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Abstract

In this thesis a study of the Higgs boson production in association with a W boson in the

boosted topology is presented. The measurements are performed in two decay channels

where the Higgs boson decays to two b quarks and W boson decays to electron or muon

with their corresponding neutrinos, W(lν)H(bb). Data samples analyzed in this work

are collected by the CMS experiment at the CERN LHC in proton-proton collision and

correspond to an integrated luminosity of 35.9 fb−1 at
√
s=13 TeV.

Motivation for boosted topology comes from theoretical (BDRS) paper [1,2] in which au-

thors suggest that substantial background reduction could be achieved with requirement

that the Higgs boson candidate pT is larger than 200 GeV. As a result, the signal event

topology is characterized by the presence of a high pT vector boson W recoiling from the

Higgs boson candidate and two b quarks originating from the Higgs boson decay that are

close to each other. Therefore, the key component is good reconstruction of the Higgs bo-

son candidate, i.e. a jet with two genuine b quarks. For that purpose, AK08 jets have been

used together with appropriate b-tagging algorithms for quantifying likelihood of having

two b quarks inside. Definition of signal phase space is based on physical arguments: the

W boson and the Higgs boson are expected to be back-to-back in the transverse plane,

small jet multiplicity, and no b-hadron activity outside of the Higgs boson candidate.

Results are presented in terms of exclusion limits based on the CLs prescription. The

expected upper limits in the absence of a signal is 5.51 times the SM prediction, while

the observed upper limit is 4.36. The expected pre-fit signal and background ratio is

s/
√
b = 0.21, which shows that BDRS prediction (s/

√
b = 2.9) was too optimistic. How-

ever, additional improvements of double b-tagger, better optimization of control region

definitions, higher MC and data statistics, and perhaps usage of multivariate variables

in final fit, could promote boosted analysis as a supplement to resolved analysis in high

transverse momentum phase space, where two b-jets from the Higgs boson decay have

significant overlap and represent difficult task for good reconstruction within resolved

analysis.

Keywords: LHC, CMS, Standard Model, Higgs boson, WHbb, boosted





Prošireni sažetak rada

Uvod

Ideja elementarnih čestica od kojih je načinjena sva materija pojavila se prije više od

dvije i pol tisuće godina u okviru atomizma, filozofske teorije prema kojoj su svi objekti u

svemiru sastavljeni od vrlo malih i nedjeljivih čestica, atoma. Utemeljiteljima antičkog at-

omizma smatraju se grčki filozofi Leukip i Demokrit. Iako se mnoštvo velikih znanstvenika

zanimalo za filozofska pitanja od čega je materija sastavljena, uključujući i našeg Ruđera

Boškovića, tek je početkom 19. stoljeća John Dalton postavio formalne temelje teorije.

Dmitrij Ivanovič Mendeljev se nadovezao na Daltonovu ideju te je 1896. godine izradio

periodni sustav elemenata, sustavni poredak kemijskih elemenata po njihovim karakter-

istikama. Periodni sustav elemenata održao se kao fundamentalna teorija jedan kratak

vremenski period do otkrića elektrona, protona i neutrona. Postuliranjem samo tri ele-

mentarne čestice, mogao se objasniti čitav periodni sustav elemenata. Međutim, sredinom

20. stoljeća otkriveno je veliko mnoštvo novih čestica te je time započela potraga za još

elementarnijim česticama. Rezultat nekoliko sljedećih desetljeća eksperimentalnih i teori-

jskih istraživanja je Standardni Model, moderna teorija elementarnih čestica izgrađena na

kvantoj teoriji polja koja se održala sve do danas. Standardni model postulira 12 čestica

materije i ukupno 4 čestice prijenosnika elektroslabe i jake nuklearne sile. Uz njih tu je i

Higgsov bozon, posljednji dio slagalice eksperimentalno potvrđen 2012. godine. Važnost

Higgsova bozona odnosno Higgsova polja može se promatrati iz nekoliko aspekata. Naime,

on je zaslužan za generiranje mase ostalih elementarnih čestica kao i rješavanje mnogih

tehničkih poteškoća koje se pojavljuju u Standardnom model te stoga ne čudi koliki je

interes pobudio u znanstvenim krugovima posljednjih pedesetak godina.

Unatoč impresivnoj točnosti u predviđanju i objašnjenju fizikalnih pojava, Standardni

model ostavlja i dalje mnoga otvorena pitanja te ukazuje na to da su potrebna njegova

proširenja. Kvantna teorija gravitacije je sama po sebi neriješen izazov zbog kojeg se

Standardni model i nakon nekoliko desetljeća pokušaja odupire ujedinjenju s gravitaci-

jom. Jakost gravitacijske sile u usporedbi s ostalim silama je zanemariva za uvjete u

kojima se odvijaju trenutna istraživanja. Međutim, za ekstremne uvjete definirane prim-

jerice na Planckovoj skali, kvantna gravitacija je neizostavna komponenta neke veće teorije

u kojoj su sve sile ujedinjene. Trenutno, najbolji kandidat je teorija struna. Sljedeće

otvoreno pitanje je vezano za kozmološka mjerenja iz kojih slijedi kako samo 4% ukupne



energije svemira je objašnjeno Standardnim modelom. Postoje mnoga proširenja modela

koja bi mogla objasniti kozmološka opažanja, ali do danas niti jedna čestica predviđena

takvim proširenjima nije opažena. Nadalje, neutrini su prema Standardnom modelu bez-

masene čestice dok eksperimentalna mjerenja njihovih oscilacija govore da oni imaju masu.

Maseni neutrini se mogu dodati ručno u teoriju, ali to donosi sa sobom dodatne poteškoće

na koje treba paziti. Zatim u trenutnom obliku modela, postoji 19 slobodnih parametara

čije su vrijednosti određene iz različitih eksperimenata, ali sama priroda tolikog broja

parametara nije poznata. Omjer materije i antimaterije u svemiru bi prema Standard-

nom modelu trebao biti jednak, što se iz eksperimenta, ali i svakodnevnog života može

vidjeti da nije slučaj. Osim eksperimentalnih potvrda kako Standardni model nije kraj

priče, postoji još mnoštvo tehničkih detalja koje je potrebno riješiti. Dakle, Standardni

model je uspješna teorija elementarnih čestica koja se u pažljivoj sprezi eksperimenta i

teorije gradila kroz mnoge generacije i čije su temelje postavili velikani svjetske znanosti.

Ipak, i dalje ostaju mnoga pitanja čije je odgovore potrebno pričekati još neko vrijeme.

Cilj rada

Nakon eksperimentalne potvrde Higgsova bozona, potrebno je bilo dokazati i njegova

preostala svojstva predviđena teorijom. Prema Standardnom modelu, Higgsov bozon se

najčešće raspada u dva b kvarka, međutim konkretan proces je teško opaziti na sudarivaču

LHC zbog prevelike pozadine, odnosno, ostalih procesa koji ostavljaju gotovo identičan

potpis u detektoru. Kako bi se smanjio doprinos pozadine, fizičari su se okrenuli nešto

složenijim procesima. Primjer takvog procesa je zajednička tvorba Higgsova i W bozona

prilikom kojeg se Higgsov bozon raspada u dva b kvarka, a W u dva leptona. Istraži-

vanja su pokazala kako je u ovom slučaju pozadina značajno potisnuta, ali je ipak i dalje

prisutna. Kao moguće rješenje, iz teorijskih razmatranja Butterwortha, Davisona, Ru-

bina i Salama (BDRS članci) [1, 2] proizašla je ideja ultra-relativističke topologije koja

se postiže zahtjevom na veliki iznos impulsa Higgsova bozona. Produkti raspada ultra-

relativističke čestice su u sustava detektora jako rijetko udaljeni jedan od drugoga. Kako

bi se označio kandidat Higgsova bozona potrebno je naći dva prostorno bliska potpisa dva

b kvarka koja nisu karakteristična za pozadinu. Time je dobiveno novo oružje u razliko-

vanju Higgsova bozona, odnosno signala od pozadine. Distribucije signala i dominantnih

doprinosa pozadinskih procesa prema BDRS članku, su prikazane na Slici 1. Istraživanje

u ultra-relativističkom režimu ima i svoju cijenu. Iz teorijskih procjena slijedi kako se



Slika 1: Očekivane distribucije signala i pozadine u ultra-relativističkom režimu za kanal
raspada W(lν)H(bb) prema BDRS.

samo 5% ukupnog signala nalazi u tom djelu faznog prostora. Ovaj rad je motiviran BDRS

člancima te se u njemu eksperimentalno proučava ultra-relativstički raspad Higgsova bo-

zona u dva b kvarka uz pridruženi W bozon koji se pritom raspada u dva leptona. Postoje

ukupno dva WH(bb) kanala ovisno o konačnim stanjima raspada W bozona: H(bb)W(µν)

i H(bb)W(eν). U ovom radu su oba analizirana. Također, važno je spomenuti kako se

WH(bb) proces može analizirati i bez zahtjeva na ultra-relativistički režim ("resolved"

analiza). U tom slučaju, dva b kvarka ne moraju nužno biti jedan blizu drugoga.

Eksperimentalni postav

Prema Standardnom modelu, elementarne čestice su naprosto pobuđenja kvantnih polja.

Kako bi se stvorile nove čestice, potrebno je izazvati dovoljno jaku reakciju ili drugim ri-

ječima, potrebno je pobuditi polja što se postiže sudaranjem postojećih čestica. Povećan-

jem njihove kinetičke energije raste i vjerojatnost za nastanak masivnijih objekata. Pos-

toje dva izvora visoko energetskih čestica, a to su kozmička zračenja i laboratoriji s ubrzi-

vačima. Za razliku od kozmičkog zračenja, koje sadrži čestice različitih energija te one

pritom dolaze iz različitih kuteva svemira, u laboratoriju su uvjeti dobro kontrolirani što

je velika prednost. S druge pak strane, nedostatak laboratorija je ograničenje energije čes-



tica koje je uvjetovano samim ubrzivačem. Trenutno najveći ubrzivač čestica na svijetu

LHC (Large Hadron Collider) nalazi se u CERN-u u Švicarskoj. Točnije, riječ je o neko-

liko povezanih ubrzivača od kojih je posljednji u nizu LHC. LHC je enormno veliki stroj

smješten u kružnom tunelu opsega 27 kilometara na dubini od prosječno 100 metara ispod

površine zemlje. Konstruiran je za ubrzavanje protona na energije od 14 TeV (trenutno

13 TeV) u sustavu centra mase. Osim protona, mogu se sudarati i teški ioni. Iz analize

podataka prikupljenih u sudarima, dolazi se do fizikalnih spoznaja o samim česticama.

Postoje četiri mjesta na samom ubrzivaču gdje dolazi do sudara, a na njima je ukupno

smješteno sedam detektora: CMS, ATLAS, ALICE, LHCb, LHCf i TOTEM. Svaki od

detektora je jedinstven i prilagođen za posebne zadatke.

Za ovaj rad korišteni su podaci prikupljeni na detektoru CMS. Sa svojih 14 000 tona,

15 metara širine i 21 metar dužine predstavlja svojevrsnu kameru koja je u mogućnosti

snimiti 40 milijuna fotografija sudara svake sekunde. Koristeći sve informacije iz detek-

tora zajedno, može se vrlo precizno rekonstruirati i identificirati pojedine čestice, odnosno

kvantitativno opisati njihova fizikalna svojstva. Konačna fotografija sudara dobiva se

kombiniranjem informacija svih rekonstruiranih čestica. Za dobru rekonstrukciju čestica

zaslužan je slojeviti dizajn detektora u kojem svaki sloj ima posebnu ulogu. Snažno

magnetsko polje koristi se za zakretanje putanja nabijenih čestica. Iz smjera zakretanja

putanje može se odrediti predznak naboja čestice jer se čestice različitih predznaka za-

kreću u suprotnom smjeru dok se iz samog iznosa zakrivljenosti putanje može izmjeriti

količina gibanja čestice. Magnet je načinjen od supravodljivog materijala kroz koji pro-

lazi struja od 18 500 A te u konačnici stvara magnetsko polje od 4 T, 100 000 puta

jače od magnetskog polja Zemlje. Samo zakretanje putanje čestica nije dovoljno za nji-

hovu identifikaciju. Potrebno je rekonstruirati putanje s velikom preciznošću za što je

zaslužan sustav za detekciju tragova nabijenih čestica. On je načinjen od 75 milijuna

poluvodičkih senzora poslaganih u koncentrične slojeve. Nabijene čestice prolaskom kroz

poluvodički senzor izbijaju elektrone iz atoma silicija i time stvaraju elektron-šupljina

parove. Električnim poljem pokupe se izbijeni elektroni te se dobije mali električni puls,

odnosno mjesto gdje je nabijena čestica prošla. Kombinirajući električne signale iz više

takvih slojeva moguće je rekonstruirati putanju pojedine čestice s velikom preciznošću.

Iza sustava za detektiranje tragova čestica nalaze se dva sustava za mjerenje energija čes-

tica. Elektromagnetski kalorimetar (ECAL) je bliže središtu detektora te se njime mjeri



energija elektrona i fotona čime se oni gotovo u potpunosti zaustavljaju i ne propagiraju

kroz ostatak detektora. Hadronski kalorimetar (HCAL) nalazi se iza elektromagnetskog i

služi za odredivanje energije hadrona čiji se potpis u detektoru naziva hadronski pljusak.

Preostale čestice koje se nisu zaustavile niti u jednom sloju detektora, a moguće ih je

opaziti su mioni. Za njih postoji posebno izgrađen sustav mionskih komora. Detektor

CMS je hermetički zatvoren, odnosno, pokriva sve moguće putanje čestica. Ako se pak

izmjeri znatna neravnoteža u energiji i impulsu (MET), vjerojatno je riječ o čestici koja

ne interagira s detektorom, poput neutrina. Kompleksan stroj poput detektora CMS

je nužan kako bi se moglo pomicati granice razumijevanja i odgovarati na pitanja fizike

elementarnih čestica. Glavna motivacija za izgradnju detektora je

• razumijevanje fizike na TeV skali

• otkriće i razumijevanje fizike Higgsova bozona

• potraga za fizikom izvan Standardnog modela

• razumijevanje fizike teških iona

Analiza podataka

Prvi korak svake analize nekog fizikalnog procesa je razumijevanje pozadine koja bi se

mogla pojaviti sa sličnim karakteristikama i tako značajno otežati samu analizu. U

slučaju raspada WHbb s konačnim stanjima WH(bb)W(µν) i H(bb)W(eν), postoji neko-

liko takvih procesa unatoč ultra-relativističkoj topologiji, od kojih su najistaknutiji oni

u kojima se pojavljuju top kvarkovi, W bozoni uz pridružene mlazove ili pak neki od

parova (WZ, WW) bozona. Glavna značajka ultra relativističkog WHbb raspada po ko-

joj ga se može razlikovati od ostalih procesa su dva prostorno bliska b-hadrona s velikim

ukupnim impulsom koji zajedno čine kandidata za Higgsov bozon (HC) te rekonstru-

irani W bozon s približno jednakim impulsom suprotnog smjera. Također, u prosjeku se

očekuje manji broj mlazova u događaju nego što je to u slučaju pozadine. S obzirom

da su procesi pozadine učestaliji od signala i do nekoliko redova veličina, realno je za

očekivati da će i nakon potpune selekcije ostati značajan dio pozadine. Temelj ove anal-

ize je dobra rekonstrukcija mlazova i njihovih svojstava: energije, mase i varijabli koje

opisuju od čega su građeni. Mlazovi su rekonstruirani anti-kt algoritmom. Kada je riječ o



ultra-relativističkim topologijama, gdje se traže objekti s velikim impulsima i nekom speci-

fičnom podstrukturom, obično se koriste barem dvostruko širi mlazovi (∆R = 0.8, AK08)

od uobičajenih mlazova. U žargonu se često nazivaju i debeli mlazovi ("Fat jet"). Polazna

točka za izgradnju Higgsova kandidata u ovoj analizi su AK08 mlazovi. Svakom AK08

mlazu je pridružena vrijednost koja opisuje kolika je vjerojatnost da se u njemu nalaze

dva b-hadrona. Ona je rezultat posebnog algoritma nazvanog bb-označivač (bb-tagger)

koji koristi informacije o svim nabijenim tragovima unutar samog mlaza i činjenicu da je

vrijeme raspada b-hadrona značajno dulje od vremena raspada ostalih hadrona. Kandidat

za Higgsov bozon je onaj AK08 mlaz koji ima najveću vrijednost bb-označivača od svih

AK08 mlazova u događaju i pT > 250 GeV. Za rekonstrukciju W bozona koriste se MET i

vodeći izolirani lepton u događaju. Osim AK08 mlazova, koriste se AK04 mlazovi i to za

više funkcija: za ukupan broj dodatnih mlazova u događaju, potragu dodatne aktivnosti

b-hadrona izvan i c-hadrona unutar Higgs bozon kandidata. Od 40 milijuna sudara sniml-

jenih svake sekunde u detektoru CMS, samo su neki od njih zanimljivi za analizu. Zadatak

odabira onih najzanimljivih pada na okidač ("trigger") koji koristi primitivne informacije

iz detektora i u kratkom vremenskom periodu odlučuje hoće li se događaj prihvatiti ili

odbaciti. U ovoj analizi korišten je okidač na izolirane leptone: mione (>24 GeV) i elek-

trone (>27 GeV). U 2016. godini, ukupno je prikupljeno 35.9 fb−1 na
√
s = 13 TeV koji

su ovdje i analizirani.

Za optimizaciju analize korišteni su simulirani uzorci koji su rezultat slijeda nekoliko ra-

zličitih simulacija počevši od simulacije fizike sudara protona pa sve do simulacije odziva

detektora. Kompletna selekcija za pronalaženje faznog prostora u kojem je signal na-

jizraženiji izgrađena je na ukupno osam varijabli, koje su navedene u Tablici 1. HC bb

označivač i HC τ2/τ1 nameću zahtjev na postojanje dva b-hadrona unutar samog mlaza

te time potiskuju pozadinu. Dodatnom selekcijom na omjer impulsa Higgs kandidata i

W kandidata ostvaruje se u potpunosti ultra-relativistička topologija. S druge strane,

broj dodatnih mlazova i veto na b-hadrone izvan mlaza Higgs kandidata iskorištavaju

sama svojstva pozadine kako bi se ona dodatno potisnula. Veći broj dodatnih mlazova je

karakteristika ponajviše procesa koji uključuju top kvarkove. Kako bi se precizno odredila

normalizacija dominantnih pozadinskih procesa i također provjerilo slaganje simuliranih

i izmjerenih distribucija najvažnijih opservali u analizi, potrebno je definirati nekoliko

takozvanih kontrolnih uzoraka, područja koja su vrlo blizu faznom prostoru signalnog po-



dručja, ali su pritom potpuno ortogonalna. U ovoj analizi konstruirana su tri kontrolna

uzorka gdje dominiraju sljedeći pozadinski procesi: tt, W bozon uz teže mlazove i W

bozon uz lakše mlazove. Prilikom prilagodbe iz koje se izvlače konačni rezultati jakosti

signala, oblici pozadina se također prilagođavaju kako bi zajedno dali najbolje slaganje s

izmjerenim podacima.

Tablica 1: Selekcija za signalno područje.

Varijabla Selekcija

HC pT >250 GeV

HC masa ∈[50 - 190] GeV

HC bb označivač > 0.8

V pT / HC pT ∈[0.8 - 1.2]

HC τ2/τ1 < 0.45

N dod. mlazova < 2

b tag veto Da

c tag veto Da

Rezultati

Ključni rezultat ovog rada je izražen preko 95% C.L. (CLS) gornje granice. Za detaljnije

objašnjenje statističke metode CLS pogledati Odlomak 7.5. Distribucije mase Higgs bo-

zon kandidata u signalnom uzorku nakon prilagodbe, prikazane su na Slici 2. Ukupan

broj izmjerenih i očekivanih događaja prikazan je u Tablici 2. Dominantan izvor nesig-

urnosti u ovom mjerenju je statistička pogreška u simuliranim podacima koja proizlazi

iz ograničenog broja simuliranih događaja. Rezultat standardne ("resolved") analize na

podacima iz 2016. godine, gdje se Higgs bozon kandidat izgrađuje koristeći dva AK04

mlaza, je opažanje viška događaja za hipotezu postojanja samo pozadine. Signifikantnost

opažanja je 3.3σ [3]. Potencijalna mogućnost korištenja analize u ultra-relativističkom

režimu je njena komplementarnost "resolved" analizi. Naime, ukupan broj očekivanih

događaja u signalu koji prolazi ultra-relativističku selekciju je 3.71, a očekivani broj do-

gađaja koji prolazi dodatno i "resolved" selekciju je 2.61. Očekivana 95% C.L. gornja

granica na omjer σ/σSM WHbb produkcije je 5.51 dok je opažena vrijednost 4.36, kao što



je prikazano na Slici 3.
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Slika 2: Distribucija mase Higgs bozon kandidata u signalnom uzorku nakon prilagodbe.

Tablica 2: Ukupan broj izmjerenih i očekivanih događaja za pozadinu (B) i WH signal
(S). Naveden je i očekivani omjer signala i pozadine (S/B).

Proces Broj događaja

Pre-fit Post-fit

W + bb 30.61 4.69

W + b 14.20 3.81

W + udscg 14.13 45.83

tt 101.25 75.23

Single-top-quark 32.22 22.63

VV 26.88 22.18

Ukupna pozadina 219.29 174.37

WH 3.71 0.0

Mjerenje 170

S/B 0.016 0.0



Slika 3: Očekivana i izmjerena 95% C.L. gornja granica (u odsutnosti signala) na omjer
σ/σSM WHbb produkcije na podatcima prikupljenim u 2016. godini.

