk-1 (modificirano prema izvještaju Rumenjak, 1996 i
	Španić, 2010)41

1. Uvod

Nafta je fosilno gorivo i trenutno jedan od najvažnijih izvora energije na Zemlji. To je vrlo složena smjesa različitih spojeva uglavnom ugljikovodika. Istraživanje ugljikovodika (HC) je iznimno kompleksan proces i zahtjeva multidisciplinarni pristup, tj. primjenu različitih geoloških, geofizičkih i geokemijskih metoda. U procjeni naftno-geološkog potencijala nekog područja bitnu ulogu ima organska (naftna) geokemija.

Organska (naftna) geokemija je znanstvena disciplina koja proučava organsku tvar u geosferi, proučava količine i sastave organske tvari u sedimentu, njihovo porijeklo i procese koji su utjecali na njenu distribuciju. Organska tvar potječe od organizama i sadrži organski vezani ugljik. Primjenom znanstvenih metoda (u prvom redu biomarkera i izotopa) organska geokemija je dokazala organsko porijeklo nafte.

Organska (naftna) geokemija također omogućava identifikaciju i karakterizaciju matičnih stijena i migracijskih puteva, koji omogućuju pronalazak novih akumulacija, te procjenu količine ugljikovodika u ležištu. Matična stijena je sedimentna stijena bogata organskom tvari koja može generirati i osloboditi dovoljno ugljikovodika za formiranje komercijalnog ležišta. Ona može biti potencijalna i efektivna. Organska tvar u sedimentu nastaje bakterijskom transformacijom ostataka algi, biljaka, životinja i mikrobiološkog tkiva. Nakon što je organska tvar očuvana od raznih degradacijskih procesa, u fazama pretvorbe dijagenezi, katagenezi i metagenezi dostiže ravnotežno stanje, formira se kerogen, generiraju se ugljikovodici i na kraju zaostaje neaktivni ugljikov ostatak (Barić, 2006).

Globalne rezerve nafte u 2017. godini su 1696,6 bilijuna barela (BBbl), a rezerve plina 193,5 tcm. S obzirom na današnji trend potrošnje, procijenjeno je da bi navedene rezerve mogle potrajati 50,2 godine za naftu i 52,6 godina za plin (podaci preuzeti sa: <u>https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html</u>).

Republika Hrvatska ima vrlo dugu povijest iskorištavanja ugljikovodika. Prva istraživanja i pridobivanje nafte i plina započela su u 19. stoljeću. Četrdesetih godina prošlog stoljeća izvedena su prva geofizička istraživanja te započeta proizvodnja. Upotreba modernih, suvremenih metoda istraživanja ugljikovodika nastavila se tijekom prošlog stoljeća. Tvrtka Naftaplin, tvrtka za istraživanje i proizvodnju ugljikovodika sa sjedištem u Zagrebu osnovana je 1952. godine. Danas

djeluje u sastavu INA – Industrija nafte d.d. Zagreb. Ugljikovodici se pridobivaju iz 33 naftna polja, plinski kondenzat iz 9 plinskokondenzatnih polja i plin iz 17 plinskih polja (Velić et al., 2016). Trenutačno hrvatska ležišta pokrivaju oko 60% potreba plina i oko 20% potreba nafte, te se većina ležišta nalazi u sjevernoj Hrvatskoj.

Cilj ovog diplomskog rada je procjena naftnogeološkog potencijala područja Velika Ciglena. U svrhu izrade diplomskog rada od strane INA-Industrija nafte d.d. ugovorno je odobrena upotreba službenih podataka (ugovor br. DMSCOU 1083374/00). pod voditeljstvom dr sc. Tamare Troskot-Čorbić. Analize i interpretacija provedeni su u Službi istraživanja stijena i fluida, Sektora istraživanja i razvoja portfelja upstrem-a, Istraživanja i proizvodnje nafte i plina INA-Industrija nafte d.d. U istraživanju su korištene petrografsko-sedimentološke i biostratigrafske te organskogeokemijske metode. Analize su provedene na uzorcima iz triju bušotina: Velika Ciglena-1 i 1alfa (VC-1 i 1 α), Velika Ciglena 2 (VC-2) i Patkovci-1 (Ptk-1).

Bušotine područja Velike Ciglene i Patkovca nalazi se u Panonskom bazenskom sustavu (PBS). Republici Hrvatskoj pripada jugozapadni dio Panonskog bazenskog sustava. Posljednjih 70 godina traju intenzivna istraživanja i eksploatacija nafte i plina. Istraživanja su usmjerena na Dravsku depresiju, koja zauzima površinu od nekih 9000 km^2 , jer se u njoj nalaze naša najveća eksploatacijska plinska i plinsko-kondenzatna polja (Molve-Kalinovac-Stari Gradac). Dio tog područja, njen jugozapadni dio, je i Bjelovarska subdepresija u kojoj su bušotine od interesa ovog diplomskog rada. Područje Bjelovarske subdepresije je također intenzivno istraživano čemu svjedoči više od 500 istražnih bušotina (Malvić, 2003). U poljima ovog prostora (Lepavina, Letičani, Mosti, Čepelovac-Hampovica, Galovac-Pavljani, Jagnjedovac, Šandrovec, Bačkovica, Gakovo, Bilogora) dokazana su ležišta nafte i plina.

2. Geografske i geološke značajke istraživanog prostora

2.1. Geografski smještaj

Panonski bazenski sustav okružen je planinskim lancima (Alpe, Karpati i Dinaridi). Paleogeografski, prostiranje PBS-a podudara se s područjem Središnjeg Paratethys-a, te mu se jugozapadna granica nalazi u sjeverozapadnoj Hrvatskoj i sjevernoj Bosni (Slika 2.1) (Rögl i Steininger, 1983; Popov et al., 2004; Harzhauser i Piller, 2007; Piller et al., 2007; Kováč et al., 2017).

Bjelovarska subdepresija se prostire na najistočnijem dijelu Središnjem Hrvatske (Žuljić, 1974). Granice Bjelovarske subdepresije zemljopisno su određene sljedećim gorama: Kalnikom (643 m) na sjeverozapadu, Bilogorom (288 m) na sjeveroistoku, Papukom (953 m), Ravnom gorom (854 m) i Psunjem (984 m) na istoku i jugoistoku te Moslavačkom gorom (489 m) na jugu. Nizina oko rijeke Lonje i sjevernog dijela Lonjskog polja između Kalnika i Moslavačke gore predstavlja granicu na jugozapadu. Na jugu, između Moslavačke gore i Psunja nalazi se dolina koju su stvorile rijeke Ilova i Pakra (Malvić, 2003). Položaj istražnih bušotina unutar Bjelovarske subdepresije je prikazano na slici 2.2.

Slika 2.1 Rasprostiranje Panonskog bazenskog sustava s označenim granicama Republike Hrvatske (modificirano i preuzeto s Interneta: Agencija za ugljikovodike <u>https://www.azu.hr/istraživanje-</u> <u>i-eksploatacija/geološki-pregled-kopna/</u>)

Slika 2.2 Položaj istražnih bušotina unutar Bjelovarske subdepresije (modificirano prema: Malvić, 2003)

2.2. Geološke osobine područja

2.2.1. Panonski bazenski sustav

Formiranje Panonskog bazenskog sustava započelo je u ranom miocenu zbog kolizije i subdukcije Euroazijske ploče pod Afričku ploču i odvijalo se u dvije faze: sin-riftna i post-riftna faza. Sin-rift faza obilježena je ekstenzijskim tektonskim stanjivanjem kore i izostatskom subsidencijom, dok je post-rift faza karakterizirana subsidencijom bazena zbog hlađenja litosfere (Royden, 1988; Tari et al., 1992).

Nakon razdvajanja zapadnog Neotethys oceana na Paratethys i Sredozemno more, negdje na granici eocen-oligocen (Rögl, 1999), veliko područje sjeverne Hrvatske postalo je kopno. Morska veza između središnjeg Paratethys-a i PBS-a, te Sjevernog mora, Sredozemnog mora i Indo-Pacifika tijekom miocena bila je nekoliko puta uspostavljana, te je naposljetku prekinuta, a što je snažno utjecalo na taloženje, paleoekološke uvjete i na oscilaciju morske razine u Sjevernohrvatskom bazenu (SHB) (Rögl i Steininger, 1983; Pavelić, 2001; Popov et al., 2004; Harzhauser i Piller, 2007; Kováč et al., 2007, 2017; Piller et al., 2007). Marinska transgresija tijekom ranog miocena nije zahvatila cijeli bazen, zbog čega se talože naslage različite starosti u rasponu od starijeg do mlađeg miocena. Taloženje se odvijalo u marinskim, brakičnim ali i slatkovodnim okolišima, dok se uzdignuti dijelovi bazena obilježeni emerzijom. Završna izolacija središnjeg Paratethys-a započela je otprilike prije 11,6 milijuna godina, nakon čega je formirano Panonsko jezero (Harzhauser i Piller, 2007; Piller et al., 2007). Razvoj izoliranog središnjeg Paratethys-a i posljedično evolucija endemske faune zahtijevali su uspostavu regionalnih neogenskih katova (Slika 2.3).

Slika 2.3 Litostratigrafska podjela miocena, katovi definirani u Mediteranu i Središnjem Paratethys-u i njihova korelacija (modificirano prema: Pavelić i Kovačić, 2018 i Pavelić, 2002)

U Hrvatskom dijelu Panonskog bazenskog sustava (HPBS) odvijala se neogensko-kvartarna sedimentacija. Danas HPBS zauzima cijeli jugozapadni dio PBS-a (Malvić, 2012).

SHB imao je kompliciranu evolucijsku povijest koja je kontrolirana vanjskim čimbenicima kao što su: tektonika, klimatske promjene, vulkanska aktivnost i eustatička promjena morske razine. Nastanak stijena ovisi o razvoju taložnih okoliša tijekom neogena, koji također kontrolira i organsku evoluciju.

2.2.2. Hrvatski dio Panonskog bazenskog sustava

Na području sjeverne Hrvatske tijekom ranog miocena razvila su se dva bazena s različitim taložnim okolišima: bazen Hrvatskog Zagorja (HZB) i Sjevernohrvatski bazen (SHB). HZB zauzima manji dio sjeverozapadnog područja koji se zapadno proteže do Slovenije, a SHB prekriva većinu sjeverne Hrvatske i to oko 32000 km^2 (Slika 2.4, Pavelić i Kovačić, 2018).

Tijekom ranog miocena procesi taloženja u bazenima se jako razlikuju. U HZB-u se tijekom egera talože sedimenti marinskih, brakičnih pa i slatkovodnih sredina (paralički okoliši), a u egenburgu sedimenti deltnih i marinskih plitkovodnih okoliša. Otnang je predstavljen sedimentima (breče, konglomerati i pješčenjaci) iz plitkovodnih, marinskih i prijelaznih okoliša. U karpatu se nastavlja plitkovodna marinska sedimentacija, no talože se i dubljevodni marinski te aluvijalni i deltični talozi (Avanić, 2012; Mandić et al., 2012). U SHB taloženje je započelo kasnije, tek u otnangu, kada kontinentalne okoliše nakon dugotrajne emerzije zamjenjuje marinska sedimentacija u srednjem miocenu tj. u srednjem badenu (Ćorić et al., 2009; Mandić et al., 2012; Marković, 2017).

SHB obuhvaća Dravsku depresiju, Bjelovarsku subdepresiju, Požešku depresiju, Slavonskosrijemsku depresiju, Savsku depresiju i Karlovačku depresiju (Pavelić, 2001) (Slika 2.4). Depresije su ograničene gorskim masivima kao što su Bilogora, Slavonske planine, Medvednica, Moslavačka gora i dr. Razlikujemo dvije faze evolucije bazena: sin-rift faza koja je trajala od otnanga do srednjeg badena i post-rift faza koja je trajala od gornjeg badena do pliocena. Sin-rift fazu obilježili su različiti taložni okoliši od kopnenih do morskih. Okoliši su bili kontrolirani normalnim rasjedanjem, klimatskim promjenama (izmjene humidne i aridne klime), povećanjem vulkanske aktivnosti te naposljetku eustatičkim promjenama razine mora (transgresija i regresija). Post-rift faza obilježena je transformacijama marinskih u kopnene taložne okoliše, postupnim smanjenjem vulkanske aktivnosti i tektonskim promjenama (dvije kompresijske faze) koje su uzrokovale inverziju bazena i strukturno izdizanje blokova (Pavelić i Kovačić, 2018).

SHB generalno ima smjer pružanja ZSZ-IJI. To je izdužen bazen s različitim maksimalnim debljinama neogenskih sedimenata kojih u rubnim dijelovima ima od 500 do 1500 m, ali u pojedinim dijelovima čak i do 7000 m u Dravskoj, 3000 m u Bjelovarskoj, 2700 m u Požeškoj, 3500 m u Slavonsko-srijemskoj, 5500 m u Savskoj i 3000 m u Karlovačkoj depresiji (Najdenovski, 1988; Saftić et al., 2003; Vrsaljko, 2003; Malvić, 2011; Malvić i Cvetković, 2013).

