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Summary

Since the discovery of graphene, a new field of two-dimensional (2D) materials research

has opened up, with different types of two-dimensional materials subfields. One such

subfield are the monoelemental two-dimensional materials, in analogue to graphene, e.g.

silicene, phosphorene and borophene. We study possible two-dimensional allotropes of

antinomy, indium and aluminium, called antimonene, indiene and aluminene, with struc-

tures chosen in analogue to other monoelemental two-dimensional materials due to the

similarities in the valence electron configurations. Using density functional theory, lattice

dynamics of structures are studied in a free-standing and strained forms. Some of the

structures, such as α-In and α-Al, show stable lattice dynamics under imposed strain,

giving hope for the experimental synthesis. As substrates are a critical component in syn-

thesis of most two-dimensional materials, we have placed the proposed structures on the

substrates Ag(111), Cu(111) and graphene. As lattice dynamics of antimonene allotropes

are unstable under any imposed strain, interaction of the monolayer with the substrate is

what stabilizes their structure. Our results for certain substrates are in agreement with

experiment results for which allotrope forms on its surface. Potential substrates for ex-

perimental synthesis of α-In and α-Al are identified. We have obtained electronic band

structures, optical and elastic properties of proposed materials. Electronic band struc-

tures, in part, confirm results of previous studies. Optical properties show similarities

with other two-dimensional materials, such as strong anisotropy with regard to polariza-

tion of the incident electromagnetic wave. Elastic properties show similarities to other

two-dimensional materials.
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Sažetak

Nove tehnologije ključ su civilizacijskog napretka, a jedan od temelja koji omogućava

primjenu novih tehnologija su novi, poboljšani materijali. Poželjne karakteristike uređaja

zasnovanih na novim materijalima su niža cijena izrade, manje dimenzije i bolja svojstva.

Dvodimenzionalni materijali se ovdje pojavljuju kao nova vrsta materijala koja može

ispuniti ove uvjete - manje dimenzije na očiti način, a nižu cijenu izrade barem što se tiče

potrebnih sirovina.

Otkrićem grafena 2004. godine dolazi do eksplozije istraživanja dvodimenzionalnih

materijala. Osim grafena, često su istraživani dihalkogenidi prijelaznih metala, od kojih

je najpoznatiji MoS2, a po uzoru na grafen, proučavane su i dvodimenzionalne strukture

ostalih, sličnih elemenata. Kao posljedica istraživanja uspješno su sintetizirani silicen,

germanen, fosforen, borofen, antimonen, i tinen. Dvodimenzionalni materijali pokazuju

svojstva primjenjiva u elektroničkoj i optoelektroničnoj industriji, kao i mehanička svo-

jstva različita (ponekad i egzotična) u odnosu na svoje volumne oblike. No, polje istraži-

vanja dvodimenzionalnih materijala i dalje ima potencijala, jer nijedan materijal nema

savršena svojstva i ne ispunjava sve zahtjeve razvoja tehnologija.

Antimon je već istraživan u dvodimenzionalnim oblicima te su eksperimentalno sin-

tetizitane tri različite strukture. U svom niskodimenzionalnom obliku pokazuje iznimnu

stabilnost u zraku, što daje nadu za njegovu primjenu u atmosferskim uvjetima. Prijašnja

istraživanja niskodimenzionalnih oblika indija i aluminija su malobrojna, no vodimo se

primjerom bora, koji poprima dvodimenzionalne oblike, te zbog slične konfiguracije va-

lentnih elektrona očekujemo da i ovi elementi imaju stabilne dvodimenzionalne strukture.

Aluminijeva niska cijena, reciklabilnost i niska specifična masa su motivacija za njegovo

proučavanje, a indijeva rasprostranjena uporaba u slitinama, poluvodičkim materijalima

i premazima obećava raširenu primjenu u niskodimenzionalnom obliku.

U istraživanju smo koristili teoriju funkcionala gustoće, koja je već obilno korištena za
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predviđanje još neotkrivenih dvodimenzionalnim materijala, kao i potvrdu eksperimen-

talnih rezultata. Prednost ovog teorijskog pristupa je svakako brzina proračuna. No,

ono što ovom pristupu daje s jedne strane i prednost je što su kroz njega dostupni ra-

zličiti uvjeti, strukture i veliki broj svojstava, što bi, s druge strane, u eksperimentalnom

pristupu zahtjevalo velike financijske troškove i više vremena.

Dvodimenzionalne kristalne strukture

Koristeći analogiju s drugim postojećim dvodimenzionalnim materijalima, pretpostavili

smo da će moguće dvodimenzionalne strukture antimona, indija i aluminija poprimiti

jedan od četiri oblika. To su ravninska saćasta (Slika 2.1), označena kao α, svijena saćasta

(Slika 2.3), označena kao β, ravninska trokutasta (Slika 2.4), označena kao γ, i naborana

(Slika 2.5), označena kao δ. Nakon što su atomi antimona, indija i aluminija stavljeni

u pretpostavljene strukture, relaksacijom jedinične ćelije i položaja atoma (Tablica 2.1)

dobiveno je da antimon poprima α, β i δ strukturu, a indij i aluminij α i γ. Za β i δ oblike

indija i aluminija pokazano je da su dvosloji γ strukture (Slika 2.8 i Dodatak B), odnosno,

da indij i aluminij energetski ne podržavaju dvo-dimenzionalne strukture sastavljene od

dva podsloja. Za sve strukture dobiveno je slaganje sa prijašnjim teorijskim rezultatima

i eksperimentalnim veličinama, osim u slučaju δ-Sb kod kojega se jedna od konstanti

rešetke razlikuje za 4%. U skladu s nazivljem ostalih dvodimenzionalnih materijala, naše

strukture nazivamo antimonen, indijen i aluminen.