Zaključak

U ovom su radu predstavljeni rezultati proučavanja zajedničke tvorbe Higgsova bozona

i masivnog elektroslabog bozona u konačnim stanjima s dva b kvarka i dva leptona u

ultra relativističkom režimu. Analizirani podatci su prikupljeni 2016. godine detektorom

CMS u sudarima protona na energiji
√
s = 13 GeV. Ukupna količina podataka odgovara

integriranom luminozitetu od 35.9 fb−1. Teorijska predviđanja Butterwortha, Davisona,

Rubina i Salama (BDRS) koja su ujedno bila i motivacija za istraživanje predstavljeno

u ovom radu, su pokazana kao preoptimistična. Očekivani omjer signala i pozadine je

prema BDRS članku s/
√
b = 2.9, dok ova analiza pokazuje kako je taj broj red veličine

manji, odnosno s/
√
b = 0.2. Očekivana 95% C.L. gornja granica na omjer σ/σSM WHbb

produkcije je 5.51 dok je opažena vrijednost 4.36. Dominantan izvor nesigurnosti u ovom

mjerenju je ograničena veličina simuliranog uzorka koja je ujedno i uobičajena za analize

temeljene na ultra relativističkim topologijama. Uz dodatna poboljšanja identifikacije

mlazova s dva b-hadrona te veću količinu simuliranih i prikupljenih podataka, ova analiza

može biti dodatak standardnoj "resolved" analizi raspada Higgsova bozona u dva b kvarka.
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Chapter 1

Introduction

In this chapter, the main aspects of the Standard Model, the theory that contains our

current knowledge of elementary particles and their interactions, are described. The mo-

tivation for the Standard Model is given through a brief historical overview of important

discoveries, while its implications and mathematical background are given in a separate

subsection. The current knowledge of the Standard model parameters based on experi-

mental data is summarized at the end of this chapter.

1.1 Particle physics and the Standard Model

Elementary particle physics addresses the question "What is the matter made of?" at the

most fundamental level. The current theory of elementary particles and their interactions

is called the Standard Model (SM) (see [4] for pedagogical overview). The Standard Model

is formulated in the language of quantum field theory. In this framework, elementary

particles are excitations of quantum fields that also govern their interaction. In order to

create new particles, i.e. excite the fields, one needs to force the interaction between them.

This can be achieved by collision of already existing particles which requires tremendous

amount of energy. That is why elementary particle physics is also called high energy

physics. The Standard Model describes three of the four known fundamental forces,

namely the electromagnetic force, the weak force, and the strong force, where the weak

and the electromagnetic force are unified in the electroweak interaction. The fourth force,
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gravity, is not described by the model because it is not possible to extend the Standard

Model to general relativity [4].

In every theory where space has three dimensions and quantum mechanics and special

relativity are obeyed, like in the Standard Model, all particles must be either fermions or

bosons. This is known as the spin-statistics theorem [5]. Fermions are particles that follow

Fermi-Dirac statistics, i.e. obey the Pauli exclusion principle, while bosons are particles

that follow Bose-Einstein statistics. It also follows from the spin-statistics theorem that

particles with integer spin are bosons, while particles with half-integer spin are fermions.

As a consequence of the Pauli exclusion principle, only one fermion can occupy a particular

quantum state at any given time. Fermions are usually associated with ordinary matter,

whereas bosons are generally force carrier particles. In particular, the Standard Model

has two types of bosons: gauge and the Higgs boson. The gauge bosons are responsible for

mediating the interaction between the elementary particles: the gluon (g) for the strong

force; the W and Z bosons (W+,W−, Z) for the weak force, and the photon (γ) for the

electromagnetic force. The Higgs boson (H) on the other side has a unique role in the

Standard Model. It is responsible for the generation of particle masses. All gauge bosons

are vector particles with spin 1, while the Higgs boson is the only scalar particle with

the spin 0 in the Standard Model. Fermions are classified into two categories: quarks

and leptons. There are six quarks: up (u), down (d), charm (c), strange (s), top (t),

bottom (b) and six leptons: electron (e), electron neutrino (νe), muon (µ), muon neutrino

(νµ), tau (τ), tau neutrino (ντ ). An important fermion characteristic is that each has

its own corresponding antiparticle, i.e. a particle with the same quantum numbers but

opposite physical charges. All fermions in the Standard Model are subject to the weak

force, especially neutrinos who are only interacting through the weak force, which makes

them very difficult to detect. While both the quarks and the leptons, excluding neutrinos,

interact electromagnetically, only quarks are interacting via the strong force. One of the

most interesting phenomenon emerging from the strong force is color confinement, which

says that quarks and gluons cannot be isolated and therefore cannot be directly observed

in normal conditions [6, 7]. Instead, they form hadrons. The two main types of hadrons

are mesons (one quark, one antiquark) and baryons (three quarks). In Figure 1.1 list of

all elementary particles, fermions (orange) and bosons (green), with their interactions is

given.
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γ
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μ
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Figure 1.1: A diagram summarizing interactions between elementary particles according
to the Standard Model.

1.1.1 Historical background

The term Standard Model was first proposed by Abraham Pais and Sam Treiman in

1975, with reference to the electroweak theory with four quarks [8]. Initial experimental

discoveries that actually paved the way for the Standard model appeared in early 1930s.

In a period of almost 50 years, there were both significant experimental and theoretical

breakthroughs. Discovery of positron [9] and neutron [10] in 1932, muon in 1936 [11],

neutrino in 1956 [12] and many other particles, e.g. pion [13] were experimental tri-

umphs that shaped theoretical ideas. The first step towards the Standard Model was

Sheldon Glashow’s discovery in 1961 of a way to combine the electromagnetic and weak

interactions [14]. In 1967, Steven Weinberg [15] and Abdus Salam [16] incorporated the

Higgs mechanism [16–19] into Glashow’s electroweak interaction, giving it its modern

form. The neutral weak currents caused by Z boson exchange were discovered at CERN

in 1973 [20–22], while the W± bosons were discovered in 1983 [23,24]. The theory of the
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strong interaction acquired its modern form in early 1970s when asymptotic freedom was

proposed [6, 7]. At the same time there were experimental evidences that confirmed that

hadrons were composed of fractionally charged fermions, called quarks [25]. The final

confirmation of the theory occurred in 2012 with the discovery of the Higgs boson [26,27].

There is a vast amount of knowledge and anecdotes behind the Standard Model and it is

simply impossible to mention everything in such a short introduction. Complete historic

overview of elementary particles is given in [4]. For the last couple of decades, particle

physics held dominant position in physics, which is proved by more than 30 Nobel prizes

in the field.

1.1.2 Theoretical aspects

The development of the Standard Model was driven by theoretical and experimental

physicists. From the theoretical point of view, quantum field theory provides the mathe-

matical framework for the Standard Model in which a Lagrangian describes the dynamics

and kinematics of the theory. Each kind of particle is described in terms of a field that

is defined in space-time. The construction of the Standard Model proceeds first by pos-

tulating a set of symmetries of the system and then by writing down the most general

renormalizable Lagrangian from its particle content that obeys these symmetries. The

global Poincare symmetry is postulated, i.e. translational symmetry, rotational symmetry

and Lorentz invariance. The Standard Model is a gauge theory, based on the symmetry

group SU(3)C × SU(2)L × U(1)Y . In other words local gauge symmetry is an internal

symmetry that essentially defines it. The three factors of the gauge symmetry give rise

to the three fundamental interactions. The fields belong to different representations of

the various symmetry groups of the Standard Model [28]. Quantum Chromodynamics

(QCD), the gauge field theory that describes the strong interactions of colored quarks

and gluons, is the SU(3)C component.

The Lagrangian of QCD is given by

LQCD =
∑
q

ψ̄q,a(iγ
µ∂µδab − gsγµtCabACµ −mqδab)ψq,b −

1

4
FA
µνF

Aµν (1.1)
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where repeated indices are summed over. The γµ are the Dirac γ-matrices. The ψq,a are

quark-field spinors for a quark of flavor q and mass mq, with a color-index a that runs

from a = 1 to Nc = 3, i.e. quarks come in three “colors.” Quarks are said to be in the

fundamental representation of the SU(3)C color group1. The ACµ correspond to the gluon

fields, with C running from 1 to 8, i.e. there are eight kinds of gluons. Gluons transform

under the adjoint representation of the SU(3)C color group. The tCab correspond to eight

3× 3 matrices and are the generators of the SU(3)C group. They encode the fact that a

gluon’s interaction with a quark rotates the quark’s color in SU(3)C space. The quantity

gs is the QCD coupling constant. Finally, the field tensor FA
µν is given by

FA
µν = ∂µAAν − ∂νAAµ − gsfABCABµACν [tA, tB] = ifABCt

C (1.2)

where the fABC are the structure constants of the SU(3)C group. The free parameters

of QCD are the coupling constant gs or αs = g2s/4π and the quark masses mq. There

is freedom for an additional CP-violating term to be present in the QCD Lagrangian,

∝ θQCDF
A
µνF̃

Aµν where F̃Aµν is the dual of the gluon field tensor. The coupling constant

αs at a given momentum transfer scale Q2 can be parameterized as

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)/12π(11Nc − 2Nf ) ln(Q2/µ2)
(1.3)

where Nf = 3 is the number of quark flavours and µ2 is a renormalization energy scale [4].

For large Q2 values, i.e. at high energies, the coupling becomes small, which is known

as asymptotic freedom. In this regime, quarks can be described as almost free particles,

which is the basis of the perturbative approach to QCD calculation. For low Q2 values

the coupling approaches unity. If a pair of quarks begin to separate, the exchanged gluons

interact with each other and the strong coupling constant increases. This increasing force

either binds the quarks together or it breaks when the energy density of the color field

between the quarks is large enough to create an additional pair of quarks. The final

state is made only by colorless bound states, known as hadrons. This effect is known as

color confinement. It justifies the non-observation of free quarks and gluons. The energy

scale ΛQCD, at which the coupling constant becomes large and the perturbative approach

1The definition of group theory concepts can be found e.g. in [29]
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breaks is given by

Λ2
QCD = µ2 exp

( −12π

(11Nc − 2Nf )αs(µ2)

)
(1.4)

and consequently

αs(Q
2) =

12π

(11Nc − 2Nf ) ln(Q2/Λ2
QCD)

(1.5)

The value of ΛQCD is important when it comes to phenomenological description of hadron

interactions. In typical hadron-hadron collisions, where Q2 � ΛQCD (hard scattering),

the amplitude of the process is calculated with the perturbative QCD tools; the interac-

tion products lose energy until the particle energies are of the order of Q2 ≈ ΛQCD and the

non-perturbative process dominates resulting in neutralization of colored quantum num-

bers and the production of non-colored states through the so-called hadronization process.

In the formed hadrons, the quark color confinement happens again through the strong

interaction. The value of ΛQCD is not predicted from the theory and it is determined

from experiments, which is approximately 100 MeV [28]. Free quarks have never been

observed, which is understood to be a consequence of a long-distance confining property

of the strong QCD force. As already mentioned, all quarks, with exception of top quark,

hadronize, i.e. become part of a meson or baryon, on a timescale ≈ 1/ΛQCD; the top

quark instead decays before it has time to hadronize. This means that the question of

what one means by the quark mass is a complex one, which requires that one adopts a

specific prescription. A perturbatively defined prescription is the pole mass, mq, which

corresponds to the position of the divergence of the propagator. This is close to the phys-

ical picture of mass. However, when relating it to observable quantities, it suffers from

substantial non-perturbative ambiguities [30].

The Standard Model of electroweak interactions (EW) is based on the gauge group

SU(2)L × U(1)Y , with gauge bosons W i
µ, i = 1, 2, 3 and Bµ corresponding to the SU(2)L

and U(1)Y symmetries, respectively, and the associated gauge coupling constants g and g′.

The left-handed fermion fields of the ith fermion family transform as doublets Ψi =
(
νi
l−i

)
L

and
(ui
d
′
i

)
L
under SU(2)L, where d

′
i =

∑
j Vijdj, and V is the Cabibbo-Kobayashi-Maskawa

(CKM) mixing matrix. CP violation is incorporated into the EW model by a single ob-

servable complex phase in Vij. Four independent parameters are required to fully define

the CKM matrix. Many different parameterizations have been proposed. In this work the

Wolfenstein parametrization is used [31]. The right-handed fields are SU(2)L singlets, ψi.
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1.1. Particle physics and the Standard Model

A complex scalar Higgs doublet φ ≡
(
φ+

φ0

)
, is added to the model for mass generation

through spontaneous symmetry breaking with a potential given by

V (φ) = µ2φ†φ+
λ2

2
(φ†φ)2 (1.6)

For µ2 negative, φ has a vacuum expectation value, v/
√

(2) = µ
λ
, where v ≈ 246 GeV,

breaking part of the electroweak gauge symmetry, after which only one neutral Higgs

scalar, H, remains in the physical particle spectrum. After the symmetry breaking the

Lagrangian for the fermion fields, ψi, is

LF =
∑
i

ψ̄i
(
iγµ∂µ −mi −

miH

v

)
ψi

− g

2
√

2

∑
i

Ψ̄iγ
µ(1− γ5)(T+W+

µ + T−W−
µ )Ψi

− e
∑
i

Qiψ̄iγ
µψiAµ

− g

2cosθW

∑
i

ψ̄iγ
µ(giV − giAγ5)ψiZµ

(1.7)

Here θW ≡ arctan(g′/g) is the weak-mixing angle, e = g sin θW is the positron electric

charge, and Aµ ≡ Bµ cos θW +W3µ sin θW is the photon field γ. W± ≡ 1√
2
(W1± iW2) and

Z ≡ −B sin θW + W3 cos θW are the charged and neutral weak boson fields, respectively.

The Yukawa coupling of H to ψi in the first term in LF , which is flavor diagonal, can be

written as gmi/2MW . The boson masses in the EW sector at lowest order in perturbation

theory are given by

MH = λv, MW =
1

2
gv =

ev

2 sin θW
, MZ =

1

2

√
g2 + g′2v =

ev

2 sin θW cos θW
, Mγ = 0

(1.8)

The second term in LF represents the charged-current weak interaction, where T+ and

T− are the weak isospin raising and lowering operators. The third term in LF describes

electromagnetic interactions (QED) and the last describes the weak neutral-current in-

teraction. The vector and axial-vector couplings are

giV ≡ t3L(i)− 2Qi sin
2 θW , giA ≡ t3L(i) (1.9)
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where t3L(i) is the weak isospin of fermion i (+1/2 for ui and νi; −1/2 for di and li) and

Qi is the charge of ψi in units of e. Without the Higgs boson, the cross section for various

weak processes violates unitarity, i.e. the probability of certain interactions is larger than

unity. The Higgs boson, amongst other things, adds counter-acting interactions that

prevent any violation of unitarity.

In particle physics one is interested in computing probabilities for different outcomes

when incoming particles interact. To describe and calculate scattering cross-sections,

the S-matrix formalism is used [32]. The S-matrix is closely related to the transition

probability amplitude in quantum mechanics. In the Hamiltonian approach to QFT, the

S-matrix can be calculated as a time-ordered exponential of the integrated Hamiltonian

in the interaction picture. The number of times the interaction Hamiltonian acts is the

order of the perturbation expansion. The leading-order (LO) term is the one with the

largest order of magnitude, smaller ones are known as next-to leading order terms (NLO),

next-to-next-to-leading order terms (NNLO), etc. The perturbative calculation of the

S-matrix leads to famous Feynman diagrams [33], which are graphical representation of a

perturbative contribution to the transition amplitude, invaluable tool for particle physics.
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1.1.3 Value of Standard Model parameters

The Standard Model Lagrangian depends on 19 parameters, whose numerical values are

established by experiment [28]. They are summarized in Table 1.1.

Table 1.1: Free parameters of the Standard Model with their measured values.

Parameter Description Measured value Unit

mu Up quark mass 2.2 +0.6
− 0.4 MeV

md Down quark mass 4.7 +0.5
− 0.4 MeV

mc Charm quark mass 1.28(3) GeV

ms Strange quark mass 96 +8
− 4 MeV

mt Top quark mass 173.1(6) GeV

mb Bottom quark mass 4.18 +0.04
− 0.03 GeV

me Electron mass 510.9989461(31) keV

mµ Muon mass 105.6583745(24) MeV

mτ Tau mass 1776.82(16) MeV

λ

Wolfenstein
parameters

0.22496(48) -

A 0.823(13) -

ρ 0.141(19) -

η 0.349(12) -

mH Higgs boson mass 125.09(24) GeV

v Fermi coupling constant 1.1663787(6) · 10− 5 GeV−2

α Fine structure constant 7.2973525664(17) · 10− 3 -

αS Strong coupling constant 0.1182(12) -

sin2(θW ) Weak-mixing angle 0.23129(5) -

θQCD QCD vacuum angle < 10−10 -

In the Standard Model, neutrinos are assumed to be massless. However, experiments

showed [34–36] that neutrinos cannot be massless. The Standard Model can be extended

to accommodate finite neutrino masses by introducing 3 neutrino masses and 4 neutrino

mixing angles that relate the physical neutrino states to lepton flavour eigenstates.
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1.2 Physics beyond the Standard Model

The Standard Model is an extremely successful theory, yet it leaves many theoretical

and experimental questions unanswered. Various forms of "Beyond the Standard Model"

new physics are proposed that would modify the Standard Model in such a way to be

consistent with existing data but able to solve remaining issues:

• Hierarchy problem - Within the Standard Model, the mass of the Higgs boson gets

some very large quantum corrections due to the presence of virtual particles (mostly

virtual top quarks). These corrections are much larger than the actual mass of the

Higgs boson. Which means that the bare mass parameter of the Higgs mass in the

Standard Model must be fine tuned in such a way to almost completely cancel the

quantum corrections.

• Number of parameters - The Standard Model depends on 19 numerical parameters.

Their values are known from experiment, but the origin of the values is unknown.

• Quantum triviality - In a quantum field theory, charge screening can restrict the

value of the observable charge of a classical theory. If the only resulting value of

the renormalized charge is zero, the theory is said to be noninteracting. Thus,

surprisingly, a classical theory that appears to describe interacting particles can,

when realized as a quantum field theory, become a theory of noninteracting free

particles. This phenomenon is referred to as quantum triviality. It may not be

possible to create a consistent quantum field theory involving elementary scalar

particles [37].

• Strong CP problem - According to QCD there could be a violation of CP symmetry

in the strong interactions. However, no violation of the CP-symmetry is known to

have occurred in experiments. As there is no known reason for it to be conserved in

QCD specifically, this is a "fine tuning" problem known as the strong CP problem.

• Self-consistency - Self-consistency of the Standard Model has not been mathemati-

cally proven. A key question is the Yang–Mills existence and mass gap problem [38].

• Neutrino mass - Neutrinos are massless particles according to the Standard Model.

However, neutrino oscillation experiments have shown that neutrinos do have mass
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[34–36]. Mass terms for the neutrinos can be added by hand, but these lead to new

theoretical problems. Nature of their mass is not understood, i.e. are they Dirac or

Majorana particles.

• Standard model of cosmology - cosmological observations tell us that the Standard

Model explains about 4 percent of the energy present in the universe. Of the missing

96 percent, about 24 should be dark matter, which would behave just like the other

matter, but which only interacts weakly with the Standard Model fields. Yet, the

Standard Model does not supply any fundamental particles that are good dark

matter candidates.

• Gravity - For decades, the formulation of a quantum theory of gravity has been a

major challenge in theoretical physics. A lot of effort has been spent in building

theoretical models unifying gravity and quantum mechanics. It is however impos-

sible to this day to know whether any of these attempts is a correct description of

our physical world. While this fact is embarassing, it has not been problematic for

particle physics and the Standard Model, as gravity is much too feeble to play a sig-

nificant role in elementary particle interactions. At extremely high energies (Planck

scale: 1019 GeV) quantum gravity must come into the picture, with the expected

unification of all forces of nature. Currently, the best candidate for unified theory

is String theory [39].

• Matter/Antimatter symmetry - The universe is exclusively made out of matter.

However, matter and anti-matter should be created in the equal amounts in the Big

Bang. The observed asymmetry can be explained only if the laws of physics do not

treat matter and antimatter particles in the same way, resulting in a violation of

the CP symmetry. Such a violation of the CP symmetry is indeed contained in the

Standard Model through the complex phase of the CKM matrix. The size of this

CP asymmetry present in the Standard Model is however considered to be much too

small to explain the observed matter-antimatter asymmetry in the universe [40].
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Chapter 2

The Higgs boson phenomenology at

hadron colliders

This chapter is devoted to the introduction of concepts related to the hadron collider

and the Higgs boson phenomenology. The procedure to connect the physical observables

and partons is discussed. The production and decay mechanisms of the Higgs boson are

described with a focus on definition of boosted topologies.

2.1 Phenomenology of proton-proton interactions

According to the parton model, all hadrons are made of valence and sea quarks. Valence

quarks contribute to the hadron quantum numbers, e.g. the proton has two up and one

down quark, while sea quarks, are virtual quark-antiquark (qq) pairs which form when a

gluon splits. This process is also reversible and as a result there is a constant flux of gluon

splits and creations, so-called "sea". In proton-proton collisions, the interaction generally

involves a pair of partons: valence quarks, sea quarks or gluons. It is therefore likely that

any of these partons (quarks q and q′ or gluon g) interact, making a qq, qq, qq′, qq′, gq,

gq or gg interaction possible. Moreover, only a fraction x1 and x2 of the proton momenta

(P1, P2) is carried by the colliding parton momenta p1 and p2

p1,2 = x1,2 · P1,2 (2.1)
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If
√
s is the energy in the center of mass frame of the incident particles, the center of

mass energy of the partonic interaction is given by
√
s′ =

√
sx1x2 and varies event by

event. While this represents an experimental difficulty, it allows to explore a wider range

of energies than lepton colliders. That is why hadron colliders are better suited for discov-

eries and lepton colliders for precise measurements. As already mentioned in the previous

chapter, gluons and quarks interact via strong force (QCD) and the corresponding cou-

pling constant depends on the scale of the process. For high momentum transfers, it

becomes sufficiently small to make perturbative expansion. In order to do calculations

within QCD, one needs the factorization theorem [41]. The theorem is introduced to

separate the cross section in two parts: the contribution from the hard process calculated

using perturbative QCD and the contribution from the internal structure of the proton.

