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Summary

Scaling properties of stochastic processes refer to the behavior of the process at different
time scales and distributional properties of its increments with respect to aggregation. In
the first part of the thesis, scaling properties are studied in different settings by analyz-
ing the limiting behavior of two statistics: partition function and the empirical scaling
function.

In Chapter 2 we study asymptotic scaling properties of weakly dependent heavy-tailed
sequences. These results are applied on the problem of estimation of the unknown tail
index. The proposed methods are tested against some existing estimators, such as Hill
and the moment estimator.

In Chapter 3 the same problem is analyzed for the linear fractional stable noise, which
is an example of a strongly dependent heavy-tailed sequence. Estimators will be developed
for the Hurst parameter and stable index, the main parameters of the linear fractional
stable motion.

Chapter 4 contains an overview of the theory of multifractal processes, which can
be characterized in several different ways. A practical problem of detecting multifractal
properties of time series is discussed from the point of view of the results of the preceding
chapters.

The last Chapter 5 deals with the fine scale properties of the sample paths described
with the so-called spectrum of singularities. The new results are given relating scaling

properties with path properties and applied to different classes of stochastic processes.

Keywords: partition function, scaling function, heavy-tailed distributions, tail in-
dex, linear fractional stable motion, Hurst parameter, multifractality, Holder continuity,

spectrum of singularities
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Sazetak

Vaznost svojstava skaliranja sluc¢ajnih procesa prvi je put istaknuta u radovima Benoita
Mandelbrota. Najpoznatije svojstvo skaliranja u teoriji slu¢ajnih procesa je sebi-sli¢nost.
Pojam multifraktalnosti pojavio se kasnije kako bi opisao modele s bogatijom strukturom
skaliranja. Jedan od nacina kako se skaliranje moze izucavati jest koristenjem momenata
procesa i tzv. funkcije skaliranja. Multifraktalni procesi mogu se karakterizirati kao
procesi s nelinearnom funkcijom skaliranja. Ovaj pristup prirodno namece jednostavnu
metodu detekcije multifraktalnih svojstava procjenjivanjem funkcije skaliranja koristenjem
tzv. particijske funkcije.

Prvi dio ovog rada bavi se statistickim svojstvima takvih procjenitelja s obzirom
na razli¢ite pretpostavke. Najprije ¢e se analizirati asimptotsko ponasSanje empirijske
funkcije skaliranja za sluc¢aj slabo zavisnih nizova s teskim repovima. Preciznije, pro-
matrat ¢e se stacionarni nizovi sa svojstvom eksponencijalno brzog jakog mijeSanja koji
imaju marginalne distribucije u klasi distribucija s teskim repovima. Dobiveni rezultati
bit ¢e iskoristeni za definiranje metoda procjene repnog indeksa te ¢e biti napravljena
usporedba s postoje¢im procjeniteljima kao $to su Hillov i momentni procjenitelj. Osim
toga, predlozit ¢emo i graficku metodu temeljenu na obliku procijenjene funkcije skaliranja
koja moze detektirati teske repove u uzorcima.

U sljede¢em koraku analizirat ¢e se asimptotska svojstva funkcije skaliranja na jako
zavisnim stacionarnim nizovima. Za primjer takvog niza koristit ¢emo linearni frakcionalni
stabilni Sum ¢ija svojstva su odredena s dva parametra, indeksom stabilnosti i Hurstovim
parametrom. Pokazat ¢emo da u ovom slucaju funkcija skaliranja ovisi o vrijednostima,
ta dva parametra. Na osnovu tih rezultata, definirat ¢e se metode za istodobnu procjenu
oba parametra koje predstavljaju alternativu standardnim procjeniteljima.

U drugom dijelu rada prethodno uspostavljeni rezultati ¢e biti analizirani s aspekta
multifraktalnih sluc¢ajnih procesa. U prvom redu, dobiveni rezultati pokazuju da nelin-
earnosti procijenjene funkcije skaliranja mogu biti posljedica teskih repova distribucije
uzorka. Takav zakljucak dovodi u pitanje metodologiju temeljenu na particijskoj funkciji.

Svojstva skaliranja Cesto se isprepli¢u sa svojstvima putova procesa. Osim u termin-
ima globalnih karakteristika kao $to su momenti, multifraktalni sluc¢ajni procesi cesto se
definiraju i u terminima lokalnih nepravilnosti svojih trajektorija. Nepravilnosti u trajek-

torijama mogu se mjeriti formiranjem skupova vremenskih to¢aka u kojima put procesa
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ima isti Holderov eksponent u tocki. Hausdorffova dimenzija takvih skupova u ovisnosti
o Holderovom eksponentu naziva se spektar singulariteta ili multifraktalni spektar. Mul-
tifraktalni slu¢ajni procesi mogu se karakterizirati kao procesi koji imaju netrivijalan
spektar, u smislu da je spektar konacan u vise od jedne tocke. Dvije definicije mogu
se povezati tzv. multifraktalnim formalizmom koji predstavlja tvrdnju da su funkcija
skaliranja i spektar singulariteta Legendreova transformacija jedno drugoga. Brojna is-
trazivanja usmjerena su na uvjete pod kojima multifraktalni formalizam vrijedi. Spektar
singulariteta dosad je izveden za mnoge primjere slu¢ajnih procesa, kao sto su frakcionalno
Brownovo gibanje, Lévyjevi procesi i multiplikativne kaskade.

Rezultati o asimptotskom obliku funkcije skaliranja pokazat ¢e da u nekim slu¢ajevima
procjena beskonac¢nih momenata moze dati to¢an spektar koristenjem multifraktalnog for-
malizma. Ova ¢injenica motivira dublje istrazivanje odnosa izmedu momenata i svojstava,
trajektorija kojim se bavimo u posljednjem dijelu rada. Holder neprekidnost i skaliranje
momenata povezani su poznatim Kolmogorovljevim teoremom neprekidnosti. S druge
strane, dokazat ¢emo svojevrsni komplement Kolmogorovljevog teorema koji povezuje
momente negativnog reda s izostankom Holder neprekidnosti trajektorije u svakoj tocki.
Ova tvrdnja bit ¢e dodatno pojacana formulacijom u terminima momenata negativnog
reda maksimuma nekog fiksnog broja prirasta procesa. Iz ovih rezultata, izmedu ostalog,
slijedit ¢e da sebi-sli¢ni procesi s kona¢nim momentima imaju trivijalan spektar (npr. frak-
cionalno Brownovo gibanje). Obratno, svaki sebi-slican proces s netrivijalnim spektrom
mora imati teSke repove (npr. stabilni Lévyjevi procesi). Dobiveni rezultati sugeriraju

prirodnu modifikaciju particijske funkcije koja ¢e biti testirana na nizu primjera.

Kljué¢ne rijeci: particijska funkcija, funkcija skaliranja, distribucije s teskim re-
povima, repni indeks, linearno frakcionalno stabilno gibanje, Hurstov parametar, mul-

tifraktalnost, Holder neprekidnost, spektar singulariteta
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Chapter 1
Introduction

The importance of scaling relations was first stressed in the work of Benoit Mandelbrot.
The early references are the seminal papers Mandelbrot (1963) and Mandelbrot (1967); see
also Mandelbrot (1997). Scaling properties of stochastic processes refer to the behavior of
the process at different time scales. This usually accounts to changes in finite dimensional
distributions of the process when the time parameter is scaled by some factor. The best
known scaling relation in the theory of stochastic processes is self-similarity. The scaling
of time of the self-similar processes by some constant a > 0 results in scaling the state
space by a factor b > 0, in the sense of finite dimensional distributions. More precisely,
a stochastic process {X(t),t > 0} is said to be self-similar if for any a > 0 there exists
b > 0 such that

{X(at)} £ {bX (1)},

where equality is in finite dimensional distributions. Suppose {X ()} is self-similar, non-
trivial (meaning it is not a.s. constant for every ¢) and stochastically continuous at 0,
that is for every ¢ > 0, P(|X(t) — X(0)| > ¢) — 0 as t — 0. Then b must be of the form

a'l for some H > 0, i.e.
{X(at)} £ {a" X (1)}

Constant H is called the Hurst parameter or the self-similarity index. The importance of
self-similar processes may be illustrated by the Lamperti’s theorem, which states that the
only possible limit (in the sense of finite dimensional distributions) of a normalized partial
sum process of stationary sequences are self-similar processes with stationary increments
(see Embrechts & Maejima (2002) for more details).

As a generalization of self-similarity, models allowing a richer form of scaling were
introduced by Yaglom as measures to model turbulence (Yaglom (1966)). Later these
models were called multifractal in the work of Frisch and Parisi (Frisch & Parisi (1985)).
The concept can be easily generalized to stochastic processes, thus extending the notion
of self-similar processes by allowing the factor a! to be random. Of course, in many

examples there is no such exact scaling of finite dimensional distributions as in the case



Chapter 1. Introduction

of self-similar or multifractal processes.