Za dobivene strukture izračunate su fononske disperzije. Realne fononske disperzije

nužan su preduvjet stabilnosti kristalne rešetke. Za β-Sb dobivene su realne fononske

disperzije, što je u skladu s prijašnjim teorijskim istraživanjima, no kod α-Sb i δ-Sb u

određenim smjerovima duž Brillounove zone postoje imaginarne frekvencije (nestabilni

fononski modovi). Naši rezultati za δ-Sb nisu u skladu s prijašnjim istraživanjima, no

razlike se javljaju zbog ranije spomenute razlike u konstantama rešetke. α-In ima realne

fononske disperzije, dok α-Al posjeduje dva nestabilna fononska moda. γ strukture oba

elementa imaju nestabilne fononske disperzije.

Deformacija struktura i stabilnost

Deformacija je iznimno jednostavan način za moduliranje svojstava dvodimeninzionalnih

materijala te se u eksperimentima može na različite načine nametnuti na dvodimenzion-
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alnu strukturu. Stoga je proučavan utjecaj deformacije na jediničnu ćeliju istraživanih

struktura. Bilo koja deformacija u dvodimenzionalnim kristalima može se opisati defor-

macijom u armchair i zigzag smjeru. Homogena deformacija u svim smjerovima naziva

se biaksijalna deformacija. Koristili smo izravnu deformaciju heksagonalne rešetke (Slika

3.3) što nije bio slučaj u prijašnjim istraživanjima. Ovakav pristup omogućio nam je

konzistentnost pri promatranju utjecaja deformacije na slobodnu strukturu, posebno pri

računanju fononskih disperzija. Također, velika prednost je manje trajanje simulacija u

odnosu na pravokutne jedinične ćelije kakve su korištene u ostalim istraživanjima (nije

potrebno povećavati broj atoma u jediničnoj ćeliji). Deformacija je simulirana u koracima

od 2% od -20% do +40%. Dobivene su relacije odnosa naprezanja i deformacija (Slika 3.4)

iz kojih su iščitane kritične deformacije, εcrit, kao maksimum naprezanja (Tablica 3.1).

Kritične deformacije su nam dale granične vrijednosti deformacije za koju bi se struk-

tura mogla vratiti u izvorni, nedeformirani, oblik. Iznosi kritičnih deformacija razlikuju

se od pojedinih ranije izračunatih vrijednosti, ali pokazuju anizotropnost i sličnu razinu

anizotropije.

Izračunate su, također, i fononske disperzije deformiranih struktura. Deformacija

uzrokuje promjenu u međusobnim udaljenostima između atoma unutar jedinične ćelije te

time mijenja frekvenciju fonona. Fononske disperzije svih struktura za sažimajuće defor-

macije posjeduju imaginarne frekvencije pojedinih modova (Dodatak C). Sve strukture

antimonena posjeduju imaginarne fononske frekvencije za bilo koji iznos deformacije, što

ukazuje da deformacija kristalne rešetke nije čimbenik koji ju stabilizira, jer sve tri su

eksperimentalno ostvarene. Za strukture indijena i aluminena dobivena su područja sta-

bilnosti za određene iznose deformacije što ukazuje na mogućnost njihove eksperimentalne

sinteze. Rezultati su sažeti na Slici 3.12.

Supstrati

Pošto se deformacija javlja prirodno pri sintezi na supstratima, identificirane su metalne

površine i drugi dvodimenzionalni materijali koji mogu poslužiti kao supstrat. Računi su

konvergirani za Ag(111), Cu(111) i grafen. PdTe2 kao supstrat je korišten samo u slučaju

α-Sb i β-Sb. Pri postavljanju dvodimenzionalne strukture na supstrat, javlja se a priori

biaksijalna deformacija kristalne rešetke, no pošto se atomi relaksiraju u energetski na-

jpovoljnije položaje, ova deformacija može poprimiti armchair ili zigzag karakter (Tablica
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4.1).

Za strukture antimonena dobiveno je ponašanje u skladu s eksperimentalnim rezulta-

tima. Na ravnim metalnim površinama, β-Sb prelazi u α-Sb i posjeduje iste parametre

rešetke. Obavljen je i pomoćni račun na PdTe2, s neravnom površinom, na kojem α-Sb

prelazi u β-Sb. Ovi rezultati pokazuju da tip i izgled supstrata utječu na strukturu an-

timonena koja će se sintetizirati na njegovoj površini. Pri postavljanju β-Sb na grafen,

on zadržava svoj β oblik. Postavljanje δ-Sb na ranije spomenute supstrate daje različite

oblike dvosloja α-Sb i β-Sb.

Za α-In i α-Al identificirani su supstrati koji, u skladu s deformacijama koje vrše na

njihovu kristalnu rešetku, mogu služiti kao supstrat za njihovu eksperimentalnu sintezu.

U α-In slučaju to su Ag(111), Cu(111) i grafen, a u α-Al slučaju to su Cu(111) i grafen.

Simulacijama molekularne dinamike dvodimenzionalnih struktura na supstratima ispi-

tana je njihova stabilnost na sobnoj temperaturi. One pokazuju termičko gibanje oko

ravnotežnih položaja, bez raspadanja struktura na više različitih vremenskih skala, što je

i potvrđeno i funkcijama radijalnih distribucija atoma (Slika 4.6).