Slika 2.4 Karta s glavnim tektonskim osobinama hrvatskog dijela panonskog bazena. Crvena isprekidana linija predstavlja granicu između bazena Hrvatskog Zagorja i Sjevernohrvatskog bazena. Prikazani su glavni rasjedi i gore koje okružuju Bjelovarsku subdepresiju (modificirano prema: Pavelić i Kovačić, 2018)

Slika 2.5 Geološka karta Bjelovarske subdepresije (modificirano prema: Matoš, 2014)

2.2.3. Bjelovarska subdepresija

Bjelovarska subdepresija je nastala u ranom miocenu uslijed tektonskih pokreta, a zbog specifičnog rasjednog sustava danas joj je oblik približno romboedarski (Mesić Kiš, 2017, Slika 2.5).

Na području Bjelovarske subdepresije stijene koje naliježu na podinu neogena najčešće nisu precizno stratigrafski određene i svrstane su u raspon donji do srednji miocen (Slika 2.5). Prema najnovijim istraživanjima, najstarije naslage karpatske starosti (Hernitz-Kučenjak et al., 2018) dokazane su u nekoliko bušotina sjevernije od područja Velike Ciglene. Općenito, porijeklom to su heterogene stijene od kojih su neke nastajale u okolišima aluvijalnih lepeza (Pavelić, 2001), a neke u plićim i malo dubljim (šelfnim) marinskim okolišima. U badenu je došlo do porasta morske razine, što je imalo za posljedicu taloženje sedimenata na gotovo cijelom području subdepresije uz vrlo snažnu tektoniku i vulkanizam. Uz plitkovodne i rjeđe malo dublje (šelfne) marinske naslaga, lokalno su se taložili sedimenti nastali u aluvijalnim lepeznim deltama uz lokalne izvore materijala. U srednjem i mlađem badenu talože se finozrnatiji klastiti i karbonatne stijene i taloženje se podudara s završetkom ekstenzijske faze te početkom postekstenzijskog razdoblja, smanjuje se salinitet i stvaraju se brakični sedimentacijski uvjeti, koji se nastavljaju i u sarmatu.

U postekstenzijskom razdoblju (gornji miocen) istaložene su monotone serije klastičnih sedimenata (pješčenjaka i lapora). U tom razdoblju došlo je do promjene taložnog prostora iz marinskog u jezersko-riječni slatkovodni okoliš, te izvor materijala više nije bio lokalnog podrijetla.

Bjelovarska subdepresija nije bila na putu glavnog donosa materijala u postekstenzijskoj fazi. Zbog toga debljine istaloženih neogensko-kvartarnih naslaga rijetko prelaze 3000 m, za razliku od 7000 m u glavnoj Dravskoj depresiji (Mesić Kiš, 2017).

U pliocenu dominira taloženje u slatkovodnim jezerima, rijekama i močvarama koje je, obilježeno lokalnim izvorima materijala. U području Bjelovarske subdepresije aktiviraju se novi i reaktiviraju stari rasjedni sustavi što za posljedicu ima izdizanje Bilogore, dijelom i Papuka (700 m) te Psunja (750 m) (Prelogović, 1975). Isti uvjeti se nastavljaju kroz kvartar.

3. Metode i materijali istraživanja

Za izradu diplomskog rada i procjenu naftno-geološkog potencijala odabrano je područje Velike Ciglene i Patkovca. Istraživanje je provedeno na tri bušotine: Velika Ciglena-1 (VC-1) zajedno sa Velikom Ciglenom-1alfa (VC-1α), Velika Ciglena-2 (VC-2) i Patkovci-1 (Ptk-1). Sve analize i interpretacija provedene su u laboratoriju industrije nafte INA d.d. u Službi za istraživanje stijena i fluida.

3.1. Biostratigrafske i petrografske-sedimentološke metoda

Na navedenim istražnim bušotinama izvršene su petrografsko-sedimentološke i biostratigrafske analize naslaga na temelju uzoraka stijena jezgrovnih intervala i krhotina stijena iz isplake (uzoraka stijena sa sita).

Biostratigrafska interpretacija temelji se na analizi mikrofosila (palinomorfa, foraminifera, ostrakoda).

Laboratorijske tehnike koje su primjenjne za obradu uzoraka s mikrofosilima su vezane uz vrstu uzoraka, razmuljivanje (šlemanje) je korišteno za krhotine, a mikroskopski su preparati napravljeni iz uzoraka jezgara.

Metoda razmuljivanja definira se kao mokro sijanje uzoraka iz bušotine. Uzorke stijena potrebno je prije prosijavanja usitniti na veličinu manju od jednog centimetra. Usitnjeni uzorak se zatim 24 sata ostavlja u 30%-tnoj otopini vodikovog preoksida kako bi sva organska tvar oksidirala, a nakon toga slijedi prosijavanje. Prosijavanje se provodi kroz set sita različitih veličina otvora uz ispiranje vodom. Sita se slažu od najmanjeg do najvećeg promjera (odozdo prema gore) i s sita promjera 0,063 mm (63 µm) iz taloga skupljaju se fosili. Fosili se izdvajaju pod mikroskopom pomoću specijalne igle u Frankove (mikropaleontološke) ćelije. Metoda izrade tankog izbruska opisana je u pasusu o petrografsko-sedimentološkoj interpretaciji.

Mikropaleontološke metode su korištene za marinske (planktonske i bentičke foraminifere, crvene alge, mahovnjaci, ostrakodi...), u manjoj mjeri oslađene (bentičke foraminifere, ostrakodi...) i slatkovodne okoliše (ostrakodi, silikoplacentine, harofite/parožine...).

Priprema uzoraka stijena za palinološku analizu podrazumijeva izolaciju organskog ostatka iz uzorka uz eliminaciju silikatnog i karbonatnog dijela stijene pomoću klorovodične (HCl) i fluorovodične kiseline (HF) uobičajenim metodom palinološke maceracije. Palinološke metode podrazumijevanju istraživanje alohtonih skupina fosila (pelud, spore...) i autohtone skupine fosila (ciste dinoflagelata, akritarke, ostaci zelenih algi...), a korištene su i za marinske, ali prvenstveno za oslađene i slatkovodne okoliše.

Za petrografsko-sedimnetološku interpretaciju najprije je potrebno izraditi tanki izbrusak stijene. Uzorci stijene prolaze kroz procese rezanja, lijepljenja pomoću kanada balzama, brušenja, ispiranja, poliranje sve dok se ne postigne željena debljina stijene od 30 µm i tada slijedi lijepljenje, odnosno pokrivanje pokrovnim stakalcem pomoću kanada balzama. Ako je uzorak stijene slabo vezan i neprimjeren za rezanje i pripremu tankog izbruska, ili ako se radi o krhotinama stijena iz bušotine, prvo se takav uzorak učvrsti zalijevanjem u epoksidnu smolu. Tek nakon toga se pristupa izradi preparata (plastila) na već opisan način izrade tankog izbruska stijene. Izbrusak se sastoji od objektnog stakalca, uzorka stijene, pokrovnog stakalca i naljepnice s odgovarajućim podacima. Tako pripremljeni tanki izbrusak spreman je za determinaciju i interpretaciju pod mikroskopom.

Biostratigrafski i petrografsko-sedimentološki podaci su preuzeti iz završnih Biostratigrafskih i petrografsko-sedimentoloških izvještaja pojedinih bušotina te novijih reinterpretacija i studija, a biostratigrafski podaci prikazani su u poglavlju 4. Rezultati istraživanja (Tablice 4.5, 4.6 i 4.7) i usklađeni s važećim biozonacijama za Paratethys (Slika 4.1 i Slika 4.2).

Odabrani petrografski preparati jezgrovnih intervala i uzoraka stijena sa sita iz svake pojedine bušotine su promatrani pod mikroskopom. Klastične i pelitske stijene klasificirane su prema Pettijohnu (1975, preuzeto iz Tišljar 2004), a za odredbu karbonatnih stijena korištena je klasifikcaija prema Konti (1973, preuzeto iz Tišljar 2001). Pojednostavljene odredbe su prikazane u tablicama (Tablice 4.1, 4.2, 4.3 i 4.4). Određeni jezgrovni intervali su fotografirani su pomoću kamere Olympus DP 70 na mikroskopu Olympus BX50 i prikazani u poglavlju 4. Rezultati istraživanja (Slike 4.4, 4.5, 4.6 i 4.7).

3.2. Organskogeokemijske metode

Kako je istaknuto u uvodu u procjeni potencijala nekog područja odlučujući su rezultati organskogeokemijskih istraživanja. Organska geokemija je znanstvena disciplina kojom se određuje tip i zrelost organske tvari, odnosno matične stijene i njihova generativna sposobnost te provodi korelacija stijena i ugljikovodika u cilju utvrđivanja njihove međusobne ovisnosti.

Organskogeokemijske metode i analize istraživanja su: određivanje organskog ugljika, Rock Eval piroliza, određivanje sadržaja topljive organske tvari (bitumena), grupni sastav bitumena, plinskokromatografska analiza bitumena (GC), plinskokromatografska-maseno spekrografska (GCMS) analiza bitumena, određivanje stabilnih izotopa ugljika (kerogen, bitumen, ugljikovodk) i organska petrologija (mikroskopska analiza organske tvari), te određivanje sumpora.

Za potrebe diplomskog rada načinjene su na dva uzorka sljedeće analize: sadržaj organskog ugljika, Rock Eval piroliza, ispitivanje netopljive organske tvari (kerogena), mikroskopska analiza organske tvari, ispitivanje bitumena i GC analiza. Dobiveni rezultati prikazani su u poglavlju rezultati u obliku tablica (Tablice od 4.8 do 4.20) i slika (Slike od 4.8 do 4.16). Ostali podaci su preuzeti iz geokemijskih izvještaja.

Za geokemijsku analizu priprema se reprezentativan uzorak koji je osnova za sve daljnje analize. Uzorci jezgara i krhotina iz isplake se peru, suše i melju. Na pripremljenim uzorcima provedeno je određivanje:

1. Sadržaj organskog ugljika

Ukupna organska tvar u stijeni (kerogen i bitumen) se izražava kao C_{org} (Total Organic Carbon, TOC). Sadržaj organske tvari određuje se spaljivanjem (oksidacija) usitnjenog uzorka stijene, koji je prethodno oslobođen od karbonatne komponente (otapanjem u HCl-u). Organski ugljik određuje se na determinatoru ugljika Leco-IR 212. Količina CO₂ proporcionalna je ukupnom sadržaju organskog ugljika u kerogenu i bitumenu, te se izražava u mas. % C_{org}.

2. Rock Eval piroliza

Rock Eval piroliza je laboratorijska pirolitička tehnika koja omogućuje brzu determinaciju matične stijene tj. određivanje tipa zrelosti organske tvari i generirajuću sposobnost (Barić, 2006). To je laboratorijska simulacija prirodnih procesa (u 25 min) na uzorcima stijena (u pravilu na uzorcima koji imaju >0,3% C_{org}).