If we have a sequence of random variables (Y;,7 € N), then we can also speak about
scaling properties of the partial sum process {> .- | ¥;,n € N}. For example, if (V;,7 € N)
is an independent identically distributed (i.i.d.) sequence with strictly a-stable distribu-
tion, a € (0, 2], then we know that

S v, L£nley;, vneN. (1.1)

=1

The continuous time analog of this case corresponds to Brownian motion (o = 2) and
strictly a-stable Lévy processes, which are both self-similar with Hurst parameter 1/c.

This parameter appears by taking logarithms in (1.1)

In Y|

Inn ’

>, Yil g

T =1/a+ Vn e N,

and represents the rate of growth of the partial sum process measured as a power of n.
The central limit theorem indicates that for all zero mean (if mean exists) i.i.d. sequences
the relation (1.1) holds approximately for large n. Thus, in the general case, scaling can
be studied as the behavior of the sequence with respect to aggregation and measured as
the rate of growth of the partial sums.

We adopt this point of view and in the next section we define the so-called partition
function (sometimes called empirical structure function). Partition function will be used
for defining the so-called empirical scaling function. The names of the two come from the

theory of multifractal processes, which is a topic we deal with in Chapter 4.

1.1 Partition function

Partition function is a special kind of the sample moment statistic based on the blocks of

data. Given a sequence of random variables Y7, Y5, ... we define the partition function to
be .
1 [n/t] | L]
S (n, t) = Yi—l t|+j s (12)
q Ln/tJ ; ; (i=1)[t]+j

where ¢ € R and 1 <t < n. In words, we partition the data into consecutive blocks
of length |¢], we sum each block and take the power ¢ of the absolute value of the sum.
Finally, we average over all |n/t| blocks. Notice that for ¢ = 1 one gets the usual empirical
g-th absolute moment.

The partition function can also be viewed as an estimator of the ¢g-th absolute moment
of the process with stationary increments. Indeed, suppose {X(¢)} is a process with

stationary increments and one tries to estimate E|X(t)|? for fixed t > 0 based on a
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discretely observed sample X; = X(7), i = 1,...,n. The natural estimator is given by

| q
n/t] > X — Xa-n|*
=1

If we denote the one step increments as Y; = X (i) — X (i — 1), then this is equal to (1.2).

In Chapters 2 and 3 we will study asymptotic properties of the partition function in
two settings. Instead of keeping ¢ fixed, we take it to be of the form ¢ = n® for some
s € (0,1), which allows the blocks to grow as the sample size increases. The partition

function will then have the following form

[n'=2] |12 /

s 1
Sq(n, n ) = Lnl—SJ Z ZY\_NSJ(i_l)J"j . (13)
7j=1

=1

Since s > 0, S,(n,n®) will generally diverge as n — oco. We are interested in the rate of
divergence of this statistic measured as a power of n. This can be obtained by considering

the limiting behavior of
In S,(n,n®)

Inn
as n — 0o. One can think of this limiting value as the value of the smallest power of n
needed to normalize the partition function in such a way that it will converge to some

random variable not identically equal to zero.

1.2 Empirical scaling function

If { X ()} is a H-self-similar process with stationary increments, then E| X (¢)|? = t79E| X (1)
for ¢ € R such that E|X(t)|? < co. Taking logarithms we have that

In E|X(#)] = Hqlnt + In E| X (1)]7.

Having in mind that S,(n, t) can be considered as the estimator of E|X (¢)|?, we can expect
that In S,(n,t) will be linear in Int. This motivates considering the slope in the simple
linear regression of In S, (n,t) on Int based on some points 1 <t; <n,i=1,...,N. These
slopes for varying ¢ will be called the empirical scaling function, although linear relation
may not always be justified.

Given points 1 <t¢; <n,7=1,..., N and using the well known formula for the slope

of the linear regression line, we define the empirical scaling function at the point ¢ as

. Zf\il Int;InS,(n,t;) — % ZZN:1 Int; Zjvzl In S,(n,t;)
Tnn(q) = : (1.4)

2
S ()’ = & (T )
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If we write ¢; in the form n*, s; € (0,1),7=1,..., N, then the empirical scaling function
is given by
N In Sq(n,n) 1 N N InS¢(n,n’d)
palg) = Z e Nt e T (1.5)
1 - . .

Zi\il (52‘)2 - % <le\;1 3i>2

1.3 Overview

The partition function and the empirical scaling function will be used to study asymptotic
scaling properties of different types of stationary sequences. In the next chapter we
establish asymptotic behavior for weakly dependent heavy-tailed sequences and in Chapter
3 we do the same analysis for the linear fractional stable noise, which is an example of
a heavy-tailed and strongly dependent sequence. Both results will have applications in
the parameter estimation problem. In the first setting, we will propose an exploratory
method and several estimation methods for the unknown tail index that will be compared
with the existing estimators. In the second setting we establish methods for estimating
Hurst exponent and stable index of the linear fractional stable motion.

In Chapter 4 we provide an overview of the theory of multifractal processes and con-
sider the implications of the results of Chapters 2 and 3. The analysis will lead to a
conclusion that, empirically, it is hard to distinguish multifractal and heavy-tailed pro-
cesses. In Chapter 5 we study in more details the relation between fine path properties and
moments of both positive and negative order. Such analysis will lead to a new definition

of the partition function.



Chapter 2

Asymptotic scaling of weakly
dependent heavy-tailed stationary

sequelnces

In this chapter we establish limiting behavior of the partition function and the empirical
scaling function introduced in (1.3) and (1.5). The results are applied in the tail index

estimation problem, which is discussed in Section 2.2.

2.1 Asymptotic scaling

In order to establish our results, we first summarize the assumptions on the sequences

considered in this chapter.

2.1.1 Assumptions

Through the chapter we assume that (Y;,7 € N) is a strictly stationary sequence of random
variables. Each Y; is assumed to have a heavy-tailed distribution with tail index «. This
means that it has a regularly varying tail with index —« so that

P( > ) = 22,

where L(t), t > 0 is a slowly varying function, that is, for every ¢ > 0, L(tz)/L(xz) — 1
as * — o0o. In particular, this implies that E|X|? < oo for 0 < ¢ < a and E|X|? = oo
for ¢ > «, which is sometimes also used to define heavy tails. The parameter « is
called the tail index and measures the “thickness” of the tails. Examples of heavy-tailed
distributions include Pareto, stable and Student’s ¢-distribution, which will be precisely
defined in Subsections 2.2.3 and 2.2.5. For more details on heavy-tailed distributions,

regular variation and related topics see Embrechts et al. (1997) and Resnick (2007).
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We also impose some assumptions on the dependence structure of the sequence, which
go beyond the independent case. First, for two sub-o-algebras, A C F and B C F on the
same complete probability space (€2, F, P) we define

a(A,B) = sup |P(ANB)— P(A)P(B)|.
A€ A,BeB

Now for a process {Y;,t € N} or {Y;,t € [0,00)}, consider F; = o{Y;,s < t} and
FH7 = o{Y,,s > t+ 7}. We say that {Y;} has a strong mixing property if a(7) =
SUPysq a(Fp, F©77) — 0 as 7 — co. Strong mixing is sometimes also called a-mixing. If
a(t) = O(e"7) for some b > 0 we say that the strong mixing property has an exponentially
decaying rate. We will refer to a(7) as the strong mixing coefficient function. Through this
chapter (Y;,7 € N) is assumed to have the strong mixing property with an exponentially
decaying rate.

In some arguments the proof of the main result of this chapter relies on the limit theory
for partial maxima of absolute values of the sequence (Y;,i € N). It is well known that for
the i.i.d. sequence (Z;,i € N) having regularly varying tail with index —a there exists a se-
quence of the form n/ L, (n) with L, slowly varying, such that max;—; __, |Z|/(n/*Ly(n))
converges in distribution to a Fréchet random variable whose distribution is one of the
three types of distributions that can occur as a limit law for maxima (see Embrechts
et al. (1997) for more details). Following Leadbetter et al. (1982), this can be extended to
weakly dependent stationary sequence (Y;,7 € N) under additional assumptions. We say
that (Y;,7 € N) has extremal index 6 if for each 7 > 0 there exists a sequence u,(7) such
that nP(|Yi] > u,(7)) = 7 and P(max;—y_, Y| < un(7)) = e as n — oo. If (V}) is
strong mixing and Y; heavy-tailed, then it is enough for this to hold for a single 7 > 0 in
order for 6 to be the extremal index. It always holds that 6 € [0,1]. The i.i.d. sequence
(Z;,i € N) such that Z; =Y, for each i is called the associated independent sequence. If
6 > 0, then the limiting distribution of max;—; __, |Yi| is of the same type as the limit of
the maximum of the associated independent sequence with the same norming constants.
In particular, if § > 0, under our assumptions max;—; __, 1Y;|/(n'/*L1(n)) converges in
distribution to a Fréchet random variable, possibly with different scale parameter. For
our consideration in this chapter, we assume (Y;,7 € N) has positive extremal index. The
case when 6 = 0 or does not exist is considered as degenerate and only a few examples are
known where this happens under some type of mixing condition assumed (see (Leadbetter
et al. 1982, Chapter 3) and references therein). In particular, # > 0 holds for any example

considered later in this chapter.



Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

2.1.2 Main theorems

Asymptotic properties of the partition function S,(n,t) have been considered before in
the context of multifractality detection (Heyde (2009), Sly (2005); see also Heyde & Sly
(2008)). Notice that if we keep t fixed, behavior of S,(n,t) as n — oo accounts to the

standard limit theory for partial sums of the sequence

1t] !
d Yoo o i=12,.... (2.1)

Jj=1

If (Y;,7 € N) is i.i.d. and ¢ < a, the weak law of large numbers implies that S,(n,?)
converges in probability to the expectation of (2.1) as n — co. To get more interesting
limit results and analyze the effect of the block size, we take ¢ = n®. It is clear that
Sq(n,n®) will diverge as n — oo and we will measure the rate of divergence of this statistic
as a power of n. To obtain the limiting value, we analyze In S,(n,n°)/Inn representing
the rate of growth.

The next theorem summarizes the main results on the rate of growth. We additionally
assume that the sequence has a zero expectation in case o > 1. For practical purposes,
this is not a restriction as one can always subtract the mean from the starting sequence.
For the case o < 1 this is not necessary. The proof of the theorem is given in Subsection
2.1.3. A special case of this theorem has been proved in Sly (2005) and cited in Heyde
(2009).

Theorem 1. Let (Y;,i € N) be a strictly stationary sequence that has a strong mizing
property with an exponentially decaying rate, positive extremal index and suppose that
Y;, i € N has a heavy-tailed distribution with tail index o > 0. Suppose also that EY; =0
if « > 1. Then for every q > 0 and every s € (0,1)

(

>, if g < aand a < 2,

InS,(n,n®) p s+ 11, ifq>aand a <2,
ilnn - Ra(q’ S) = sq . (22)

25 if g < aand a > 2,

max{s%—%—l,% , ifg>aand a > 2,

\

P . .
as n — 0o, where — stands for convergence in probability.

In order to illustrate the effects of the theorem, consider the simple case in which
(Y;,i € N) is a zero mean (if @ > 1) i.i.d. sequence that is in the domain of normal
attraction of some a-stable random variable, 0 < a < 2. This means that > Y;/n'/®
converges in distribution to some random variable Z with a-stable distribution. A suffi-

cient condition for this to hold is the regular variation of the tail (2.1.1) with L constant
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at infinity and the balance of the tails (see Gnedenko & Kolmogorov (1968) for more
details). Suppose first that ¢ < o and notice that

l.sJ q

Sy(n,n?
n% nl SJ Z

When n — oo, each of the internal sums converges in distribution to an independent copy

O YLnsJ(z 1)+

of Z. Since ¢ < «, FE|Z|? is finite, so the weak law of large numbers applies and shows
that the average tends to some nonzero and finite limit. For the case ¢ > «, the weak law

cannot be applied and the rate of growth will be higher:

q
] 2 Ywm D+i

Ot

[nt=]
Sq(n, ns) it

ns+%fl n(l s)d

3

Internal sums again converge to independent copies of Z. Since |Z|? has (—«a/q)-regularly
varying tail, it will be in the domain of attraction of («/q)-stable distribution. Centering is
not necessary since a/q < 1 and the limit (modulo possibly some slowly varying function)
will be some positive random variable.

For the case a > 2, the variance is finite and so the central limit theorem holds. When
q < « the rate of growth has an intuitive explanation by arguments similar to those just
given above. When ¢ > «, interesting things happen. Note that the asymptotics of the
partition function is influenced by two factors: averaging and the weak law on the one
side and distributional limit arguments on the other side. It will depend on s which of
the two influences prevails. For larger s, s +¢/a —1 < sq/2 and the rate will be as in the

case ¢ < q, l.e.,
q

1 sJ
Sq(n,n®)
o o nl sJ Z

Internal sums converge in distribution to normal, which has every moment finite and

S YWJ(z 1)+

the weak law applies. But for small s, the rate will be the same as that for the case
a < 2. What happens is that in this case internal sums have a small number of terms,
so convergence to normal is slow, much slower than the effect of averaging. This is the

reason why the rate is greater than sq/2.

Remark 1. Note that in general, the normalizing sequence for partial sums can be of the
form n'/“L(n) for some slowly varying function L. This does not affect the rate of growth.

Indeed, if 7, /n®L(n) —¢ Z for some non-negative sequence Z,, then for every ¢ > 0,

InZ Z 1
P(=2tca—e)=P(Zu<n®e) = P
< on ¢ 8) (% <n"™) <n“L(n) = L(n)n€>
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since for n large enough n=¢ < L(n) < nf, ie. InL(n)/lnn — 0. Similar argument
applies for the upper bound. On the other hand, if InZ,/Inn — a, then Z, grows
at the rate a in the sense that for every € > 0 there exist constants c¢y,co > 0 such
that P(c; < Z,/n* < ¢3) > 1 — ¢ for n large enough. This is sometimes denoted as
Zn = Op(n?).

Remark 2. A natural question arises from the previous discussion whether it is possible
to identify a normalizing sequence and a distributional limit of S,(n,n®). In some special
cases the limit can be easily deduced. Suppose (Y;,i € N) is an i.i.d. sequence with
strictly a-stable distribution. When ¢ < «, the rate of growth will be sq/«. Dividing the

partition function with n°?® and using the scaling property of stable distributions yields

[n' =]

q
d 1
- LnlfsJ Z |Y;|q

=1

[n'=]

Sq(n,n*) 1
TL% - LnlfsJ Z

i=1

S Ve -1+
ne

Since ¢ < «, E|Y;|? < 0o and the weak law of large numbers implies

S
S 1) B opiale g oo
n o«

On the other hand, when ¢ > « the weak law cannot be applied and the rate of growth

is s + ¢/a — 1. Normalizing the partition function gives

q
YLnSJ(i—lHJ'

na

1—s
. Sk s
Sq(n,n*) ZL Iy,

ns+§fl - n(l s)4 n(l s)4

Each |Y;|? has (—a/q) regularly varying tail, so it will be in the domain of normal attrac-
tion of (a/q)-stable distribution. Since «/q < 1, the centering is not needed and by the
generalized central limit theorem it follows that

S,(n,n®) 4
%%Z, n — 0o,
n [eY

with Z having («/q)-stable distribution.

Using Theorem 1 we can establish asymptotic properties of the empirical scaling func-
tion defined by (1.5). First, we show how Theorem 1 can motivate the definition of the
scaling function.

Using the notation of Theorem 1, we denote

Sy(n,n®)

En == —%—F—~.
n fn/Ra(Q»s)
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Taking logarithms and rewriting yields

In S,(n, n®)

Inn

Ine,

o (2.3)

= Ra(Q? S) +

As follows from Remark 1, ,, is bounded in probability from above and from bellow, thus,
it makes sense to view (2.3) as a regression model of InS,(n,n*)/Inn on ¢ and s with
the model function R,(q,s), where Ine,/Inn are the errors. One should count on the
intercept in the model due to the possible nonzero mean of an error. Notice that, when
a <2, R,(q, s) is linear in s, i.e. it can be written in the form R,(q,s) = a(q)s + b(q) for
some functions a(q) and b(q). This also holds if & > 2 and ¢ < a. We can then rewrite

(2.3) as
In S,(n, n®)

Inn

Ine,
lnn

Fixing ¢ gives the simple linear regression model of In S,(n,n*)/Inn on s, thus it makes

= a(q)s + b(q) +

sense to consider the slope of this regression. This is exactly the empirical scaling function
(1.5). If @ > 2 and ¢ > «, R,(q, s) is not linear in s due to the maximum term in (2.2). It
is actually a broken line with the breakpoint depending on the values of ¢ and . However,
this does not prevent us from considering statistic (1.5) anyway. This will be reflected as

the peculiar nonlinear shape of the asymptotic scaling function.

Theorem 2. Suppose that the assumptions of Theorem 1 hold and Ty, is the empirical

scaling function based on the points si,...,sy € (0,1). Let
(
4, if ¢ <aand a <2,
1, if q > a and o < 2,

o (@) = (2.4)
if0<qg<aanda>2,

2(a—q)?(2a+4q—3aq)
a3(2—q)? ’

NI NI

+

if ¢ > a and a > 2.