Karakterizacija

Izračunate su elektronska struktura vrpci (Slike 5.1 i 5.2), optička (Slike 5.3 - 5.7) i

elastična svojstva (Tablica 5.1). α-Sb i β-Sb pokazuju poluvodički karakter s procjepima

od 1.31 eV i 0.06 eV. Isključivo p-orbitale pridonose najvišim stanjima valentne vrpce i

najnižim stanjima vodljive vrpce. Sve α strukture pokazuju metalni karakter. Rezultati

se kvalitativno slažu s prijašnjim istraživanjima. Optička svojstva pokazuju anizotropnost

ovisno o polarizaciji upadnog elektromagnetskog značenja, karakterističnu dvodimenzion-

alnim materijalima. Optička svojstva α-In i α-Al pokazuju aktivnost u optičkom dijelu

spektra, poput većeg postotka refleksije nego slični dvodimenzionalni materijali. Elastična

svojstva su slična ostalim dvodimenzionalnim materijalima, uz to da α-Sb pokazuje iz-

vanredno visok Poissonov omjer, dok α-In niži nego ostali materijali. Razlike dolaze od

različite karakteristike vezanja i jakosti vezanja. U slučaju α-In radi se o vezi kovalentnije

prirode i slabije jakosti, dok kod α-Sb veza je više metalnog karaktera (Slika 5.7).
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Zaključak

Rezultati ove disertacije proširili su bazu poznatih dvodimenzionalnih materijala i pred-

vidjeli su eksperimentalne uvjete potrebne za njihovu sintezu - vrsta i simetrija korištenog

supstrata, potrebna deformacija da bi se ostvarila stabilna dinamika kristalne rešetke i

odgovarajuća temperatura na kojoj bi se mogla vršiti sinteza. Korištena je nova metoda

deformacije kristalne rešetke kako bi istražili dinamičku stabilnost kristalne rešetke. Ispi-

tana su strukturna svojstva i dana je karakterizacija novih potencijalnih dvodimenzion-

alnih struktura antimona, indija i aluminija. Za proširenje rezultata ove disertacije,

potrebno je istražiti dodatne supstrate radi šireg izbora pri eksperimentalnoj sintezi, a

njihove karakteristike bi se trebale ispitati nekima od kompleksnijih aproksimacija teorije

funckionala gustoće. Iako rezultati istraživanja daju nadu u eksperimentalnu sintezu ovih

materijala, treba spomenuti njihovu tendenciju da oksidiraju u atmosferi. Za njihovu

eventualnu primjenu, potrebno je istražiti načine njihove zaštite. Također, proučavanje

niskodimenzionalnih oksida ovih elemenata je možda ključan korak u budućem istraži-

vanju i njihovoj primjeni.
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Introduction

New science and technology are the driving forces for the progress of human race. This is

almost not to be contested, it seems logical enough - we can see the mankind’s progress

all around us and the world is much more different than, for example, one hundred years

ago - mostly due to the breakthroughs in science and new technologies that follow from it.

Since the dawn of the human race, new materials were what gave us the advantage over

our competitors and against the force of nature. As a grim example, one could mention

the introduction of iron smelting was what gave the figurative and literal edge to new

civilizations, or, as newer, more positive example, the new materials for semiconductors

that improve IT technology or new materials for solar cells that improve our capabilities

of harvesting the almost infinite energy of the Sun.

The requirements of the modern world for new materials for potential applications are

lower manufacturing costs, smaller dimensions (the everlasting need for miniaturization)

and improved properties. So, the research should be focused to at least improve some

of the, if not all the requirements. In the last 15 years, a new field of materials has

developed - the field of low-dimensional materials - whose at least one dimension is degrees

of magnitude smaller that the others. A subfield of low-dimensional materials are two-

dimensional materials, whose third dimension is suppressed and consists of only a few

layers or even one layer of atoms. Two-dimensional materials fulfil the first two conditions

in a natural way. The smaller dimensions are obvious and lower manufacturing costs also,

at least in the amount of raw material needed for their production. The third condition,

improved properties, can be accounted for by modifying their structure with state-of-the-

art theoretical and experimental procedures, if they do not possess them outright.

Since the first experimental realisation of single sheet of carbon atoms - graphene - two-

dimensional materials have been subject to numerous scientific research, both theoretical

and experimental. Two-dimensional materials present a door to interesting new physics,

1



but also have immense application potential.

Graphene was first obtained by Geim and Novoselov[1] in 2004 from graphite, with a

simple method called micromechanical cleavage. Since then, new methods for obtaining

graphene were developed, such as chemical vapour deposition (CVD), thermal decom-

position of compounds, etc. Mechanical cleavage, however, remains one of the primary

methods of obtaining high-quality graphene crystals. Graphene is know for its honeycomb

lattice, in which every carbon atom is bound with three others. Since carbon contains

four valence electrons, it undergoes sp2 hybridization to form strong σ in-plane bonds be-

tween them, while out-of-plane they are bound with weak π bonds. Graphene is a zero-gap

semiconductor, with valence and conducting bands meeting at the K-point of the Brilloun

zone. But, due to its unique linear dispersion around it, forming the so-called Dirac cones,

the charge carriers have high velocities, on the order of 106 m/s [2]. Experimental mea-

surements give many excellent properties of graphene, such as room-temperature electron

mobility of 2.5×105 cm2V−1s−1[3], Young’s modulus of 1 TPa [4] and a very high thermal

conductivity [5]. However, its zero-gap characteristics are a problem for applications in

electronic devices.

Also belonging to the field of high-researched two-dimensional materials are transition

metal dichalcogenides (TMDs), whose monolayer consists of a transitional metal atom

(Mo, W, Pd etc.) layer sandwiched between two layers of chalcogen atoms (S, Se, Te).

These monolayers are direct-gap semiconductors, and they can be used in transistors.

Like graphene, they can be obtained by mechanical exfoliation from their bulk form, but

they can also be obtained by other, chemical methods. They have direct band gap, strong

spin-orbit coupling and applicable electronic and mechanic properties [6].