Therefore, hard scattering between partons is independent from the proton internal struc-

ture. The production cross section of a final state X in a process (A+B → X), where ai

and bj are the partons that constitute the hadrons A and B can be written as [42]

σAB→X =
∑
i,j

∫
dxaidxbjfA/ai(xai , µ

2
F )fB/bj(xbj , µ

2
F )σ̂aibj→X(µ2

R, µ
2
F ) (2.2)

where

• x1 and x2 are the fractions of the initial momentum carried by the partons ai, bj

• fA/ai(xai , µ2
F ), fB/bj(xbj , µ2

F ) are the parton distribution functions (PDFs) which

describe probability densities for a parton i with momentum xp to be found within

the colliding hadrons (A,B). The PDFs are expressed in terms of momentum fraction

xai , xbj and factorization scale µF . The factorization scale is introduced to take care

of soft singularites. Depending on the emitted parton’s tranverse momentum, there

are two cases. If it is higher than the scale µF , it is absorbed into the PDF, else

it is part of the short distance cross section. The PDFs cannot be determined by

perturbative QCD. They are instead parametrized from experimental data collected

on many experiments, the Tevatron at Fermilab [43], the hadron-electron colliders

such as HERA at DESY [44], with additional updates from the study of tau decays

[45] and quarkonium measurements [46]. Their evolution with the factorization scale

is computed by the DGLAP equations [47–50], allowing to use the PDFs measured
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at one scale to predict the results of experiments at other scales. The PDFs of the

MSTW 2008 parametrization [51] for the quark and gluon constituents of a proton

at two different values of momentum transfer are shown in Figure 2.1. The up and

down components are dominated by valence quarks at high x, while the strange,

charm, bottom, corresponding anti-quarks, and gluons are more prevalent at low

x. The gluon fraction at low x increases by several orders of magnitude at large

momentum transfers.

• The σ̂aibj→X term corresponds to the partonic cross section for the production of a

X state from a pair of partons ai, bj. It is normally computed at a given order of

perturbative QCD and at a renormalization scale µR. The renormalization scale µR

is another arbitrary parameter introduced to treat a class of infinities where loop

momenta can be very large.

Figure 2.1: Parametrization of the PDFs of the proton in the MSTW 2008 fit, at different
scales. On the x-axis the longitudinal momentum fraction x is shown, while on the y-axis
the product x · f(x,Q2), where f(x,Q2) is the parton distribution function. Different
partons are shown in different colors, including uncertainties.
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Chapter 2. The Higgs boson phenomenology at hadron colliders

Figure 2.2: Schematic representation of an event as produced by an event generator.
The hard interaction (big red circle) is followed by the decay of both top quarks and the
Higgs boson (small red circles). Additional hard QCD radiation is produced (red) and a
secondary interaction takes place (purple blob) before the final-state partons hadronize
(light green blobs) and hadrons decay (dark green blobs). Photon radiation occurs at any
stage (yellow).

After hard scattering, each final state parton can loose its energy through irradiation of

gluons. Emitted gluons fragment into a parton showers of qq pairs and additional glu-

ons. The process continues until a low threshold energy is reached, and the hadronization

process takes place. Hadronization process is described with more details in Section 5.6.

Schematic description of the event generation is shown in Figure 2.2 [52]. The process

cannot be treated in perturbative way because of low energy exchanged. Therefore, the

dynamics of the process is described by fragmentation functions that represent the prob-

ability that a parton can fragment into a hadron in the final state. The cross section can
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2.2. The Higgs boson production in proton-proton collisions

be modified in order to describe the A+B → C +X process:

σ̂aibj→C+X =

∫
dzCDck(zC , µ

2
f )σ̂aibj→ck+X(µ2

R, µ
2
F ) (2.3)

where C is a hadron, Dck(zC , µ
2
f ) is the fragmentation function that represents the proba-

bility that the produced parton ck gives a final state particle C with momentum fraction

zC during the fragmentation process at some fragmentation scale µf . The fragmenta-

tion scale is introduced with the same motivation as the factorization scale and under

similar prescription, to absorb singularities due to final state collinear radiation. The

fragmentation functions are not calculable, as the PDFs, but it is possible to calculate

their dependence on the scale. Finally, the production cross section becomes

σAB→C+X =
∑
i,j,k

∫
dxaidxbjfA/ai(xai , µ

2
F )fB/bj(xbj , µ

2
F )σ̂aibj→C+X(µ2

R, µ
2
F , µ

2
f ) (2.4)

Factorization and renormalization procedures have similar purpose but at opposite ends of

the energy range of perturbative QCD. Both scale parameters µF and µR are not intrinsic

to QCD. Their value should be carefully set to be of the order of the hard scale that

characterizes the parton-parton interaction. The dependence on their value is weaker as

more terms are included in the perturbative expansion. Since they are totally arbitrary,

any physical observable must be independent from their particular choice. The simplifying

assumption of a single scale µ = µF = µR = µf is often made, and the standard choice is

µ2 = Q2, the hard scattering scale.

2.2 The Higgs boson production in proton-proton col-

lisions

The main production mechanism at high energy hadron colliders are gluon fusion, vector

boson fusion, quark fusion and associated production with a vector boson, also known

as the Higgs Strahlung. Representative diagrams at leading-order for these processes are

shown in Figure 2.3.
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Figure 2.3: Leading-order Feynman diagrams contributing to the Higgs boson production.

The Higgs boson production mechanism with the largest cross section is the gluon fu-

sion. The dominant contribution comes from the exchange of a virtual, top quark while

contributions from lighter quarks propagating in the loop are suppressed due to their

lower masses. The mechanism with the second-largest cross section is vector boson fusion

(VBF), in which the scattering of two (anti-)quarks is mediated by exchange of vector

bosons, from which the Higgs boson is radiated off. Because of the color-singlet nature of

the vector boson exchange, gluon radiation from the central-rapidity regions is strongly

suppressed, resulting in a large rapidity gap between the Z jets coming from the scattered

quarks. These characteristic features of VBF processes can be exploited to distinguish

them from overwhelming backgrounds and used as a clean environment not only for Higgs

searches but also for the determination of the Higgs boson couplings. The next relevant
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2.3. The Higgs boson decay

production mechanisms are associated production with vector bosons. As neither the

Higgs boson nor the vector bosons are stable particles, their decay channels have to be

considered. Associated production with vector bosons provide a relatively clean environ-

ment for studying the decay of the Higgs boson into bottom quarks. The Higgs boson

production in association with tt (Figure 2.3, (b) with q = t) provides a direct probe

of the top-Higgs coupling. Production in association with a single top quark can bring

valuable information, in particular regarding the sign of the top Yukawa coupling. The

cross sections for the production of the Higgs boson with their theoretical uncertainties

are shown in Figure 2.4 [53].
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Figure 2.4: The Higgs boson production cross section as a function of the LHC centre of
mass energy and its mass at

√
s = 14 TeV.

2.3 The Higgs boson decay

The branching ratio (BR) is the fraction of time a particle decays to a particular final

state. In the SM, the branching ratios for the Higgs boson decays in various final states

depend on the Higgs boson mass, as shown in Figure 2.5 [53]. The dominant decay modes

of the Higgs boson with mass of 125 GeV are H → bb and H → WW+, followed by

H → gg, H → τ+τ−, H → cc and H → ZZ∗. With much smaller rates follow the Higgs

boson decays into H → γγ, H → γZ and H → µ+µ−. Since the decays into gluons,

diphotons and Zγ are loop induced, they provide indirect information on the Higgs boson

couplings to WW, ZZ* and tt in different combinations. The uncertainties in the BR
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include the missing higher-order corrections in the theoretical calculations as well as the

uncertainties in the SM input parameters, in particular for fermion masses and the QCD

gauge coupling. Exact values of BRs are given in Table 2.1. Despite having almost the

smallest BR, the Higgs boson has been observed firstly in diphoton and ZZ* channel. The

Higgs boson decay mode with the largest branching ratio is H→ bb, however, this channel

is challenging due to significant background contributions. Representative diagrams for

these processes are shown in Figure 2.6.

Table 2.1: The SM Higgs boson (mH=125 GeV) branching ratios.

Decay channel Branching ratio

H → γγ 2.27 × 10−3

H → ZZ* 2.62 × 10−2

H → W−W+ 2.14 × 10−1

H → τ−τ+ 6.27 × 10−2

H → bb 5.84 × 10−1

H → Zγ 1.53 × 10−3

H → µ−µ+ 2.18 × 10−4
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Figure 2.5: The Higgs boson branching ratios as a function of the Higgs boson mass.
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Figure 2.6: Leading-order Feynman diagrams representing the Higgs boson decay.
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2.4 Kinematic variables used in proton-proton collisions

The composite nature of the colliding protons (hadrons) means that parton-parton inter-

actions rarely have their centre of mass frame coincident with the detector rest frame.

Therefore, it is useful to analyze collisions in terms of variables that are invariant un-

der Lorentz transformation along beam axis. The commonly used kinematic variables

to describe final state particles are therefore rapidity y, transverse momentum pT and

azimuth angle φ. The four-momentum of a particle of mass m is p =
(
E, px, py, pz

)
=
(
mT cosh y, pT sinϕ, pT cosϕ, mT sinh y

)
where px, py and pz are the Cartesian coor-

dinates of the momentum and the transverse mass is defined as mT =
√
p2T +m2. The

rapidity y is defined by the relation

y =
1

2
ln

(
E + pz
E − pz

)
(2.5)

which is not Lorentz invariant since it transforms as y = y + c for boosts along beam

axis, where c is the relative velocity between two frames. The rapidity difference ∆y,

however, is invariant and is used for measuring the angular distance between two objects.

In the ultra-relativistic regime, the rapidity can be approximated by the pseudorapidity

η, defined as

η = − ln

(
tan

θ

2

)
≈ y (2.6)

where θ is the angle between the particle and the beam direction (cos θ = pz/|p|) and

is easily measurable in the detector. The transverse energy ET = E sin θ is also a use-

ful variable. Finally, the angular distance ∆R =
√

(∆η)2 + (∆ϕ)2 is Lorentz invariant

variable to measure distance between two objects in azimuth ∆ϕ and pseudorapidity ∆η

plane.

2.5 Boosted topologies

Butterworth, Davison, Rubin, and Salam (BDRS papers) [1, 2] proposed novel approach

where they claim that going into the boosted regime should become an advantage in terms

of reducing uninteresting background processes. Their research was focused on the Higgs
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2.5. Boosted topologies

boson production in association with a massive electroweak boson in final states with two

b quarks and two leptons. As shown in Figure 2.7 [1], signal (blue color) should be visible

due to significant reduction of background processes.

Figure 2.7: Expected signal and background distributions for a 115 GeV SM Higgs in
boosted topology ( W(lν)H(bb) channel) according to calculation in BDRS paper.

The idea of the boosted topology is the following. When a particle of mass m and momen-

tum pT decays into two particles of momenta p1 and p2 as shown in Figure 2.8, angular

separation between new particles will vary significantly with pT and decay orientation,

according to

∆R ' 1√
z(1− z)

m

pT
(2.7)

where z, 1 − z are the momentum fractions of a new particles. With increasing value of

momentum pT, distance between the particles decreases. If background processes have

the same particles in final state as the signal process, requirement on high value of pT

gives implicit constraint on the event topology that is characteristic for signal only and

it results in additional background suppression. On the other side, this represents a big

challenge from detector point of view, it is more difficult to successfully identify closer

particles. BDRS papers were the motivation for the work presented.
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Figure 2.8: Schematic decay of a particlem with momentum p into two particles separated
by distance ∆R.
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Chapter 3

The Large Hadron Collider

In this chapter an overview of the Large Hadron Collider (LHC) is given, with a focus on

its design and technical details including a brief description of all detectors attached to

the collider.

3.1 Introduction

The Large Hadron Collider (LHC) [54–56] is the most powerful particle collider and the

largest single machine beneath the France–Switzerland border near Geneva. It represents

the culmination of years of dedicated effort by roughly 10000 scientists and engineers

from over 100 countries. The world map of countries involved in research at CERN is

shown in Figure 3.1 [57]. The story of the LHC began in the late eighties when it was

first proposed. It took several years of serious planning before installation of LHC, which

started in 2001 in the pre-existing underground tunnel which housed the Large Electron

Positron Collider (LEP) [58]. On 10. 9. 2008, the LHC was officially inaugurated and

the new era of high energy physics has started. One of the key motivations for building

such an enormous machine was to investigate the possible existence of the Higgs boson,

a key part of the Standard Model of physics, which was predicted by theory but had not

been observed before. It was estimated that, if the Standard Model were correct, the

LHC would be able to produce (at
√
s = 14 TeV and L ≈ 1034 cm−2s−1) a couple of the

Higgs bosons (mH=125 GeV) every minute. Additionally, the LHC allowed the search for
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Chapter 3. The Large Hadron Collider

supersymmetric particles and other hypothetical particles. Nowadays, after 10 years of

work one can easily claim that the LHC fulfilled expectations. Its first run discoveries

included the long sought Higgs boson [26, 27], several composite particles [59, 60], and

the creation of a quark–gluon plasma [61–63]. Making discoveries and being the largest

machine comes with a huge price. The total cost of the project is approximately 4.6 billion

Swiss francs. Unfortunately, the LHC had to pay the price in terms of human life. On 25

October 2005, José Pereira Lages, a technician, was killed during the LHC construction

when a switchgear that was being transported fell on top of him. The LHC gained a

substantial amount of attention from outside the scientific community and its progress is

followed by most popular science media. The LHC has also influenced works of fiction

including TV shows, popular science books, novels, movies and is considered as one of

the biggest achievements of humankind.

Figure 3.1: World map of countries involved in research at CERN.

3.2 Collider design

The transition from the Large Electron Positron Collider to the Large Hadron Collider

was motivated by several reasons. Installing the new machine in a pre-existing tunnel

substantially reduced the cost and time of construction, colliding hadrons instead of lep-

tons allowed to reach a higher energy in the center of mass frame. Every charged particle,
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3.2. Collider design

while being accelerated, loses its energy through the process called synchrotron radiation

which is proportional to the fourth power of the ratio E/m between its energy and its

mass. Comparing leptons accelerated by LEP to hadrons accelerated by the LHC, the

synchrotron radiation energy loss at the same energy E is reduced by 12 orders of mag-

ntitude, which explains why it is possible to accelerate hadrons to significantly higher

energies. Secondly, the composite structure of hadrons compared to the elementary struc-

ture of leptons allows the LHC to produce hard collisions at much wider energy spectrum.

Having access to hard collisions with higher energies and wider spectrum, promotes LHC

as a perfect candidate for discovering new physics. Another design decision was the choice

to collide particles of the same charge instead of colliding particles with their antiparticles

which was the case in other accelerators, e.g. antiprotons with protons at the Tevatron.

Achieving large bunch populations is straightforward with proton beams because it is

easier to produce protons. Additionally, with the primary goal of the LHC being to study

electroweak symmetry breaking, the benefits of using antiprotons are small as the Higgs

boson is produced primarily through gluon fusion in high-energy proton-(anti)proton and

the gluon PDFs of protons and antiprotons are the same. Therefore, since it is more cost

effective and easier to provide higher luminosities with proton-proton collisions and they

yield the same physics potential, the LHC was designed to collide two 7 TeV counter-

circulating beams of protons resulting in a center of mass energy of 14 TeV, or two beams

of heavy ions, in particular lead nuclei, at an energy of 2.76 TeV/nucleon in the center

of mass frame [64]. Due to issues with commissioning the superconducting magnets for

the LHC and, in particular, the protection system for those magnets, the LHC presently

operates at energies of up to 6.5 TeV per beam giving in total 13 TeV. In Figure 3.2 a

schematic description of the accelerator complex installed at CERN is shown [65]. The

acceleration procedure that brings protons to the LHC collision energies is separated into

stages that combine various accelerators. Each of these accelerators provide beams for

other experiments in addition to providing the beams for the LHC. From the historical

point of view, they were all representing the final stage of acceleration in the experiments

for which they were built [56]. The LHC acceleration chain consists:

• The Duoplasmatron is a proton or hadron source. To obtain protons, hydrogen

gas is injected into the metal cylinder, surrounded by an electrical field which that

breaks down the gas into protons and electrons. The protons are then accelerated
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to 90 keV. This process yields roughly 1014 protons.

• The LINAC is a linear accelerator 36 m long that generates a pulsed beam with

an energy of 50 MeV using Radio Frequency Quadropoles (RFQ) and focusing

quadropole magnets.

• The Proton Synchrotron Booster (PSB) [56] consists of four superimposed

synchrotron rings of circumference equal to 157 m. The radio frequency techniques

used for accelerating and bunching the hadron beams in the LINAC results in very

long bunches, while the LHC is designed for 25 nanoseconds bunch spacing. In order

to achieve the required bunch length, the bunches are accelerated and simultaneously

split in the boosters. The PSB splits the input bunches into groups of four bunches

and accelerates them to 1.4 GeV.

Figure 3.2: Schematic description of the accelerator complex.

• The Proton Syncrotron (PS) is a synchrotron ring 628 m long, where the

bunches are twice split in two, accelerated to 26 GeV, interspersed by 25 ns, and

then passed to the following accelerator in the chain.
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• The Super Proton Synchrotron (SPS) [56] is a synchrotron ring with a cir-

cumference of approximately 7 km in which the energy of the protons is brought to

450 GeV. It provides primarily high-intensity proton beams for the LHC but also

for a number of active fixed-target experiments, e.g. COMPASS, NA61/SHINE and

NA62.

• The Large Hadron Collider (LHC) is the largest and final synchrotron ring 27

km long, which is located at a depth varying between 50 m to 175 m. It is fed by

transmission lines, in order to form two beams that run in opposite directions in

separate parallel pipes, where each of them is accelerated to an energy of 6.5 TeV.

The transition from the LEP to the LHC collider brought numerous advantages but also

design challenges. In order to accommodate the increase of the beam momentum, it

was required to have stronger magnetic field, i.e. 8.33 T at the design energy of 7 TeV

per beam, which was achieved by using superconducting magnets. Secondly, the same

magnetic field cannot be used to bend counter circulating proton beams in the same

direction.

Figure 3.3: Schematic cross section of a LHC dipole magnet.
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Therefore, the accelerator uses pairs of magnets with opposing field directions, mounted

around the beam pipes within the same container in order to exploit the same structure

and the same cryogenic system. A schematic cross section of a beam pipe in a LHC dipole

magnet is shown in Figure 3.3 [66]. To minimize collisions of protons with the residual gas,

high vacuum inside of beam pipes (in the range 10−10-10−9 torr) is maintained. The LHC

reaches the nominal energy of 6.5 TeV in a time interval of about 20 minutes after SPS

provides the beam. If all the requirements for the collisions are satisfied, the stable beams

condition is declared and data taking begins. Once the stable beam condition is over, the

beam is extracted from the machine, dumped, and the process starts again. On average,

full cycle before beam is dumped lasts approximately 15 hours. To achieve and maintain

stable condition, a high level of coordination is required. The LHC ring is divided into

eight main sectors called octants which are further separated by so-called arcs, as shown

in Figure 3.4 [54]. Octants contain 14.3 m long magnetic dipoles responsible for bending

the beam. In total, there are 1232 dipole magnets along the entire machine. In the central

part of each octant there is a rectilinear structure the Long Straight Section (LSS), which

is rougly 528 m long. At each LSS, beams are either injected, collimated, accelerated,

intersected or extracted. In particular, there are 2 points where beams are injected.

Table 3.1: LHC technical parameters for proton-proton collisions.

Parameter Value (Nominal) Value (2016)

Maximum dipole magnetic field 8.33 T 8.33 T

Dipole operating temperature 1.9 K 1.9 K

Beam energy at injection 450 GeV 450 GeV

Beam energy at collision 7 TeV 6.5 TeV

Maximum instantaneous luminosity 1034 cm−2s−1 1.5×1034 cm−2s−1

Number of bunches per proton beam 2808 2220

Maximum number of protons per bunch 1.69 × 1011 1.69 × 1011

Bunch collision frequency 40 MHz 40 MHz

Energy loss per turn at 14 TeV 7 keV 7 keV
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For collimation, the straight sections contain 386 focusing and defocusing quadrupoles,

which keep the beam stable along the orbit; 360 sextupoles and 336 octupoles are used

to make additional minor corrections to the beam direction. There are 2 lattice modules,

called Dispersion Suppressor Left or Right (DSL and DSR), located at either end of the

arcs, for the reduction of the horizontal dispersion. To accelerate the beams, the Radio

Frequency (RF) acceleration system is used. It is housed in the cavern previously used

for the ALEPH [67] experiment at LEP. It consists of 16 superconducting RF resonant

cavities, 8 for each beam, with a frequency of 400 MHz for the carrier wave. Within each

cavity a specific RF acceleration system establishes the value of the potential (2 MV) and

the corresponding electric field (5.5 MV/m). The system increases the proton energy by

0.5 MeV with each revolution of the beam. After the nominal energy is reached, the RF

cavity only supplies the beam with the energy lost during each revolution by synchrotron

radiation, approximately 7 keV. The maximum energy allowed on the LHC beams is not

determined by the electric field generated by the RF cavity but by the magnetic field

necessary to maintain the protons in orbit.

Figure 3.4: LHC schematic configuration showing clockwise beam colliding with counter-
clockwise beam with the primary goal of the LHC being at four intersecting points.
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Finally, to remove the beams without damaging the machine, they are dumped into 7m

long segmented carbon cylinder of 700 mm diameter where 362 MJ of beam energy is

dissipated in the 90 µs. The LHC has four crossing points, around which are positioned

seven detectors. Each of them is designed to address different questions. Four main

experiments are:

• Compact Muon Solenoid (CMS) [68] is one of two general-purpose detectors,

designed to observe any new physics phenomena that the LHC might reveal.

• A Toroidal LHC ApparatuS (ATLAS) [69] is other general-purpose detector.

It has the same objectives as CMS but is designed independently and using different

technological solutions.

CMS
LHCb

ATLAS
ALICE

Figure 3.5: Schematic perspective view of the four main experiments installed at the LHC.
From the top left, clockwise: CMS, LHCb, ATLAS and ALICE.

• A Large Ion Collider Experiment (ALICE) [70] is an experiment primarily

designed to study collisions between heavy ions, e.g. lead ions in which a new state

of matter, quark-gluon plasma can be produced. According to the Big Bang theory,
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in the very early stage of the Universe formation, quark-gluon plasma existed for a

short period of time.