Slika 3.1 Rock eval 6 pirolizator

Procjena matičnosti stijene provedena je Rock Eval 6 pirolizatoru prema metodi opisanoj u Espitalie et al., (1985) (Slika 3.1). Pripremljeni uzorak stijene zagrijava se u inertnoj atmosferi do 850°C. Detektiraju se ugljikovodici prisutni u stijeni te ugljikovodici nastali krekiranjem kerogena i CO_2 koji nastaje tijekom pirolize u temperaturnom programu. Dobiveni parametri omogućavaju identifikaciju sadržaja, tipa i zrelosti kerogena odnosno određivanje kvalitete matične stijene. Izmjereni parametri su:

- TOC (mas.%) ukupni organski ugljik
- $S_1 \text{ (mg HC/ g stijene)} \text{slobodni HC}$
- $S_2 (mg HC/g stijene) HC$ nastali termički krekiranjem kerogena za vrijeme pirolize
- $S_3 (\text{mg } CO_2/\text{ g stijene}) \text{organski } CO_2 \text{ oslobođen tijekom krekiranja}$
- T_{max} (°C) maksimalna pirolitička temperatura krekiranja kerogena

Izračunati parametri Rock Eval pirolize su:

- HI $(S_2/\text{TOC})*100 \text{vodikov indeks}$
- OI $(S_3 / \text{TOC})*100 \text{kisikov indeks}$
- PI $(S_1 / S_1 + S_2)$ produkcijski ili transformacijski indeks
- S_2 / S_3 indeks tipa HC (tip kerogena)
- $S_1 + S_2$ ukupni ugljikovodični generirajući potencijal

3. Organsko petrološka ispitivanja izoliranog kerogena

Netopljiva organska tvar izdvaja se primjenom HCl i HF kiselina te centrifugiranjem u teškoj tekućini (zasićena otopina *ZnCl*₂). Organsko petrološka istraživanja vrše se optičkim mikroskopom u prolaznom, reflektiranom i fluorescentnom svjetlu. Izolirana organska tvar pregledana je i fotografirana u prolaznoj i plavoj fluorescentnoj svjetlosti na mikroskopu Olympus BX51, te u reflektiranoj svjetlosti na mikroskopu Zeiss Axio Imager opremljenim s mikroskop spektrometrom MSP 210 (uljna imerzija, valna duljina 546 nm). Određen je volumni odnos macerala (u postotcima), boja fluorescencije, te termalni alteracijski indeks (TAI) i mjerenja vitrinitne refleksije. Vitrinitna refleksija predstavlja najvažniji parametar u definiraju zrelosti organske tvari (%Ro) i metoda po kojoj su kalibrirane sve ostale metode određivanja zrelosti (TAI, Tmax itd.). U radu je korištena interna skala INA d.d. prema Španić i Troskot-Čorbić (Tablica 3.1)

Slika 3.2 Olympus BX-51 (gore) i Zeiss Axio Imager + MSP 210 (dolje)

Tablica 3.1Konverzija TAI-%Ro prema Španić i Troskot-Čorbić - interna skala INA d.d.usklađena sa konverzijskim skalama u Staplin (1969), Stach et al. (1982), Tissot & Welte(1978) i Taylor et al. (1998)

ΤΑΙ	% R _o
1*	<0,35
2 ⁻	0,35-0,45
2	0,45-0,55
2⁺	0,55-0,70
3-	0,70-0,95
3	0,95-1,25
3⁺	1,25-2,00
4⁻	2,00-3,00
4	>3,00

Konverzija TAI-% R_o (VR)

4. Ispitivanje bitumena

Topljivu organsku tvar (bitumen) moguće je ekstrahirati iz stijene organskim otapalima. Određivanje sadržaja bitumena u stijeni provodi se na Soxhelt uređaju s kloroformom ili automatskom ekstrakcijom (Büchi).

Sav bitumen (tj. topljiva organska tvar) prelazi u otopinu iz koje se zatim izdvaja evaporacijom otapala na vakuum rotacionom uparivaču. Bitumen se dalje suši i važe i izražava kao mas.% od mase uzorka matične stijene.

5. Grupni sastav bitumena

U bitumenu su prisutne i 4 grupe spojeva (SARA) koje je moguće odijeliti s obzirom na njihova kemijska svojstva, a to su: zasićeni ugljikovodici (alkani), aromatski ugljikovodici, smole i asfalteni. Grupni sastav ekstrakata utvrđen je kromatografijom na stupcu.

6. Plinska kromatografija (GC)

Plinskokromatografska analiza bitumena, njegove alkanske frakcije i nafte provedena je na instrumentu Agilent 7890A s kapilarnom kolonom DB-PETRO, 50m*0,20 mm obložena s 0,5 mikrona DF dimetilpolisiloksana. Plinskom kromatografijom uzorak se u injektoru uplinjava pri

visokoj temperaturi te ulazi u kolonu uz specifičan temperaturni program pod kojim se spojevi ugljikovodika selektivno zadržavaju na stjenkama kolone obložene filmom dimetilpolisiloksana i izlaze na detektor prema svojim temperaturama vrelišta. Na kolonu je injektiran 1 mikrolitar uzorka bitumena ili alkanske frakcije bitumena i analiziran prema temperaturnom programu od početnih 80°C do 320°C 8°C/m s izotermnim zadržavanjem 50 min. Dobivene su ugljikovodične (molekularne) distribucije te proračunati međusobni odnosi pojedinih pikova.

7. Odnos stabilnih izotopa u bitumenu i frakcijama

U interpretaciji su korištene analize stabilnih izotopa ugljika koje su provedene na masenom spektrometru Finnigan Mat DELTA E, prema proceduri koju je opisao Sofer (1980). Ugljikov izotopni sastav prikazuje se kao odnos teškog ¹³C i laganog izotopa ¹²C koji se uspoređuje sa standardom, a izražava se u promilima (‰). Analize koje su provedene na kerogenu, bitumenu i frakcijama bitumena preuzete su iz završnih izvješća bušotina.

4. Rezultati istraživanja

4.1. Rezultati biostratigrafskih i petrografsko-sedimentoloških istraživanja

Petrografske odredbe su prikazane u tablicama (4.1, 4.2, 4.3 i 4.4) na slikama (4.4, 4.5, 4.6 i 4.7) i sumarno u litološkim stupovima na slici (4.3).

Tablica 4.1Odredba litološkog sastava jezgrovnih intervala i uzoraka stijena sa sita iz
bušotine VC-1

Velika Ciglena-1 (VC-1)											
Interval uzoraka stijene sa sita i	Litologijo										
jezgara u bušotini (m)	Litorogija										
1351-1357 (J-1)	Litični arenit										
1396-1399											
(Mehanička instrumentacija – uzorak	Breča										
dobiven paukom)											
1450-1456 (J-2)	Litični arenit, siltit, lapor										
1479-1483 (J-3)	Siltit, lapor										
1536-1542 (J-4)	Litični arenit, siltit, lapor										
1579-1585 (J-5)	Litični arenit, siltit										
1695	Litični arenit, siltit										
1725	Lapor, siltit										
1747-1752 (J-6)	Litični arenit, siltit, lapor										
1843-1849 (J-7)	Litični arenit, siltit, lapor										
1995	Litični arenit										
2014-2019 (J-8)	Litični arenit, siltit, lapor										
2235	Lapor										
2445	Glinoviti vapnenac										
2464 2467 (LO)	Glinoviti vapnenac, fosiliferni šejlovi (bogati organskom tvari),										
2404-2407 (J-9)	lapor										
2475	Dolomit i lapor										
2505	Vapnenački pješčenjak, dolomit i lapor										
2516-2519 (J-10)	Biokalkarenit do biokalkrudit										
2540	Dolomitizirana litična grauvaka										
2547-2549											
(mehanička instrumentacija – uzorak	Kasno i ranodijagenetski dolomiti s ulošcima pelitnih sedimenata										
dobiven paukom)											
2550-2553 (J-11)	Kasno i ranodijagenetski dolomiti s ulošcima pelitnih sedimenata										
2575	Dolomit										
2752-2756 (J-12)	Tektonizirani ranodijagentski dolomiti										
3000	Dolomit										
3011-3016 (J-15)	Tektonizirani i rano i kasnodijgenetski dolomiti										
3180	Dolomit										
3187-3193 (J-16)	Tektonizirani i rano i kasnodijgenetski dolomiti										
3210	Dolomit										
3461-3466 (J-18)	Tektonizirani rano i kasnodijgenetski dolomiti										
3515-3521 (J-19)	Tektonizirani rano i kasnodijgenetski dolomiti										
3668-3676 (J-20)	Tektonizirani rano i kasnodijgenetski dolomiti										
4043-4047 (J-21)	Kataklizirani metapješčenjaci i metapeliti										
4088-4091 (J-22)	Kataklazirani metapješčenjaci i metapeliti + tektonizirani karbonati										
4395	Metapješčenjaci										
4434-4438 (J-23)	Limonitizirane dolomitne breče										
4680	Dolomitne breče										

Tablica 4.2 Odredba litološkog sastava jezgrovnih intervala iz bušotine VC-1α

Velika Ciglena-1α (VC–1α)									
Interval uzoraka stijene sa sita i jezgara u bušotini (m)	Litologija								
2423-2425 (J-1)	Glinoviti vapnenac								
2515-2519 (J-2)	Dolomitne breče								

 Tablica 4.3
 Odredba litološkog sastava jezgrovnih intervala iz bušotine VC-2

Velika Ciglena-2 (VC-2)									
Interval uzoraka stijene sa sita i jezgara u bušotini (m)	Litologija								
2403-2406 (J-1)	Glinoviti vapnenac, siltozni lapor								
2406-2412 (J-2)	Glinoviti vapnenac, siltozni fosiliferni lapor, lapor								
2412-2419 (J-3)	Glinoviti vapnenac, siltozni fosiliferni lapor s tankim proslojcima kalkarencejskog pješčenjaka (laminacije)								
2524-2526 (J-4)	Tektonizirani dolomiti								

Tablica 4.4Odredba litološkog sastava jezgrovnih intervala i uzoraka stijena sa sita iz
bušotine Ptk-1

Patkovci 1 (Ptk-1)										
Interval uzoraka stijene sa sita i jezgara u bušotini (m)	Litologija									
1855	Lapor i litični arenit									
1885	Lapor i litični arenit									
1945	Lapor i litični arenit									
1975	Lapor i litični arenit									
2015	Lapor i litični arenit									
2055	Lapor i litični arenit									
2100	Lapor									
2130	Lapor									
2200	Lapor									
2240	Lapor									
2260	Lapor									
2269-2271 (J-1)	Stilolitizirani-fosiliferni lapora s proslojcima kalkarenacejskog pješčenjaka									
2290	Litična grauvaka, glinoviti vapnenci									
2320	Litična grauvaka, glinoviti vapnenci i lapor									
2350	Litična grauvaka, glinoviti vapnenac i lapor									
2380	Litična grauvaka i lapor									
2387-2394 (J-2)	Petromiktni brečokonglomerati i litične grauvake									
2415	Litična grauvaka i lapor									
2440	Litična grauvaka									
2460	Litična grauvaka									
2480	Tektonizirani dolomiti i litična grauvaka									
2489-2495 (J-3)	Dolomit i litična grauvaka									
2510	Tektonizirani dolomiti									
2560	Tektonizirani dolomiti									
2585	Tektonizirani dolomiti									
2590	Tektonizirani dolomiti									
2595-2600 (J-4)	Tektonizirani dolomiti									

Za biostratigrafsku interpretaciju korišteni su podaci preuzeti iz postojećih biostratigrafskih izvještaja te novijih reinterpretacija i studija i provjereni su u WORMS bazi podataka (Raškaj et al., 1996; Ivaniček et al., 2010; Tadej et al., 1996; Vlahović et al., 1991; Sabol i Krizmanić, 2010; Sabol i Krizmanić, 2011).

Bušotinom Velika Ciglena-1 (VC-1) probušene su naslage mezozoika (srednji trijas), srednjeg miocena (baden), gornjeg miocena, pliocena i kvartara. Mezozojska starost utvrđena je u intervalu od 4790 do 2535 m. Unutar tog intervala pronađena je dazikladaceja *Diplopora annulata* (Schafhäutl), ali su prisutni i neki drugi rodovi dazikladaceja, te je u jednom preparatu pronađena foraminifera *Glomospirella* sp. i fragmenti gastropoda. Srednjomiocenska sedimentacija (baden) odgovara intervalu od 2535 do 2464 m. Fosilnu zajednicu u donjem dijelu intervala čine ostaci mahovnjaka, fragmeni školjkaša i foraminifere *Amphistegina* sp., *Marginulinopsis* sp., *Bolivina* sp. te *Globigerinoides* sp. i *Globigerina* sp., a prema vršnom dijelu sukcesije su prisutne uglavnom planktonske foraminifere *Orbulina* sp., *Praeorbulina glomerosa* Blow, *Globigerinoides bisphaericus* Todd, *Globigerinella obesa* Bolli, *Globigerina conicnna* Reuss, *Globigerina bulloides* d'Orbigny, *Globorotalia* sp. te bentičke foraminifere *Uvigerina* sp. i *Bulimina* sp. (Slika 4.1). Naslage gornjeg miocena su određene u intervalu od 2464 do 758 m, a pronađeni su samo neodređeni biljni ostaci.

U bušotini Velika Ciglena -1alfa (VC-1α) starost naslaga je identična. Utvrđena je vrlo oskudna fauna, ostaci alga i vrlo rijetke kućice formainifera. U jezgrovanom intrevalu 2423,0-2425,0 m (J-1) pronađena je palinoasocijacija koja se sastoji od cisti dinoflagelata, peludnih zrna i ostataka zelenih algi. Na temelju determiniranih dinocisti *Spiniferites bentorii* Rossignol i *Virgulodinium* sp., dokazana je panonska starost sedimanata, a na taloženje u okolišu samnjenog saliniteta ukazuje nam vrsta *S. bentorii* (Bakrač, 2005) U skladu s prikupljenim biostratigrafskim podacima iz završnog izvještaja i studije (Vlahović et al., 1991; Ivaniček et al., 2010) napravljena je tablica 4.5.