Due to the same valence configuration as carbon, other Group IV elements can pos-

sess allotropes in analogue to carbon. Silicon, germanium and tin two-dimensional al-

lotropes, called silicene, germanene and stanene, have been predicted and synthesized[7–

9]. Two-dimensional allotropes of other elements have also been found, like borophene[10],

phosphorene[11] and antimonene[12].

Although various two-dimensional allotropes and materials have been predicted and

acquired in the experiment, there is still much room for growth, given the still relatively

new nature of the field and no material with ideal properties. Hence, there is place for new

materials and their potential application. Inside this thesis, we focus on two dimensional
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allotropes of antimony, indium and aluminium.

Two-dimensional antimony allotropes have already been experimentally acquired [13–

16] and there has been research studying its electronic, optical and mechanical properties

[17–19]. However, what remains unclear is what governs the antimonene synthesis and the

prefered allotrope acquired, which we try to inspect in this thesis. Also, antimonene has

showed remarkable stability in air, which promises potential use in every day situations.

Although boron two-dimensional allotropes have been found, the experimental real-

ization still remains sparse [20]. Other elements of the boron group - aluminium and

indium - have not been researched in great detail. Some theoretical studies exist and

we will be drawing upon them in the remainder of this thesis, however, no conclusive

results have been published on aluminium and indium two-dimensional allotropes. The

basic motivation to study these two elements comes from the facts that aluminium is

the most abundant metal in the Earth’s crust. It is low cost, has recyclable nature

and has lightweight characteristics, while indium is widely used in different alloys, semi-

conducting materials and coatings, promising wide potential use of devices based on its

two-dimensional allotropes.

The hypothesis of this thesis is that among the so far unconsidered elements of Group

IIIA and VA, stable allotropic modifications of monolayer structures can be found. These

structures should have elastic, electronic and optical properties which surpass or com-

plement the properties of known monolayer materials. The studied materials are to be

connected with applications in the electronic and optical industry through the insights

into the ability to experimentally synthesize the studied structures. This thesis will ex-

pand on the knowledge of known monoelement two-dimensional structures which provides

possibilities on their application in novel devices at the nanoscale.

In this thesis, using density functional theory (DFT) we focus on structural properties

of antimony, indium and aluminium two-dimensional allotropes, their behaviour under

strain and their structure on substrates, as well as their characteristics of identified al-

lotropes. Density functional theory has been extensively used as an ab initio theoretical

method for prediction of stable two-dimensional structures and verification of experimen-

tal results. However, as with any theoretical approach which uses approximations, one

should be careful proceeding with results acquired, as they depend on the level of theory

and pseudopotentials used.
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Chapter 1

Theoretical background

1.1 Born-Oppenheimer approximation

We are presented with a system of nuclei and electrons in some arrangement. What we

would like to do is find the states and energies of the given system. The Hamiltonian is

given by
Ĥ =− ~2

2me

∑
i

∇2
i −

1
4πε0

∑
i,I

ZIe
2

|ri −RI |
+ 1

8πε0

∑
i 6=j

e2

|ri − rj|

− ~2

2MI

∑
I

∇2
I + 1

8πε0

∑
I 6=J

ZIZJe
2

|RI −RJ |
,

(1.1)

where electrones and nuclei are denoted by uncapitalized and capitalized subscripts, re-

spectively. The first and the fourth terms are the kinetic energies of electrons and nuclei,

respectively, second is the Coulomb interaction between the electrons and the nuclei and

the remaining two terms are the Coulomb electron-electron and nuclei-nuclei interaction.

The wavefunction of the system is given by the stationary Schrödinger’s equation:

Ĥψ = Eψ , (1.2)

which is, but for the simplest of cases, unsolvable. From here on out, we will be using

Hartree atomic units where ~ = e = me = 4πε0 = 1.

As the mass of the nuclei is orders of magnitude larger than the mass of the electrons,

nucleonic motion, from the electron point of view, appears frozen. With that in mind, in

(1.1), the kinetic energy of the nuclei,

T̂N = 1
2MI

∑
I

∇2
I , (1.3)
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1.1. Born-Oppenheimer approximation

can be considered "small" relative to the other terms, so we can treat it as an perturbation:

Ĥ = Ĥe,n + T̂n . (1.4)

The unperturbed part, Ĥe,n, only depends on RI (the position of the nuclei) parametri-

cally. Ignoring the kinetic nuclear part, hamiltonian for electrons of the starting system

is:

Ĥ = T̂ + V̂ee + V̂en + Enn , (1.5)

where T̂ is kinetic energy operator of the electrons

T̂ = 1
2
∑
i

∇2
i , (1.6)

V̂ee is the electron-electron interaction

V̂ee = 1
2
∑
i 6=j

1
|ri − rj|

, (1.7)

V̂en is the electron-nuclei interaction, which in the exact case is the Coulumb interaction,

but also can be expressed as a fixed potential acting on the electrons of the system

V̂en =
∑
i,I

VI(|ri −RI |) , (1.8)

and Enn is the nuclei-nuclei interaction that only contributes to the total energy of the

system but does not influence our quantum mechanical description of the electrons. For

the purpose of finding the solution to (1.2) it can be neglected and added later.

We are left with a form of hamiltonian that is called the electronic hamiltonian:

Ĥe = T̂ + V̂ee + V̂en . (1.9)

Its solution gives us the electronic wavefunctions ψe which are functions of electronic

coordinates ri, but are parametrically dependent on the positions of the nuclei RI -

meaning that changing the coordinates of the nuclei changes the form of ψe. Inserting

(1.9) into (1.2) instead of full Ĥ

Ĥeψe = Eeψe (1.10)

gives us the electronic energy - Ee - in some outer potential V̂en due to the nuclei. Adding

back the Enn, we acquire the total energy of the system

Etot = Ee + Enn (1.11)
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1.1. Born-Oppenheimer approximation

for a given set of nuclei positions RI .