Ve

(i) If « <2 or a>2 and g < « then

plim 7, (q) = 75°(q),

n—oo

where plim stands for the limit in probability.

(i1) If a« > 2 and q¢ > «, suppose s; =i/N,i=1...,N. Then

lim plim 7y, (q) = 75°(q).
—0 n—oo

Theorem 2 shows that, asymptotically, the shape of the empirical scaling function in
the setting considered significantly depends on the value of the tail index «. The limit

from case (i) of Theorem 2 does not depend on the choice of points s; in the computation

10
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of the empirical scaling function. In case (i7), we need additional assumptions as in this
case we are estimating the slope while the underlying relation is actually nonlinear. Plots
of the asymptotic scaling function 75° for different values of o are shown in Figure 2.1.
When o < 2, the scaling function has the shape of a broken line (we will refer to this
shape as bilinear). In this case the first part of the plot is a line with slope 1/a > 1/2
and the second part is a horizontal line with value 1. A break occurs exactly at the point
a. In case o > 2, 72° is approximately bilinear, the slope of the first part is 1/2 and
again the breakpoint is at the . When « is large, i.e., @« — oo, it follows from (2.4)
that 72°(¢) = ¢/2. This case corresponds to a sequence coming from a distribution with
all moments finite, e.g., an independent normally distributed sample. This line will be
referred to as the baseline. In Figure 2.1 the baseline is shown by a dashed line. The
cases @ < 2 (a = 0.5,1,1.5) and o > 2 (v = 2.5, 3,3.5,4) are shown by dot-dashed and

solid lines, respectively.

75 (Q)
5t a
I 0.5
4F |--1
: - 15
3l |~ 25
I 3.
—35
20—
1} o>
L ’,’
¢’
2 4 6 8 10 a

Figure 2.1: Plots of 75° for different values of «

2.1.3 Proofs of Theorems 1 and 2

One of the main ingredients in the proof of Theorem 1 is the following version of Rosen-
thal’s inequality for strong mixing sequences, precisely Theorem 2 in Section 1.4.1 of
Doukhan (1994):

Lemma 1. Fiz ¢ > 0 and suppose (Zy, k € N) is a sequence of random variables and let
az(m) be the corresponding strong mizing coefficient function. Suppose that there erists
¢ >0 andc>q,ceN such that

Z m+1)%2 Z(m))TiC < 00, (2.5)
m=1

and suppose E|Z|"¢ < oo and if ¢ > 1, EZ, = 0 for all k. Then there exists some

11
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constant K depending only on q and az(m) such that

l q
E|\Y Z| <KD(q.(10),
k=1
where
L(Q707l)7 if 0<qg <1,
D(gq,¢,1) = L(g,¢, 1), if 1<q<2,

max { L(q. ¢, 0, (L2, D)}, if g > 2.

l

L(g, ¢, 1) =Z(E|Zk|q“)"i§-

k=1
Remark 3. The inequality from Lemma 1 for ¢ < 1 is a simple consequence of the fact
that for 0 < g < 1, (a+b)? < a?+b? for all a,b > 0. Therefore, in this case no assumption

on the mixing is needed and more importantly Z; are not required to be centered.

Proof of Theorem 1. We split the proof into three parts depending whether ¢ > o, ¢ < «

or ¢ = q.

(a) Let ¢ > a. First we show an upper bound for the limit in probability.
Let € > 0. Notice that

1—-s ns
In Sg(n,n®) Ln J J

n- an :Sq(n,ns |_n1 SJ Z ZYUL*J (i—1)+

Let § > 0 and define

}7j7n:Yj1(ij\ gné+5>, j=1,....,n, n€N,
Zj’n == Y/j,n — E}7j,7u
[n°)

- Z Zns(i—l)-‘y—j,n ; Z - 1, ey Lnl_SJ .
j=1

q

By Remark 3, centering is not needed in Lemma 1 when a < ¢ < 1 and so we consider
Zj,
some facts that will be used later. Due to stationarity, (;) are identically distributed for
fixed n, so that F [(1/k) S §1} = E¢;. Moments of all orders of Y;,, are finite and by

using Karamata’s theorem (Resnick 2007, Theorem 2.1), for arbitrary r > « it follows

» = Y}, in this case. Before splitting the cases based on different o values, we derive

12
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that for n large enough

S A (E+9)

BVl = [ PG> o= [ Pyl > e
0 0
T (E+9)

= / L(l‘%)x_%d{p < ClL(né'HS)nr(é‘Hs)( < Cy n7—1+5(r a)+77’
0

(2.6)

since for any 7 > 0 we can take n large enough to make L(n'/**%) < n?. It follows then

that if » > 1 by Jensen’s inequality

EZjn|" = ElYjn = EYjn|" <277 (EYjnl" + (E[Yjn])") < 2"E[Yjal

< Cyni -t il

On the other hand, if » < 1, the same bound holds as @ < r < 1 so there is no centering,
ie. BE|Z;jn|" = E|Y;.|"

Next, notice that, for fixed n, Z;,, 7 = 1,...,nis a stationary sequence. By definition
EZ;, = 0 and also F|Z;,|?7 < oo for every ¢ > 0. Since Z;, is no more than a
measurable transformation of Y}, the mixing properties of Z;, are inherited from those
of sequence (Y;). This means that there exists a constant b > 0 such that the mixing

coefficients sequence satisfies az(m) = O(e™"™) as m — oo. It follows that

im+1202
m=1

for every choice of ¢ € N and ¢ > 0. Hence we can apply Lemma 1 for n fixed to get

< Z(m + 1)26_2K16_bm2c<7+< < 00

m=1

[n®] g KL(Q’O7 Lnsi)v if 0 < q < 1,
E& =By Zin| <KL [n°)), ifl<g<2 (28)
K max {L(a,C, [n°]), (L2, [n*])? }, ifg>2.

Notice that none of the previous arguments uses assumptions on a. Now we split the cases:

Because for ¢ > «, utilizing Equation (2.7), we can choose ¢ small enough so

(1+6a)

that ( < gda (in order to achieve n~ e < n~!) to obtain

[n°] q
L(Qa Cv inSJ) = Z (E |Zj,n|q+g) e S ansn(%—1+5(q+§—a)+n)(ﬁ)

j=1

q9_ 49 a_
< CanJra Tt (1+6a)+dg-+n < C’3n5+a 1+6q+77’ (2'9)

13
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and

NS

[n®] 2 q
(LG )t = [ Y (B1ZaP7) 7] <n¥ (BYPH)7F < o

J=1

Hence E¢; < C5nmax{s+%,1+5q+n%}.

Bound for L(q,(, |n®]) is the same as in (2.9), so if @ < ¢ < 2 we have

B¢ < KL(q,¢, |n®]) < Csnsta/a—tHdatn If ¢ > 2, using Equation (2.7) and choosing
( < 20« yields

Nk

2 9
(LG )t = | 3 (B12a7€) 7 | < (oo™ rbremn) 7

But for ¢ > 2
s+2—1—ﬂ—2+g:(1—€>(s—1)>0,
a 2

sothat s +4 —1> 3 +4 -9 and
K max {L(g,¢, [n°]), (L(2,¢, [n°)))} } < Gttt

We conclude that for every ¢ > o, B¢, < Cgn®ta—1+0a+n,
If ¢ > 1 we can repeat the arguments from the previous case. If a < ¢ < 1,
again by (2.7)
[n°]
L(g,0,|n*]) = Y E|Z;,|* < Con a1 H0lamedtn < Copsta—troatn,

=1

so for every ¢ > «
B¢ < Cynsta—itorn, (2.10)

Next, notice that

i=1,...,n

1 i 1 L E—HS L 5—1—5
P (lmax Yi| > na+5> < ZP (|Yz\ > na+6> < HM < Cmu_
i=1 n

14



Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

If > 1, since EY; = 0 we have from Karamata’s theorem

(1%l > ns*9)|

1

[e’s) nato
:/ P(|y;-|1(|yj|>né+5> >x> dx+/ P<|Yj|1(|y;|>né+5) >x> dz
natd

1
o

= / P (Y;| > z) dz +natip (\Y! > n*”)

+§

[EYjnl = |E(Y; =Yin)| S E|Y; = Yin| = B

o

= / L(z)z~dx + na O L(nat0)p 1700
n 6

1
«

< CHL(ni—&-é)n(é—‘r@(—a—‘rl) + ni—HFL(né—l-é)n—l—aé < Ol2ni—1+§(1—a)+n

and thus

] I [n*) [n*) ! |n*] e
E|Y Yju| =E Z(Zj,ﬁEYm <211E Z in| +271 Y EY;,
j=1 j=1 j=1

= 2071 BE, + 2970 | BY, | < 2‘HE§1 + 207 Oy oet dmatad (e ban

If a <1andgq>1we can use (2.6) to get

q q

In*] ln®] n°) ¢

B\ Via| <273 Zi) + 2713 EY;,
= = = (2.11)
=27 B¢ + 297 (E|Y )

< 2‘1_1E§1 + Qq—lclnsq+§—q+6q(1—a)+q77.