VC-1 i VC-1a										
Interval (m)	Starost									
0-758	kvartar, pliocen									
758-2464	gornji miocen									
2464-2535	srednji miocen (baden)									
2535-4790	mezozoik (srednji trijas)									

Slika 4.1 Vremenska skala badena na temelju magnetostratigrafije, planktonskih foraminifera i nanoplanktona (preuzeto od: Hohenegger et al., 2014)

Na istražnoj bušotini Velika Ciglena-2 utvrđene su naslage mezozoika (srednji do gornji trijasa), srednjeg miocena (baden) i gornjeg miocena te pliocena i kvartara. Naslage srednjeg do gornjeg trijasa predstavljaju najstarije naslage u bušotini i javljaju se u intervalu od 2526 do 2450 m. U tom intervalu pronađena je sljedeća zajednica mikrofosila: *Glomospirella facilis* Ho, *Aulotortus* sp., *Glomospira* sp. i *Ammodiscus* sp. Srednji miocen (baden) obuhvaća naslage u intervalu od 2450 do 2450 m. U

i planktonskih foraminifera (*Orbulina* sp. i *Globigerina* sp). U naslagama gornjeg miocena u intervalu 2410-1000 m su pronađeni ostaci bilja, ljušture ostrakoda te *Silicoplacentina* sp. i fragmenti školjkaša, često piritizirane i limonitizirane. Palinološkim analizama su u maceratima glinovitih vapnenaca i kalcitom bogatih lapora iz J-2 (2406 – 2412 m, II. m) prepoznate prazinoficejske fikome jednostaničnih zelenih algi *Mecsekia ultima* Sütő-Szentai i dinocista *Spiniferites* cf. *bentorii* Rossignol (J-2, III. m). Iako su prazinoficeje prisutne u dubljevodnim oceanskim, ima ih i u plitkovodnim priobalnim, lagunarnim i deltnim oslađenim i slatkovodnim sredinama (Bakrač, 2005).

Prazinoficejske alge (primjerice *Mecsekia ultima* Sütő-Szentai 1982) su izrazito adaptivne pa u promjenjenim uvjetima saliniteta često dominiraju u okolišu kao što je bio slučaj u donjem panonu Paratethysa (Bakrač, 2005). U skladu s standardnim palinozonama Paratethysa (Sütő-Szentai, 1988; Lučić et al. 2001; Bakrač 2005; Bakrač et al. 2012) određena je donjopanonska starost sedimenta taloženog u plićem i proksimalnom oslađenom okolišu (Bakrač, 2005) (Slika 4.2). U palinološkom maceratu stijene iz drugog jezgrovanog intervala (J-2, Interval: 2403 - 2406 m, I. m) su determinirane dinociste *S. bentorii* i podvrsta *S. bentorii* cf. *pannonicus* Sütő-Szentai pa je potvrđena donjopanonska starost sedimenta.

Podaci za kronostratigrafsku interpretaciju naslaga preuzeti su iz završnog izvještaja bušotine Velika Ciglena-2 te su prikazani (Tadej et al., 1996; Sabol i Krizmanić 2010; Sabol i Krizmanić 2011) u tablici 4.6.

VC-2									
Interval (m)	Starost								
0-1000	kvartar, pliocen								
1000-2410	gornji miocen								
2410-2450	srednji miocen (baden)								
2450-2526	mezozoik (srednji do gornji trijas)								

 Tablica 4.6
 Kronostratigrafski slijed naslaga bušotine VC-2

		CHRO STRATIG		CHRONO- STRATIGRAPHY				BIOSTRATIGRAPHY												
	, g					Age		USA	Italy		Hungar		ý	Austria - Hungary	Croatia	Hungary	Croatia			71.
(Ma)	Magnet		iterranean		ys,	et al.	DE VERTEL NORRIS, 1	ZEVENBOOM 1995.		SÜTÖ-SZENTAI, 1988.		MAGYAR et al, 1999.a	JIMÉNEZ- MORENO et al,2006.	this study	MAGYAR et al, 1999.	VRSALJKO, 1999.	P, 1951.	Ć et al, 979.	TINI, 197	
me					tral	ER				Dinoflagellate zones			Mollusc zones		PAPI	ŠIKI 19	AAR'			
Ē		Epoch		Med		PILL 2007	zone	zone	sub- zone	zone	subzone	zone	zone	zone	zone	zone			~	
				ç	Por	ntian		Get												
6				ania	-															
				Vess		-i	DN10										н		NN11	
7				-		onian			Ist		Mougeotia laetevirens	Galeacysta etrusca		Get			G	Rhomb.		
						Pann		Tca		Dinoflag	ellata - Zygnemataceae				Congenia			beds		
8			ate			Late	DN9			p. Micus	Sp. validus	Spinferites		Sva	rhomboidea		F	Abichi		
			Le	an	lian				.CpeL	S bake	Sp. paradoxus - Sp. b. conjunctus	vəlidus			C.prerhomboidea			veus	NN10	
				rtoni	louu	_			Xar		P. pecsveredensis	Spiniferitea		Ppe		C. czjizeki L. winkleri C. toovistriatva	E			
10		Z		f	L L	nian s		Mag	Dei		Sp. beratorii	paradoxus			Canadia	C. benetice	Ц	Banatica beds	NN9b	
		ö				annoi	DN8	MIO	DSI	Sp. ntorii	ablongus	Pont. pecsveredensis		Sob	czjzeki	G. tenuistriatus	D C			
11						arty P				De.	Sp. b. pennonicus	ablongua		Mul Coo		N. venusta; L. cekusi R. croatica; L. plicataeformis	B/	Croatica	NN9a-b	
1	\vdash	2							Nla	;	Necsekia ultima	Spin bent pennonicus Mecaekia ultima		минора	L. praeponticum	G. praeponticus E.praeponticum	/^	beds	NN7-8	
12				an	Sa	аг-	DN7	Aan	A.um		budalencensis		record	Pzo-Lma						
				avall	mat	ian		Hno	Aum				Cpl							
13				Serr		Su-Bo Cone	DN6	Προ	Oei				Сро	Cpl					NN6	
			lle			01.F.							Uag	Uaq						
14	_		Mide	Ę	nian	2°2	DN5	Uaq	Lgl										NN5	
				ghia	Sade				Pprl				Cte	Cte						
15				Lar		- IQDO		Ltr	Cca										NNA	
16							DNA	lse	Ibu				record	no					111144	
					\vdash		0114	Tgo	Pve					record						
17					Ka pati	ir- ian	DN3		Sso											

Slika 4.2 Palinostratigrafska zonacija i korelacija sa drugim biozonama (dinocista, mekušaca i dr.) (preuzeto od: Bakrač et al., 2012)

Istražnom bušotinom Patkovci-1 utvrđene su naslage mezozoika (srednji do gornji trijas), srednjeg miocena (baden) i gornjeg miocena. U intervalu od 2600 do 2560 m su stijene srednjeg do gornjeg trijasa, u kojima su pronađeni rijetki ostaci algi i foraminifera Aulotortus sp. Od 2560 do 2265 m su sedimenti srednjeg miocena. U donjem dijelu intervala fosilni sadržaj je oskudan. Pronađeno je tek nekoliko ostataka zelene alge Botryococcus braunii Kützing, fragmenti neodredivih dinoflagelata te malo spora i peludi. Badensku sukcesiju nastavljaju sedimenti u kojima su pronađene foraminifere Globigerina sp., Globigerina regularis d'Orbigny, Lenticulina sp. i Semivulvulina sp. Slijede naslage s bentičkim foraminiferama Amphistegina lessonii d'Orbigny, Lenticulina sp., Elphidium crispum Linne, Elphidium macelum Fichtel & Moll, Ammonia becarii Linne, Heterolepa sp. i ostaci crvenih algi i mahovnjaka. U asocijaciji su prisutne i planktonske foraminifere Globigerina bulloides, Globigerina nephenthes Todd i Globigerinoides trilobus Reuss. U najgornjem dijelu intervala su determinirani ostaci ostrakoda i bentičkih foraminifera i miliolide Cibicides sp. i Uvigerina sp. Gornjomiocenski sedimenti su određeni u intervalu od 2265 do 1060 m u kojem su pronađene brakične i slatkovodne forme ostrakoda Hemicytheria sp., Cypridea cf. pannonica Mehes, te Silicoplacentina irregularis Kovary i S. majzoni Kovary. Na temelju tih podataka preuzetih iz završnog izvještaja i studije (Raškaj et al., 1996; Ivaniček et al., 2010) napravljen je kronostratigrafski slijed naslaga u tablici 4.7.

Ptk-1							
Interval (m)	Starost						
0-1060	kvartar, pliocen						
1060-2265	gornji miocen						
2265-2560	srednji miocen (baden)						
2560-2600	mezozoik (srednji do gornji trijas)						

Tablica 4.7 Kronostratigrafski slijed naslaga bušotine Ptk-1

Slika 4.3 Korelacija litoloških stupova istražnog prostora, a plavom bojom označeni su mikroskopirani intervali

Slika 4.4 Siltozni fosiliferni lapor VC-2, J-2 (2406-2412 m) V m 0,7 -N

Slika 4.5 Lapor Ptk-1, J-1 (2269-2271 m) II m 0,1 -N

Slika 4.6 Fosiliferni šejl VC-1, J-9 (2464-2467 m) I m 0,7 -N

Slika 4.7 Glinoviti vapenac VC-1 a, J-1 (2423-2425 m) II m -N

4.2. Rezultati organskogeokemijskih istraživanja

Geokemijskim analizama podvrgnuti su uzorci mehaničkih jezgri i krhotine stijena iz isplake iz bušotina: VC-1, VC-1 α , VC-2 i Ptk-1. Rezultati su prikazani tablično (Tablice od 4.8 do 4.20) i grafički (Slike od 4.8 do 4.16).

4.2.1. Sadržaj ukupne organske tvari

Tablica 4.8Određivanje organskog ugljika (Leco metoda) Velika Ciglena-1(VC-1) i Velika
Ciglena-1 α (VC-1 α)

Dubina (m)	C _{orgLeco} (%)	Dubina (m)	C _{orgLeco} (%)	Dubina (m)	C _{orgLeco} (%)	Dubina (m)	C _{orgLeco} (%)
1351,35	1,03	1815	0,24	2516,1	0,56	4044,3	0,07
1352,5	0,14	1843,1	1,19	2516,65	0,31	4045,65	0,05
1353,8	0,46	1844,5	0,15	2516,8	1,01	4046,65	0,04
1354,6	0,39	1845	0,78	2517,15	0,29	4088,8	0,07
1450,25	0,57	1845,15	0,14	2517,2	2,90	4089,65	0,05
1479,2	1,35	1846,2	0,18	2517,5	0,25	4090,5	0,04
1480,2	0,28	1875	0,53	2517,8	0,25	4095	0,10
1481,8	0,37	1905	0,26	2518,25	0,26	4125	0,10
1482,4	0,56	1935	0,24	2540	0,19	4155	0,04
1485	0,80	1965	0,25	2549	0,04	4185	0,04
1515	0,30	1995	0,26	2550	0,08	4215	0,17
1536,9	0,35	2014,3	0,31	2575	0,08	4245	0,08
1537,1	0,38	2025	0,39	2605	0,13	4275	0,07
1538,5	0,40	2055	0,48	2730	0,05	4305	0,06
1539,45	0,45	2085	0,50	2752,3	0,05	4335	0,05
1540,85	0,33	2115	0,52	2753 <i>,</i> 5	0,07	4365	0,08
1541,3	0,38	2145	0,56	2838	0,08	4395	0,04
1545	0,23	2175	0,56	2850	0,10	4415	0,04
1575	0,60	2205	0,47	2880	0,07	4425	0,12
1579,25	0,19	2235	0,53	2900	0,09	4434,5	0,10
1580,65	0,85	2265	0,47	2910	0,27	4435,2	0,05
1581,65	0,49	2295	0,58	2930	0,04	4455	0,07
1582,3	0,12	2325	0,59	2960	0,04	4485	0,04
1583,1	0,84	2355	0,57	2990	0,09	4500	0,04
1605	0,67	2385	0,60	3000	0,09	4515	0,05
1635	0,56	2415	0,56	3030	0,15	4545	0,04
1665	0,43	2423 <i>,</i> 5	1,35	3060	0,08	4575	0,09
1695	0,27	2424	0,40	3090	0,08	4601	0,06
1725	0,67	2424,5	0,35	3120	0,12	4635	0,04
1747,65	3,28	2445	0,42	3150	0,08	4665	0,07
1748,9	1,16	2464,15	2,65	3461	0,10	4680	0,04
1749,6	0,20	2464,65	1,63	3515,5	0,06	4710	0,04
1750,8	0,09	2475	0,31	3516,3	0,05	4740	0,05
1755	0,50	2505	0,25	3668	0,05	4770	0,04
1785	0,20	2515,5	0,11	4043,8	0,06		

Sadržaj organske tvari u uzorcima mehaničkih jezgri i krhotina iz bušotine Velika Ciglena-1 i 1α imaju vrijednosti od 0,01 do 3,28% i prikazani su u tablici 4.8.