Now we go back to the full hamiltonian of the system, (1.1). Looking at electronic

motion from the nuclei point of view, it is orders of magnitude greater that nucleonic

motion. What nuclei "see" is the average of the electronic motion and it is reasonable

to replace all the electronic contributions in (1.1) by their average over the electronic

wavefuntion ψe

Ĥ =〈−1
2
∑
i

∇2
i −

∑
i,I

ZI
|ri −RI |

+ 1
2
∑
i 6=j

1
|ri − rj|

〉

− 1
2MI

∑
I

∇2
I + 1

2
∑
I 6=J

ZIZJ
|RI −RJ |

, (1.12)

which is nothing other that electronic energy Ee and together with the last term (which

produces Enn)

Ĥ = − 1
2MI

∑
I

∇2
I + Ee + Enn , (1.13)

we acquire the hamiltonian for the nucleonic motion

Ĥ = − 1
2MI

∑
I

∇2
I + Etot(RI) , (1.14)

where we have written dependence of the Etot on RI explicitly. (1.14) gives us the motion

of the nuclei in a potential formed by solving the electronic motion.

Molecular dynamics

If we treat the problem of nucleonic motion classically, we can write

MI
∂2RI

∂t2
= FI(R) = − ∂

∂RI

E(R) . (1.15)

To acquire the motion of nuclei, we can use a numerical solution to the above equation

using discrete time steps, such as the Verlet algorithm or any other type numerical solution

to a differential equation. Using the Verlet algorithm, positions of nuclei at the next time

instance, t+ ∆t (where ∆t is the time step) depend on the forces in the present time step

RI(t+ ∆t) = 2RI(t) +RI(t−∆t) + (∆t)2

MI

FI{RI(t)} . (1.16)

In the above equation, the second derivative with respect to time was replaced with an

approximation

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)
h2 . (1.17)
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1.2. Crystal structure

The correct forces on nuclei are determined by the electronic motion and nucleonic po-

sitions, so correct solution to electronic motion is necessary for obtaining the correct

nucleonic motion.

What was presented here was qualitative description of finding a solution for a given

system of atoms. There are different ways of finding the solution to electronic problem

and consequently the full state of the system, but the one that will be used in the scope

of this thesis is the density functional theory (DFT).

1.2 Crystal structure

The crystal structure is determined by a primitive cell, together with positions of atoms

inside of it, called the basis, and a set of translations that produce the periodicity. The

set of all translations forms a lattice in space (Bravais lattice) and any translation can be

written as integral multiples of the primitive cell vectors a1, a2, ...

T(n1, n2, ...) = n1a1 + n2a2 + ... . (1.18)

With each lattice there is an associated reciprocal lattice, defined (in 3D) as

bi = 2π aj × ak

|ai(aj × ak)| , (1.19)

where i, j, k are cyclical permutations of coordinates. Primitive cell in reciprocal space is

called the first Brillouin zone. For a crystal that possesses translational symmetry, the

Bloch theorem allows for eigenstates of translation operators to differ from one cell to

another only by a phase factor

Tψ(r) = eik·Tψ(r) , (1.20)

where k is any wavevector inside the Brillouin zone. Applying it to Schrődinger’s equation

for a system with a periodic Hamiltonian, like a crystal, we can further use the Bloch

theorem to write

ψk(r) = eik·r uk(r) , (1.21)

where uk is a periodic function with the same periodicity as the crystal.

For a large enough volume, i.e. macroscopic crystal, k values become continuous. The

Hamiltonian is defined for each k and by solving it we get discrete eigenstates

ψi,k(r) = eik·r ui,k(r) , (1.22)
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1.2. Crystal structure

with eigenvalues εi,k. The eigenvalues εi,k form what is called energy bands - with possi-

bility that there exists a range of energies that have no associated states, for any k, called

energy gaps.

For certain properties of the crystal, like total energy, a sum over all k states is needed.

For a general function fi(k), where i is a set of discrete states at a certain k the average

value per cell is

f i = 1
Nk

∑
k
fi(k) , (1.23)

where Nk is the number of k values. With Nk going to infinity, the sum becomes an

integral of the form

f i = 1
ΩBZ

∫
BZ

dk fi(k) , (1.24)

where ΩBZ is the volume of the Brillouin zone. In practice we choose a discrete set of

points for the approximation of this integral. A general method proposed by Monkhorst

and Pack gives a uniform set of points given by [21]

kn1,n2,n3 =
3∑
i

2ni −Ni − 1
2Ni

bi . (1.25)

A grid defined as above has useful properties, such as being offset from the points k = 0

and, if chosen to be even, omits the high-symmetry points.

1.2.1 Structural optimization

In a periodic crystal, the optimized structure is given by the vectors of the unit cell

and positions of the atoms inside it. The equation (1.14) gives us the Hamiltonian for

nucleonic motion. By finding the minima of the potential surface we obtain the optimized

structure of the system. From the Hellman-Feynman theorem [22], forces on the nuclei

can be obtained by

FI = − ∂E

∂RI

, (1.26)

where E is the total energy and RI are the positions of the nuclei. By finding a configura-

tion where the forces on atoms are zero, we in principle arrive at the optimized structure.

Since this is a calculation problem in parameter space of {RI} (3N variables), specialized

algorithms are used for structure optimizations. In this thesis, we have used the BFGS

algorithm developed by Broyden, Fletcher, Goldfarb and Shanno [23] implemented inside

the used computer code.
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1.3. Density functional theory (DFT)

1.3 Density functional theory (DFT)

The usual method of dealing with quantum mechanical problems is solving the Schröd-

inger’s equation for some potential V̂ and acquiring wavefunctions ψn of the system as

the eigenfunctions of the hamiltonian. If our problem dealt with a system of electrons,

for example like in (1.9), hamiltonian depends on electron coordinates, ri, the number of

which is 3N , where N is the number of electrons. From that set of eigenfunctions, the

one with the lowest energy is the ground state ψ0(ri) and using it, we can find different

properties of the system, including the ground state density n0(r).