• LHC beauty (LHCb) [71] is an experiment designed to study matter and an-

timatter asymmetry through the analysis of rare decays of hadrons containing b

quarks, collectively known as B mesons. In comparison with the other three main

detectors, LHCb is the only single arm forward detector.

In addition to the four main detectors, there are three much smaller detectors with very

specific roles.

• TOTal Elastic and diffractive cross section Measurement (TOTEM) [72]

is dedicated for monitoring the LHC luminosity, precise measurement of the proton-

proton interaction cross section and also to the in-depth study of the proton struc-

ture. It is made up of detectors positioned on either side of the CMS interaction

point. Although the two experiments are scientifically independent, TOTEM com-

plements the results from the CMS detector and from other LHC experiments as

well.

• LHC forward (LHCf) [73] is made up of two detectors which sit along the LHC

beamline, at 140 m on either side of the ATLAS collision point. It uses particles

scattered at low angles by collisions in the LHC as a source to simulate cosmic

rays in laboratory conditions. The LHCf is intended to measure the energy and

numbers of neutral pions produced in nuclear collisions. This will hopefully help

explain the origin of high energy cosmic rays. The results will provide input for other

measurements from the Pierre Auger Observatory in Argentina and the Telescope

Array Project in Utah.

• Monopole and Exotics Detector at the LHC (MoEDAL) [74] is dedicated

to a direct search for magnetic monopoles and other exotic highly ionizing stable

massive particles and pseudo-stable massive particles. To detect these particles, the

project uses nuclear track detectors, which suffer characteristic damage due to highly

ionizing particles, and are therefore perfectly suited for the purpose of detection. It

is located in the same cavern as LHCb.
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3.3 The Luminosity frontier

Finally yet importantly, luminosity, i.e. measure of the number of collisions that can be

produced in a detector. For a process having a cross section σ that occurred N times in

unit of time, the total luminosity L is defined by the relation

N = σL (3.1)

In a particle collider, the luminosity can be expressed as a function of the characteristic

parameters of the beam [54]

L =
N2
b nbfγr

4πεbβ∗
F(ϑ) (3.2)

The numerator of this equation expresses the rate at which protons enter an interaction

region: Nb is the number of protons in a bunch, nb is the number of colliding bunches

at the interaction point, f the frequency at which they orbit the LHC and γr is the

relativistic gamma factor. The denominator is the transverse geometrical cross section

of the luminous region at the interaction point: εn is the normalized emittance, i.e. the

measure for the average spread of particle coordinates in position and momentum phase

space, β∗ is the beta function at the collision point. Finally, there is one more relativistic

correction factor, F(ϑ), defined as

F(ϑ) =

√
1 +

(ϑσz
2σ∗

)2
(3.3)

It determines the reduction in the luminosity in the case that the bunches are not colliding

head on. Here, ϑ is the crossing angle itself, σz is the lab frame bunch length and σ∗ is

the bunch transverse width in the lab frame [64]. As the accelerator energy is limited

by the technological constraints of the superconducting magnets and by the size of the

ring, a method for increasing the number of rare beyond Standard Model physics events

and with low cross section is to build an accelerator with high instantaneous luminosity

rate. At the LHC, during the 13 TeV run in 2016, was achieved a maximum instantaneous

luminosity of 15.3× 1033 cm−2s−1 [75].
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3.4 Timeline of operations

On 10 September 2008, the first beam was successfully circulated through the LHC. The

protons were fired around the tunnel in stages. It took less than one hour to guide the

stream of particles around its inaugural circuit. Unfortunately, one week from the start

a magnet quench occurred. This was a major incident that postponed the LHC opera-

tions until November 2009 [76] when the LHC became the world’s highest-energy particle

accelerator achieving 1.18 TeV per beam, beating the Tevatron’s previous record of 0.98

TeV per beam held for eight years. On 30 March 2010, the two beams collided for the

first time at center of mass 7 TeV (3.5 TeV per beam) marking the start of the LHC

research program. One year later, on 21 April 2011, the LHC became the world’s highest

luminosity hadron accelerator achieving a peak luminosity of 4.67×1032 cm−2s−1. Finally,

on 4 July 2012 the CMS and ATLAS experiments discovered a new particle which was

later confirmed as the Higgs boson. For the next two years, the LHC was in the first long

shutdown because of preparation for a higher energy and luminosity. On 20 May 2015,

protons collided in the LHC at the record-breaking collision energy of 13 TeV. Since then,

the machine has been working smoothly with constant increase of the luminosity.

Figure 3.6: The proposed LHC running schedule. By the end of its lifetime in 2035, it is
expected to collect more than 3000 fb−1 of data.

As any other particle physics experiment, the LHC is entering the period when it begins

to suffer from diminishing major discoveries. Expected design characteristics have been

reached and almost entire phase space for research with current setup has been exploited.
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Next logical step is accelerator upgrade, typically in collision energy, luminosity or im-

proved detectors which is also planned for the LHC. In addition to a possible increase

of the collision energy to 14 TeV in 2018, a luminosity upgrade (the High Luminosity

LHC) will boost the accelerator’s potential for new discoveries, starting in 2026. The

upgrade aims at increasing the luminosity of the machine by a factor of 10, providing a

better chance to see rare processes and improving statistically marginal measurements.

The LHC schedule is shown in Figure 3.6 [77].
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The Compact Muon Solenoid Detector

In this chapter an overview of the CMS detector is given.

4.1 Introduction

The Compact Muon Solenoid (CMS) [68] is a general purpose detector designed with focus

on discovering the Higgs boson but also exploring new physics along with a wide array

of possible Standard Model physics measurements. The detector is 21.6 m long, 15 m in

diameter and weighs about 14000 tonnes. It is located in an underground cavern near the

village of Cessy in France, just across the border from Geneva. The CMS experiment is

one of the largest international scientific collaborations in history, involving 4300 particle

physicists, engineers, technicians, students and support staff from 182 institutes in 42

countries (February 2014) [78] which published more than 700 articles [79]. The detector

acts as a giant camera, taking 3D images of particle collisions provided by the LHC every

25 ns, which results in 40 million shots each second. By reconstructing nearly all particles

from each collision and then using those pieces of information together, the detector can

recreate an image of the collision for further analysis.
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Figure 4.1: A view of the CMS detector with its subdetectors labeled.

The energy of particles is measured by the calorimeters. They have to be large enough to

absorb the full particle energy if possible. An important part of the detector is a magnet.

The trajectories of charged particles are bent by its field. The direction of curvature

gives the information of particle’s charge while the curvature radius is used to calculate

the transverse momentum. For particles with high kinetic energy and therefore small

curvature, a sufficiently long trajectory must be measured to accurately determine the

radius. A view of the detector with its subdetectors is shown in Figure (4.1). The detector

is designed to enclose the interaction region so that the total energy and momentum

balance of each event is precisely measured and reconstructed. Combining the information

from the different layers of the detector, it is possible to determine the type of particles.

Each sub-detector is connected to an electronic readout system via thousands of cables.

When an set of electronic impulses is registered, it is forwarded to few thousand computers

that work together to collect them all efficiently. Out of all recorded events, only small part

of them is selected. It is a role of so-called trigger system to select the most interesting

events and this decision needs to be taken very fast. Therefore, data rate is reduced
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by selecting only these events that fulfill certain criteria from 40 million events to few

hundred events per second. Despite this significant data reduction, CMS still records

approximately 600 MB/s. To quantify the amount of collected data, the cumulative or

integrated luminosity is usually used. It is shown in Figure (4.2) for each year since its

beginning in 2010 [75].
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Figure 4.2: Cumulative and peak luminosity versus day delivered to CMS by the LHC.
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4.2 Detector design

The CMS detector is shaped like a cylindrical onion, with several concentric layers of

components. The central part (barrel) contains several layers of detectors with cylindrical

symmetry and coaxial with respect to the direction of the beams. A set of detector disks

(endcaps) close the detector at both ends to ensure its tightness. CMS uses a right-handed

coordinate system with the origin in the nominal interaction point. z-axis is pointing along

the beam line. x-axis is pointing towards the center of the LHC ring and y-axis points

upwards. From the inner region to the outer one, the components are:

• The Silicon tracker [80–82] is placed in the region r < 1.2 m and |η| < 2.5.

It consists of a silicon pixel vertex detector and a surrounding silicon microstrip

detector, with a total active area of about 215 m2. It is used to reconstruct charged

particle tracks and decay vertices.

• The Electromagnetic Calorimeter (ECAL) [83, 84] is placed in the region 1.2

m < r < 1.8m and |η| < 3. It consists of scintillating crystals of lead tungstate

(PbWO4) and it is used to measure the energy of photons and electrons.

• The Hadron Calorimeter (HCAL) [85] is placed in the region 1.8 m < r < 2.9

m and |η| < 5. It consists of brass layers alternated with plastic scintillators and

it is used to measure the direction and the energy released by hadrons produced in

the interactions.

• The Superconducting Solenoidal Magnet [86] is placed in the region 2.9 m <

r < 3.8 m and |η| < 1.5. It generates an internal uniform magnetic field of 3.8 T

along the direction of the beams, necessary to deflect the charged particles in order

to allow a measurement of their momentum through the curvature observed in the

tracking system. The magnetic field is closed with an iron yoke 21.6 m long with

a diameter of 14 m, in which a residual magnetic field of 1.8 T is present, in the

opposite direction with respect to the 3.8 T field in the interior of the solenoid.

• The Muon system [87] is placed in the region 4 m < r < 7.4 m and |η| < 2.4. It

consists of Drift Tubes (DT) in the barrel region and Cathode Strip Chambers (CSC)

in the endcaps. A complementary system of Resistive Plate Chambers (RPC) is used
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both in the barrel and in the endcaps. This composite tracking system for muons

is used to reconstruct muons tracks that pass through it. The muons chambers are

housed inside the iron (high magnetic permeability) structure of the return yoke

that encloses the magnetic field.

Charged particles such as electrons, pions and muons leave traces through ionisation.

Electrons are very light and therefore lose their energy quickly, while pions penetrate

further through the layers of the detector. Photons themselves leave no trace, but in

the calorimeters, each photon converts into electron-positron pair, the energies of which

are then measured. Muons are the only particles that reach (and are detected by) the

outermost layers of the detector as can be seen in Figure (4.3) [88]. A detailed discussion

of each sub-detector is given in the following sections.

Figure 4.3: A sketch of the specific particle interactions in a transverse slice of the CMS
detector, from the beam interaction region to the muon detector. The muon and the
charged pion are positively charged, and the electron is negatively charged.
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4.2.1 The Tracker

The Silicon Tracker is the closest detector to the collision point. Its goal is to reconstruct

the trajectory of charged particles originating from the interaction point and also to iden-

tify the position of secondary vertices, if they exist, in the events containing composite

particles with short lifetime (in particular hadrons containing the quark b that decay after

a few hundred µm). In order to reconstruct the trajectories with the highest possible res-

olution it is necessary to have low occupancy detector with large redundancy of measured

points per track. The low occupancy is obtained by building a detector with high granu-

larity. The redundancy of hits per track is necessary to reduce the ambiguity in assigning

hits to the track itself, which was achieved by building multiple detection layers. However,

the amount of material composing the detector has been limited to avoid deterioration of

the measurement itself. An excessive amount of material would compromise the accuracy

of the track measurement because of the particle multiple scattering. Secondly, travers-

ing the detector can induce pair-production of electrons from real photons, causing the

photon to appear as though it is an electron since the pair-produced electrons will leave

tracks. To mitigate these effects, the detection layers in the trackers have been limited in

number and thickness.

Figure 4.4: Material budget in units of radiation length as a function of pseudorapid-
ity η, for the different sub-detectors (left panel) and broken down into the functional
contributions (right panel).
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In Figure (4.4) the material budget of the the tracker is reported in units of radiation

length t/X0 as a function of η obtained from the full simulation of the tracker. The

material budget is higher in the region 1 < η < 2 due to the presence of cables and

services. The tracker comprises a large silicon strip tracker with a small silicon pixel

tracker inside it. Both operate using the same principles of finding the location of a

charged particle in a collection of pixels or on a doped strip of silicon using the ionization

charge left by the incident particle. For that purpose, the sensors are constructed as

reversed-biased p-n diodes, which give a detectable current when the bias voltage across

the diode is lowered by the ionization charge flow. The use of semi-conductor sensors is

critical to the operation of the tracker due to its small thickness, which results in very

short charge collection times, allowing for fast readout. Additionally, the use of semi-

conductor, i.e. silicon, allows for high detector granularity, granting excellent position

resolution for reconstructed tracks, for a low cost in material.

Figure 4.5: A schematic view of the pixel vertex detector.

The tracker is a cylindrical volume 5.8 m in length and 2.5 m in diameter, with its axis

closely aligned to the LHC beam line. A schematic drawing of the tracker is shown in

Figure (4.6). In the central pseudorapidity region, the pixel tracker consists of three co-

axial barrel layers at radii between 4.4 cm and 10.2 cm and the strip tracker consists of

ten co-axial barrel layers extending outwards to a radius of 110 cm. On both sides of the

barrel are endcaps, each consisting of two disks in the pixel tracker, and three small plus

nine large disks in the strip tracker. The endcaps extend the acceptance of the tracker up

to a pseudorapidity of |η| < 2.5.

The pixel detector consists of cylindrical barrel layers at radii of 4.4, 7.3 and 10.2 cm,
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and two pairs of endcap disks at z = ±34.5 and ± 46.5 cm. It provides three-dimensional

position measurements of the hits arising from the interaction of charged particles with its

sensors. The hit position resolution is approximately 10 µm in the transverse coordinate

and 20 - 40 µm in the longitudinal coordinate, while the third coordinate is given by the

sensor plane position. In total, its 1440 modules cover an area of about 1 m2 and have

astonishing 66 million pixels.

The strip tracker has 15 148 silicon modules, which in total cover an active area of

about 198 m2 and have 9.3 million strips. It is composed of four subsystems. The Tracker

Inner Barrel (TIB) and Disks (TID) cover r < 55 cm and |z| < 118 cm, and are composed

of four barrel layers, supplemented by three disks at each end. These provide position

measurements in r-φ with a resolution of approximately 13-38 µm. The Tracker Outer

Barrel (TOB) covers r > 55 cm and |z| < 118 cm and consists of six barrel layers providing

position measurements in r-φ with a resolution of approximately 18-47 µm. The Tracker

EndCaps (TEC) cover the region 124 < |z| < 282 cm. Each TEC is composed of nine

disks, each containing up to seven concentric rings of silicon strip modules, yielding a

range of resolutions similar to that of the TOB.

The modules of the pixel detector use silicon of 285 µm thickness, and achieve resolutions

that are roughly the same in r-φ as in z, because of the chosen pixel cell size of 100×150
µm2. The modules in the TIB, TID and inner four TEC rings use silicon that is 320

µm thick, while those in the TOB and the outer three TEC rings use silicon of 500 µm

thickness. In the barrel, the silicon strips usually run parallel to the beam axis and have

a pitch (i.e., the distance between neighbouring strips) that varies from 80 µm in the

inner TIB layers to 183 µm in the inner TOB layers. The endcap disks use wedge-shaped

sensors with radial strips, whose pitch varies from 81 µm at small radii to 205 µm at large

radii. The modules in the innermost two layers of both the TIB and the TOB, as well as

the modules in rings 1 and 2 of the TID, and 1, 2 and 5 of the TEC, carry a second strip

detector module, which is mounted back-to-back to the first and rotated in the plane of

the module by a ‘stereo’ angle of 100 mrad. The hits from these two modules, known as

‘r-φ’ and ‘stereo hits’, can be combined into matched hits that provide a measurement

of the second coordinate (z in the barrel and r on the disks). The achieved single-point

resolution of this measurement is an order of magnitude worse than in r-φ. The principal

characteristics of the tracker are summarized in a Table (4.1) and Figure (4.6).
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Table 4.1: A summary of the principal characteristics of the various tracker subsystems.

Tracker subsystem Layers Pitch Location

Pixel tracker barrel 3 cylindrical 100× 150µm2 4.4 < r < 10.2 cm

Strip tracker inner barrel (TIB) 4 cylindrical 80− 120µm 20 < r < 55 cm

Strip tracker outer barrel (TOB) 6 cylindrical 122− 183µm 55 < r < 116 cm

Pixel tracker endcap 2 disks 100× 150µm2 34.5 < |z| < 46.5 cm

Strip tracker inner disks (TID) 3 disks 100− 141µm 58 < |z| < 124 cm

Strip tracker endcap (TEC) 9 disks 97− 184µm 124 < |z| < 282 cm

Figure 4.6: Schematic cross section through the CMS tracker in the r-z plane. In this
view, the tracker is symmetric about the horizontal line r = 0, so only the top half is
shown here.The centre of the tracker, corresponding to the approximate position of the
pp collision point, is indicated by a star. Green dashed lines help the reader understand
which modules belong to each of the named tracker subsystems.

Since the tracker is within the magnetic field of the solenoid, the charged particles bend

with radius of curvature R in the transverse plane of the detector according to: R = pT/qB

where pT = p2x + p2y. Since the tracking detector has excellent position resolution, the
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momentum measurements derived from it have very high resolution [64]

σpT
pT

= (15pT ⊕ 0.5) % (TeV), |η| < 1.6

σpT
pT

= (60pT ⊕ 0.5) % (TeV), |η| = 2.5

4.2.2 The Electromagnetic Calorimeter (ECAL)

The electromagnetic calorimeter (ECAL, Electromagnetic CALorimeter) is the second

closest detector to the collision point. It is designed to measure accurately the energy

of electrons and photons. Using information from the tracker and ECAL, electrons and

photons can be distinguished due to the fact that electrons leave the trace in the tracker

while photons do not. The ECAL consists of 76 832 (PbWO4) crystals. The characteristics

of the lead tungstate crystals make them an appropriate choice for operation at LHC. The

high density (ρ = 8.3 g/cm3), short radiation length (X0 = 0.89 cm) and small Moliere

radius (2.2 cm) allow the construction of a compact and high granularity calorimeter.

Figure 4.7: Layout of the CMS electromagnetic calorimeter presenting the arrangement
of crystal modules, supermodules, endcaps and the preshower in front.
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Another advantage of this material is the radiation hardness and the fast scintillation

decay time (τ = 10 ns), which permits to collect about 80% of the produced light within

the 25 ns interval between two consecutive bunch crossings.The main drawbacks of this

material are the low light yield (∼ 10 photoelectrons/MeV) and the strong dependence

on the operating temperature, that makes it necessary to keep the crystals at a stabilized

temperature (18◦C). Low light yield is solved through the use of silicon avalanche photo-

diodes (Avalanche Photodiodes, APD) in the barrel part and single stage photomultipliers

(Vacuum Photo-Triode, VPT) in the endcaps, both resistant to the radiation and to the

strong magnetic field of CMS. They are located on the ‘back’ of each crystal, collecting

all of the light emitted in the electromagnetic shower. The layout of the CMS ECAL is

given in Figure (4.7). The ECAL is divided into the ECAL barrel (EB) in the range |η| <
1.4442, and the endcaps (EE) and endcap preshower detector (ES) both in the range 1.566

< |η| < 3.0. Out of 76 832 crystals, EB contains 61 200 crystals the while two endcaps

(EE) contain 7324 crystals.

The ECAL barrel (EB) has an inner radius of 129 cm, a length of 630 cm and it

extends in the region |η| < 1.479. It consists of 36 supermodules, each one with a length

equal to the half of the barrel length. Each supermodule consists of a 20×85 crystal

matrix in the φ− η plane. Supermodules are divided into 4 modules along the η direction

and each module is in turn divided into sub-modules. Each submodule, consists of a 5×2
crystal arrays mounted on a glass fiber structure. EB crystals in the barrel region are

rectangular prisms, with a length of 23 cm, a frontal area equal to 22×22 mm2 and a rear

area equal to 26×26 mm2 which corresponds to 25.8 X0 in longitudinal shower depth and

1 Moliere radius in the transverse shower size. The granularity of a single crystal is equal

to ∆η × ∆ϕ = 0.0175×0.0175 (i.e. about 1◦). Crystals are grouped into 5×5 matrices

called trigger towers that provide some useful information for the trigger. The crystal

axes are tilted by 3◦ with respect to the direction pointing to the interaction point, both

in the η and ϕ. This is done to avoid the gaps between adjacent crystals to be aligned

with the direction pointing to the interaction point.

The ECAL endcap (EE) covers the region 1.479 < |η| < 3 and is formed by two

semicircular halves of aluminum called Dees. On each dee, a total of 3662 crystals with

trapezoidal shape with a length of 22 cm, frontal area equal to 28.6×28.6 mm2 and a rear

area equal to 30×30 mm2 are placed. EE crystals are arranged in 18 supercrystals with
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5×5 elementary unity. Unlike the EB crystals which are arranged in a η − ϕ symmetry,

the EE crystals are arranged according to a x − y geometry. To ensure good tightness,

there is an overlap of one half crystal between the barrel and the endcaps. Moreover,

in order to avoid the presence of gaps between crystals, their axes are pointing 130 cm

beyond the interaction point.

The ECAL endcap preshower (ES) is installed on the inner side of the endcaps in

order to separate the showers produced by a primary γ from those produced by forward

emitted π0. This detector, which covers the region 1.653 < |η| < 2.6, is a sampling

calorimeter consisting of two lead disks (2 X0 and 1 X0 thick respectively) that initiate

the electromagnetic shower from incoming photons or electrons, with silicon strip sensors

after each disk, which measure the deposited energy as well as the shower transverse pro-

file. The silicon detector is 320 µm thick, has area of 63 × 63 mm2 and it is divided into

32 strips with a 1.9 mm pitch. Schematic 2D representation of one quarter of the ECAL

is shown in Figure (4.8).

Figure 4.8: Geometric view of one quarter of the ECAL.