Dubina (m)	C _{orgLeco} (%)	Dubina (m)	C _{orgLeco} (%)
2200	0,57	2408,5	0,26
2215	0,61	2408,55	0,29
2230	0,53	2408,6	1,30
2245	0,59	2408,7	1,29
2260	0,66	2409,02	1,48
2275	0,65	2409,45	1,38
2290	0,57	2409,7	0,28
2305	0,52	2409,85	0,74
2320	0,59	2410,25	0,42
2335	0,63	2410,4	0,69
2350	0,67	2410,7	1,85
2355	0,66	2410,85	2,00
2365	0,71	2410,95	2,80
2380	0,60	2411,35	1,05
2395	0,48	2411,6	2,06
2402	0,60	2412,05	2,30
2403,1	0,28	2412,6	0,63
2403,7	1,44	2413,6	2,23
2403,8	0,34	2414,45	0,75
2404,3	1,77	2415,5	1,40
2404,5	0,37	2416,05	0,50
2404,65	0,30	2416,65	1,94
2404,9	1,34	2417,5	1,34
2405,15	1,75	2418,7	1,03
2405,25	0,76	2425	1,17
2405,55	0,62	2440	0,60
2405,95	0,37	2455	0,39
2406,05	0,42	2470	0,09
2406,4	0,29	2485	0,17
2406,95	1,65	2500	0,10
2407,25	1,08	2515	0,08
2407,4	1,44	2524,5	0,33
2407,6	0,32		

 Tablica 4.9
 Određivanje organskog ugljika (Leco metoda) Velika Ciglena-2 (VC-2)

Sadržaj organske tvari u uzorcima mehaničkih jezgri i krhotina iz bušotine Velika Ciglena-2 dostiže vrijednosti od 0,08 do 1,17% i prikazani su u tablici 4.9.

Dubina (m)	C _{orgLeco} (%)	Dubina (m)	C _{orgLeco} (%)
2200	0,63	2395	0,09
2215	0,65	2410	0,08
2230	0,52	2425	0,08
2245	0,64	2440	0,08
2260	0,47	2455	0,05
2262	0,47	2470	0,08
2268	0,61	2485	0,07
2269,2	2,79	2489,1	0,03
2269,5	0,20	2490,75	0,03
2269,8	1,55	2491,25	0,03
2270,4	1,94	2500	0,06
2275	0,65	2515	0,06
2290	0,52	2530	0,05
2305	0,61	2545	0,05
2320	0,34	2560	0,09
2335	0,15	2575	0,05
2350	0,25	2590	0,05
2365	0,32	2595	0,05
2380	0,41	2595,7	0,03
2387,3	0,04	2596,5	0,02
2388,4	0,05	2597,4	0,04
2389,7	0,06	2598,35	0,03
2390,4	0,05	2599,8	0,09
2391,55	0,07		

Tablica 4.10 Određivanje organskog ugljika (Leco metoda) Patkovci-1 (Ptk-1)

Sadržaj organske tvari u uzorcima mehaničkih jezgri i krhotina iz bušotine Patkovci-1 variraju od 0,02 do 2,79% i prikazani su u tablici 4.10.

4.2.2. Rock Eval piroliza

Svi uzorci s Corg većim od 0,3% podvrgnuti su Rock Eval pirolizi. Dobiveni podaci i izračunati parametri prikazani su u tablicama za svaku pojedinu bušotinu.

		S ₁	S ₂	S₃	_			HI	01
Dubina	Corg RE	<u>mg HC</u>	<u>mg HC</u>	<u>mg CO2</u>		PI	S_2/S_3	<u>mg HC</u>	<u>mg CO2</u>
(111)	(70)	g stijene	g stijene	g stijene	()			g C _{org}	g C _{org}
1351,35	0,98	0,13	1,18	0,37	415	0,10	3,19	120	38
1352,5	0,04	0,01	0,02	0,08	418	0,33	0,25	50	200
1353,8	0,33	0,06	0,34	0,44	426	0,15	0,77	103	133
1354,6	0,20	0,03	0,26	0,45	427	0,11	0,58	130	225
1450,25	0,42	0,05	0,47	0,22	426	0,10	2,14	112	52
1479,2	1,35	0,15	1,30	0,42	432	0,10	3,10	96	31
1480,2	0,17	0,02	0,10	0,14	435	0,17	0,71	59	82
1481,8	0,26	0,04	0,21	0,23	432	0,16	0,91	81	88
1482,4	0,46	0,04	0,30	0,28	433	0,12	1,07	65	61
1485	0,93	4,83	2,61	0,62	433	0,65	4,21	281	67
e1485	0,34	0,04	1,32	0,61	433	0,03	2,16	388	179
1536,9	0,29	0,04	0,22	0,19	436	0,15	1,16	76	66
1537,1	0,31	0,04	0,21	0,14	431	0,16	1,50	68	45
1538,5	0,29	0,03	0,19	0,12	433	0,14	1,58	66	41
1539,45	0,38	0,05	0,26	0,19	432	0,16	1,37	68	50
1540,85	0,27	0,03	0,15	0,15	431	0,17	1,00	56	56
1541,3	0,29	0,03	0,19	0,11	434	0,14	1,73	66	38
1575	0,55	0,08	0,53	0,74	433	0,13	0,72	96	135
1579,25	0,08	0,01	0,09	0,11	434	0,10	0,82	113	138
1580,65	0,78	0,08	0,77	0,20	430	0,09	3,85	99	26
1581,65	0,16	0,03	0,37	0,22	434	0,08	1,68	231	138
1582,3	0,03	0,01	0,02	0,11	431	0,33	0,18	67	367
1583,1	0,86	0,08	0,88	0,23	432	0,08	3,83	102	27
1605	0,58	0,13	1,04	0,40	436	0,11	2,60	179	69
1635	0,49	0,58	0,59	0,73	436	0,50	0,81	120	149
1665	0,36	0,09	0,60	0,14	437	0,13	4,29	167	39
1725	0,55	0,17	1,07	0,45	435	0,14	2,38	195	82
1747,65	3,28	0,46	6,36	0,32	431	0,07	19,88	194	10
1748,9	1,13	0,14	1,35	0,29	437	0,09	4,66	119	26
1749,6	0,14	0,02	0,10	0,10	440	0,17	1,00	71	71
1750,8	0,04	0,00	0,01	0,07	450	0,00	0,14	25	175
1755	0,35	0,05	0,42	0,38	438	0,11	1,11	120	109
1843,1	1,18	0,12	1,20	0,10	439	0,09	12,00	102	8
1844,5	0,07	0,02	0,04		445	0,33	0,00	57	0
e1845	0,49	0,09	0,33	1,14	429	0,21	0,29	67	233
1845	0,71	0,89	0,76	1,11	432	0,54	0,68	107	156
1845,15	0,02	0,01	0,02	0,02		0,33	1,00	100	100
1846,2	0,07	0,02	0,04	0,08	440	0,33	0,50	57	114
1875	0,41	0,08	0,85	0,21	438	0,09	4,05	207	51
2014,3	0,22	0,03	0,19	0,03	443	0,14	6,33	86	14
2025	0,32	0,04	0,23	0,06	440	0,15	3,83	72	19
2055	0,36	0,07	0,54	0,18	441	0,11	3,00	150	50

Tablica 4.11 Rezultati Rock Eval pirolize VC-1 (crno) i VC-1α (ljubičasto) (žutom bojom označeni panonski, a narančastom badenski matični intervali),(e-ekstrahirano)

Nastavak tablice 4.11

	_	S ₁	S ₂	S3				HI	OI
Dubina		mg HC	<u>mq HC</u>	mq CO ₂	T _{max}	Ы	S₂/S₃	<u>mq HC</u>	<u>mq CO₂</u>
(m)	(%)	a stiiene	a stiiene	a stiiene	(°C)		-, -	a Cora	a Cora
2085	0.37	0.10	0.53	0.25	443	0.16	2.12	143	68
2115	0.46	0.12	0.83	0.26	441	0.13	3.19	180	57
2145	0.40	0.08	0.57	0.18	446	0.12	3.17	143	45
2175	0,34	0,18	0,94	0,14	444	0,16	6,71	276	41
2205	0,36	0,10	0,38	0,19	444	0,21	2,00	106	53
2235	0,44	0,19	0,66	0,24	444	0,22	2,75	150	55
2265	0,30	0,13	0,24	0,25	449	0,35	0,96	80	83
2295	0,40	0,37	0,46	0,24	448	0,45	1,92	115	60
2325	0,42	0,41	0,39	0,25	451	0,51	1,56	93	60
2331	0,44	0,31	0,81	0,06	456	0,28	13,50	184	14
2355	0,43	0,36	0,35	0,25	454	0,51	1,40	81	58
2385	0,46	0,44	0,33	0,29	458	0,57	1,14	72	63
2415	0,51	0,63	0,54	0,14	453	0,54	3,86	106	27
2423,5	0,93	0,95	2,34	0,29	454	0,29	8,07	252	31
e2423,5	0,82	0,29	1,94	0,36	456	0,13	5,39	237	44
2424	0,39	0,46	0,63	0,14	450	0,42	4,50	162	36
2424,5	0,27	0,58	0,34	0,12	449	0,63	2,83	126	44
2445	0,36	0,35	0,29	0,16	454	0,55	1,81	81	44
2464,15	2,27	0,61	2,54	0,15	458	0,19	16,93	112	7
2464,65	1,40	0,45	1,43	0,11	457	0,24	13,00	102	8
2475	0,32	0,16	0,12	0,39	463	0,57	0,31	38	122
2515,5	0,11	0,05	0,05	0,11	465	0,50	0,45	45	100
2516,1	0,49	0,23	0,53	0,14	457	0,30	3,79	108	29
2510,05	0,28	0,07	0,12	0,14	460	0,37	0,80	45	50
2517.15	1,07	0,39	1,15	0,10	459	0,20	0.47	100	9
2317,13	0,27	0,00	0,07	0,13	430	0,40	12.45	20	0
2517.2	2,00	1.02	2,74	0,22	401	0,00	12,43	120	0
2517,2	0.28	0.00	4,39	0,37	400	0,19	2.00	86	11
2517,5	0,28	0,09	0,24	0,12	400	0,27	2,00	74	63
2518.25	0.27	0,05	0,20	0.17	428	0.36	0.53	35	65
3461	0.03	0.07	0.02	0.08	420	0,30	0.25	67	267
3515.5	0.03	0.02	0,02	0.11		1.00	0.00	0	367
3516.3	0.03	0.01	0.01	0.05		0.50	0.20	33	167
3668	0.03	0.01	0.01	0.25	436	0.50	0.04	33	833
4043.8	0.03	0.02	0.03	0.07		0.40	0.43	100	233
4044.3	0,03	0,02	0,05	0,04		0,29	1,25	167	133
4045,65	0,01	,-	,	0,04		0,00	0,00	0	400
4046,65	0,01		0,01	0,03		0,00	0,33	100	300
4088,8	0,06	0,01	0,02	0,13		0,33	0,15	33	217
4089,65	0,03		0,01	0,09		0,00	0,11	33	300
4090,5	0,03			0,13		0,00	0,00	0	433
4434,5	0,05	0,01	0,04	0,18		0,20	0,22	80	360
4435,2	0,01	0,01		0,11		1,00	0,00	0	1100