What density functional theory proposes is solving the problem in terms of electron

density n(r), and reducing the number of variables from 3N to only 3.

1.3.1 The Hohenberg-Kohn theorems

The Honenberg-Kohn theorems deal with many-body interacting systems, such as the one

from 1.9. We can write hamiltonian of such a system in general as

Ĥ = −1
2
∑
i

∇2
i −

∑
i

Vext(ri) + 1
2
∑
i 6=j

1
|ri − rj|

, (1.27)

where Vext is some kind of external potential acting on the electrons of the system. The-

orems are stated as follows[24]:

Theorem I - For any system of interacting particles in an external potential Vext(r),

the Vext(r) is determined uniquely, except for a constant, by the ground state particle

density n0(r).

Theorem II - A universal functional for the energy E[n] in terms of the density n(r)

can be defined, valid for any external potential Vext(r). For any particular Vext(r), the

exact ground state energy of the system is the global minimum value of this functional,

and the density n(r) that minimizes the functional is the exact ground state density n0(r).

The proof to both is simple and can be found in original paper by Honenberg and Kohn

[25]. What follows from the theorems is that since the ground state density n0(r) deter-

mines the external potential Vext(r), the hamiltonian of the system is also determined,
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1.3. Density functional theory (DFT)

and from hamiltonian all of the wavefunctions follow, meaning that ground state density

n0(r) also determines all the properties of the system. Also, the functional E[n] is enough

to determine the ground state density n0(r) of the system. The total energy functional is

given by

E[n] = T [n] + Eint[n] +
∫

d3r Vext(r)n(r) + Enn (1.28)

and finding it’s minimum in respect to density n(r) gives us the ground state density

n0(r).

1.3.2 Kohn-Sham approach

In principle, (1.28) gives us a way to find the ground state density n0(r) of the system.

What it does not answer is how we extract any meaningful information from it - like

we could from the wavefunction of the system. Also, multi-body interacting systems

are difficult to solve. To deal with this problem, we assume that there exists a non-

interacting system of particles with the same ground state density n0(r) as the starting

system - finding solution to such a system gives us the properties of the fully interacting

system because they share the same ground state density n0(r).

The energy functional (1.28) is rewritten as

EKS = −1
2
∑
i

〈ψi|∇2|ψi〉+
1
2

∫
d3rd3r′

n(r)n(r′)
|r− r′|

+
∫

d3rVext(r)n(r)+Enn+Exc[n] , (1.29)

with

n(r) =
∑
i

|ψi(r)|2 , (1.30)

where ψi are the wavefunctions of the non-interacting electrons.

In (1.29) the first term is the kinetic energy of non-interacting electrons Ts[n], second

term is the Coulumb interaction of the density with itself (called Hartree energy). The

third term is the energy of electrons in the potential of the nuclei and the fourth is the

energy of the nuclei-nuclei interaction. The fifth term is called the exchange-correlation

energy, incorporating both Hartree-Fock exchange of electrons with the same spin, as

well as correlated motion of electrons due to Pauli exclusion principle[26]. Finding the

minimum of the new energy functional brings us to Schrődinger-like set of equations for

ψi called Kohn-Sham[27] equations:

HKS ψi = εiψi , (1.31)
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1.3. Density functional theory (DFT)

where HKS is the effective hamiltonian of the electrons

HKS = −1
2∇

2 + Vext(r) + VHartree(r) + Vxc(r) . (1.32)

All the terms in (1.32) are well defined except the final - Vxc(r) - and quality of our

solution to Kohn-Sham equations will depend on the right description or approximation

of the exchange-correlation effects.

1.3.3 Approximations for the exchange-correlation functional

Local-density approximation (LDA)

We get the simplest form for exchange-correlation effects by making an assumption that

it only depends on the density at a certain point (local density). Writing

ELDA
xc [n] =

∫
d3r εxc(n) n(r) , (1.33)

where εxc is the exchange-correlation energy per particle, we get the exchange-correlation

energy depending only on the form of εxc. The local dependence can be written in many

ways, but for LDA it is usually taken as the exchange-correlation energy per particle of

homogeneous electron gas - εHEGxc - which can be separated into independent terms for

exchange and correlation:

εHEGxc = εe + εc . (1.34)

Exchange energy per particle for homogeneous electron gas is know explicitly, and given

with

εx = − 3
4π

(9π
4

)1/3
r−1
s , (1.35)

where rs is parameter describing the density of the system, given as a radius of the sphere

containing a single electron
4π
3 r3

s = 1
n
. (1.36)

Correlation energy can only be given approximately [Ref].

Generalized gradient approximations - GGA

Further step in improving our approximation is including the dependence of the exchange-

correlation energy on the changes in the density at a certain point - it’s gradient:

EGGA
xc [n] =

∫
d3r εxc(n, ~∇n) n(r) (1.37)
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1.3. Density functional theory (DFT)

with

εxc = εHEGx Fxc , (1.38)

where Fxc is dimensionless function of the density gradient. The form of this function

is not given exactly and depends on the type of the generalized gradient approximation

used, like PW91[28] or PBE[29].

Further improvements of XC approximations

For materials with localized and strongly interacting electrons, often an additional orbital-

dependant interaction term is introduced, with the form same as the Hubbard model [30].

Such approach is called "DFT+U" and it improves on the the results of LDA and GGA

calculations (such as the band gap of materials) of strongly correlated systems such as

transition metal oxides.