The energy resolution of ECAL for electrons in beam tests has been measured [89] and

can be expressed by the sum in quadrature of three terms

σE
E

=
2.8 %GeV1/2

√
E

⊕ 12 %GeV
E

⊕ 0.3% (4.1)

48



4.2. Detector design

where E is the energy measured in GeV. The first term dominates at low energies. It rep-

resents the statistical error coming from the stochastic nature of electromagnetic shower

evolution. The second term represents the error in the energy measurement coming from

electronic noise and a small contribution generated by energy depositions from additional

soft interactions. It varies with pseudorapidity. The last, constant, term dominates at

high energies. It takes into account detector non-uniformities and calibration uncertain-

ties, e.g. the stability of the operating conditions such as temperature and voltage, the

presence of dead material in front of crystals, the electromagnetic shower leakage into the

HCAL, the intercalibration errors and the radiation damage of the crystals. The radia-

tion damage manifests itself as a change in transparency. This is monitored and corrected

using a laser calibration system [83].

4.2.3 The Hadronic Calorimeter (HCAL)

The hadronic calorimeter (HCAL, Hadronic CALorimeter) measures strongly interacting

particles by forcing them to interact with a dense material interleaved or embedded with

a scintillator. Together with the ECAL, it makes a complete calorimetric system. Fur-

thermore, thanks to its tightness and coverage |η| < 5, it can provide a measurement of

the features of non-interacting particles, such as neutrinos, by measuring the missing en-

ergy in the transverse plan, Emiss
T . Additionally, the large angular coverage of the HCAL

allows for a complete description of pileup energy depositions. As shown in (4.9) [90],

the HCAL is divided into four subdetectors: Barrel Hadronic Calorimeter, located in the

barrel region inside the magnet; Endcap Hadronic Calorimeter, situated in the endcap

regions inside the magnet; Outer Hadronic Calorimeter, placed along the inner wall of the

magnetic field return yoke, just outside of the magnet; Forward Hadronic Calorimeter,

consisting of two units placed in the very forward region outside the magnetic coil. The

choice of the material is driven by two factors: in order to maximize particle containment

for a precise missing transverse energy measurement, the amount of absorber material in-

side the magnetic coil was maximized. Since HCAL is mostly placed inside the magnetic

coil, a non-magnetic material like brass was chosen.

The Barrel Hadronic Calorimeter (HB) is a sampling calorimeter consisting of alter-

nating plates of brass absorber and scintillator tiles embedded with wavelength shifting
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(WLS) fibers. The WLS fibers are spliced to clear fibers which direct the light to an

optical decoder unit. The optical decoder unit arranges the fibers into readout towers

and directs the light from each tower to separate channels of a hybrid photo diode. It

is 9 m long, extends into region 178 < r < 288 cm, and therefore covers |η| < 1.4. HB

consists of 36 azimuthal wedges assembled into two half-barrels. Each half-barrel is di-

vided along η into 16 sectors and the detector contains a total of 2304 calorimetric towers

with granularity of 0.087 × 0.087 in η − ϕ. Each tower consists of 15 brass layers, with

a thickness of 50 mm each, arranged in direction parallel to the beams. Interleaved with

the absorber layers, there are 17 layers of plastic scintillators with a thickness of 3.7 mm,

except for the innermost one that is 9 mm thick.

Figure 4.9: Geometric view of the CMS detector showing the HCAL subdetectors.

The Endcap Hadronic Calorimeter (HE) shares the same working principles and

almost the same design as the HB. It extends the pseudorapidity region to 1.3 < |η| < 3,

slightly overlapping with the barrel. The empty region between the two detectors is used

to pass cables and optical fibers and does not point toward the center of interaction in

order to preserve the calorimeter tightness.

The Outer Hadronic Calorimeter (HO) is located outside of the solenoid and acts as

“tail catcher” effectively increasing the thickness of the calorimeter in the central pseudo
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rapidity region. It consists of several layers of plastic scintillators, which increase the ef-

fective size of the calorimeter to more than 10 nuclear interaction length. The scintillators

have a thickness of 10 mm and they have the same HB granularity in order to have a 1-1

correspondence between HB calorimetric towers and HO segments.

The Forward Hadronic Calorimeter (HF) is a Cerenkov light detector made up of

quartz fibers embedded within a 1.65 m long steel absorber. It is placed in the very

forward region, |η| ∼ 5, at a distance of 11.2 m from the nominal point of collision of

beams. This detector is optimized for the identification of those processes which produce

very forward jets. The choice of these materials was due to the high radiation dose of

the forward region, which does not allow the use of plastic scintillators. Each unit is

composed of 18 sections, each covering an angle of 20◦ in ϕ and containing 24 calorimetric

towers with fibers 1.65 m long interleaved to fibers 1.43 m long. There are 13 towers in

η with segmentation variable from 0.1 to 0.3 depending on the distance from the beam

while the ϕ segmentation ranges between 10◦ and 20◦. Overall, the apparatus consists of

900 towers, sampled with 1800 readout channels.

The energy resolution in the different geometrical regions of HCAL as function of energy

is

HB, HE:
σE
E

=
90 %GeV1/2

√
E

⊕ 4.5% (4.2)

HF:
σE
E

=
172 %GeV1/2

√
E

⊕ 9% (4.3)

4.2.4 The Solenoid

The CMS magnet is the biggest superconducting solenoid ever built in the world. The

solenoid achieves a magnetic field of 3.8 T in a barrel of 6 m in diameter and 12.5 m

in length. The energy stored in the magnet is about 2.6 GJ at full current, 19 500 A.

The superconductor is made of four Niobium-Titanium layers, cooled to -268.5◦C. In case

of a quench, when the magnet loses its superconducting property, the energy is dumped

to resistors within 200 ms. The magnet return yoke of the barrel has 12-fold rotational

symmetry and is composed of three sections along the z-axis; each one is split into 4

layers. Most of the iron volume is saturated or nearly saturated, and the field in the yoke

is about half (1.8 T) of the field in the central volume. The magnet had to be built offsite
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and transported to CMS by road, which meant it physically could not be more than 7

metres in diameter, or else it would not fit through the streets on its way to Cessy.

4.2.5 The Muon System

The CMS Muon System is dedicated to accurately track muons, as minimum ionizing

particles that do not deposit much of their energy in the calorimeters. It is placed outside

the magnetic coil, and is embedded in the return yoke, to fully exploit the 1.8 T return

flux. In combination with tracker measurements, the muon system precisely traces a

muon’s path giving enhanced resolution, especially at large transverse momentum. As

shown in Figure (4.10) [91], the system consists of three independent subsystems: the

drift tubes, the resistive plate chambers and cathode strip chambers.

Figure 4.10: Geometric view of the CMS muon system, demonstrating the η barrel
(MB1–MB4, green), the four CSC stations in the endcap (ME1–ME4, blue), and the
RPC coverage and overlap of all constituent subsystems.

The Drift Tubes (DT) are placed in the barrel region with pseudorapidity coverage

|η| < 1.2, where the particle flux is low enough and the magnetic field is sufficiently weak

and homogeneous. The DT system layout follows the yoke segmentation and consists of

5 iron wheels composed of 12 azimuthal sectors, covering an angular region of approxima-
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tively 30◦ each. Each wheel contains four concentric rings of chambers, called stations.

Every station is formed by 12 DT chambers. The basic detector unit of the DT system

is a rectangular drift tube cell with a transverse size of 13 × 42 mm2 and whose length

varies from 2 to 4 m. As the particles traverse the drift tube, they ionize a gas mixture

of Ar (85%) and CO2 (15%). The ionized atoms are collected by the anode, creating a

detectable electronic pulse. Distance of the charged particle from the anode wire can be

deduced from the arrival time and shape of the electronic pulse using the value of the

electric field generated by the anode of the square drift tube in the return field, which

allows to determine the drift velocity of ionization electrons. To measure the charge par-

ticle’s track over the full chamber, there are multiple drift tubes measuring this distance

organized into two layers in the chamber. The spatial resolution of a DT chamber is 100

µm in the r−ϕ place, and 150 µm in the z direction, with a drift time of 386 ns and

timing resolution of 3.8 ns, using 3 consecutive staggered drift cells, as estimated using

test beam data. The high timing resolution is important for triggering and allows for

accurate assignment of identified muons to correct bunch crossings. A schematic layout

of a single DT chamber is shown in Figure (4.11) [92].

Figure 4.11: Sketch of a cell showing drift lines and isochrones. The plates at the top and
bottom of the cell are at ground potential.

The Resistive Plates Chambers (RPC) are fast gaseous detectors that consist of

two parallel plates, a positively-charged anode and a negatively-charged cathode, both

made of a very high resistivity plastic material and separated by a gas (mostly C2H2F4)

volume. When a muon passes through the chamber, electrons are knocked out of gas
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atoms. These electrons in turn hit other atoms causing an avalanche of electrons. The

electrodes are transparent to the signal (the electrons), which are instead picked up by

external aluminum strips after a small but precise time delay. The pattern of hit strips

gives a quick measure of the muon momentum, which is then used by the trigger to make

immediate decisions about whether the data are worth keeping. RPCs combine a good

spatial resolution with a time resolution of just one nanosecond [93].

The Cathode Strip Chambers (CSC) are located in the endcap disks, at 0.8 < |η| <
2.4. The huge particle flux at large η and high magnetic field in this region do not allow

usage of DT. Therefore, a solution based on CSC detectors has been adopted. CSCs

are multiwire proportional chambers filled with a gas mixture of Ar (40%), CO2 (50%),

and CF4 (10%) in which the cathode plane is clustered into strips oriented radially and

transversely with respect to the anode wires. This allows the simultaneous measurement

of two coordinates. These detectors can be placed in regions with higher flows of charged

particles and less homogeneous magnetic fields since the drift path of the charge carriers

is shorter in comparison to drift tubes. However, due to the spatial size of the strips, the

timing resolution from this measurement is very poor, greater than 25 ns, and cannot be

used for precision timing. To overcome this, the timing information from the anode wires

is used, yielding timing resolution of 15 ns for a single plane. The CSC is composed of

4 superimposed disks (called stations), mounted on the iron disks of the return yoke and

orthogonal to the direction of the beams. Each station is formed by two rings (three for

the innermost station), divided into 18 or 36 CSCs with trapezoidal shape. Each CSC

used in the system consists of six layers of sensitive wires. The strip spatial resolution is

about 80 − 85 µm while r can be determined with a precision of 0.5 cm.

4.3 The Trigger

The LHC produces events at a rate of 40 MHz at the interaction point in CMS. The

average size of an event at design luminosity, including all the detector information, is

roughly 1 MB. In order to save all the events, one would need to deal with 40 TB of

data per second which represents represent big challenge in terms of data storage and

financial cost. However, most of the events produced are not interesting from the physics

point of view, since they have low transverse momentum interactions. Therefore, a trigger
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system is required to select only interesting events, at the design rate of events around

500 Hz which also substantially reduces the amount of data stored. CMS decided to go

with a two-level trigger system, the Level-1 Trigger (L1) [94] and the High Level Trigger

(HLT) [95]. The L1 trigger needs to reduce the data flow from 40 MHz to 100 kHz. Based

on the coarse information from calorimetry and muon system, it has to decide whether

the event is interesting or not. The HLT is responsible to reduce the L1 rate down to

desired 500 Hz using information from all the subdetectors.

4.3.1 Level-1 Trigger

The L1 is composed of dedicated processors which are designed to perform online physics

calculations and reduce the data rate by two orders of magnitude. It relies only on the

information of the calorimeters and muon system identifying muons, electromagnetic ob-

jects, missing transverse energy and jets. Due to the high input data rate, the information

from the tracker is not used since it cannot be read out and processed fast enough. The

trigger achieves its goal by using embedded reconstruction and indentification algorithms

to loosely select events with possibly interesting physics. The time available to make a

decision is about 3 µs. It consists of tree main subsystems

• L1 Calorimeter Trigger

• L1 Muon Trigger

• L1 Global Trigger

The organization of CMS Level-1 Trigger is schematically illustrated in Figure (4.12) [96].

Calorimeter Trigger is relatively simple. The calorimeter information is first processed

by the regional calorimeter trigger, which looks for clusters of signals collected both from

ECAL and HCAL. It finds out electron/photon, τ and jet candidates along with their

transverse energy and sends this information to the Global Calorimeter Trigger. The

Global Calorimeter Trigger sorts the candidates according to their transverse energy and

sends the first four objects to the L1 Global Trigger.

The L1 Muon Trigger is a complex system: a pieces of information from RPC, CSC

and DT specific triggers are combined in the so called L1 Global Muon Trigger. The RPC
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trigger electronics builds Track Segments, gives an estimate of the pT and sends these seg-

ments to the Global Muon Trigger. It also provides the CSC logic unit with information

to solve hit position ambiguities in case two or more muon tracks cross the same CSC

chamber. The CSC trigger builds track segments made out of the cathode strips only,

where a pT value and a quality flag is assigned to each segment. The best three segments

in each sector of nine CSC chambers are passed to the CSC Track Finder, which uses

the full CSC information to build tracks, assigns them a pT and a quality flag, and sends

them to the Global Muon Trigger. DT are equipped with Track Identifier electronics,

which is able to find groups of aligned hits in the four chambers of a superlayer. Then the

DT Track Finder builds tracks and sends them to the Global Muon Trigger. The Global

Muon Trigger sorts the RPC, CSC and DT muon tracks and tries to combine them. The

final set of muons is sorted according to their quality and the best four tracks are passed

to the L1 Global Trigger.

Figure 4.12: Level-1 Trigger components

The L1 Global Trigger is on the top of the chain and is responsible for making a

decision whether to keep the event or not. If the event is accepted, the decision is sent

to the Timing Trigger and Control System, that commands the readout of the remaining
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subsystems. In order to make the decision, the L1 Global Trigger sorts the ranked objects

produced by calorimetry and muon system and checks if at least one of the criteria in the

Level-1 Trigger table is passed. L1 trigger table is composed of many different selection

criteria based on e.g. muon pT, number of muon candidates, amount of energy stored in

calorimeter, etc.

4.3.2 High level trigger (HLT)

The final level of event selection before writing to disk for offline analysis is the HLT.

Its code runs on a computing farm, where it performs event reconstruction using the

information from all subdetectors, including tracker which was not used at L1 trigger.

The time available to make a decision is about 300 ms. The reliability of HLT algorithms

is of capital importance, because events not selected by the HLT are lost. As in the case

of L1 trigger, HLT also has a set of different selection criteria (decision paths) of which

at least one needs to be satisfied. To reduce the overall CPU usage, the HLT retains a

pipelined structure and stops executing a decision path when a step in that path fails.

The L1 trigger completely determines which HLT decision paths will be run. If there

are only L1 muon candidates present in the event and no interesting L1 electromagnetic

candidates then only muon reconstruction algorithms will be run.
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Event simulation

The procedure for event simulation is described in this chapter.

5.1 Introduction

In order to describe interactions between elementary particles, the Standard Model is suf-

ficient. However, at the LHC, the high energy colored partons are produced which results

in considerably more complex final states and analytical description of those interactions

is impossible. Solution for this problem are numerical techniques. They are used for simu-

lating collision processes and also for implementation of many non-deterministic processes

in detector physics such as shower stochastics, energy loss, and detector noise. The most

widely used and flexible of these techniques are known as Monte Carlo (MC) algorithms,

due to their reliance on random numbers. In the high energy physics community they

are also known as event generators. Different event generators, such as Pythia8 [97],

powheg [98] and madgraph5 [99] implement computations at different levels of pre-

cision and with different techniques. Commonly, the highest precision calculations, that

take into account several orders in perturbation theory, are only available for a limited

number of processes, thus making it hard to derive predictions on inclusive quantities.

On the other hand these quantities can often be described with reasonable precision with

programs that implement lower order calculations. A schematic representation of the

different components (and calculation steps) that are implemented in event generators is
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shown in Figure (5.1), [100].

Figure 5.1: Illustration of the individual steps of the event simulation procedure.

The event simulation is the result of the following chain of calculations:

• Initial step is to compute the scattering matrix elements associated to the Feynman

diagrams for the process of interest considering the incoming partons, extracted

from the colliding hadrons as free particles.

• Hard scattering generation is actually the first step of event production in which two

colliding hadrons with momenta are given. One parton of each hadron is selected

to enter the scattering process. Using differential cross sections from the previous

step, final state partons and leptons are produced.

• Partons which are involved in the hard event may emit additional gluons or photons

due to their color and electric charge. If at the time of the hard scattering, parton in-

volved in interaction emits gluon or photon, total momentum of all particles coming

from this scattering will be different from zero because of momentum conservation.

This effect is known as Inital State Radiation (ISR). Also, the resulting particle can
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produce further radiation, Final State Radiation (FSR). They are simulated with

the Parton Shower (PS) algorithm.

• Apart from partons which are involved in the hard interaction, other parton pairs

could also interact during a hadron-hadron collision. These Multiple Parton Interac-

tions (MPI) contribute to the underlying structure of the event (underlying event).

Such interactions need to be simulated, in order to produce realistic events, and ISR

and FSR need to be simulated for these collisions as well.

• All the final states after hard scattering are not observed free but are subjected to

the hadronization process which is simulated with some empirical models resulting

in colorless hadrons.

• In the end, particles with very short lifetime such as τ and B-hadrons are allowed

to decay by the generator itself. If they live enough to reach the detector, they are

left undecayed.

5.2 Matrix element (ME)

Computation of the matrix elements translates to the order-by-order calculation of Feyn-

man diagrams in perturbative QCD. Leading order (LO) or tree-level matrix element

calculations still play an important role in the simulation of events produced at hadron

colliders. They can be performed up to several (on the order of eight) partons in the final

state. Next-to-leading order (NLO) is more precise with all the virtual loop corrections

included up to given order in coupling constant. However, loop calculations are complex

and they are available for a limited number of processes. The ME comes with few com-

plications. Process with a high number of partons with low transverse momentum makes

the calculation complicated due to soft divergences. Secondly, the method is not able to

describe situations in which the emitted parton is collinear with respect to the radiating

parton, which is known as collinear divergences. The loop corrections that should cancel

these divergences are omitted in finite order calculations. Thus, the phase-space should

be carefully chosen to avoid the problematic regions. In other words, the matrix element

cross section calculations are performed away from soft and collinear divergences. To pro-
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duce realistic events, phase-space regions omitted from the matrix element calculations

have to be recovered, with care to avoid divergences.

5.3 Parton shower (PS)

Parton Shower (PS) algorithms simulate the evolution of a final state of colored partons

into jets, together with the approximation of the effects of ISR and FSR of gluons, quark

pairs and photons. This process is done in few steps. First, the parton is taken from the

matrix element generator. The probability of the splitting processes q → qg, g → qq and

g → gg for some energy of the emitted parton are evaluated and stochastically applied.

Once the parton splitting has occurred in the simulation, the same algorithm is applied

recursively to all daughter partons until the energies of all partons are individually less

than ΛQCD. The introduction of a threshold value and the application of an angular sort-

ing procedure in the emission of partons allows to eliminate soft and collinear divergences

typical of the ME method. After parton cascade evolution, non perturbative effects take

place and the hadronization is applied.

5.4 Underlying Event

The remaining constituents of collided hadrons which were not involved in the hard inter-

action are taking part in soft interactions among each other. They are simulated based

on the multiple parton-parton interaction approach. Each interaction is represented by

an independent perturbative calculation with non-perturbative form factors. The total

number of interaction is extracted from a Poisson distribution based on the parton density

and the parton-parton cross section.

5.5 Merging Matrix Element and Parton Shower

Matrix Element and Parton Shower algorithm are fundamental building blocks for simu-

lation of collisions at LHC. As already mentioned, ME is exact to a given order in per-
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turbation theory. It describes well separated parton configurations but it cannot describe

the internal structure of a jet due to divergences in the soft and collinear regions. Since

hadrons are observed in the experiments, fragmentation models need to be applied to

partons. On the other side, PS is universal. Given the basic hard process, it will produce

realistic parton configurations. PS is derived in the collinear limit and handles divergences

by requiring conservation of total probability, which is particularly useful for describing

jet evolution. Additionally, it can be used to evolve partons down to a common scale

which removes the need of tuning fragmentation models at different scales. Since they are

derived in the collinear approximation, they may fail in efficiently filling the phase-space

for well separated parton configurations. The ME and PS are complementary procedures

and their combined application in the intermediate cases allows to exploit the characteris-

tics of the two algorithms in their respective limits of validity. Several prescriptions exist

to perform ME-PS matching avoiding double-counting or holes in the phase-space, such

as MLM [101] or CKKW [102].

5.6 Hadronization

Hadronization is the step in which PS partons are turned into hadrons. The process is

non-perturbative and it is described by several phenomenological models. One of them

is The Lund string model [103] and it is used by the PYTHIA generator. In a nutshell,

the model treats all but the highest-energy gluons as field lines, which are attracted

to each other due to the gluon self-interaction, and therefore form a narrow tube (or

string) of strong color field. In order to describe the energetic flow in a Lorentz-covariant

way, the string is considered massless. With increasing distance between quarks, their

potential energy is growing on the account of kinetic energy. In the situation where g →
qq splittings are not allowed, this process would continue until the endpoint quarks have

lost all their momentum and they would reverse direction due to acceleration by the now

shrinking string. However, in this model quark-antiquark fluctuations inside the string

field can make the transition to become real particles by absorbing energy from the string,

therefore screening the original endpoint charges from each other and breaking the string

into two separate color-singlet pieces.
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5.7 Pile-Up Interactions

Event simulation has to take into account not only proton-proton collision that caused the

hard process but also other proton-proton collisions occuring in the same or nearby bunch

crossing with small momentum transfer. These additional collisions are known as pile-up.

There are two different types of pile-up contributions: in-time pile-up and out-of-time pile-

up. The in-time pile-up is result of additional proton-proton collisions in the same bunch

crossing. Out-of-time pile-up, on the other side, is caused by proton-proton collision from

previous or following bunch crossings due to finite decay time of detector signals and the

fact that some detectors integrate over more than one bunch crossing. The out-of-time

pile-up is described by separately simulating minimum-bias collisions including all of the

steps described in the previous sections. For a proper description of out-of-time pile-up,

the pulse shapes of subdetectors are considered. For each event, a random instantaneous

luminosity is drawn from the luminosity profile. Together with the total inelastic proton-

proton cross section, an expected number of interactions for this luminosity is determined

while the number of interactions used for pile-up is chosen randomly from a Poisson

distribution with a mean value at the expected number of interactions.