		S 1	S ₂	S ₃	-			HI	OI
Dubina	Corg RE	<u>mg HC</u>	<u>mg HC</u>	<u>mg CO₂</u>		PI	S_2/S_3	<u>mg HC</u>	<u>mg CO₂</u>
(11)	(%)	g stijene	g stijene	g stijene	()			g C _{org}	g C _{org}
2200	0,42	0,08	0,57	0,43	440	0,12	1,33	136	102
2215	0,36	0,12	0,66	0,38	440	0,15	1,74	183	106
2230	0,33	0,13	0,57	0,36	441	0,19	1,58	173	109
2245	0,39	0,19	0,66	0,36	440	0,22	1,83	169	92
2260	0,43	0,17	0,76	0,43	441	0,18	1,77	177	100
2275	0,46	0,26	0,93	0,34	443	0,22	2,74	202	74
2290	0,36	0,20	0,66	0,31	441	0,23	2,13	183	86
2305	0,31	0,19	0,54	0,43	445	0,26	1,26	174	139
2320	0,36	0,23	0,61	0,33	443	0,27	1,85	169	92
2335	0,42	0,29	0,61	0,34	446	0,32	1,79	145	81
2350	0,48	0,47	0,91	0,42	444	0,34	2,17	190	88
2355	0,49	0,50	1,13	0,40	445	0,31	2,83	231	82
2365	0,54	0,46	1,17	0,37	445	0,28	3,16	217	69
2380	0,45	0,38	0,69	0,37	446	0,36	1,86	153	82
2395	0,38	0,33	0,60	0,40	448	0,35	1,50	158	105
2402	0,43	0,37	0,67	0,35	445	0,36	1,91	156	81
2403,1	0,25	0,18	0,42	0,24	444	0,30	1,75	168	96
2403,7	1,14	0,70	2,58	0,24	453	0,21	10,75	226	21
2403,8	0,31	0,18	0,47	0,29	447	0,28	1,62	152	94
2404,3	1,45	0,64	2,81	0,22	451	0,19	12,77	194	15
2404,5	0,25	0,21	0,40	0,16	448	0,34	2,50	160	64
2404,65	0,21	0,25	0,37	0,35	439	0,40	1,06	176	167
2404,9	0,23	0,29	0,31	0,28	444	0,48	1,11	135	122
2405,15	1,40	0,91	2,83	0,26	452	0,24	10,88	202	19
2405,25	0,73	0,35	1,10	0,36	449	0,24	3,06	151	49
2405,85	0,51	0,83	0,72	0,25	442	0,54	2,88	141	49
2405,95	0,33	0,54	0,54	0,21	438	0,50	2,57	164	64
2406,05	0,34	0,49	0,25	0,26	437	0,66	0,96	74	76
2406,4	0,20	0,28	0,44	0,27	440	0,39	1,63	220	135
2406,95	1,51	0,89	2,52	0,30	449	0,26	8,40	167	20
2407,25	1,13	0,85	2,41	0,27	444	0,26	<u>8,93</u>	213	24
2407,4	1,25	1,43	2,72	0,29	445	0,34	9,38	218	23
2407,6	0,18	0,22	0,13	0,25	442	0,63	0,52	72	139
2408,5	0,20	0,21	0,32	0,39	440	0,40	0,82	160	195
2408,55	0,18	0,20	0,17	0,22	434	0,54	0,77	94	122
2408,6	1,37	0,47	1,83	0,26	446	0,20	7,04	134	19
2408,7	1,02	0,55	1,90	0,19	443	0,22	10,00	186	19
2409,02	1,56	0,59	1,90	0,21	443	0,24	9,05	122	13
e2409,45	0,96	0,02	0,92	0,21	448	0,02	4,38	96	22
2409,45	1,23	1,19	2,07	0,31	442	0,37	6,68	168	25
2409,7	0,17	0,15	0,23	0,21	443	0,39	1,10	135	124
2409,85	0,71	0,60	1,22	0,21	446	0,33	5,81	172	30
2410,25	0,37	0,24	0,54	0,17	443	0,31	3,18	146	46
2410,4	0,54	0,37	0,79	0,26	447	0,32	3,04	146	48
e2410,7	1,32	0,04	1,29	0,19	458	0,03	6,79	98	14
2410,7	1,72	1,98	2,47	0,36	448	0,44	6,86	144	21
2410,85	2,16	1,71	3,41	0,42	449	0,33	8,12	158	19

Tablica 4.12Rezultati Rock Eval pirolize VC-2 (žutom bojom označeni panonski, a
narančastom badenski matični intervali),(e-ekstrahirano)

Nastavak tablice 4.12

Dubina	C	S 1	S ₂	S ₃	т			ні	OI
(m)	Corg RE	<u>mg HC</u>	<u>mg HC</u>	<u>mg CO₂</u>	(°C)	PI	S ₂ /S ₃	<u>mg HC</u>	<u>mg CO₂</u>
(11)	(70)	g stijene	g stijene	g stijene	(0)			g C _{org}	g C _{org}
2410,95	2,96	4,00	6,02	0,40	447	0,40	15,05	203	14
e2411,35	0,63	0,01	0,37	0,13	448	0,03	2,85	59	21
2411,35	1,06	2,96	2,15	0,26	432	0,58	8,27	203	25
2411,6	2,15	2,34	3,77	0,32	448	0,38	11,78	175	15
e2412,05	1,62	0,03	1,46	0,18	449	0,02	8,11	90	11
2412,05	2,08	2,49	3,49	0,33	444	0,42	10,58	168	16
2412,6	0,56	0,98	0,87	0,22	445	0,53	3,95	155	39
e2413,6	1,69	0,02	1,78	0,15	452	0,01	11,87	105	9
2413,6	2,01	2,48	3,78	0,29	446	0,40	13,03	188	14
2414,45	0,62	0,83	0,87	0,28	447	0,49	3,11	140	45
e2415,5	0,91	0,05	0,72	0,20	447	0,06	3,60	79	22
2415,5	1,23	1,60	2,41	0,33	433	0,40	7,30	196	27
e2416,05	0,27	0,01	0,10	0,13	446	0,09	0,77	37	48
2416,05	0,42	0,95	0,50	0,20		0,66	2,50	119	48
e2416,65	1,44	0,05	1,27	0,16	450	0,04	7,94	88	11
2416,65	1,72	1,57	2,38	0,23	447	0,40	10,35	138	13
e2417,5	0,98	0,03	0,81	0,21	451	0,04	3,86	83	21
2417,5	1,24	1,61	1,91	0,23	448	0,46	8,30	154	19
e2418,7	0,71	0,02	0,60	0,15	444	0,03	4,00	85	21
2418,7	1,05	2,42	2,28	0,26	435	0,51	8,77	217	25
2425	1,13	2,30	1,95	0,42	445	0,54	4,64	173	37
2425	0,82	0,04	0,73	0,24	451	0,05	3,04	89	29
2440	0,49	1,14	0,92	0,36		0,55	2,56	188	73
e2440	0,28	0,03	0,16	0,20	449	0,16	0,80	57	71
2455	0,16	0,17	0,39	1,46		0,30	0,27	244	913
2524,5	0,12	0,04	0,07	0,23	470	0,36	0,30	58	192

		S ₁	S ₂	S3	_			HI	OI
Dubina (m)	Corg RE	<u>mg HC</u>	<u>mg HC</u>	<u>mg CO2</u>		PI	S ₂ /S ₃	<u>mg HC</u>	<u>mg CO₂</u>
(111)	(70)	g stijene	g stijene	g stijene	(C)			g C _{org}	g C _{org}
2200	0,44	0,31	1,02	0,59	442	0,23	1,73	232	134
2215	0,44	0,50	1,14	0,44	445	0,30	2,59	259	100
2230	0,34	0,62	0,86	0,55	445	0,42	1,56	253	162
2245	0,48	1,11	1,33	0,46	444	0,45	2,89	277	96
2260	0,30	0,50	0,60	0,60	443	0,45	1,00	200	200
2262	0,26	0,55	0,60	0,47	442	0,48	1,28	231	181
2268	0,38	0,80	0,92	0,35	445	0,47	2,63	242	92
2269,2	2,41	1,07	5,85	0,20	451	0,15	29,25	243	8
e2269,2	2,24	0,07	5,05	0,16	452	0,01	31,56	225	7
2269,5	0,11	0,12	0,24	0,23	433	0,33	1,04	218	209
2269,8	1,67	1,00	2,14	0,39	447	0,32	5,49	128	23
2270,4	1,68	1,38	2,70	0,23	447	0,34	11,74	161	14
e2270,4	1,30	0,07	1,76	0,17	447	0,04	10,35	135	13
2275	0,56	0,96	1,15	0,37	442	0,45	3,11	205	66
2290	0,39	0,62	0,61	0,37	451	0,50	1,65	156	95
2305	0,43	0,79	0,88	0,52	439	0,47	1,69	205	121
2320	0,17	0,15	0,33	0,31	450	0,31	1,06	194	182
2365	0,13	0,10	0,32	0,26	443	0,24	1,23	246	200
2380	0,17	0,13	0,41	0,10	453	0,24	4,10	241	59
2387,3	0,01	0,01	0,02	0,05		0,33	0,40	200	500
2388,4	0,01	0,01	0,02	0,08		0,33	0,25	200	800
2389,7	0,01	0,01	0,02	0,05		0,33	0,40	200	500
2390,4	0,01	0,01	0,02	0,06		0,33	0,33	200	600
2391,55	0,02	0,01	0,01	0,03		0,50	0,33	50	150
2489,1	0,01	0,01	0,02	0,15		0,33	0,13	200	1500
2490,75	0,01	0,01	0,02	0,12		0,33	0,17	200	1200
2491,25	0,01	0,01	0,02	0,15		0,33	0,13	200	1500
2595,7	0,01	0,01	0,02	0,39		0,33	0,05	200	3900
2596,5	0,01	0,01	0,02	0,15		0,33	0,13	200	1500
2597,4	0,01	0,01	0,02	0,17		0,33	0,12	200	1700
2598,35	0,01	0,01	0,02	0,10		0,33	0,20	200	1000
2599,8	0,01	0,01	0,02	0,02		0,33	1,00	200	200

Tablica 4.13Rezultati Rock Eval pirolize Ptk-1 (žutom bojom označeni panonski, a
narančastom badenski matični intervali),(e-ekstrahirano)

Sumarni grafovi Rock Eval pirolize

Slika 4.8 Modificirani van Krevelenov dijagram (lijevo), Tmax vs. HI dijagram (desno)

Slika 4.9 Odnos Corg vs. naftni potencijal (S_1+S_2) (lijevo), Odnos Corg vs. Vodikov indeks (HI) (desno)

Slika 4.10 Procjena naftnog potencijala

4.2.3. Rezultati mikroskopskih ispitivanja

			VC-1 i V	C-1a				
Dubina (m)	Stupa	nj zrelosti	Maceralni sastav (%)					
	% Ro	TAI	Amorfno	Liptiniti	Vitriniti	Inertiniti		
1351,35	0,38	2-		5	60	35		
1450,25	0,42	2-	90	Tr	10	Tr		
1479,2	0,52	2		Tr	90	10		
1539,45	0,51	2		Tr	40	60		
1580,65	0,53	2		Tr	70	30		
1635	0,53	2		30	65	5		
1747,65	0,54	2+		Tr	95	5		
1843,1	0,64	2+		5	90	5		
1875	0,65	2+	70	5	Tr	25		
1935	0,61			Tr	80	20		
2014,3	0,70	2+		Tr	90	10		
2115	0,80	3-	100					
2235	0,85	3	100	Tr		Tr		
2325	0,90	3	100					
2385	0,95	3	100					
2424	0,99	3	100					
2464,65	1,10	3	100			Tr		
2516,1	1,35	3+	100					
2516,65	1,37	3+	90		5	5		
2516,8	2,00	3+	100					

Tablica 4.14 Mikroskopska ispitivanja organske tvari VC-1 i VC-1α

Tablica 4.15	Mikroskopska	ispitivanja	organske	tvari V	/ <i>C</i> -2
--------------	--------------	-------------	----------	---------	---------------

	VC-2										
Dubina (m)	Stupanj zrelosti		Maceralni sastav (%)								
	% Ro	TAI	Amorfno	Liptiniti	Vitriniti	Inertiniti					
2215	0,70	3-	100	Tr							
2275	0,80	3-	100	Tr							
2350	0,93	3-	100								
2405,15	0,98	3	100	Tr							
2405,25	0,98	3	100								
2406,95	1,00	3	100								
2409,02	1,20	3	100								
2410,7	1,25	3	100								
2410,95	1,30	3+	100								
2413,6	1,25	3	100								
2425			100								
2524,5			Organska tvar je bitu	men s refleksijom	od 1,56%Ro						

Ptk-1						
Dubina (m)	Stupanj zrelosti		Maceralni sastav (%)			
	% Ro	TAI	Amorfno	Liptiniti	Vitriniti	Inertiniti
2200	0,91	3-	95	5 Ld, Di		
2269,2	0,95	3-	100		Tr	Tr,
2269,8	0,96	3	100			
2305	1	3	100	Tr, Ld		
2380	1,14	3	90	Tr, Ld	10	Tr,

Tablica 4.16 Mikroskopska ispitivanja organske tvari Ptk-1

Tablica 4.17 Popis kratica korištenih u tablicama mikorskopskih ispitivanja organske tvari

Kratice:	
Tr	Tragovi
Ld	Liptodetriniti
Di	Dinoflagelata
Zeleno % Ro	Konverzija
Crno % Ro	Mjereno

U tablici 4.17 prikazane su kratice koje se odnose na mikroskopska ispitivanje organske tvari u tablicama 4.14, 4.15 i 4.16.

Slika 4.11 Amorfna organska tvar, VC-2, 2403,0-2406,0 III/0,15. Prolazno svjetlo.(lijevo). Reflektirano svjetlo, uljna imerzija, 330x.

Slika 4.12 Amorfna organska tvar, VC-2 2406,0-2412,0 IV/0,02. Prolazno svjetlo. (lijevo). Reflektirano svjetlo, uljna imerzija, 330x.

Slika 4.13 Amorfna organska tvar, Ptk-1, 2269,0-2271,0 I/0,80. Prolazno svjetlo. (lijevo). Reflektirano svjetlo, uljna imerzija, 330x.