By partitioning on the event {V; = V;,i = 1,...,n} = {max;_;__,|Yi| < na"?} and

,,,,,

its complement, using Markov’s inequality and precedlng results we conclude for the case
a > 2:

P(M>max{s+——l —}+(5q—|—e)

Inn 5
=P (Sq(n,ns) > nmax{8+g—1,2—q}+5q+€>

[n'=2] | 1n°] !

< P L 11 § : z :YLnS (i—1)4im > nmax{er%fl,%q}th;que + P ( maX |Y| > na+5>
n s ~~~~~
=1 |[j=1
ZL"SJ Y 5
L(nat)
max{s—‘ri—l Sq}+6q+e 10 nad

15
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L(niﬁs)
ned

201 F¢, 4 20710 gt —atad(l-a)tan

nmax{s—l—% -1,% }+6q+e

+ ClO

aq _ 59 1
_ 2q7105nmax{s+a 1+6q+n,5 } + 2q71013nsq+§—q+q5(1—a)+qn L(na—‘rﬁ)

+C
055

— 0,

nmax{s—i—%—l,% }+§q+e

as n — 0o, since sq+ q/a—q+qd(l —a)+qn < s+ q/a— 1+ dq+ € if we take n < €/q.
As € and 0 are arbitrary, it follows that

1 S
plim nS,(n,n®)

N—00 nn

§max{s+g—1,ﬁ}.
«@ 2

In case 1 < a < 2 we can repeat the previous with n®+%/*~1494 instead of pmex{s+a/a—1+0g5q/2}

and get
InS s

plim—n o(n, 1) < s+ 41,
n—00 Inn o

If a <1andgqg>1weuse (2.11) and similarly get

InS §
P(n q(n,n)>8+g_1+5q+e>
Inn o
2q_109n5+%*1+5q+’7 + 2q—1(jln8q+%fq+6q(1*a)+qn L(néﬂ;)

— ns+%—1+5q+e + Cl() nes — 0,

as n — oo. Finally, if @ < ¢ <1 there is no centering and (2.10) gives

E¢, L(n«*?)

ns+g—1+6q+e+ 0 as — 0,

lnn

1 S
p<£§@£1>5+2_uwmw>§
«

as n — oQ.

We next show the lower bound in two parts.
We first consider the case o > 2 and assume that s + ¢/a — 1 < sq/2. Let

B (S v)

o = lim ,
n—00 n
(]
Pn = ZYnS(i—l)-i-j >n2o
=1

Since the sequence (Yj) is stationary and strong mixing with an exponential decaying
rate and since E|Y;|?*T¢ < oo for ¢ > 0 sufficiently small, the central limit theorem holds
(see (Hall & Heyde 1980, Corollary 5.1.)) and o2 exists. Since P(|N(0,1)] > 1) > 1/4,
it follows that for n large enough p, > 1/4. Recall that if MB(n,p) is the sum of n
stationary mixing indicator variables with expectation p, then ergodic theorem implies

MDB(n,p)/n — p, as.

16
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Now we have

1 $ sq
P (—n So(n, ") <A e) =P <5q(n,n8) < n7_5>

Inn 2

[n'=2 ] | [n*) !

<P Z ZYns(z‘—l)Jrj <nF et

i=1 |j=1
s |ine) i
<P 1 Y soie P> 77,%(7 < ——57
> Zl Zl ns(i—1)+j n?qaq
=3 j=

Ln°) 1-s—e¢

=)
s n
=P E 1 E Yns(ifl)Jrj >nz2o | < e
i=1 j=1

<p (MB(Lnl‘S 1,1/4) < ”:_6) S0,

hence

li —.
Eifi Inn 2

For the second part, assume that s + ¢/a — 1 > sq/2. Notice that in this case it must
hold 1/a — s/2 > 0. We can assume that ¢ < 1/a— s/2. Indeed, otherwise we can choose
0 < é<1/a— s/2 and continue the proof with it in place of € by observing that

1 : ! ’
P(nSq(n,n)<s+g_1_6)SP(nSq(n,n)<S+g_1_g>'
o)

Inn o Inn

The main fact behind the following part of the proof is that > |Y;|? ~ max |Y;|? and that
s is small, which makes the blocks to grow slowly. As discussed in Subsection 2.1.1, the
assumption that the extremal index is positive ensures that max;—; _,|Y;|/(nY/*Li(n))
with some L; slowly varying converges in distribution to some positive random variable,
so that

P (max ;| < zni—f) 0.

]:1,...77’1

Let [ € N be such that |Y}| = max;—;__,|Y;|. Then, for some k& € {1,2,...,[n'*]} we
have l € J = {|n®](k—1)+1,..., |n®]k}. Assumption o > 2 ensures that F|Y;|**¢ < oo
for some ( > 0. Applying Markov’s inequality and then Lemma 1 yields

g

since s — 2/a + 2¢ < 0 by the assumption in the proof.

>

JET j#l

2 _2¢ 2_2¢
« «

2 2
- n;_€> < E <Zjej,j7él Y') < K Ejej,jyél (E|Y}'|2+C) e

n n

_2
= Kon® a2 =0, asn — oo,

17



Chapter 2. Asymptotic scaling of weakly dependent heavy-tailed stationary sequences

Combining this it follows that

| 5 q
P (M csr 4 q6> = P ($yfnn) < nri i)
Inn «

[n'=2] | 1] !

<P YD Yesoney| <ne™

i=1 |j=1
q
pI] <o) =r (s
JjeJ
<P(Yil<2ms=)+ P <

IN

1
< na*)

1_e
> ne — 0,

j€T
>y

JET jF#

as n — 0o. Hence,
InS,(n,n*
plim M

N—00 nn

Zmax{s—l—g—l,ﬂ}.
o' 2

For the case 0 < a < 2 we just need a different estimate for the sum containing maximum.

Choose v such that 0 < v < a. Again we use Markov’s inequality

‘|

From Lemma 1 one can easily bound this expectation by K3n® for some constant K.

a—y

>

JET 3#l

l—ae—2T+ey

1. E ‘Zjea#l Y
> ne <
n

Choosing € and 7 small enough to make s — 1 + ae +v/a — ey < 0, we get

P(Zyj

1—ae—T+tey
JET j#l
and this completes the (a) part of the proof.

1. Kgns
> na <—————=0, asn— oo,
n

(b) Now let ¢ < a. We first show the upper bound on the limit, i.e. we analyze

| s sq
p ( nSq(n,n ) > sq —|—€) _p (Sq(n,ns) = nﬁ<a)+€>

Inn B(a)
[n'=1 | Ln*] ‘ E )Zm vi|
1 sq j=1 1J
<P|— Yns i— in| > nﬁ(a)—H < — sd_,.
= [nls] Z Z (i=1)+j, B e

i=1 |j=1

where f(a) = a or 2 according to o« < 2 or o > 2. To show that this tends to zero, we

first consider the case o > 2. If ¢ > 2, using Lemma 1 with ¢ small enough it follows that
o) |

E ZY; < Cymax{n®,n?}.

j=1

18
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For the case ¢ < 2 we combine Jensen’s inequality with Lemma 1:

! [n*)

[n*)
EDN Y| <|EDY < Cyn’?.
j=1 j=1

In the case a < 2 we choose v small enough to make ¢ < @ — v < o and get

ey | ey [T\ 7
sq
EN Y <|EDY, < Cyna—r.
i=1 j=1

We next prove the lower bound. For the case a > 2 the proof is the same as the proof of (a).
Assume o < 2. The arguments go along the same line, but we avoid using limit theorems
for partial sums of stationary sequences. Instead we use before mentioned asymptotic be-
havior of the partial maximum, that is, we use the fact that max;—; _ s |¥;]/(n¥/® Ly (n?))
converges in distribution to some positive random variable, for some slowly varying L;.

This means we can choose some constant m > 0 such that for large enough n

max,—1 s

Jj=1,..,|n%]

P =
na

Yl

> 2 >1
m 4.