5.8 Detector simulation

The simulation of detector response is the final step in event generation where simulated

particles are passed through a simulated version of the CMS detector. The entire detector

simulation is based on the software package GEANT4 [104] which has a variety of models

and parameterizations used to describe the interaction of particles with matter. It takes

into account the geometry of the detector, materials comprising sensitive detector ele-

ments, readout electronics together with electronic responses, uninstrumented structural

material and a detailed model of the magnetic field provided by the solenoid, which is

derived from measurements taken from the real detector, allowing for accurate simulation

of the trajectories of particles. GEANT can statistically model how different particles

interact, both electromagnetically and strongly, with the detector materials, predicting a

variety of distributions such as charge depositions in doped silicon and raw light yields in

scintillating material. After the raw information that various detectors collect has been
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generated, a detailed electronics simulation of every subdetector is applied. This allows

for a fine grained and tuneable estimation of additional detector effects, such as analog

noise, and yields a realistic respresentation of the detector output given the estimation

of the input from GEANT. The simulated detector response is stored in the same raw

data format as used by the CMS detector so that exactly the same reconstruction algo-

rithms are used in simulation as in real data. In addition to the detector response, the

simulation and generator information is saved and can be used to calculate measurement

extrapolations, efficiencies and calibrations.
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Event reconstruction

Object reconstruction and identification is based on standard algorithms which are de-

signed for all physics analyses in CMS. In this section, the techniques used for the recon-

struction and identification of the physics objects of interest are described.

6.1 The Particle Flow technique

The raw signals collected by the various subsystems are not suited for physics analysis. In

order to obtain meaningful objects, the Particle Flow (PF) event reconstruction technique

[105] is used. PF aims to reconstruct and identify observable particles, i.e. electrons,

muons, photons and hadrons by using information from all subdetectors. PF objects are

then used to build jets, measure missing transverse energy Emiss
T or to create other more

complex features, e.g. charge isolation, b-tag. The initial step of PF is the reconstruction

of the elementary objects, such as charged-particle tracks, muon tracks and calorimeter

clusters. The tracking system has a vital role in the PF and is achieved by means of

an iterative tracking strategy based on the Kalman Filter algorithm. The calorimeter

clustering algorithm is performed separately in each subdetector and is divided into three

steps. In the first step, cluster seeds are identified as local calorimeter cells with an energy

deposit above a given threshold. Next, topological clusters are grown from the seeds by

merging cells with at least one side in common with a cell already in the cluster and with

an energy above a given threshold. Since topological clusters usually give rise to as many
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PF clusters as there are seeds, the energy of each cell is shared among the particle flow

clusters according to the cell-cluster distance. All the elements from initial step of PF are

then combined based on topological compatibility using a link algorithm. For instance,

a calorimeter PF cluster is linked to a charged-particle track if the extrapolated position

from the track to the calorimeter is compatible with the cluster boundaries. In general,

PF candidates are identified in the following order:

• Muon: A global muon is declared as PF muon if its combined pT measurement is

compatible within 3 standard deviations with the one provided by the tracker alone.

• Electron: PF electron is identified as charged-particle track linked with one or

more ECAL clusters.

• Charged hadrons: The remaining tracks are identified as PF charged hadrons.

They can be linked to ECAL and HCAL clusters.

• Photons and neutral hadrons: clusters which are not linked with the tracks are

identified as PF photons (ECAL clusters) and PF neutral hadrons (HCAL clusters).

• Jets: After the identification of all PF candidates in the event, PF jets are clustered.

• Missing transverse momentum: The last step is the reconstruction of the miss-

ing transverse momentum.

After each PF candidate has been identified, corresponding elements used for particu-

lar reconstruction are removed from the list. The reconstruction of each PF object is

explained in more details in the following subsections.

6.2 Tracks and vertices reconstruction

Tracks in CMS are reconstructed through an iterative procedure based on the Kalman

filter. After each step, hits associated to reconstructed tracks are removed from the hit

collections which substantially reduces complexity and simplifies the following iterations.

The reasoning for iterative tracking is that initial iterations search for tracks that are

easiest to find (e.g. high pT) and the following ones are dedicated to find more complicated

68



6.2. Tracks and vertices reconstruction

tracks (e.g. low pT, displaced tracks). The first iteration, where the majority of tracks

are reconstructed, is designed to identify prompt tracks with pT > 0.8 GeV that have

three hits in the three layers of the pixel detector. A second iteration is used to recover

prompt tracks that have only two pixel hits. Further iterations aim at finding low-pT

prompt tracks and tracks that originate outside the collision point, i.e. tracks produced

by a secondary vertex. There are six iterations and the main differences between them

lies in the configuration of the seed generation and the final track selection. Starting from

the reconstructed hits, the track reconstruction is decomposed in four logical parts:

• seeding : Initial track candidates are obtained from any combination of two hits

from different pixel detector layers that are compatible with the beam spot. The

first estimate of the transverse momentum of the seed is required to be above a

certain threshold.

• pattern recognition : This step is based on a combinatorial Kalman filter method.

The filter proceeds iteratively from the seed layer, starting from a coarse estimate

of the track parameters provided by the seed, and including the information of the

successive detection layers one by one. In each layer, i.e. with every additional

measurement, the track parameters are known with better precision, up to the last

point, where they include the full tracker information.

• track fitting : In this step a fit of the trajectory is performed, using its associated

hits and providing an estimate of the track parameters (pT, η, ϕ, dxy, and dz.)

• selection : Tracks are eventually selected based on quality requirements.

More details on the CMS tracks reconstruction can be found in the corresponding publi-

cations [106,107]. Once when reconstruction of tracks is finished, the following step is to

determine location of vertices, i.e. points where tracks intersect [108, 109]. Vertices are

the origins of the observed particles and accordingly hint at the occurrence of a physics

interaction. There are three types of vertices: the primary-interaction vertex, additional

pile-up-interaction vertices, and secondary vertices. The primary-interaction vertex rep-

resents the proton-proton collision with the largest momentum transfer. This vertex is

assumed to include the most interesting hard process.
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Figure 6.1: Mean number of interactions per bunch crossing for the 2016 proton-proton
(pp) collisions at 13 TeV.

The pile-up vertices are caused by additional proton-proton collisions in the collision

event and introduce noise in the form of additional particles. The mean number of pile-

up vertices per bunch crossing for the 2016 proton-proton collisions is shown in Figure

(6.1), [82]. Secondary vertices originate from the delayed decays of hadrons. Therefore,

these vertices are displaced with respect to the primary-collision vertex. Appearance of

secondary vertices is an essential element in the identification of B-hadron decays, also

referred to as b-tagging, which is crucial for this analysis.

6.3 Electrons

The electron reconstruction is based on the information from tracking system and ECAL.

The process begins by measuring the energy deposits in ECAL, which form a supercluster

(SC). A SC is a collection of one or more ECAL clusters associated using an algorithm that
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takes into account the characteristic shape of the energy deposited by electrons emitting

bremsstrahlung radiation in the tracker material. Initial step in a reconstruction of SC is

the identification of the crystal with the highest energy deposit, which becomes the seed

for SC. Its shape is specified by a narrow width profile in the η coordinate spread over

the φ direction. Superclusters are matched to tracks reconstructed in the tracker with

the GSF algorithm [110] in order to obtain electron candidates. To identify electrons and

distinguish them from other particles, several variables are used:

• ∆ηtrk,SC and ∆φtrk,SC measure the spatial matching between the track and the

supercluster in the η and φ coordinates.

• σiη,iη quantifies calorimeter shower shape by measuring the width of the ECAL

supercluster along the η direction computed for all the crystals in the 5×5 block of

crystals centered on the supercluster seed which is the highest energy crystal of the

SC.

• H/E measures the ratio between the energy deposited in the HCAL tower behind

the SC seed and SC energy.

• IECalPF,SC and IHCalPF,SC are ECAL and HCAL PF Cluster Isolation variables,

which are explained in the following chapter.

• dR03TkSumPt represents the sum of tracks transverse momenta for all tracks

that are within dR < 0.3 of the electron candidate.

• dxy(PV) and dz(PV) are the transverse and longitudinal impact parameters with

respect to the primary vertex.

Electrons are first preselected by requiring pT > 7 GeV, |η| < 2.4, dxy < 0.05 cm, dz < 0.2

cm and a very loose relative isolation cut of 0.4. In order to reproduce the selection applied

by the most common electron triggers, additional requirements given in Table (6.1) are

used. In the end, a tighter identification is applied using a multivariate approach [111].
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Table 6.1: Preselection requirements used for electron identification.

Observable Selection

|ηSC | ≤ 1.4442 |ηSC | ≥ 1.5660

pT > 15 GeV > 15 GeV

σiη,iη < 0.012 < 0.033

H/E < 0.09 < 0.09

dR03TkSumPt/pT < 0.18 < 0.18

IECalPF,SC/pT < 0.4 < 0.45

IHCalPF,SC/pT < 0.25 < 0.28

∆ηtrk,SC < 0.0095 -

Multivariate ID discriminator is provided with two different working points based on the

expected selection efficiency. The working point with 80 % selection efficiency is used in

this analysis to suppress the fake background in that final state, with an additional pT

threshold of 30 GeV.

6.4 Muons

Muons which are detected in the CMS detector can have two different origins. They are

either coming from cosmic radiation, which penetrated through Earth’s surface, or they

are produced in collisions. Cosmic muons are useful for the calibrations of subdetectors,

e.g. for the tracker. For physics analysis, muons produced at the collision point are used.

They can go through the entire detector without significant energy loss. Muon tracks

are reconstructed by the tracker (tracker tracks) and independently by the muon system

(standalone muon tracks). Based on these objects, two reconstruction approaches can be

used: in the first method (outside-in), for each standalone muon track a tracker track is

searched for by extrapolating the two tracks onto a common surface. In the case of positive

match, they are merged to a global muon. The second approach (inside-out) consists in

considering all tracker tracks with pT > 0.5 GeV as potential muon candidates. They
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are extrapolated to the muon chamber system taking into account the magnetic field, the

expected energy losses, and the multiple scattering in the detector material. If at least

one muon segment matches the extrapolated tracks, the corresponding tracker track is

identified as a tracker muon.

Figure 6.2: Muon pT resolution as a function of the muon pT in the barrel (left) and in
the endcap (right) region.

Measuring tracks with two independent systems improves significantly the muon pT res-

olution, especially in the region with pT > 200 GeV, as shown in Figure (6.2) [92]. In

general, muon ID depends on the type of the physics analysis. Different muon defini-

tions can be made by changing requirement on muon observables. The most widely used

definition in physics analyses at CMS, which is the one used in this analysis, is the so-

called Tight muon selection. The requirements defining the Tight Muon identification are

summarized in Table (6.2).
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Table 6.2: Summary of the muon identification variables and the corresponding selection.

Observable Selection

Is Global muon True

Is PF muon True

Track layers with valid hits > 5

Number of hits in Global muon track fit > 0

Number of valid pixel hits > 0

Number of matched muon stations > 1

χ2/d.o.f. < 10

dxy(PV) < 0.2 cm

dz(PV) < 0.5 cm

pT > 25 GeV

IPF < 0.06

6.5 Lepton isolation

Lepton isolation is used for differentiating prompt muons and electrons produced in the

decay of massive particles such as Z or W bosons and the ones produced in jets through

the decay of hadrons. It is quantified by the total pT of the particles emitted around

the direction of the lepton. The particle-flow based isolation relative to the lepton pT is

defined as [88]

IPF ≡
1

p`T

(∑
pchargedT +max

[
0,
∑

pneutralT +
∑

pγT − pPUT (`)
])

(6.1)

There are three independent sum terms over: charged hadrons (pchargedT ), photons (pγT),

and neutral hadrons (pneutralT ). In all three sums only particles with distance ∆R to the

lepton smaller than 0.3 (0.4) are considered. The
∑
pchargedT is the scalar sum of the

transverse momenta of charged hadrons originating from the chosen primary vertex of the

event. The
∑
pneutralT and

∑
pγT are the scalar sums of the transverse momenta for neutral

hadrons and photons, respectively. Since the isolation variable is particularly sensitive to
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energy deposits from pileup interactions, a pPUT (`) contribution is subtracted, using two

different techniques. For muons, it is defined as pPUT (µ) ≡ 0.5 ×∑i p
PU,i
T , where i runs

over the momenta of the charged hadron PF candidates not originating from the primary

vertex, and the factor of 0.5 corrects for the fraction of charged and neutral particles

in the cone. For electrons, it is defined as pPUT (e) ≡ ρ × Aeff , where the effective area

Aeff is the geometric area of the isolation cone scaled by a factor that accounts for the

residual dependence of the average pileup deposition on the η of the electron, and ρ is

the median of the pT density distribution of neutral particles within the area of any jet

in the event. Both muon and electron candidates in this analysis are required to have a

relative isolation smaller than 0.06.

6.6 Jets

Jets, as the experimental signature of quarks and gluons produced in high energy pro-

cesses, are very important for the measurements presented in this thesis. They are used

for testing predictions of high-energy QCD processes, and also for identifying the hard

partonic structure of decays of massive particles. Jet algorithms cluster partons, or par-

ticles, or sets of reconstructed objects through sequential iterative clustering procedures

that use only the four-momenta of input objects. There are several different algorithms

available, characterized by different features. From a "theoretical standpoint", a good jet

clustering algorithm should contain following features [112]:

• Infrared safety - the solution of the algorithm should be insensitive to soft radia-

tion in the event.

• Collinear safety - collinear singularities should not exist in the perturbative cal-

culations and the algorithm should be insensitive to collinear radiation in the event.

• Invariance under boosts - there should be no dependence on boosts in the lon-

gitudinal direction, i.e. direction along the beam of colliding particles.

• Order independence - the algorithm should find the same jets at parton, particle

and detector level.
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Some experimental principles should be followed as well: its performance should be as

independent as possible of the detector, the algorithm should not amplify the inevitable

effects of resolution smearing, and should not be strongly affected by pile-up and high

beam luminosities. Additionally, the algorithm should be easy to implement, efficient in

jet identification and in the usage of computing resources. There are two main classes

of jet clustering algorithms. The first one consists in the recombination, where jets are

reconstructed associating together particles whose trajectories lie within a cone of radius

∆R in the η− φ plane. The second class of algorithms uses the sequential recombination

scheme, that iteratively recombine the closest pair of particles according to some distance

measure.

The kt and anti-kt Algorithms

The kt and anti-kt are IRC-safe sequential recombination scheme algorithms. For their

description, it is necessary to introduce two definitions of distances: dij, the distance

between two objects (e.g. particles) i and j, and diB, the distance between the object i

and the beam. They are defined as

dij = min(k2pti , k
2p
tj )

∆2
ij

R2

diB = k2pti

where ∆2
ij = (yi − yj)

2 + (φi − φj)
2 and kti, yi and φi are the transverse momentum,

rapidity and azimuth of particle i. In the two expressions, R is the distance parameter

and p is a parameter that sets the energy relative power versus the geometrical scale ∆ij.

The sequential clustering algorithms work by first finding the minimum of the entire set(
dij, diB

)
. If dij is the minimum then particles i and j are combined into one particle (ij)

using summation of four-vectors after which i and j are removed from the list of particles.

If diB is the minimum, i is labelled a final jet and removed from the list of particles. This

process is repeated until either all particles are part of a jet with the distance between the

jet axes ∆ij greater than R, which is inclusive clustering. Or until a desired amount of jets

have been found, this is exclusive clustering. By changing the value of the p parameter,

different jet clustering algorithms are obtained:
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• 1 for the kt algorithm

• -1 for the anti-kt algorithm [113]

• 0 for Cambridge/Aachen algorithm (CA) [114]

The difference between the three algorithms is the momentum weighting. For the kt

algorithm, the weighting proportional to k2t implies that jets are reconstructed starting

from particles with low transverse momenta. Additionally, this algorithm produces jets

with irregular border and therefore complicates the correction of effects like pile-up. In

the case of CA algorithm, particles are merged based on the distance ∆ij only. As with

kt, CA leads to jets with irregular borders.

Figure 6.3: Jets reconstructed with different algorithms starting from the same set of
simulated particles.

Finally, the anti-kt algorithm uses a weighting proportional to 1/k2t . In this case the

jets are created around particles with the highest transverse momenta and have a circular
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shape. Jets reconstructed with different algorithms starting from the same set of simulated

particles are shown in Figure 6.3 [115]. In the measurements presented in this thesis, the

anti-kt algorithm is used for two types of jets (R = 0.4 (AK04) and R = 0.8 (AK08))

and they are built using Particle Flow objects, as shown in Figure 6.4. Compared to

other jets, for instance jets built using calorimetric clusters, they have significantly better

momentum and spatial resolution mostly due to inclusion of tracker information.

Figure 6.4: The PF algorithm attempts to fully reconstruct jet by combining information
from all CMS subdetectors.

6.6.1 Jet energy corrections

Jet momentum is determined as the vectorial sum of all particle momenta in the jet,

and is found from simulation to be, on average, within 5 to 10% of the true momentum,

defined as the momentum of corresponding particle level jet, over the whole pT spectrum

and detector acceptance. Jet energy corrections are derived from simulation studies so

that the average measured response of jets becomes identical to that of particle level

jets. A mismatch is mainly caused by the nonuniform and nonlinear response of the

CMS calorimeters, electronics noise, and pile-up. For that purpose, CMS has developed a

procedure to calculate and apply the jet energy corrections (JEC) [116]. The corrections

are applied as a multiplicative factor C to each component of the raw jet four-momentum

pcorµ = C · prawµ
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where pcorµ is the corrected jet four-momentum. The correction factor is made of the

offset correction Coffset, the MC calibration factor CMC, and the residual calibrations Crel

and Cabs for the relative and absolute energy scales, respectively. The Coffset removes

the extra energy due to noise and pile-up, CMC removes the nonuniformity in η and the

nonlinearity in pT, and the residual corrections account for the small differences between

data and simulation. The various components are applied in exact sequence as described

by the equation below

C = Coffset(p
raw
T ) · CMC(pT,1, η) · Crel(η) · Cabs(pT,2)

where pT,1 is the jet momentum after applying the offset correction and pT,2 is the jet

momentum after applying all previous corrections. Coffset and calibration factors Crel and

Cabs are applied to both data and simulation while CMC is applied only to data.

6.6.2 Jet energy resolution

Studies have shown that the jet energy resolution (JER) in simulation is better than in

data. Therefore the simulated jets need to undergo a smearing procedure in order to have

a better agreement with the data. Reconstructed jets in simulated events are corrected

in a two step procedure. Firstly, the reconstructed jet pT is scaled for the observed pT

difference between reconstructed and particle level jets, also called generated jets. This

step works only for jets that are matched to generated (∆R and ∆pT) jets. In the second

step, a gaussian smearing of the pT distribution of the reconstructed jet is applied in order

to get the desired resolution. If matching requirement to generated jets failed, only the

second step to reconstructed jet is applied.

6.6.3 Jet identification

To avoid usage of fake jets that are originating from noisy calorimetric cells or electron-

ics noise, some basic quality criteria for jets are introduced. They are collectively called

jet identification (or Jet ID) and allow the rejection of badly reconstructed jets while

maintaining a high fraction (about 99%) of real jets. Criteria are based on the following
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variables: Jet pT, number of constituents, charged hadron fraction, neutral hadron frac-

tion, charged multiplicity, charged electromagnetic fraction, and neutral electromagnetic

fraction. Additionally, to reduce the incidence of jets originating from pile-up, a pile-up

jet identification algorithm is used. It makes use of both vertex information, exploiting

the charged component of the jet, and jet shape information to identify jets belonging to

pile-up.

6.6.4 Jet substructure

As a consequence of the high centre-of-mass energy of the LHC, particles can be produced

with a large Lorentz boost. If those particles are decaying to a pair of quarks or gluons,

the resulting jets are often overlapping. In order to capture all the decay products, the

jets have to be reconstructed with a larger distance parameter. In this analysis R = 0.8

(AK08) is used. Because of its size, AK08 jet is also known as "fat jet". Jet substructure

techniques can then be applied to resolve the subjets corresponding to the decay products

in the AK08 jet. The subjet axes are obtained by reclustering the jet constituents using

the kt algorithm and undoing the last step of the clustering procedure.

Subjetiness

A variable able to discriminate jet substructure is the N-subjettiness, τN [117], which is

a jet shape variable, computed under the assumption that the jet has N subjets, and it is

defined as the pT weighted distance between each jet constituent and its nearest subjet

axis (∆R):

τN =
1

d0

∑
k

pkT min(∆R1,k, ...,∆RN,k)

where k runs over all jet constituents. The normalization factor is d0 =
∑

k p
k
TR0 and

R0 is the original jet distance parameter, i.e. R0 = 0.8. The τN variable has a small

value if the jet is consistent with having N subjets. The subjet axes are determined by

the exclusive-kT clustering algorithm, forcing it to return exactly N jets [118, 119]. As

a result, the τN axes, also called τ axes, are obtained. These are then used to estimate
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the directions of the partons giving rise to the subjets, as schematically illustrated in

Figure 6.5.

Figure 6.5: Schematic representation of the AK08 jet with corresponding τ axes.

Pruned mass

Prunning [120] is a technique designed for removing soft and wide-angle radiation. It will

also remove the uncorrelated contributions from underlying event and pile-up that can

make significant contributions to the jet mass. Pruning is based on the re-clustering of the

fat-jet constituents. Instead of discarding soft subjets, pruning removes contamination

by vetoing soft and large-angle recombinations during reclustering. The requirements for

vetoing a recombination of two constituents j1 and j2 with pT,j1 > pT,j2 to a resulting jet

j are
pT,j2
pT,j

< zcut

∆Rj1,j2 > Dcut

where zcut represents a lower threshold for the transverse momentum of the softer con-

stituent with respect to the combined jet. The parameter Dcut determines the minimum

angular distance for a recombination to be pruned.
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6.6.5 Heavy flavour jet

Algorithms for heavy-flavour jet identification exploit the long lifetime of heavy-flavour

hadrons present in jets. The lifetime of hadrons containing b quarks is approximately 1.5

ps, while the lifetime of hadrons containing c quarks is less than 1 ps. As a consequence,

displaced tracks appear within a jet. Their typical displacement is of the order of few

millimeters for b hadron momentum of O(10 GeV). Using displaced tracks, a secondary

vertex (SV) can be reconstructed, as shown in Figure 6.6. The displacement of tracks

with respect to the primary vertex is characterized by the distance between the primary

vertex and the tracks at their point of closest approach, also known as impact parameter.