Slika 4.14 Odnos Vitrinitna refleksija (%Ro, VR) vs. Vodikov indeks (HI)

Slika 4.15 Profil zrelosti s prozorima

4.2.4. Rezultati plinsko-kromatografske analize

Rezultati plinske kromatografije preuzeti su iz izvještaja i prikazani su obliku grafa (Slika 4.16) i tablica (4.18, 4.19 i 4.20).

Slika 4.16 Distribucija n-alkana iz odnosnih plinskih kromatografa VC-1, VC-1a, VC-2 i Ptk-1

Tablica 4.18 Rezultati plinske kromatografije VC-1 i VC-1α (modificirano prema izvještaju Rumenjak, 1991 i Španić, 2010)

Dubina (m)	Pr/C ₁₇	Ph/C ₁₈	Pr/Ph	СРІ
1747,65	5,12	1,02	5,37	2,48
2424	0,27	0,14	2,02	1,21
2464,15	0,54	0,27	1,17	1,03

Tablica 4.19 Rezultati plinske kromatografije VC-2 (modificirano prema izvještaju Barić,1996 i Španić, 2010)

Dubina (m)	Pr/C ₁₇	Ph/C ₁₈	Pr/Ph	СРІ
2405,25	0,34	0,26	1,50	1,08
2405,85	0,31	0,20	1,52	1,00
2406,05	0,27	0,22	1,06	0,99
2407,25	0,29	0,25	1,02	0,96
2408,6	0,24	0,27	1,10	1,16
2409,02	0,21	0,20	0,91	0,90
2410,95	0,41	0,53	0,78	0,96
2411,6	0,37	0,51	0,77	0,96
2412,05	0,37	0,45	0,88	1,04

Tablica 4.20 Rezultati plinske kromatografije Ptk-1 (modificirano prema izvještaju Rumenjak,1996 i Španić, 2010)

Dubina (m)	Pr/C 17	Ph/C18	Pr/Ph	СРІ
2269,2	0,35	0,44	0,86	1,03
2269,5	0,51	0,92	0,57	1,08
2269,8	0,37	0,47	0,85	0,95
2270,3	0,38	0,43	0,98	0,97
2270,4	0,39	0,48	0,91	0,95

Kratice:

 C_{17} normalni alkan C_{17} C_{18} normalni alkan C_{18} Pr pristan Ph fitan CPI Carbon Preference indeks (½*((C₂₅-C₃₃)/(C₂₄-C₃₂)+(C₂₅-C₃₃)/(C₂₆-C₃₄))

5. Interpretacija rezultata organskogeokemijskih istraživanja

U svrhu procjene naftogeološkog potencijala područja Velika Ciglena i Patkovac provedena je interpretacija rezultata organskogeokemijskih istraživanja prikazanih u sumarnim tablicama i grafovima poglavlja 4.2.

Za procjenu je najbitnija odredba matičnih stijena i njihovih generativnih sposobnosti. Matična stijena je sedimentna stijena bogata organskom tvari koja može generirati i osloboditi dovoljno ugljikovodika za formiranje komercijalnog ležišta. Sadržaj organskog ugljika iznad 0,5%C_{org} smatra se graničnim u procjeni klastičnih matičnih stijena, a 0,3%C_{org} u procjeni karbonatnih matičnih stijena. (Palacas, 1984; Barić, 2006; Waples 1985).

Pregledom svih analitičkih podataka utvrđeni su matični intervali te sumirane sve njihove značajke.

5.1. Velika Ciglena-1 i 1α

U bušotini Velika Ciglena-1 i 1α (analizirani interval od 1485 do 4770 m) utvrđene su matične stijene u intervalu cca. 2400-2500 m. Matične stijene su gornjomiocenski lapori, kalcitom bogati lapori i glinoviti vapnenci i srednjomiocenski (badenski) fosiliferni šejlovi i fosiliferni lapori (Tablica 4.1, 4.2,4.5, Slika 4.3, 4.6, 4.7).

Povišenja sadržaja organske tvari utvrđena su i u mlađim naslagama (Tablica 4.8), međutim stijene nemaju povišen generativni potencijal (S₂) odnosno matične karakteristike (Tablica 4.11). Kerogen je tipa III (Tablica 4.11, Slika 4.8). Povišenja sadržaja organske tvari u plićim intervalima vezana su za povećani sadržaj terestričnih lipida (Tablica 4.11, 4.14) što i rezultira manjom količinom ugljikovodika utvrđenih u intervalu 1747-1752 m. Plinskokromatografskom analizom (molekularom distibucijom i odnosom Pr/Ph, Peters et al, 2005) je potvrđeno terestičko podrijetlo ugljikovodika u ovom intervalu (Slika 4.16, Tablica 4.18).

Od dubine cca 2100 m povišenja sadržaja organske tvari rezultirala su i određenim povišenjima generativnog potencijala (npr. na dubini 2115 m, 2175 m, 2331 m, Tablica 4.11), a od dubine 2400 do 2500m ta povišenja su izraženija (S2 >2 mg HC/g stijene). Na temelju navedenog može se zaključiti da poneki lapori od dubine 2100 do 2400 m imaju skromne matične karakteristike. Od dubine 2400 do 2500 m u laporima i šejlovima gornjo do srednjomiocenske starosti (donji panon-baden) utvrđen je povišen sadržaj organske tvari koji se kreće u rasponu od 1,63 do 2,90% $C_{orgLeco}$ (Tablica 4.8), što određuje stijene ovog intervala kao matične. Povišeni sadržaj organske tvari ne prate u potpunosti odgovarajuće vrijednosti rezidualnog potencijala (Tablica 4.11, S₁+S₂

do 5mg HC/g stijene). Razlog sniženih vrijednosti generativnog potencijala (Slika 4.14) je termička izmijenjenost amorfne organske tvari (Tablica 4.14). Vrijednosti vodikovog indeksa (HI) ukazuju na kerogen tipa III, međutim zbog termičke izmijenjenosti, koja otežava procjenu izvornog organskog facijesa u procjeni tipa kerogena razmatrana su svojstva organske tvari pod mikroskopom. Na temelju mikroskopske analize procijenjeno je da je u matičnim šejlovima dominantno zastupljen kvalitetan kerogen tipa II s manjim utjecajem tipa III (Tablica 4.11, 4.14, Slika 4.8, 4.9, 4.10). Mikroskopskim ispitivanjima provedene su i mjerenja zrelosti organske tvari pokazuju pravilan porast zrelosti s dubinom i organska tvar je u katagenetskom stupnju termičke pretvorbe (naftni prozor), a na dubini 2500 m je dostignuta faza generiranja vlažnog plina (plinski prozor) (Slika 4.15). U profilu bušotine su utvrđeni lagani topivi ugljikovodici čije se karakteristike pozitivno koreliraju s utvrđenim karakteristikama matičnih stijena, jer kromatografske analize ugljikovodika te su sukladne su postavkama o tipu i termičkoj zrelosti utvrđenih iz analiza bitumena matičnih stijena (Tablica 4.18, Slika 4.16).

5.2. Velika Ciglena-2

U bušotini Velika Ciglena-2 (analizirani interval od 2200 do 2515 m) utvrđene su matične stijene u intervalu siltoznih lapora, kalcitom bogatih lapora i glinovitih vapnenaca cca. 2355-2425 m donjopanonsko-badenske starosti (Tablica 4.3, 4.6, Slika 4.3, 4.4).

Sadržaj organske tvari u matičnom intervalu je povišen i kreće se u rasponu od 0,5 do 2,23% C_{org} L_{eco} (Tablica 4.9). Povišeni sadržaj organske tvari rezultirao je i povišenim vrijednostima rezidualnog potencijala (S₂ do 6 odnosno do 3,5 mg HC/g stijene u uzorcima nakon ekstrakcije Tablica 4.12, Slika 4.8, 4.9, 4.10). Vrijednosti vodikovog indeksa ukazuju na kerogen tipa III do III-II. Međutim, kao i kod bušotine VC-1 razlog relativno sniženih vrijednosti vodikovih indeksa je termička izmijenjenost organske tvari (Tablica 4.12, 4.15, Slika 4.11, 4.12, 4.14). U profilu zrelosti vidljiv je pravilan porast zrelosti s dubinom (Slika 4.15). Na temelju mikroskopske analize utvrđeno je da je u matičnim laporima dominantno zastupljen kvalitetan kerogen tipa II u potpunosti zastupljen amorfnom organske tvari u izvornom organskom facijesu (Slika 4.11, 4.12). Stijene u profilu bušotine VC-2, koje sadrže iznad 1%C_{org} imaju karakteristike dobrih matičnih stijena koje se nalaze u zadnjoj fazi davanja tekućih ugljikovodika. U prilog navedenom je i visoka količina topive organske tvari koja je pokazatelj i utvrđene zrelosti (naftni prozor) i dobre kvalitete organske tvari (kerogen tipa II). Plinskokromatografskim analizama također je

potvrđena zrelost ugljikovodika (Peters et al, 2005; Slika 4.16, Tablica 4.19). Provedena su izotopna ispitivanja u svrhu korelacije. Izotopnim analizama kerogena, bitumena i nafte utvrđena su određena variranja dobivenih vrijednosti ($\delta^{13}C_{kerogen}$ -23,04 do -24,92‰; $d^{13}C_{bitumen}$ -23,66 do 27,41‰; $d^{13}C_{nafte}$ -26,52‰) koja ukazuju na izraženija variranja u tipu organskog facijesa i uvjeta tijekom taloženja organske tvari odnosno na miješanje ugljikovodika s izraženijim terestričkim i/ili bakterijskim utjecajem odnosno varijabilnim utjecajem kerogena tipa III u dominatno određenom tipu II. U najdubljim intervalima povišen je sadržaj krutih bitumena. Pojave pirobitumena utvrđene optičkim ispitivanjima (Tablica 4.15) ističu procese polimerizacije i kondenzacije i spomenutu zrelost matičnih stijena, proces generiranja i prisutnost autohtonih ugljikovodika.

5.3. Patkovci-1

U bušotini Patkovac-1 (analizirani interval od 2200 do 2595 m) utvrđene su matične stijene u intervalu lapora, kalcitom bogatih lapora i fosilifernog lapora cca. 2200-2305 m donjopanonskobadenske starosti (Tablica 4.4, 4.7, Slika 4.3, 4.5).

Sadržaj organske tvari u matičnom intervalu je povišen i kreće se u rasponu od 0,47 do 2,79% C_{orgLeco} (Tablica 4.10). Povišeni sadržaj organske tvari rezultirao je i povišenim vrijednostima rezidualnog potencijala (S₂ do 5,85 mg HC/g stijene, Tablica 4.13, Slika 4.8, 4.9, 4.10). U matičnim laporima je dominantno zastupljen kvalitetan kerogen tipa II u potpunosti zastupljen amorfnom organskom tvari (Tablica 4.16, Slika 4.13). Termička izmijenjenost organske tvari uzrokovala je relativno sniženje vrijednosti vodikovih indeksa (Tablica 4.13, Slika 4.14). Stijene imaju karakteristike prosječnih do dobrih matičnih stijena (Tablica 4.13, Slika 4.8) u katagenetskoj fazi termičke pretvorbe (Slika 4.15). Utvrđeni ugljikovodici su zreli (Tablica 4.20). Plinskokromatografskim ispitivanjima je utvrđena ishodišna organska tvar ovih ugljikovodika marinskog, algalno-bakterijskog podrijetla koja je taložena u anoksičnim uvjetima (Peters et al, 2005) i nijansirano se razlikuje od ugljikovodika Velika Ciglena, gdje je i istaknut određeni utjecaj terestričke organske tvari (Slika 4.16, Tablica 4.20).

6. Zaključak

Istraživanje ugljikovodika (HC) je iznimno kompleksan proces i zahtjeva multidisciplinarni pristup, tj. primjenu različitih geoloških, geofizičkih i geokemijskih metoda.

U svrhu procjene naftnogeološkog potencijala područja Velika Ciglena u istraživanju su korištene biostratigrafske i petrografsko-sedimentološke te organskogeokemijske metode. Provedene su interpretacije rezultata analiza na uzorcima iz triju bušotina: Velika Ciglena-1 i 1alfa (VC-1 i 1 α), Velika Ciglena 2 (VC-2) i Patkovci-1 (Ptk-1).

Na temelju interpretacije rezultata geoloških i organskogeokemijskih analiza definirane su matične stijene ugljikovodika na području od interesa i provedena njihova korelacija (Slika 5.1). Matične stijene područja Velika Ciglena su gornjomiocenski (donjopanonski) lapori, kalcitom bogati lapori i glinoviti vapnenci i srednjomiocenski (badenski) fosiliferni šejlovi i fosiliferni lapor. Matične stijene su prosječnog do dobrog generativnog potencijala u višem stupnju katageneze (naftni prozor s prijelazom u plinski prozor). Stijene generiraju ugljikovodika kao i ugljikovodika u polju Galovac-Pavljani.