Let |Y;| = max;—y, |ns| |Yj]. Then it follows that
[n?] [n°]

P ZY} > mna 2P(|Yl|>2mn§)+P Z Yj| <mna | >
j=1

=154

=~ =

Now we conclude as before, denoting by MB(n,p) the sum of n stationary mixing indi-
cator variables with mean p and noting that the ergodic theorem implies MB(n,p)/n —

p >0, a.s.:

q

InS,(n,n®) sq el 5911
p(usinet on ) (S <t
j=1

Inn o :
=1
'] [n®] ‘ n%—e-i—l—s
S P Z ]. ZYns(i_l)J’_]’ > nam < sq
— — namd
=1 7j=1
[t~ [n®] . nl—s—e
S P Z 1 Z Yns(i—1)+j > naem < ma
i=1 j=1

1-s—e¢
1-s n
<P (MB(Ln |,1/4) < — ) — 0,
as n — o0o. This proves the lower bound.
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(c) It remains to consider the case ¢ = . For every 6 > 0, we have for n large enough

In S,_s(n, n®) < In S,(n,n®) < In S,45(n, n®)

Inn - Inn - Inn

Thus, the limit must be monotone in ¢ and the claim follows from the previous cases. []

Proof of Theorem 2. Fix q¢ > 0. First we show that

N 1 N N
SR, (q,8) — v i=1 Si 1 Ralq, s;
plim 7y (q) = 2= o) xS sy Tl

n—00 sz\il (Si>2 - % (Zi\il Si)Q

Let € > 0 and 6 > 0 and denote

By Theorem 1, for each ¢ = 1,..., N there exists nz(-l) such that
p ( eC ) 0 > M

In S,(n, n®) -
287;N QN’ -t
It follows then that for n > niws == maX{ngl), . ,ng\lf)}

Inn

- Ra(qa Si) >

N
InS,( eC
P ( ;s, lnn Zs Ro(q, s 5 )
N
In S,(n, n®) eC
< I g’ At A ) -
<P (;sZ o Ro(q,si)| > 5 >
N

In Sy(n,n*) eC J
< . e
- g ( lnn — Ra(g:51)| > 251N) < 2

Similarly, for each ¢ = 1,..., N there exist n,gQ) such that

In S,(n, n%)

Inn

P — R,(q,si)| >
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and for n > nighe == max{n?), . ,nﬁ)}
N N
1 InS,(n,n%) 1 eC
A(ED D 3Es T D3l SEX B
=1 7j=1 =1 7j=1
N
1 S N
<p Z nSql(n,n ) Rl > iC'
j=1 e 2 <Zi:l s )
N
In S, (n,n% eC )
< ZP qliln ) — a(q,Sj) > N < 5
j=1 2 <Zi:1 § )

Finally then, for n > max{n%ix, ngzx} it follows that

Zi]\il SiRa(Q7 Si) - % sz\il S; Zjvzl Ra(Q; Sj)
2
Zi]il (Si)Q - % (sz\; 3i>

N

Z Siw - Z SzRa(q7 Sz)

P %N,n(Q) -

and this proves (2.12). To show (i), notice that in this case R,(q,s) from (2.2) can be
written in the form R,(q, s) = 7°(q)s + b(¢). Now the right hand side in (2.12) is

(@ X st ba) X s - & s (@ X s+ V@)
Zﬁvzl (Sz‘)2 - % (ZZJL Si>2

For (ii), dividing denominator and numerator of the fraction in limit (2.12) by N yields

plim . ,,(q) = ¥ X e fe (0:%) - <%va1 N)( 2.27 1 fla (q’N))'
o % Zz]il (Si)2 - <% Zf\il Si)

One can see all the sums involved as Riemann sums based on the equidistant partition.
Functions involved, s — sR,(q,s), s — Ra(q,s), s = s and s — s%, are all bounded

continuous on [0, 1], so all sums converge to integrals when partition is refined, i.e. when
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N — oo. Thus

R.(q,s)ds — d q,s)ds
lim plim7y,(g) = f s8a(g, 5)ds fo i Sfo 4:9) )

N=00n—o0 fo s2ds — (fo sds)

By solving the integrals using the expression for R,(q, s), one gets 72° as in (2.4). Indeed,
let s=(1—¢q/a)/(1 —q/2). For the numerator we have

/SR q,s ds—/sds/R q,$)ds
_ [T q S A I DR A T
_/0 ds+(a )/Osds+2/5 s2ds 2/0st 2(@ 1>/Ods 22/85615
— 2 =2
q _ q S
* (a_1)8_4< _2)

N\
W
|
|«
~_
|
N |
K
|
N | —

_a  10-8)° 1=y 1(1-8)° 1(1-2)
S R A e N e
~gi+ e (5 (-9 +50-9)

dla—q) /1 1 1 1 2(a—

24 12 o3 (2 — q)

oo ([
(2.4

we arrive at the form given in

2.2 Applications in the tail index estimation

This section deals with the applications of the partition function and the empirical scaling
function in the analysis of the tail index of heavy-tailed data. Heavy-tailed distributions
are of considerable importance in modeling a wide range of phenomena in finance, ge-
ology, hydrology, physics, queuing theory and telecommunications. Pioneering work was
done in Mandelbrot (1963), where stable distributions with index less than 2 have been
advocated for describing fluctuations of cotton prices. In the field of finance, distributions
of logarithmic asset returns can often be fitted extremely well by Student’s ¢-distribution
(see Heyde & Leonenko (2005) and references therein).

Two important practical problems arise in this context. First, if we have data sampled

from some stationary sequence (Y;,i € N), the question is whether this data comes from
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some heavy-tailed distribution or not. Usually, methods for this purpose are graphical.
The second problem is the estimation of the unknown tail index for samples coming from
some heavy-tailed distribution.

Before we apply our results on these problems, we provide a brief overview of the

existing methods.

2.2.1 Overview of the existing methods

The problem of estimation of the tail index is widely known and there have been numerous
approaches to it. Probably the best known estimator of the tail index is the Hill estimator
(Hill (1975)). For what follows, Y1) > Y{9) > --- > Y{,,) will denote the order statistics
of the sample Y7,Y5,...,Y,. For 1 < k < n, the Hill estimator based on k£ upper order

statistics is

A —1
Gl _ (% ;log Y?Zi)) . (2.13)
The Hill estimator possesses many desirable asymptotic properties, for example weak con-
sistency provided the sample is i.i.d. and k = k(n) is a sequence satisfying lim,, ., k(n) =
oo and lim, . (k(n)/n) = 0. Under additional assumptions on the sequence k(n) and
second order regular variation properties of the underlying distribution, even asymptotic
normality holds. Properties of the Hill estimator have been extensively studied in settings
different than i.i.d. (for example, see Hsing (1991) for mixing sequences).

Another estimator of the tail index is the so-called moment estimator proposed by

Dekkers et al. (1989). Define for r» = 1,2

A moment estimator based on k order statistics is given by

-1

-1
1 [ (HM)?
= [ 1+ H + - [ E 1 . 2.14
a + H + 3 e (2.14)

Originally, moment estimator is defined as 1/&) and is an estimator of the extreme value
index &, which coincides with the reciprocal of the tail index when & > 0. For more details
on both estimators as well as the definitions of others, like e.g. the Pickands estimator,
see Embrechts et al. (1997) and De Haan & Ferreira (2007).

Both equations, (2.13) and (2.14), actually yield a sequence of estimated values for
different values of k. The choice of optimal £ is considered to be the main disadvantage
of these estimators as their performance can vary significantly with k. If additional

assumptions are imposed on the second order regular variation of the distribution, a
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sequence k(n) giving an optimal asymptotic mean square error can be obtained (see
De Haan & Ferreira (2007)). Although there is no much practical significance of such
results, estimators of the sequence k(n) can be derived. This leads to the adaptive selection
methods for k, an example of which can be found in Beirlant et al. (2006) (see also De Haan
& Ferreira (2007) and references therein). A more common approach is to plot estimated
values against k. A heuristic rule is to look for the place where the graph stabilizes and
report this as the estimated value. For the Hill estimator this is usually called the Hill
plot. We use this approach later in the examples.

Tail index estimators are usually based on upper order statistics and their asymptotic
properties. Alternatively, in Meerschaert & Scheffler (1998), an estimator based on the

asymptotics of the sample variance has been proposed. More precisely, the authors define

2lnn

0= ———
Inn +1ne?’

2 is the usual sample variance. The estimator is consistent for i.i.d. samples in

where &
the domain of attraction of a stable law with index o < 2. This approach is, however,
appropriate mostly for the case o < 2, otherwise one would need to transform the data,
e.g. to square it when 2 < a < 4. In a certain way, the underlying idea of our method
is also based on the asymptotic properties of the sum. Our approach is, however, more
general and independent of the results in Meerschaert & Scheffler (1998). As we will see,
the block structure of the partition function enables extracting more information about
the tail index. Moreover, we go beyond the i.i.d. case and consider weakly dependent
samples.