Compared to lighter quarks and massless gluons, b and c quark have harder fragmenta-

tion, which means that the decay products of the heavy-flavour hadron have, on average,

a larger pT relative to the jet axis than the other jet constituents. Additionally, in ap-

proximately 20% (10%) of the cases, a muon or electron is present in the decay of a heavy

b (c) hadron.

Figure 6.6: Illustration of a heavy-flavour jet with a secondary vertex (SV) from the
decay of a heavy-flavour hadron resulting in charged-particle tracks that are displaced
with respect to the primary interaction vertex (PV) and with a large impact parameter
(IP) value.
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Powerful heavy-flavour tagging algorithms can be built using a variety of observables

based on tracks, vertices and identified leptons. Several algorithms have been developed

by CMS [121], each one based on different input information. A common feature of all

the algorithms is that each one yields a single discriminator value for every jet, which

measures the likelihood that the jet has been produced by the hadronization of a heavy

quark.

b-tagging

For b-tagging (AK04 jets), in this analysis CSVv2 algorithm has been used, which is based

on the Combined secondary vertex (CSV) algorithm [122] and combines the information

of displaced tracks with the information on secondary vertices using a multivariate tech-

nique, i.e. neural network. Specifically a feed-forward multilayer perceptron with one

hidden layer is used. To reconstruct secondary vertices, inclusive vertex reconstruction

is exploited (IVR) [123] which makes use of all tracks in the event, with appropriate

selections. More details of the algorithm are given in [121].

Figure 6.7: Distribution of the CSVv2 discriminator values for jets of different flavours in
simulated tt events. The distributions are normalized to unit area.
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Figure 6.7 shows the distribution of the discriminator values for the various jet flavours in

simulated tt events. The tagging efficiency of the CSVv2 is determined using simulated

pp collision events. The efficiency (misidentification probability) to correctly (wrongly)

tag a jet with flavour f is defined as the number of jets of flavour f passing the tagging

requirement divided by the total number of jets of flavour f . Figure 6.8 shows the b jet

identification efficiency versus the misidentification probability for either c or light-flavour

jets in simulated tt̄ events requiring jets with pT > 20 GeV and |η| < 2.4. Three standard

working points are defined using jets with pT > 30 GeV in simulated multijet events with

80 < pT < 120 GeV. These working points, "loose" (L), "medium" (M), and "tight" (T),

correspond to thresholds on the discriminator after which the misidentification probabil-

ity is around 10%, 1%, and 0.1%, respectively, for light-flavour jets. The efficiency for

correctly identifying b jets in simulated tt̄ events for each of the three working points of

the various taggers is summarized in Table 6.3.

Figure 6.8: Misidentification probability for c and light-flavour jets versus b jet identi-
fication efficiency for CSVv2 and also other b tagging algorithms applied to jets in tt̄
events.
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Table 6.3: Working points and corresponding efficiency for b jets with pT > 20 GeV in
simulated tt̄ events. The numbers in this table are for illustrative purposes since the
efficiency is integrated over the pT and η distributions of jets.

Working point εb(%) εc(%) εudsg(%)

CSVv2 (L) 81 37 8.9

CSVv2 (M) 63 12 0.9

CSVv2 (T) 41 2.2 0.1

c-tagging

Since the lifetime of c hadrons is shorter than that of b hadrons, but long enough to result

in measureable displaced decay vertices, the distributions of the tagging variables for c

jets lie in between the distributions for b and light-flavour jets, as can be seen from Figure

6.7. The secondary vertex multiplicity is for instance, lower and the smaller c quark mass

results in a smaller track pT relative to the jet axis. Therefore, it is particularly challenging

to efficiently identify jets originating from c quarks. The c jet identification algorithm

uses properties and variables similar to the ones used in the CSVv2 algorithm: displaced

tracks, secondary vertices, and soft leptons inside the jets. Two algorithms were made

for c-tagging on AK04 jets: one for discriminating c jets from light-flavour jets (CvsL)

and another one for discriminating c jets from b jets (CvsB). The training of the two

discriminators was performed using a multivariate technique gradient boosting classifier as

implementation of the boosted decision trees. Figure 6.9 shows the output discriminator

distributions for CvsL and CvsB. The performance of the c tagger is evaluated using

jets with pT > 20 GeV and |η| < 2.4 in a sample of simulated tt̄ events. Figure 6.10

shows the correlation between the CvsL and CvsB discriminators for various jet flavours.

Discriminator values close to one for both discriminators correspond to signal-like c jets.

Therefore, the c jets populate the upper right corner of this figure, whereas b jets and

light-flavour jets populate the region near the bottom right and the upper left corners,

respectively. In the upper left corner there is a relatively large fraction of c jets because

of the similarity of c jets and light-flavour jets at CvsL discriminator values, as can be

seen in Figure 6.10. In order to discriminate c jets from other jet flavours and to evaluate

85



Chapter 6. Event reconstruction

the performance of the c tagger, thresholds are applied on both CvsL and CvsB to select

the upper right corner of this phase space. Three working points have been defined

corresponding to the efficiency for correctly identifying c jets. These are indicated by the

dashed lines. The loose working point has a high efficiency for c jets and rejects primarily

b jets, whereas the tight working point rejects primarily light-flavour jets. Table 6.4

summarizes the efficiencies for the three working points.

(a) CvsL

(b) CvsB

Figure 6.9: Distribution of the c-tagging discriminator values for jets of different flavours
in tt̄ events. The spikes originate from jets without a track passing the track selection
criteria.
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Figure 6.10: Correlation between CvsL and CvsB taggers for the various jet flavours. The
L, M, and T working points discussed in the text are indicated by the dashed lines.

Table 6.4: Working points and corresponding efficiency for c jets with pT > 20 GeV in
simulated tt̄ events. The numbers in this table are for illustrative purposes since the
efficiency is integrated over the pT and η distributions of jets.

Working point εc(%) εb(%) εudsg(%)

c tagger (L) 88 36 91

c tagger (M) 40 17 19

c tagger (T) 19 20 1.2
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bb-tagging

A double b-tagging algorithm was developed for tagging AK08 jets with two b hadrons. It

exploits not only the presence of two b hadrons inside the AK08 jet but also the correlation

between the directions of their momenta. Any dependence of the algorithm performance

on the mass or pT of the bb pair is avoided. This strategy allows the usage of the tagger in

physics analyses with a large range of jet pT. The dependence on the jet mass is avoided

as this variable is often used to define a signal region. In addition, this strategy also

permits the use of the double-b tagger for the identification of boosted Z → bb jets or

any other boosted bb resonance where the kinematics of the decay products are similar.

The algorithm is based on similar variables as CSVv2. It relies on reconstructed tracks

and secondary vertices obtained using the IVF algorithm. Tracks with pT > 1 GeV are

associated with jets in a cone of ∆R < 0.8 around the jet axis. Additionally, each track

is then associated with the closest τ axis, where the distance of a track to the τ axis is

defined as the distance at their point of closest approach.

Figure 6.11: Distribution of the double-b tagger discriminator for H → bb jets and for
jets in an inclusive multijet sample containing zero, one, or two b quarks.
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The same selection requirements applied to tracks as in the CSVv2 algorithm are also

applied here. The only difference is that instead of the jet axis, the τ axis is used. The

reconstructed secondary vertices are associated first with jets in a cone ∆R < 0.7 and

then to the closest τ axis within that jet. For each τ axis, the track four-momenta of

the constituent tracks from all the secondary vertices associated with a given τ axis are

added to compute the secondary vertex mass and pT for that τ axis.

(a) Tagging efficiency

(b) Tagging misidentification

Figure 6.12: Efficiency to correctly tag H → bb jets and misidentification probability
using jets in an inclusive multijet sample for four working points of the double-b tagger
as a function of the jet pT. The AK08 jets are selected with pT > 300 GeV and pruned
jet mass between 50 and 200 GeV.
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The most discriminating variables are the impact parameter significance for the most

displaced tracks, the 2D impact parameter significance for the first track above the (5.2

GeV) b-hadron mass threshold, and the secondary vertex energy ratio for the secondary

vertex with the smallest 3D flight distance uncertainty (SV0). The secondary vertex

energy ratio is defined as the total energy of all secondary vertices associated with a given

τ axis divided by the total energy of all the tracks associated with the AK08 jet that are

consistent with the primary vertex, for each of the two τ axes. The variables are combined

using a BDT multivariate technique. The distribution of the double-b discriminator values

is shown in Figure 6.11. Four working points are defined corresponding to about 75%, 65%,

45% and 25% efficiency for a jet pT of around 1 TeV. The efficiencies and misidentification

probabilities as functions of the jet pT for these four working points are shown in Figure

6.12. The decreasing efficiency at high jet pT is due to the stronger collimation of particles,

which results in a lower track reconstruction efficiency and therefore in a lower tagging

efficiency for high jet pT.

6.7 Missing transverse energy

Only weakly interacting neutral particles, e.g. neutrinos, do not interact with the detector

material and therefore leave no trace. The direction and the energy of these particles can

be measured only by an indirect approach. The incoming protons which participate in a

collision have only longitudinal component of momentum (along the beam axis). Due to

momentum conservation, the transverse components of all particles produced in a collision

should add up to zero. The missing transverse momentum is the momentum imbalance

in the transverse plane of all detected particles in the event defined as

~pmiss
T = −

∑
PF obj

~pPF obj
T (6.2)

where the sum extends over all PF objects. Its magnitude is the missing transverse energy

EmissT . A non vanishing value of missing energy is a potential signature of the presence of

particles in the event that have not interacted with the detector. However, it can be also

caused by detector inefficiencies or resolution.

The use of missing transverse energy is important for this analysis in the reconstruction
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of the W → lν decays. The estimation of the EmissT in simulated events is improved

by correcting it for the difference between raw (i.e. uncorrected) and calibrated jets,

including the scale and resolution corrections, with pT > 15 GeV, |η| < 4.7, and passing

a set of filters meant to remove electron and muon candidates. Events are rejected if they

fail to pass set of recommended filters designed to suppress events affected by know issues

such as instrumental noise.

6.8 Vector boson reconstruction

The reconstruction of W boson candidates begins with the identification and selection of

charged leptons and MET described in the previous sections. MET selection is implicitly

required in the pT(V) selection criteria. Given the unique signature of a boosted vector

boson recoiling from two jets, the dominant background is from real W decays. Therefore,

a minimal selection is sufficient to identify highly pure samples of W+jets events. Decays

W → lν are identified primarily by the topology of a single isolated lepton and additional

missing transverse energy. The transverse momentum pT of the W candidate is computed

as

pT(W ) =
√

(Emiss
T,x + pl,x)2 + (Emiss

T,y + pl,y)2

It is observed that in the boosted regime, where the QCD background is much reduced,

simply requiring pT(W) > 100 GeV is sufficient to select a relatively clean sample of real

W decays.

6.9 The Higgs boson reconstruction

The Higgs boson candidate (HC) definition was optimized studying simulated samples.

In each event, the AK08 jet with the highest bb-tag value (|η| < 2.0) is considered as

HC without any additional requirements. Distribution of HC bb-tag value is shown in

Figure 6.13 for the signal sample. For the purpose of evaluating the performance of the
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HC definition, HC is split into three categories based on the number of true b-hadrons

contained within jet: 0, 1, and 2. The tagger and therefore this HC definition, has

good performance in discriminating 2b and 0b case, while additional cuts are required for

differentiating 2b and 1b cases. They are discussed in the next chapter.

Figure 6.13: The Higgs boson candidate bb-tag value. Depending on the number of b
quarks within HC, three categories are defined: 0b (red), 1b (blue), and 2b (purple).

According to the BDRS paper [1, 2], the boosted HC should have pT > 200 GeV. In this

work the threshold for the HC pT is set to 250 GeV. This value is chosen to suppress cases

where the 2 b-hadrons are not contained in AK08 jet defined as HC, as can be seen in

Figure 6.14. After selection on pT, there is still a substantial fraction of HC candidates

which contain only one b-hadron. They are suppressed efficiently with requirements on

the value of the bb-tag and subjetiness. The Higgs boson candidate mass distribution is

given in Figure 6.15.
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Figure 6.14: The Higgs boson candidate pT distribution. Boosted topology starts at 250
GeV, when two b quarks are successfully caught within AK08 jet.

Figure 6.15: The Higgs boson candidate mass distribution.
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Chapter 7

Search for boosted W(lν)H(bb)

production

This analysis is focused on a search for pp → W(lν)H(bb) in boosted topology. At the

beginning of this chapter the simulated samples used for signal and background processes,

and the triggers used to collect the data are described. The extensive part of this chapter is

dedicated to the event selection, the estimation of the background, and related systematic

uncertainties. In the end, the fit procedure for the signal extraction is explained and the

results are given.

7.1 Data sets and triggers

This measurement is based on data taken by CMS experiment in proton proton collisions

at a center-of-mass energy
√
s = 13 TeV in 2016, corresponding to an integrated luminosity

L = 35.9 fb−1. This luminosity is smaller than the total delivered luminosity to CMS by

the LHC for two reasons. On one side, a small fraction of the delivered luminosity was

not recorded by CMS due to a small data taking inefficiency, as shown in Figure 7.1. On

the other side, due to various issues with the detector, some of the recorded data have

not passed some quality requirements which make them suitable for analysis. The overall

uncertainty on the integrated luminosity is estimated to be 2.5% [124].
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Figure 7.1: Cumulative measured luminosity versus day delivered for the 2016 proton-
proton (pp) collisions at 13 TeV.

Events used in this measurement are required to pass single-electron or single-muon trig-

ger. A brief overview of the HLT pT criteria on the leptons is given in Table 7.1.

Table 7.1: Transverse momentum thresholds applied in the lepton triggers at the HLT
level.

Trigger path Threshold

Single Electron pT > 27 GeV

Single Muon pT > 24 GeV

7.2 Monte Carlo samples

Samples of simulated signal and background events are produced using the Monte Carlo

(MC) event generators listed in Table 7.2. The CMS detector response is modeled with
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Geant4 [104]. The signal samples have Higgs bosons with mH = 125 GeV produced in

association with a W boson. The WH processes are generated at next-to-leading order

(NLO) using the POWHEGv2 event generator [125,126]. The MadGraph5_amc@nlo

[127] generator is used at NLO with the FxFx merging scheme [128] for the W+jets

background samples. The tt production process as well as the single top quark sample

for the tW are produced with POWHEG v2. The single top quark samples for the t-

channel are instead produced with POWHEG v1. For parton showering and hadronization

the POWHEG and MadGraph5_amc@nlo samples are interfaced with PYTHIA 8.212

[97]. The PYTHIA8 parameters for the underlying event description correspond to the

CUETP8M1 tune derived in [129].

Table 7.2: Summary of the samples of simulated processes.

Process Event generator configuration XS × BR[pb]

W(l+ν)H(bb) POWHEG+PYTHIA8 2.52 * 0.108 × 0.5824

W(l−ν)H(bb) POWHEG+PYTHIA8 1.659 * 0.108 × 0.5824

tt POWHEG+PYTHIA8 831.76

Single top tW (t) POWHEG+PYTHIA8 35.6

Single top tW (t) POWHEG+PYTHIA8 35.6

Single top t-channel (t) POWHEG+PYTHIA8 136.02*0.325

Single top t-channel (t) POWHEG+PYTHIA8 80.95*0.325

Wjets ( 100 < WpT < 250) MadGraph5_amc@nlo+PYTHIA8 628.3

Wjets ( 250 < WpT < 400) MadGraph5_amc@nlo+PYTHIA8 22.37

Wjets ( 400 < WpT < 600) MadGraph5_amc@nlo+PYTHIA8 2.67

Wjets ( 600 < WpT ) MadGraph5_amc@nlo+PYTHIA8 0.408

WZ PYTHIA8 47.13

WW PYTHIA8 118.7

ZZ PYTHIA8 16.523
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EWK signal WH corrections

The production cross sections for the signal samples are rescaled to next-to-next-to-leading

order (NNLO) and they are applied as a function of the vector boson transverse momen-

tum. Figure 7.2 shows the shape of these corrections. The total cross section σWH is

given by [130].

σWH = σWH,DY
NNLOQCD(1 + δEW ) + σt−loop + σγ (7.1)

Figure 7.2: Multiplicative weights to apply the differential NLO electroweak signal cor-
rection.

7.3 Analysis Strategy

Simulated samples of signal and background events are used to optimize the search. The

first step in the analysis is to select a signal region enriched in WH events. The next step

is to define several control regions, each enriched in events from individual background

processes. The purpose of control regions is to test the accuracy of the simulated samples

and to extract the normalization of backgrounds. Finally, simultaneous likelihood fit to
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the shape and normalization of specific distributions for the signal and control regions is

used to extract the strength of a possible Higgs boson signal. In the signal region, the

HC mass distribution is fitted, while the HC transverse momentum distribution is used

in the control region.

7.3.1 Event reconstruction and selection

Signal events feature presence of a vector boson recoiling from the HC with an expected

invariant mass in the range 90 < MH < 150 GeV and pT > 250 GeV. HC should contain

both b quarks coming from the Higgs decay. Therefore, no additional b jet activity outside

the HC should be present. Isolated leptons other than those arising from the decay of a W

boson are not expected and additional jet activity is reduced. The measurement is limited

to the phase space in which both the W and Higgs bosons are central. In the absence

of significant additional (ISR or FSR) jet activity, the W and Higgs bosons are expected

to be back to back in the transverse plane. The dominant backgrounds arise from three

general sources. It is important, to mention that QCD background is not among them

because its contribution is negligible in this part of phase space.

• W + jets - production of W boson in association with one or more jets. This

background looks very much like signal topologically, as shown in Figure 7.3, but

has a generally softer pT spectrum, a sharply falling HC mass distribution. The con-

tributions from light jets should be much reduced after the application of selection

on HC related variables. Contribution of W + bb nearly degenerate with signal.

• Top quarks - production of pair of top quarks, as well as single top quarks represent

a particularly challenging background. These backgrounds include one or two real

W decays, at least two b jets (for tt production). The main way of reducing the

tt background relies on topological differences: the jet multiplicity extends well

beyond two (typically from the hadronic decay of the second W), the azimuthal

opening angle between the vector boson and HC is more broadly distributed than

in signal events. Single top events are more difficult to reject relative to signal,

but the cross section is such that it typically represents only 10-20% of the total

background in WH. Diagram of tt̄ process is illustrated in Figure 7.3.
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(a) W + jets (b) tt

(c) Single top

Figure 7.3: Feynman diagrams showing dominant background processes.

• Dibosons (WW,WZ,ZZ) - production of vector-boson pairs is another important

background. The dominant contribution arises when one boson decays leptonically

and the second boson decays to jets. The WZ can lead directly to a V + bb

combination with two real b jets coming from the hadronic Z → bb decay. This

background is almost irreducible with respect to signal events. The peak position

of the HC mass is shifted towards the Z boson mass. Good mass resolution is the

key handle to separate the signal from this background.

Each background process has its own unique footprint which can be exploited while cre-
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ating dedicated variables for differentiating signal and background events. The full list

of variables used for selection is described below. For the evaluation of each variable, so-

called "N-1 plots" have been used. In such a plot when showing one of the used variables,

all selection requirements are applied but the one on the shown variable.

• bb-tag - The presence of two b quarks within the HC is the most important signal

characteristic and can be enhanced by a tight selection on the bb-tag value, which

is required to be > 0.8. This requirement mostly suppresses contributions from W

+ light jets and tt.

10

20

30

40

50

60

70

80

90
tt

W + udscg
W + b

bW + b
Single top
VV
WH
WHx10

CMS, Preliminary 2016
-1 = 13 TeV, L = 35.9 fbs

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
Higgs candidate bb-tag

1−
0.8−
0.6−
0.4−
0.2−

0

0.2

0.4

0.6

0.8

1

(D
at

a 
- 

M
C

) 
/ M

C

(a) Weν

20

40

60

80

100 tt
W + udscg
W + b

bW + b
Single top
VV
WH
WHx10

CMS, Preliminary 2016
-1 = 13 TeV, L = 35.9 fbs

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
Higgs candidate bb-tag

1−
0.8−
0.6−
0.4−
0.2−

0

0.2

0.4

0.6

0.8

1

(D
at

a 
- 

M
C

) 
/ M

C

(b) Wµν

Figure 7.4: N-1 plot of HC double b-tag distribution. All samples are normalized to an
integrated luminosity of 35.9 fb−1. The signal is also shown alone with a yield 10 times
as large as its SM prediction.

• τ2/τ1 - b quarks inside of HC should on average have equal momentum, resulting

in two symmetric subjets for which it is easier to identify two distinct τ axes. This

doesn’t hold for the background. For instance, there is no physical reason why two

b quarks coming from tt decay should carry the same momentum. Lower values of

τ2/τ1 are more likely for HC with two real subjets. In order to pass the selection,

HC τ2/τ1 must be lower than 0.45.
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Figure 7.5: N-1 plot of HC τ2/τ1 distribution. All samples are normalized to an integrated
luminosity of 35.9 fb−1. The signal is also shown alone with a yield 10 times as large as
its SM prediction.

• V pT / HC pT - In the case of signal, the W boson and HC are expected to be

balanced in the transverse plane. Therefore, the ratio of their momenta is required

to be in the range, 0.8 < V pT / HC pT < 1.2, as can be seen in Figure 7.6.
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Figure 7.6: N-1 plot of V pT / HC pT distribution. All samples are normalized to an
integrated luminosity of 35.9 fb−1. The signal is also shown alone with a yield 10 times
as large as its SM prediction.
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• The number of additional jets - Additional jet multiplicity is characteristic for

tt background. Events are rejected if they contain more than one additional jet.

Only AK04 jets fulfilling the requirements listed in Table 7.3 are considered.

Table 7.3: The number of additional jets definition.

Observable Selection

∆R(jet, HC) > 0.8

Jet pT > 20 GeV

Jet η < 2.4

Jet ID True
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Figure 7.7: N-1 plot of number of additional jets distribution. All samples are normalized
to an integrated luminosity of 35.9 fb−1. The signal is also shown alone with a yield 10
times as large as its SM prediction.