7. Popis literature:

- Avanić, R. (2012): Litostratigrafske jedinice donjeg miocena sjeverozapadne Hrvatske. Doktorska disertacija, Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, 162 str., Zagreb.
- Barić, G. (2006): Naftna geokemija. INA-Industrija nafte d.d., 228 str., Zagreb
- Bakrač, K. (2005): Palinološka karakterizacija naslaga srednjeg i gornjeg miocena jugozapadnog dijela panonskog bazena. Doktorska disertacija, Sveučilište u Zagrebu, Prirodoslovnomatematički fakultet, 1-173 str., tab 17, Zagreb.
- Bakrač, K., Koch, G., Sremac, J. (2012): Middle and late Miocene palynological biozonation of the south-western part of Central Paratethys (Croatia). Geologia Croatica. 65, 207–222.
- Ćorić, S., Pavelić, D., Rögl, F., Mandic, O., Vrabac, S., Avanić, R., Vranjković, A. (2009): Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys). Geologia Croatica. 62, 31–43.
- ESpitalie, J., Deroo, G. & Marquis, F. (1985): Rock Eval pyrolysis and its applications. Institut Francais du Petrole, 72.
- Harzhauser, M., Piller, W.E. (2007): Benchmark data of a changing sea palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 8–31.
- Hernitz Kučenjak, M., Premec Fućek, V., Krizmanić, K., Tadej, J., Zlatar, S. & Matošević, M. (2018): Karpatian and Badenian transgression in Croatian part of the pannonian Basin System (biostratigraphy and palaeoenvironments) Forams 2018, Temporary Abstracts Collection, Edinburgh, Scotland, UK, 2018. 273-274 str.
- Hohenegger, J., Corić, S., Wagreich, M. (2014): Timing of the Middle Miocene Badenian Stage of the Central Paratethys. Geologica Carpathica. 65, 55-66.
- Kováč, M., Andreyeva-Grigorovich, A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, Ľ., Studencka, B. (2007): Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea level changes. Geologica Carpathica. 58, 579–606.

- Kováč, M., Hudáčková, N., Halásová, E., Kováčová, M., Holcová, K., Oszczypko-Clowes, M., Báldi, K., Less, Gy, Nagymarosy, A., Ruman, A., Klučiar, T., Jamrich, M. (2017): The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca 9, 75– 114.
- Lučić, D., Saftić, B., Krizmanić, K., Prelogović, E., Britvić, V., Mesić, I., Tadej, J. (2001): The Neogene evolution and hydrocarbon potential of the Pannonian Basin in Croatia. Marine and Petroleum Geology. 18, 133–147.
- Malvić, T. (2003): Naftnogeološki odnosi i vjerojatnost pronalaska novih zaliha ugljikovodika u bjelovarskoj uleknini [Oil-Geological Relations and Probability of Discovering New Hydrocarbon Reserves in the Bjelovar Sag]. Doktorska disertacija, Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet, 123 str., Zagreb.
- Malvić, T. (2011): Geological maps of Neogene sediments in the Bjelovar Subdepression (northern Croatia). Journal of Maps. 304–317.
- Malvić, T. (2012): Review of Miocene shallow marine and lacustrine depositional environments in Northern Croatia. Geological quarterly. 56, 493–504.
- Malvić, T., Cvetković, M. (2013): Lithostratigraphic units in the Drava Depression (Croatian and Hungarian parts) a correlation. Nafta 64, 27–33.
- Mandić, O., de Leeuw, A., Bulić, J., Kuiper, K.F., Krijgsman, W., Jurišić-Polšak, Z. (2012): Paleogeographic evolution of the southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of northern Croatia. Int. J. Earth Sci. 101, 1033–1046.
- Marković, F. (2017): Miocenski tufovi Sjevernohrvatskog bazena. Doktorska disertacija, Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, 174 str., Zagreb.
- Matoš, B. (2014): Neotectonic and recently active faults in Bilogora mountain area and assessment of their seismogenic potential. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, 307pp.
- Mesić Kiš, I. (2017). Kartiranje i reinterpretacija geološke povijesti Bjelovarske subdepresije univerzalnim krigiranjem te novi opći metodološki algoritmi za kartiranje sličnih prostora. Doktorska disertacija (neobjavljeno), Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, 182 str., Zagreb.

- Najdenovski, J. (1988): Dubinski geološki odnosi i razvitak struktura u tercijarnim sedimentima Požeške kotline. Doktorska disertacija (neobjavljena), sveučilište u Zagrebu, Rudarskogeološko-naftni fakultet, str. 146. Zagreb.
- Palacas, J.G. (1984): Carbonate rocks and sources of petroleum: geological and chemical characteristic and oil-source correlation. In: Proceedings of the 11th World Petroleum Congress 1983, Vol.2, John Willey & Sons, Chichester, U.K., 31-43.
- Pavelić, D. & Kovačić, M. (2018): Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review Marine and petroleum geology, 91 (2018), 455-469.
- Pavelić, D. (2002): The South-Western Boundary of Central Paratethys.Geologia Croatica. 55/1. 83-92.
- Pavelić, D. (2001): Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Res. 13, 359–376.
- Peters K,E., Walters, C.C. &. Moldowan, J.M. (2005): The Biomarker Guide 2nd Edition, Volume I. Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, Cambridge, U.K., 1-472.
- Peters K.E., Walters, C.C. &. Moldowan, J.M. (2005): The Biomarker Guide 2nd Edition, Volume II. Biomarkers and Isotopes in Petroleum and Earth History. Cambridge University Press, Cambridge, U.K., 473-1155.
- Piller, W., Harzhauser, M., Mandic, O. (2007): Miocene Central Paratethys stratigraphy current status and future directions. Stratigraphy 4, 151–168.
- Popov, S.V., Rögl, F., Rozanov, A.Y., Steininger, F.F., Shcherba, I.G., Kovác, M. (2004): Lithological-Paleogeographic maps of Paratethys. 10 Maps, Late Eocene to Pliocene. Cour. Forsch.-Inst. Senckenb 250, 1–46.
- Prelogović, E. (1975): Neotektonska karta SR Hrvatske. Geol. vjesnik, 28, Zagreb.
- Rögl, F. (1999): Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica. 59, 339–349.
- Rögl, F., Steininger, F.-F. (1983): Vom Zerfall der Tethys zu Mediterran und Paratethys. Die Neogene Palaeogeographie und Palinspastik des zirkum-mediterranen Raumes. Ann. Naturhist. Mus Wien 85, 135–163.

- Royden, L.H. (1988): Late cenozoic tectonics of the Pannonian Basin System. In: In: Royden, L.H., Horváth, F. (Eds.), The Pannonian Basin. A Study in Basin Evolution. AAPG Mem, vol. 45. pp. 27–48.
- Saftić, B., Velić, J., Sztanó, O., Juhász, Gy, Ivković, Ž. (2003): Tertiary subsurface facies, source rocks and hydrocarbon reservoires in the SW part of the Pannonian Basin (northern Croatia and south-western Hungary). Geologia Croatica. 56, 101–122.
- Sofer, Z. (1980): Preparation of carbon dioxide for stable carbon isotope analysis of petroleum fractions. Anal. Chem., 52, 1389-1391.
- Stach, E., Mackowsky, M. TH., Teichmüller, M., Taylor, G. H., Chandra, D. & Teichmüller, R. (1982): Coal Petrology. Gebrüder Borntraeger, Berlin-Stuttgart, 535 pp.
- Staplin, F.L. (1969): Sedimentary organic matter, organic methamorphism, and oil and gas occurrences. Bull. Canad. Petrol. Geol., 17, 47-66.
- Sütő-Szentai, M. (1988): Microplankton Zones of Organic Skeleton in the Pannonian S. L. Stratum Complex and in the Upper Part of the Sarmatian Strata. Acta Botanica Hungarica 34 (3-4), 339-356, 4 tab., Budapest.
- Tari, G., Horváth, F., Rumpler, J. (1992): Styles of extension in the Pannonian Basin. Tectonophysics 208, 203–219.
- Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R. & Robert, P. (1998): Organic Petrology. Gebrüder Borntraeger, Berlin-Stuttgart, 704 pp.
- Tissot, B. P. & Welte, D.H. (1978): Petroleum Formation and Occurance. Springer-Verlag, Berlin Heiderberg, New York, 538 pp.
- Tišljar, J. (2001): Sedimentologija karbonata i evaporita. Institut za geološka istraživanja Zagreb, Zagreb, 375 str.
- Tišljar, J. (2004): Sedimentologija klastičnih i silicijskih taložina. Institut za geološka istraživanja Zagreb, Zagreb, 426 str.
- Velić, J., Kišić, K., i Krasić, D. (2016): The characteristics of the production and processing of oil and natural gas in Croatia from 2000 to 2014, Rudarsko-geološko-naftni zbornik, 31(2), 69-90.

- Vrsaljko, D. (2003): Biostratigrafija miocenskih naslaga Žumberačkog i Samoborskog gorja na temelju mekušaca (neobjavljeno), Doktorska disertacija, Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, str. 147, Zagreb.
- Waples, D.W. (1985): Geochemystry in Petroleum Exploration. IHRD, Boston, 232 pp.
- Žuljić, S. (1974): Prostor i elementi njegova središnjeg značenja. Geografija SR Hrvatske (pogl. 3) (Ur. Crkvenčić, I.), p. 61-66, Školska knjiga, Zagreb.

7.1. Iz fonda i arhiva stručne dokumentacije INA d.d.

- Barić, G. (1996): Geokemijski izvještaj istražne bušotine Velika Ciglena-2 (VC-2). Dossier bušotine Velika Ciglena-2. Fond struč. Dok. INA-Naftaplin, Zagreb.
- Ivaniček, Z., Sokolović, B. & Krizmanić, K. (2010): Patkovac-1 (Ptk-1) Velika Ciglena-1a (VC-1a) Petrografska i palinološka odredba odabranih uzoraka jezgrovanih stijena. Dossier bušotine Patkovac-1 (Ptk-1) i Velika Ciglena-1 (VC-1). Fond struč. Dok. INA-Naftaplin, Zagreb.
- Raškaj, N., Sokolović, B., Brodarić, A., Stanković, D. & Krizmanić, K. (1996): Završno izvješće
 Patkovac-1 (Ptk-1) biostratigrafska i petrografsko-sedimentološka interpretacija.
 Dossier bušotine Patkovac-1, Fond struč. dok., INA-Industrija nafte d.d., Zagreb.
- Rumenjak, LJ. (1991): Geokemijski izvještaj za istražnu bušotinu Velika Ciglena-1 i 1A (VC-1 i 1α). Dossier bušotine Velika Ciglena-1. Fond struč. dok., INA-Naftaplin, Zagreb.
- Rumenjak, LJ. (1996): Geokemijski izvještaj istražne bušotine Patkovac-1 (Ptk-1). Dossier bušotine Patkovac-1. Fond struč. dok., INA-Naftaplin, Zagreb.
- Sabol, N. i Krizmanić, K. (2010): Core Report Velika Ciglena-2 (VC-2) Core No. 1, Interval: 2403-2406 m (Structural elements, petrography and palynology). Fond struč. dok., INA-Naftaplin, Zagreb.
- Sabol, N. i Krizmanić, K (2011): Core Report Velika Ciglena-2 (VC-2) Core No.2, Interval: 2406-2412 m (Structural elements, petrography and palynology) Fond struč. dok., INA-Naftaplin, Zagreb.
- Španić, D. (2010): Patkovci-1 i Velika Ciglena -1α Geokemijske analize i interpretacija. Fond struč. dok., INA-Naftaplin, Zagreb.

- Španić, D. (2010): Velika Ciglena-2 Geokemijske analize i interpretacija. Fond struč. dok., INA-Naftaplin, Zagreb.
- Tadej, J., Stanković, D., Vlahović, T. (1996): Završno izvješće Velika Ciglena-2 (VC-2) petrografsko-sedimentološka i biostratigrafska interpretacija. Dossier bušotine Velika Ciglena-2, Fond struč. dok., INA-Industrija nafte d.d., Zagreb.
- Vlahović, T., Stanković, D., Raškaj, N., Ban, D. (1991): Završni izvještaj bušotine Velika
 Ciglena-1 i Velika Ciglena-1alfa biostratigrafija, litofacijesi i okoliši sedimentacije.
 Dossier bušotine Velika Ciglena-1, Fond struč. dok., INA-Industrija nafte d.d., Zagreb.

7.2. WWW Izvori

- Agencija za ugljikovodike: <u>https://www.azu.hr/istraživanje-i-eksploatacija/geološki-pregled-kopna/</u>
- Bp Statistical review of World Energy: <u>https://www.bp.com/en/global/corporate/energy-</u> economics/statistical-review-of-world-energy.html