Before applying any of the tail index estimators, one should make sure that the heavy-
tailed model is appropriate. Usually, various graphical techniques are used for this pur-
pose. It is important to stress that Hill plots cannot be used as a graphical tool for
establishing heavy tail property of the data as they can be misleading in cases when the
tails are light. On the other hand, extreme value index estimators, like moment estimator,
can be used for this purpose. Plotting the values 1/42! for varying k can indicate that
the tails are light if the values are around zero (see Resnick (2007)). There are other
exploratory tools for inspecting whether the tails are heavy or not. One of the most
frequently used tool is a variation of the QQ plot. The basic idea comes from the fact
that if P(Y > z) ~2~%, then P(InY > z) = P(Y > ¢”) ~ e~ i.e. the log-transformed

Pareto random variable has an exponential distribution. By choosing 1 < k < n one can

{ .
(—ln<k—_‘_1>,lny(z)), Z—].,...,k?.

If the data is heavy-tailed with index «, the plot should be roughly linear with slope 1/«.

plot the points

This is no more than the standard QQ plot of log-transformed data on exponential quan-
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tiles. This graphical method can be used to define estimator (Resnick (2007)), however,
we will use it only as an exploratory tool. For k = n this plot is sometimes called Zipf’s

plot. We will refer to it simply as the QQ plot.

2.2.2 Graphical method

As a first step, we propose a graphical method useful for exploratory analysis of the tails
of the underlying distribution. Since the scaling function shape is strongly influenced by
the tail index value, this motivates the use of a plot of the empirical scaling function to
detect the tail index of a distribution. In particular, the asymptotic results suggest that
there should be sharp differences between the plots for distributions with infinite variance
(av < 2) and the others (a > 2).

Based on a finite sample and chosen points s; € (0,1),7=1,..., N, one can estimate
the scaling function by equation (1.5) for a fixed value of ¢. Repeating this for a range of
g values makes it possible to give a plot of the empirical scaling function 7y ,.

By examining the plot and comparing it with the baseline, it is possible to say some-
thing about the nature of the tails of the underlying distribution. If 7y ,(q) is above the
baseline for ¢ < 2 and nearly horizontal afterward, then true « is probably less than
2. By examining the point where the graph breaks, one can roughly estimate the inter-
val containing a. If 7y,(¢) coincides with the baseline for ¢ < 2 and diverges from it
somewhere after ¢ > 2, then the true « is probably greater than 2. The point at which
deviation starts can be an estimate for .. This also establishes a graphical method for
distinguishing two cases, whether a < 2 or o > 2.

If the graph coincides with the baseline, then we can suspect that the data does not
exhibit heavy tails and that the moments are finite for the considered range of ¢q. This
way one can distinguish between heavy tails or not.

In the next subsection we show how the estimated scaling functions look like on several
sets of simulated data. Subsection 2.2.6 contains examples of how conclusions can be made

from the shape of the scaling functions.

2.2.3 Plots of the empirical scaling functions

The shape of the empirical scaling function is not always ideal as its asymptotic form.
However, most plots are very close to their theoretical form. To illustrate this, we sim-
ulate 10 independent samples of size 1000 in six different settings. The first three cases
studied are i.i.d. samples and others are stationary and weakly dependent, in accordance
with the assumptions of Theorem 1. Figure 2.2 summarizes the plots of the empirical
scaling functions (dotted) together with the corresponding asymptotic form (solid) and

the baseline (dot-dashed). Here, s;, i = 1,..., N in (1.5) are chosen equidistantly in the
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interval [0.1,0.9] with N = 23. The scaling function is estimated at the points g; chosen
in the interval [0, 10] with step 0.1.

The first group of samples is generated from a stable distribution with stable index
equal to 1. A random variable Y has an a-stable distribution with index of stability a €
(0,2), scale parameter o € (0,00), skewness parameter § € [—1,1] and shift parameter

p € R, denoted by Y ~ S, (o, 3, p) if its characteristic function has the following form

exp {—0'1](]“ (1 — i3 sign(¢) tan %) + Z'C,u} , ifa#1,

(eR. (2.15)
exp{—a|{| (1+i5%sign(§)ln|§|) —|—Z'C,u}, ifa=1,

E [eiCY =
If w =0and o # 1, orif 5 = 0 and o = 1, then Y is said to have strictly stable
distribution. The second group of samples is generated from the Student ¢-distribution

with 3 degrees of freedom, a parameter that corresponds to the tail index. Recall that

the probability density function of the Student ¢-distribution T'(v, o, i) is

__reg) Llz—p\*)
fT(V,a,,u)(m) = \/;Uﬁr<%) <1+ » ( ) ) , € R, (2.16)

where o > 0 is the scale parameter, v the tail parameter (usually called degrees of freedom)
and p € R the location parameter. Figures 2.2a and 2.2b show that for both stable and
Student case the empirical scaling functions are close to their theoretical form. Both plots
are approximately bilinear and by identifying the breakpoint, one can roughly guess the
tail index value. Also, it is clear from the shape of the empirical scaling functions that the
variance is infinite in the first case and finite in the second. The third sample is generated
from a standard normal distribution. From Figure 2.2¢ one can surely doubt the existence
of heavy-tails in these samples since the empirical scaling functions almost coincide with
the baseline ¢/2. This shows that the estimated scaling functions have the potential of
providing a self-contained characterization of the tail.

Examples shown in Figures 2.2d-2.2f are based on dependent data. Dependent samples
are generated as sample paths of two types of stochastic processes: Ornstein-Uhlenbeck
(OU) type processes and diffusions. Recall that a stochastic process X = {X(¢),t > 0}
is said to be of OU type if it satisfies a stochastic differential equation (SDE) of the form

dX (t) = =AX(t)dt + dL(\t), t>0, (2.17)

where L = {L(t),t > 0} is the background driving Lévy process (BDLP) and A > 0. We
consider strictly stationary solutions of SDE (2.17). The a-stable OU type process with
parameter A > 0 and 0 < o < 2 is the solution of the SDE (2.17) with L being the a-
stable Lévy process. Since the distribution of increments for the BDLP L is known in this

case, we use Euler’s scheme of simulation by replacing differentials in Equation (2.17) with
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differences. Student OU type process has been introduced in Heyde & Leonenko (2005). It
can be shown that for arbitrary A > 0 there exists a strictly stationary stochastic process
X = {X(t),t > 0}, which has a marginal distribution T'(v, o, ) with density function
(2.16) and BDLP L such that (2.17) holds. This stationary process X is referred to as
the Student OU type process. Moreover, the cumulant transform of the BDLP L can be

expressed as

Ky 21 (vvold])
Ku/2(\/;(7’<|) ’

where K is the modified Bessel function of the third kind and k., (0) = 0 (Heyde &

Leonenko (2005)). Since for the Student OU process the exact law of the increments of

ki1, (¢) = log E [¢°"] = iCu — v/vol(]

CeR, ¢#0,

the BDLP is unknown, we use the approach introduced in Taufer & Leonenko (2009) to
simulate Student OU process. This approach circumvents the problem of simulating the
jumps of the BDLP and is easily applicable when an explicit expression of the cumulant
transform is available. Both OU processes considered can be shown to posses strong
mixing property with an exponentially decaying rate (see Masuda (2004)).

The last process considered is a stationary Student diffusion. In order to define the
Student diffusion, we introduce the SDE:

2
dX(t) = —0(X(t) — p)dt + 50_021 (1/ + (W) )dB(t), t>0, (2.18)
where v > 2,0 >0, pn € R, 0 >0, and B = {B(t),t > 0} is a standard Brownian motion
(BM) (see Bibby et al. (2005) and Heyde & Leonenko (2005)). The SDE (2.18) admits a
unique ergodic Markovian weak solution X = {X(¢),¢ > 0}, which is a diffusion process
with the Student invariant distribution given by probability density function (2.16). The
diffusion process which solves the SDE (2.18) is called the Student diffusion. If X (0) =¢
T(v,o, 1), the Student diffusion is strictly stationary. According to Leonenko & Suvak
(2010), the Student diffusion is a strong mixing process with an exponentially decaying
rate. For the simulation of paths of the Student diffusion process with known values of
parameters, we have used the Milstein scheme (for details see Iacus (2008)). Both OU
processes were generated with autoregression parameter A = 1 and diffusion was generated
with 6 = 2.