• b-tag veto - No additional b-jet activity outside of the HC is expected for the

signal, while this is not the case for background and in particular for tt. Events are

rejected if there is any AK04 jet passing the selection given in Table 7.4.
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Chapter 7. Search for boosted W(lν)H(bb) production

Table 7.4: b-tag veto definition.

Observable Selection

∆R(jet, HC) > 0.8

Jet pT > 20 GeV

Jet η < 2.4

Jet b-tag > 0.5426

Jet ID True

b-tag veto provides a significant reduction of top background with almost no reduc-

tion of signal, as can be seen in Figure 7.8. In left(right) bin are the events that

fail(pass) the b-tag veto.
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Figure 7.8: N-1 plot of b-tag veto distribution. All samples are normalized to an integrated
luminosity of 35.9 fb−1. The signal is also shown alone with a yield 10 times as large as
its SM prediction.

• c-tag veto - The idea of the c-tag veto is to suppress events with c-jet activity

inside of HC. Event is rejected if there is any AK04 jet in the HC passing selection

listed in Table 7.5.
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Table 7.5: c-tag veto definition. Events with at least one AK04 jet fulfilling these require-
ments are rejected.

Observable Selection

∆R(jet, HC) < 0.8

Jet pT > 20 GeV

Jet η < 2.4

Jet c-tagVsB > -0.17

Jet c-tagVsL > -0.48

Jet ID True

c-tag veto reduces background dramatically but this comes with a cost of reducing

signal by 50%. Figure 7.9 shows c-tag veto distribution. Left(right) bin are the

events that fail(pass) the c-tag veto. This particular combination of c-tagger cut

values is chosen because they are officially validated by CMS and are at the same

time very efficient in background reduction, as seen in Figure 7.10.
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Figure 7.9: N-1 plot of c-tag veto distribution. All samples are normalized to an integrated
luminosity of 35.9 fb−1. The signal is also shown alone with a yield 10 times as large as
its SM prediction.
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Figure 7.10: Correlation between CvsL and CvsB taggers for the various jet flavours.
Combination of L and T working point has been used in this analysis.

The final selection which defines the signal region is given in Table 7.6.

Table 7.6: Selection criteria that define the signal region.

Observable Selection

HC pT >250

HC mass ∈[50 - 190]

HC bb tag > 0.8

V pT / HC pT ∈[0.8 - 1.2]

HC τ2/τ1 < 0.45

N add. jets < 2

b tag veto True

c tag veto True
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The expected number of events in signal region after applying each requirement is given

in Table 7.7.

Table 7.7: The expected number of events in signal region after applying each requirement
(cut-flow). All samples are normalized to an integrated luminosity of 35.9 fb−1.

Observable Signal tt W + udscg W + b W + bb Single top VV

HC bb tag 16.53 39133.18 1662.41 881.39 817.91 2837.75 406.17

V pT / HC pT 13.05 26610.61 736.71 273.38 383.40 1778.04 243.17

HC τ2/τ1 9.60 4453.49 320.00 105.35 128.58 539.60 123.00

N add. jets 7.81 1193.36 224.69 68.58 73.61 252.66 101.76

b tag veto 7.39 717.91 203.81 57.82 67.73 201.60 89.64

c tag veto 3.71 101.25 14.13 14.20 30.61 32.22 26.88

7.4 Background and scale factor estimation

For the purpose of determining the normalization of the main background processes, and

to validate how well the simulated samples model the distributions of variables most

relevant to the analysis, several control regions are carefully chosen in data. They are

supposed to be as close as possible to the signal region phase space while at the same

time being completely orthogonal. Table 7.8 list the selection criteria used to define

them. Separate control regions are specified for tt, for the production of W boson in

association with mainly heavy-flavor (HF) or light-flavor (LF) jets. While the tt control

region is pure in its targeted background process, other control regions contain slightly

larger contribution of other processes. As a result, distinct HC pT distributions are used

to extract the normalization scale factors of the various simulated background samples

when fit to data in combination with the HC mass distributions in the signal region to

search for a possible WH signal. In this signal-extraction fit, the shape and normalization

of these distributions are allowed to vary, for each background component, within the

systematic and statistical uncertainties described in Section 7.6.
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Table 7.8: Definition of signal and control regions. Flipped cuts are highlighted in red.

Observable Signal tt W + LF W + HF

HC pT >250 >250 >250 >250

HC mass ∈[50 - 190] ∈[50 - 190] ∈[50 - 190] ∈[50 - 190]

HC bb tag > 0.8 > 0.8 < 0.8 > 0.8

V pT / HC pT ∈[0.8 - 1.2] ∈[0.8 - 1.2] ∈[0.8 - 1.2] ∈[0.8 - 1.2]

HC τ2/τ1 < 0.45 < 0.45 > 0.45 > 0.45

N add. jets < 2 > 1 < 2 < 2

b tag veto True True True True

c tag veto True True True True

Pre-fit HC pT distributions for all control regions are shown in Figures 7.11, 7.12, and

7.13.
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Figure 7.11: Pre-fit HC pT distribution in tt control region. All samples are normalized
to an integrated luminosity of 35.9 fb−1. The signal is also shown alone with a yield 10
times as large as its SM prediction.
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Figure 7.12: Pre-fit HC pT distribution in light flavor (LH) control region. All samples
are normalized to an integrated luminosity of 35.9 fb−1. The signal is also shown alone
with a yield 10 times as large as its SM prediction.
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Figure 7.13: Pre-fit HC pT distribution in heavy flavor (HF) control region. All samples
are normalized to an integrated luminosity of 35.9 fb−1. The signal is also shown alone
with a yield 10 times as large as its SM prediction.
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7.5 Signal extraction and limit setting

The procedure for deriving exclusion limits is based on the CLS prescription [131], which

is used with the profile likelihood test statistic

qµ = −2 ln
L(data|µ, θ̂µ)

L(data| µ̂, θ̂)
(7.2)

The parameter µ = σ/σSM is the signal strength modifier, while θ in general represents

the full set of nuisance parameters. The maximum likelihood estimates (best-fit-values)

of µ and θ are denoted by µ̂ and θ̂ respectively. θ̂µ is the conditional maximum likelihood

estimate of all nuisance parameters with µ fixed. In this analysis the range of µ is restricted

to the physically meaninful regime, i.e. 0 ≤ µ̂ ≤ µ. The likelihood L is given by the

product of the individual bin likelihoods

L(data|µ, θ) =
∏
i

Poisson
(
Ni|µ · si(θ) + bi(θ)

)
· p(θ̃| θ) (7.3)

where Poisson
(
Ni|µ·si(θ)+bi(θ)

)
stands for the Poisson probabilities to observe Ni events

in the i-th bin given the expected event rate µ · si(θ) + bi(θ):

Poisson
(
Ni|µ · si(θ) + bi(θ)

)
=

(µsi + bi)
Ni

Ni!
e−(µsi+bi) (7.4)

Information on the systematic uncertainties is contained in the probability density func-

tions p(θ̃| θ)) and treated in two different ways. If the systematic uncertainty does not

change the shape of the fitted distribution, a log-normal probability density function is

used:

ρ(θ) =
1√

2π ln(κ)
exp

(
ln(θ/θ̃)2

2(ln(κ))2

)
1

θ
(7.5)

where the parameter κ defines the width of the log-normal distribution and θ̃ is the de-

fault value of the nuisance parameter. If the systematic uncertainty changes the shape of

the fitted distribution, different procedure is followed. Two additional distributions with

different shapes for each process affected by some uncertainty are produced, by shifting

that parameter up and down by one standard deviation. In other words, this uncertainty

defines the variations of the nominal shape as a function of the value of the nuisance
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parameter.

Using the frequentist approach, Monte-Carlo pseudo-experiments are generated to con-

struct the corresponding pdfs. The CLS value is calculated as the ratio of two probabilities

CLS(µ) =
P
(
q̃µ ≥ q̃ obsµ |µ, θ̂ obsµ

)
P
(
q̃µ ≥ q̃ obsµ | 0, θ̂ obs0

) (7.6)

If for µ = 1, CLS = 0.05, the SM Higgs boson with a nominal production rate is said to

be excluded at 95% Confidence Level (C.L.). In this analysis, the result is expressed as

95% C.L. upper limits on µ. To quote the 95% Confidence Level upper limit on µ, to be

further denoted as µ95%CL, we adjust µ until we reach CLS = 0.05.

To express the sensitivity of an experiment to exclude certain hypothesis, expected limits

are determined using the following procedure [132]. The expected limit is expressed as

median limit and as ±1σ and ±2σ bands for the background-only hypothesis. These are

obtained by generating a large set of background-only pseudo-data and calculate CLS

and µ95%CL for each of them, as if they were real data. Then, one builds a cumulative

probability distribution of results by starting integration from the side corresponding to

low event yields. The point at which the cumulative distribution crosses the quantile of

50% is the median expected value. The ±1σ (68%) band is defined by the crossing of

the 16% and 84% quantiles, while the crossings at 2.5% and 97.5% define the ±2σ (95%)

band.

7.6 Systematic uncertainties

The primary physics result in this thesis is the upper limit on µ for WH production,

assuming a Higgs boson mass of 125 GeV. It is affected by systematic uncertainties on

the expected signal and background yields and their shapes. The following experimental

systematic sources have been taken into account.

• Luminosity - The uncertainty in the integrated luminosity collected during the

2016 data taking period is found to be 2.5%. No shape uncertainties are considered.

• Lepton efficiency - Lepton trigger, reconstruction, and identification efficiencies

are evaluted from data using the standard tag-and-probe technique with Z bosons.
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The systematic uncertainty is computed from the statistical uncertainties in the

bin-by-bin efficiencies. The total uncertainty is a constant 3% per charged lepton.

No shape uncertainties are considered.

• Pile-up multiplicity - The uncertainty on the average number of pile-up interac-

tions measured in data is used to produce modified signal and background shapes,

which are used in the final fit.

• Monte Carlo statistics - The finite size of the signal and background MC samples

is included in the normalization uncertainties. The shapes are allowed to vary within

the bin-by-bin statistical uncertainties from the MC samples.

• Jet energy scale - The jet energy scale uncertainty is estimated separately for

each jet energy correction and added in quadrature to get the final uncertainty. It is

varied within one standard deviation based on pT and η. Systematic uncertainties

are estimated by producing new shapes for all signal and background processes by

varying the jet energy scale within these uncertainties.

• Jet energy resolution - The jet energy resolution in data is worse than in the

simulation. In order to take into account the differences between data and MC,

MC jet energies are smeared. The uncertainty on the smearing factors is used to

produce modified signal and background shapes. These modified shapes are then

used in the final fit both for AK04 and AK08 jets.

• b-tagging - Jet (AK04) b-tagging efficiencies are determined from control samples

in data and MC in order to account for the difference in efficiencies between data and

MC. Simulated events with selected jets are reweighted by the data/MC efficiency

ratios, referred to as scale factors. These scale factors depend on pT, η, and flavour

of the selected jets [121]. To estimate the effect of the uncertainties on the efficiency

determination, each scale factor is shifted up and down by the corresponding un-

certainty, and event weights are recalculated. The procedure is done separately for

b and c jet efficiencies and for light flavour mistag rate.

• c-tagging - Jet (AK04) c-tagging efficiencies and corresponding systematic uncer-

tainties have been computed following a similar procedure as in the case of b-tagging.

Data/MC efficiency ratios are applied as weight factors for each event. To estimate
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the effect of the uncertainties, each scale factor is shifted up and down and event

weights are recalculated.

• bb-tagging - The bb-tag scale factors are determined for the selected AK08 jets

and applied as weight factors with pT dependence for each event. For estimation of

the uncertainties, each event weight is shifted up and down following the procedure

provided by CMS.

• τ2/τ1 - The systematic uncertainty on τ2/τ1 takes into account uncertainties on the

τ2/τ1 selection efficiency and extrapolation uncertainties on the τ2/τ1 selection due

to propagation to higher momenta. The effects of the corresponding uncertainties

are assessed by varying the corresponding event weights by one standard deviation

and producing the modified signal and background shapes.

Theoretical uncertainties generally arise from missing higher-order QCD corrections and

PDF uncertainties.

• QCD scale uncertainties - The uncertainties from normalization (µR) and factor-

ization (µF) scales are estimated by varying both scales independently in the range

(0.5µ0, 2µ0) around their nominal values µ0 for all processes and taking them as

uncorrelated sources of shape uncertainties.

• PDF uncertainties - The imperfect knowledge of the proton quark content is

encoded in a set of NNPDF parton distribution functions [133]. The utilization of

different PDF sets can affect the shape of the signal and background contributions.

The PDF uncertainty effect on the distribution shapes is evaluated by using the

PDF replicas associated to the NNPDF set. The effect on the signal strength is

found to be at most 1%.

• Theoretical pT spectrum - potential differences in the pT spectrum of W and the

Higgs boson between data and Monte Carlo generators could introduce systematic

effects in the signal acceptance and efficiency estimates. Electroweak corrections

have been applied to the signal MC samples. The estimated uncertainty from higher

order EWK corrections is 2% for WH [134,135].
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7.7 Results

Expected and observed 95% C.L. upper limits on µ (in the absence of signal) are calculated

for 35.9 fb−1 of 13 TeV (2016) data and are shown in Figure 7.18. For the 1σ and 2σ bands,

the CLS frequentist calculation currently recommended by the LHC Higgs Combination

Group (summarized in section 7.5) is employed. The post-fit distributions of control and

signal regions are shown in Figures 7.14, 7.15, 7.16, 7.17. They consider the adjustments of

all nuisance parameters in the final maximum likelihood fit to extract the signal strength.

Yields before and after the fit are shown in Table 7.9.

Table 7.9: The total number of events in signal region for the expected prefit/postfit
backgrounds (B), WH signal (S), and for data. Also shown is the signal-to-background
ratio (S/B).

Process Number of events

Pre-fit Post-fit

W + bb 30.61 4.69

W + b 14.20 3.81

W + udscg 14.13 45.83

tt 101.25 75.23

Single-top-quark 32.22 22.63

VV 26.88 22.18

Total backgrounds 219.29 174.37

WH 3.71 0.0

Data 170

S/B 0.016 0.0
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Figure 7.14: Post-fit HC pT distribution in tt control region. All samples are normalized
to an integrated luminosity of 35.9 fb−1. The expected pre-fit signal is also shown alone
with a yield 10 times as large as its SM prediction.
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Figure 7.15: Post-fit HC pT distribution in light flavor (LH) control region. All samples
are normalized to an integrated luminosity of 35.9 fb−1. The expected pre-fit signal is
also shown alone with a yield 10 times as large as its SM prediction.

115



Chapter 7. Search for boosted W(lν)H(bb) production

5

10

15

20

25

30

35

40

Data
tt

W + udscg
W + b

bW + b
Single top
VV
WH
WHx10 SM expected

CMS, Preliminary 2016
-1 = 13 TeV, L = 35.9 fbs

300 400 500 600 700 800 900
Higgs candidate pt [GeV]

2−

1.5−

1−

0.5−

0

0.5

1

1.5

2

(D
at

a 
- 

M
C

) 
/ M

C

(a) Weν

10

20

30

40

50

60

Data
tt

W + udscg
W + b

bW + b
Single top
VV
WH
WHx10 SM expected

CMS, Preliminary 2016
-1 = 13 TeV, L = 35.9 fbs

300 400 500 600 700 800 900
Higgs candidate pt [GeV]

2−

1.5−

1−

0.5−

0

0.5

1

1.5

2

(D
at

a 
- 

M
C

) 
/ M

C
(b) Wµν

Figure 7.16: Post-fit HC pT distribution in heavy flavor (HF) control region. All samples
are normalized to an integrated luminosity of 35.9 fb−1. The expected pre-fit signal is
also shown alone with a yield 10 times as large as its SM prediction.
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Figure 7.17: Post-fit HC mass distribution in signal region. All samples are normalized
to an integrated luminosity of 35.9 fb−1. The expected pre-fit signal is also shown alone
with a yield 10 times as large as its SM prediction.
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Figure 7.18: Expected and observed 95% C.L. upper limits (in the absence of signal) on
the ratio σ/σSM of WHbb production for 13 TeV, 2016 data. The median expected limit,
observed limit and the 1σ and 2σ bands are obtained with the full LHC CLS method.

7.8 Impacts of the systematic uncertainties

The impact of a nuisance parameter θ on a signal strength µ is defined as the shift ∆µ

that is induced as θ is fixed and brought to its +1σ or -1σ post-fit values, with all other

parameters profiled as normal. This is effectively a measure of the correlation between the

nuisance parameter and the signal strength, and is useful for determining which nuisance

parameters have the largest impact on the signal strength uncertainty. The list of the

parameters with the largest effect is shown in Figure 7.19. The left panel in the plot shows

the value of (θ − θ0)/∆θ where θ and θ0 are the post and pre-fit values of the nuisance

parameter and ∆θ is the post-fit uncertainty. The asymmetric error bars show the pre-fit

uncertainty divided by the post-fit uncertainty meaning that parameters with error bars

smaller than ± 1 are constrained in the fit. The signal strength uncertainty is dominated

by MC statistics as shown in Figure 7.19.
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Figure 7.19: List of nuisances with the largest effect on the signal strength uncertainty.
The plot also shows the best fit value of µ (r̂) at the top and its uncertainty.

7.9 Comparison with resolved analysis

In the resolved VH(bb) analysis, one searches for a Higgs boson in association with a W

or Z boson (VH), in final states including 0, 1, or 2 charged leptons, and two identified

bottom quark jets (AK04). The resolved VH(bb) analysis on data recorded by the CMS

experiment at the LHC in 2016 observed an excess of events in data compared to the

expectation in the absence of a signal [3]. The significance of this excess is 3.3 standard

deviations, where the expectation from SM Higgs boson production is 2.8. The signal

strength corresponding to this excess, relative to that of the SM Higgs boson production,

is 1.2 ± 0.4, as shown in Figure 7.20. Combining 2017 data with previous searches by the

CMS experiment for H(bb) in other production processes yields an observed significance

of 5.6 standard deviations and a signal strength of 1.04 ± 0.2. [136].
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(a) The best fit value of the signal strength. (b) Weighted dijet invariant mass distribution.

Figure 7.20: Results of resolved VH(bb) analysis on data recorded by the CMS experiment
at the LHC in 2016. Figure a) The best fit value of the signal strength µ, at mH =
125.09 GeV, is shown in black with a green uncertainty band. Figure b) Weighted dijet
invariant mass distribution. Shown are data and the VH and VZ processes with all other
background processes subtracted.

In addition to an improved S/B ratio according to the BDRS paper, the boosted analysis

could be used to improve the sensitivity of the resolved analysis by increasing the signal

sample. In the boosted regime, where the two b jets are merged, AK08 jets should

provide better Higgs candidate identification and mass reconstruction compared to AK04

jets. The expected additional signal yield from the inclusion of the boosted topology for

the WH signal is given in Table 7.10. Out of 3.7 expected signal events in the boosted

selection, 2.6 also pass the resolved selection, which means that there is approximately

only one additional expected event from the boosted topology.

Table 7.10: Overlap of boosted and resolved signal selection pre-fit yields. Normalized to
an integrated luminosity of 35.9 fb−1.

The expected number of events

Boosted 3.71

Boosted + Resolved 2.61
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Chapter 8

Conclusion

The study of the Higgs boson production in association with a W boson in the boosted

topology is presented. Two decay channels have been analyzed where the Higgs boson

decays to two b quarks and the W boson decays to an electron or a muon with their

corresponding neutrinos, W(lν)H(bb). Measurements have been performed using data

from proton-proton collisions at a centre-of-mass energy of 13 TeV collected by the CMS

experiment at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb−1.

Despite the fact that the Higgs boson dominantly decays to a pair of b quarks, this channel

is particularly challenging due to large backgrounds, even after requiring an associated

W boson. The authors of the BDRS paper [1, 2] suggested to address this problem by

studying the boosted Higgs phase space. With the requirement that the Higgs boson pT

is larger than 200 GeV, and using merged jets topologies, the expected background was

found to be much reduced. This motivated the work presented in this thesis. Therefore,

the signal event topology is characterized by the presence of a high pT vector boson W

recoiling from the Higgs boson candidate. As a consequence of boosted regime, two b

quarks from the Higgs decay should be close to each other. The key component of this

analysis is good reconstruction of the Higgs boson candidate, i.e. a jet with two genuine b

quarks. For that purpose, AK08 jets have been used together with appropriate b-tagging

algorithms for quantifying the likelihood of having two b quarks inside the jet. The signal

selection and event reconstruction are based on physical arguments: the W boson and the

Higgs boson are expected to be back-to-back in the transverse plane, events should not

contain many additional jets, and there should in particular not be any b-hadron activity
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outside of the Higgs boson candidate.

To help control the normalization of the main background processes, and to check how well

the simulated samples model the distributions of variables most relevant to the analysis,

several control regions are selected in data: tt, W boson in association with mainly

heavy-flavor (HF) or light-flavor (LF) jets. A simultaneous signal-extraction fit is done

on the signal and control region distributions, where the shape and normalization of these

distributions are allowed to vary, for each background component, within the systematic

and statistical uncertainties.

The expected upper limits in the absence of a signal is 5.51 times the SM prediction, while

the observed upper limit is 4.36. The results presented in this thesis, with the expected

pre-fit signal and background ratio of s/
√
b = 0.2, shows that BDRS prediction (s/

√
b

= 2.9) was too optimistic. However, additional improvements of double b-tagger, better

optimization of control region definitions, higher MC and data statistics, and perhaps

usage of multivariate variables in the final fit, could promote the boosted analysis as a

supplement to the resolved analysis in the high transverse momentum phase space, where

two b-jets from the Higgs boson decay have significant overlap and represent a difficult

task for good reconstruction within the resolved analysis.
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Appendix A

Conventions

• The conventional units have been used h̄ = c = 1.

• The electric charge is measured in units of electron charge e = 1.602 · 10−19 C.

• The antielectron (e+) is traditionally called positron.

• The radiation length X0 is defined as the path that a highly energetic particle must

traverse in a material to reduce its energy to a fraction equal to 1/e of the initial

value.
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