Although not used in the research present in this thesis, there are further ways to

enhance the exchange-correlation energy functional. The next "logical step" could be

including dependence on higher gradients of density, going by the name of meta-GGA.

Also, combining DFT expression for the exchange-correlation with a term calculated

using Hartree-Fock theory produces the so-called "hybrid functionals", with the mixing of

different contributions depending on the type of functional used [31].

1.3.4 Solving Kohn-Sham equations

Now we approach the solving of Kohn-Sham equations
[
−1

2∇
2 + Veff (r)

]
ψi(r) = εiψi(r) (1.39)

with

Veff (r) = Vext(r) + VHartree(r) + Vxc(r) (1.40)

being the effective potential acting on the electrons. Assuming we choose Vxc(r), we start

by making an initial guess of the density of the system n(r). We calculate the effective

potential in the system, (1.40) and use it to solve the set of Kohn-Sham equations (1.39).

Once ψi are calculated, we calculate the electron density

n(r) =
∑
i

|ψi(r)|2 (1.41)
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1.3. Density functional theory (DFT)

and then check the self-consistency, i.e. test if the density differs from the initial guess

(to a chosen degree of precision). If the solution is not self-consistent, we take the output

density as our new initial guess and repeat the calculation. The loop is done until the

self-consistency is reached. Once we find a self-consistent solution, one can proceed to

calculating physical quantities of the system. The algorithm is shown in Fig. 1.1.

Figure 1.1: Algorithm for iterative self-consistent solution to Kohn-Sham equations.

Taken from reference [32].

Plane wave basis

If we perform a Fourier transform of ui,k(r) from 1.22, we get

ui,k(r) =
∑
m

ci,m eiGm·r , (1.42)

where Gm are wavevectors in reciprocal space with integer number peridocity of the

crystal. Inserting it back to 1.22, we get

ψi,k(r) =
∑
m

ci,m ei(Gm+k)·r . (1.43)
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1.3. Density functional theory (DFT)

In principle, the sum in above equation is infinite, but for all practical purposes a cut-

off energy is chosen, such that the expansion in (1.43) satisfies some chosen degree of

precision.

1.3.5 Pseudopotentials

Broadly speaking, we can separate electrons in atoms into two categories - tightly bounded

inner electrons ("core") and outer, more loosely bounded electrons ("valence"). In general,

bonding of molecules or solids is done through the interactions between valence electrons.

Also, the true valence wavefunctions are extremely oscillatory near the core (having a

large amount of nodes), to ensure the orthogonality with core wavefunctions. To ensure

accurate enough expansion of wavefunctions, a lot of plane waves have to be included in

the basis (1.43), increasing the complexity of calculation.

Figure 1.2: Illustration of an all-electron wavefunction and potential (solid lines) and

pseudowavefunction and pseudopotential (dashed lines). Radius beyond which they match

is designated with rc. Taken from reference [32].

The aim of pseudopotentials is to simplify the electronic problem by dealing with both

issues - by only including the valence electrons and replacing their Coulomb interaction
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1.3. Density functional theory (DFT)

with the nucleus and inner electrons with an effective potential (the frozen core approx-

imation) while also "smoothing out" their form near the core. Pseudopotentials replace

the all-electron wavefunctions with pseudo-wavefunctions which match beyond some core

cutoff radius rc to ensure right kind of behaviour in the space between atoms where most

of bonding and physical properties take shape, while differing inside where the exact

physical description is not necessary (Fig. 1.2).

Details on the types of pseudopotentials used in our calculations are shown in Ap-

pendix A.

Norm-conserving pseudopotentials

Norm-conserving pseudopotentials are characterized by the norm-conserving condition

which demands that both the radial all-electron wavefunction and pseudo-wavefunction

integrate to the same amount of charge in the chosen core radius rc

Q =
∫ rc

0
dr r2|ψ(r)|2 =

∫ rc

0
dr r2|ψPS(r)|2 . (1.44)

Beyond the cutoff radius rc all-electron and pseudo valence wavefunctions have to match,

with their eigenvalues also being the same. Also, the logarithmic derivatives of all-electron

and pseudo wavefunctions have to agree at rc.

Ultrasoft pseudopotentials

Ultrasoft pseudopotentials relax the norm-conserving condition (1.44) by adding auxiliary

functions around ion cores which take into account the oscillatory character of all-electron

wavefunctions. This allows for increased smoothness of the pseudowavefunctions, reducing

the complexity of calculation, but increasing the accuracy to some extent.

1.3.6 Ab initio molecular dynamics

Within the Born-Oppenheimer approximation, also called the adiabatic approximation,

the electrons stay in their instantaneous ground state as the nuclei move. The total energy

of the system of electrons and nuclei, within the Kohn-Sham approach is

E[{ψi}, {RI}] = 2
N∑
i=1

∫
ψ∗i (r)

(
−1

2∇
2
)
ψi(r)dr + Ee[n] + Enn[{RI}] , (1.45)
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where

Ee[n] = 1
2

∫
drdr′

n(r)n(r′)
|r− r′|

+
∫

drVext(r)n(r) + Exc[n] . (1.46)

The forces on the nuclei are then obtained using the by Hellman-Feynman theorem, here

repeated as

FI = − ∂E

∂RI

. (1.47)

When forces on nuclei are know, the molecular dynamics (movement of nuclei) are solved

with (1.16) or a similar method for solving differential equations. We have used exactly

Verlet algorithm for nucleonic motion.

1.4 Density functional perturbation theory (DFPT)

1.4.1 Response function

If the strength of some small perturbation to the hamiltonian is described by the parameter

λ, we can expand the energy, potential or the wavefunctions of the system in term of λ,

i.e.