From the examples on dependent data we can conclude that the shape of the empir-
ical scaling function is not affected with this weak form of dependence present. Again,

empirical scaling functions are very near their asymptotic form.
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(e) Student 7'(3,1,0) OU type process (f) Student 7'(3,1,0) diffusion

Figure 2.2: Plots of the empirical scaling functions

2.2.4 Estimation methods

Besides the graphical method, a simple estimation methods for the unknown tail index
can also be established based on the asymptotic behavior of the partition function and the
empirical scaling function. As follows from the assumptions of Theorem 1, the estimators
defined here should work well for stationary strong mixing samples, thus extending the
problem from the simplest i.i.d. case. We propose here three methods and test their

performance in the next subsection by means of simulation.
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The basic idea of a method M1 is to estimate « by fitting the empirical scaling
function to the asymptotic form 75°. This is done by the ordinary least squares method.
First we fix some points s; € (0,1), 7 =1..., N in the definition of the empirical scaling
function. For example, in simulations below we take equidistant points in the interval
[0.1,0.9] with N = 23. Now, for points ¢; € (0, ¢maz), ¢ = 1,..., M, we can calculate

7; = Tn.n(qi) using Equation (1.5). The estimator is defined as

M
dp = argmin Z(ﬁ —72°(q5))% (2.19)
a€(0,00) 4

For practical reasons, due to complexity of the expression for 7.°, the method is divided
into two cases: a < 2 and a > 2; i.e., the corresponding part of 75° is used as a model
function in (2.19), depending where the true value of « is. Therefore, it is necessary to first
detect whether we are in the case of infinite variance or not. This can be accomplished
by using the graphical method described earlier. In the inconclusive case, it is advisable
to compute both estimates and compare the quality of the fit. For simulations, points g;
are chosen equidistantly in the interval [0, 8] with step 0.1.

If @ < 2, the information on « in the asymptotic form of the empirical scaling function
is hidden in the slope of the first part and the breakpoint. When o > 2, the information
on « appears in the breakpoint and in the complicated nonlinear expression of the second
part. Method M1 tries to use all three parts in estimating o. Alternatively, we can base the
method only on a breakpoint. Since the shape of 75° is bilinear or approximately bilinear,
we define method M2 by fitting the following general continuous bilinear function to the

empirical scaling function

aq, if 0 <q < b,
<(q) = (2.20)
cq+bla—c), ifg>0b.

The parameter of interest is b which corresponds to a breakpoint o and the estimator by
method M2, &s, is defined as

M

(@, g, &) = arg min > (= sla) (2.21)
(a;b,c)€(0,00)x (0,00) xR ;7

This method has the advantage of not depending on whether @ < 2 or a > 2. More-

over, the second part depends on the rate of divergence of infinite moments and may not

precisely follow the shape of 72° on finite samples. This part is, however, usually approxi-

mately linear and fitting (2.20) makes the method more robust on the discrepancies from

TS .

For the third method, we go one step back to the asymptotic behavior of the parti-
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tion function. As already discussed, results of Theorem 1 motivate viewing (2.3) as the
regression model. It makes sense then to estimate « from a bivariate nonlinear regression
of InSy(n,n*)/Inn on ¢ and s with model function R,(q,s). However, this complicated
regression model may not always give good results and that is why we approach it in two
steps. When defining the empirical scaling function we fixed ¢ and first considered s as
the variable in regression, while for the third method we go the other way around.

For the moment let us fix s € (0,1). The limit R,(q, s) in Theorem 1 has the following
form for o < 2:

Ru(g.s) = >4, ifg<a, (2.22)
« Q7 - l _ . .
Sq+s—1, ifg>a,

and if a > 2 the limit is

s if o <
Ra(Qa 8) = 2 ! =
max{éq—l—s—l,gq}, if ¢ > «.

Notice that in this case bilinear function ¢ — max {éq + (s —1), %q} has a breakpoint at

VA
|
—_

]
Il

NI
|
Q=

If s € (2/a,1), § < 0 and there is no breakpoint in the range of positive ¢ values. If

s € (0,2/a), we can write for the case o > 2:

§ Y lf < _7
R.(q,8) = 24 1=1 (2.23)
éq%—(s—l), if ¢ > 7.

So, if s € (0,2/a), ¢ = R,(q, s) is bilinear continuous and, motivated by the regression
model (2.3), we can fit function (2.20) to points

{(q%)z:lM} (2.24)

This way we find the estimated parameters of (2.20)

2 M /S (n,n®) 2
(d&bsvés) = arg min Z (# _ C(qi)) _

(a.b,c)€(0,00) % (0,00) xR 53 Inn

In order to define a method that does not depend on a < 2 or not, we notice that, if
s € (0,2/a), the common part of (2.22) and (2.23) giving information on « is the slope
of the second part. Therefore, 1/¢; is an estimate for a for each s € (0,2/a). Since

we do not consider problems with tail index greater than, say 8, s can be chosen in the
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interval (0,0.25). We define a method M3 estimator by averaging over a set of values
s; €(0,0.25), 5 =1,...,N:

1M1
G = ; - (2.25)

In simulations and examples below we take s; equidistantly in the interval [0.01,0.25]
with step 0.02.

To make the estimation process by this method more clear, we illustrate it on a simple
example with data consisting of 1000 points generated from the Student ¢ distribution
T(3,1,0) (Figure 2.3). Figures 2.3a-2.3e show sets of points (2.24) for different s values,
together with the fitted bilinear function (2.20). The reciprocal of the slope of the second
part corresponds to the tail index a. These values for a range of s are shown in Figure
2.3f. By averaging, we obtain the final estimate by method M3 to be 2.942.

Although method M3 may seem promising, it has a serious drawback of not being scale
invariant. Indeed, scaling the data by some factor ¢ would scale the partition function by
a factor |c|?. As the samples are finite, this produces an additional term In |c|?/Inn in the
ordinate of the set of points (2.24) that affects the estimation process. This makes the
practical use of the method very limited. Nonetheless, we will include it in the simulation
study below in which the generated data will be chosen from distributions with scale
parameter equal to 1. These problems do not appear for the methods based on the
empirical scaling functions. Scaling functions are robust to scale change as they are based

only on the slope obtained for a fixed value of q.
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2.2.5 Simulation study
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(e) s=0.25 (f) Estimates for a range of s values

Figure 2.3: Estimation process by method M3 on Student 7'(3,1,0) data

In this subsection we provide a simulation study in order to investigate finite sample

properties of the estimators defined in the previous subsection. We choose to generate

i.i.d. random samples from the following distributions: stable distribution S,(1,0,0)
with @ = 0.5 and « = 1.5, Student t-distribution 7'(a, 1,0) with a = 0.5,1.5,2.5,3,4 and
Pareto distribution with tail index o« = 0.5, 1, 1.5 and scale parameter 1. Recall that the
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random variable X has Pareto distribution if its tail distribution is given by

(2=2)%, x>,
P(X >x) = v

1, T < T,

where x,, > 0 is the minimal possible value (scale parameter) and « > 0 is the tail index.
For each distribution we have generated 250 samples of length 1000 and computed the
estimators (2.19), (2.21) and (2.25). In addition to i.i.d. samples, we have generated
samples from stable and Student OU type process and Student diffusion, in the same way
as it was done in Subsection 2.2.3.

In order to give a picture of the performance of the estimators, we compare them with
the Hill estimator. Since the Hill estimator depends on the number of order statistics k,
we do this in the following manner. For each sample we compute the value of the Hill
estimator for each k in the range {1,...,250}. After this is done for all 250 samples, we
choose k such that the mean square error (MSE) is minimal. So this is the smallest MSE
that can be achieved with the Hill estimator on the generated samples if £ is fixed for
each distribution. It is clear that this comparison is unfair to the estimators proposed in
Subsection 2.2.4, as in practice one can hardly choose an optimal & for the Hill estimator.
We note that besides the Hill estimator, we computed in the same way the moment
estimator and the Pickands estimator. However, as neither of these is significantly better

than the Hill estimator, we do not report their results in the following.

Table 2.1: Bias (& — «) of the estimators based on 250 samples of length 1000

distribution « M1 M2 M3 Hill | optimal &
stable 0.5 0.1252 | 0.1085 | 0.0126 | -0.0218 98
stable 1.5 0.1533 | 0.3352 0.2914 | -0.0275 211
Student 0.5 0.1182 | 0.1194 0.0276 | -0.0065 238
Student 1.5 || 0.0716 | 0.1607 0.0834 | -0.0938 94
Student 2.5 0.5669 | -0.1396 | 0.0025 | -0.2375 44
Student 3 0.3432 | -0.4268 | -0.1053 | -0.4241 39
Student 4| -0.1861 | -1.1929 | -0.4638 | -0.6033 20
Pareto 0.5 0.0654 | 0.1204 | -0.0048 | 0.0011 250
Pareto 1] -0.1391 | 0.2349 | 0.0003 0.0023 250
Pareto 1.5 0.1736 | 0.1449 0.0381 | 0.0034 250
stable OU | 0.5 0.1805 | 0.1965 0.0876 | -0.0289 159
stable OU | 1.5 0.0846 | 0.3940 0.31