E = E(0) + λE(1) + λ2E(2) + ... , (1.48)

where

E(n) = 1
k!
dkE

dλk
. (1.49)

The first order corrections to the wavefunctions of the system are given by

∆Ψi =
∑
j 6=i

Ψj
〈Ψj|∆Ĥ|Ψi〉
Ei − Ej

. (1.50)

In the perturbation theory, a "2n+1" theorem is used, which states that if the wavefunction

is determined to all orders from 0 to n, the energy of the system to order 2n + 1 is

determined. Applying the perturbation theory to density functional theory, we can write

for the first order perturbation

∂E

∂λi
= ∂Enn

∂λi
+
∫ ∂Vext(r)

∂λi
n(r)dr (1.51)

and for the second order perturbation

∂2E

∂λi∂λj
= ∂2Enn
∂λi∂λj

+
∫ ∂2Vext(r)

∂λi∂λj
n(r)dr +

∫ n(r)
∂λi

∂Vext(r)
∂λi

dr . (1.52)
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1.4. Density functional perturbation theory (DFPT)

What we get is the response of the energy to the perturbation in the second order per-

turbation theory. The problematic term is the ∂n(r)/∂λi, representing the change of the

density with respect to the perturbation (to the first order). This is equivalent to knowing

the first order change of the wavefunctions to obtain the second order correction to the

energy. Using the chain rule, we can write the problematic third term in (1.52) as
∫ ∂Vext(r′)

∂λi

∂n(r)
∂Vext(r′)

∂Vext(r)
∂λj

drdr′ =
∫ ∂Vext(r′)

∂λi
χ(r, r′)∂Vext(r)

∂λj
drdr′ , (1.53)

where χ(r, r′) is the density response function. χ(r, r′) can be found using the relation

χ = χ0[1 +Kχ] , (1.54)

where χ0 is the response function, defined as

χ0
n(r, r′) = δn(r)

δVeff (r′
= 2

occ∑
i=1

empty∑
j

ψ∗i (r)ψj(r)ψ∗j (r′)ψi(r′)
εi − εj

, (1.55)

and K is the kernel defined as

K(r, r′) = 1
r− r′

−
δ2Exc[n]

δn(r)δn(r′) , (1.56)

which incorporates the Coulomb interaction and the exchange-correlation effects. χ can

also be found by using its relation with the inverse dielectric function

ε−1 = 1 + χ

|r− r′|
. (1.57)

Although the answer to the perturbation is given by finding the right form for the

density response function χ, the correct form is difficult to obtain except in the simplest

of cases, such as homogeneous electron gas. The response function χ0 and the inverse

dielectric function ε−1 are calculated using unoccupied states the system, of which there

could be an infinite number. In principle, we would sum over enough unoccupied states

until arbitrary convergence threshold is reached, which is often a problematic task.

1.4.2 DFPT

A simpler solution is given by applying the formalism of the perturbation theory to the

Kohn-Sham equations directly. The first order change in density is given by

∆n(r) = 2 Re
N∑
i=1

ψ∗i (r)∆ψi(r) . (1.58)
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1.4. Density functional perturbation theory (DFPT)

First order changes to the wavefunctions are given by

(HKS − εi)|∆ψi〉 = −(∆VKS −∆εi|ψi〉 , (1.59)

where ∆εi = 〈ψi|∆VKS|ψi〉 and

∆VKS(r) = ∆Vext(r) +
∫

d(r′)K(r, r′)∆n(r) (1.60)

with K(r, r′) defined in (1.56). This approach simplifies the problem of finding corrections

to the wavefunctions, given in (1.59), by taking into account that only the unoccupied

states contribute to the first-order corrections while the contributions from occupied states

cancel out in pairs. By projecting the right-hand side of (1.59) to the unoccupied states,

we get

(HKS − εi)|∆ψi〉 = −P̂unocc(∆VKS|ψi〉 , (1.61)

where

P̂unocc = 1− P̂occ = 1−
N∑
i=1
|ψi〉〈ψi| . (1.62)

By solving the above equation for the corrections, with ∆VKS given in terms of ∆n(r),

which are itself given by ∆ψi, we get a self-consistent method of finding the perturba-

tion on the system. Unlike the general approach of the response function, which gives

the answer to all possible perturbations, application of DFPT depends on the type of

perturbation.

1.4.3 Phonons

Expanding the energy of the system (1.15) in powers of displacements, the first order

derivatives are nothing else than equilibrium condition of the nuclei, i.e. the set of equa-

tions (1.47) equal to zero, and the higher derivatives describe the zero-point, thermal or

perturbed motion of the nuclei

CI,α;J,β = ∂2E(R)
∂RI,α ∂RJ,β

, CI,α;J,β;K,γ = ∂3E(R)
∂RI,α ∂RJ,β ∂RK,γ

, ... , (1.63)

where C’s are the quantities called force constants, and α, β, ... are cartesian coordinates.

Using the harmonic approximation, vibrational modes of frequency ω are given by

uI(t) = RI(t)−R0
I = uIeiωt . (1.64)

18



1.4. Density functional perturbation theory (DFPT)

Inserting the above equation into 1.15 we get an equation

−ω2MIuIα = −
∑
J,β

CI,α;J,β uJβ , (1.65)

whose solution is given by setting the determinant of the system to zero

det
∣∣∣∣∣ 1√
MIMJ

CI,α;J,β − ω2
∣∣∣∣∣ = 0 . (1.66)

In a crystal structure, where atomic displacement eigenvectors also obey the Bloch the-

orem, the above equation decouples for different k with frequencies ωi,k, where i =

1, ..., 3Nn:

det
∣∣∣∣∣ 1√
MsMs′

Cs,α;s′,α′ − ω2
i,k

∣∣∣∣∣ = 0 . (1.67)

These atomic oscillations in a lattice are called phonons. The set of all ωk for a given i

is called a phonon mode, of which 3 behave as ω → 0 as k → 0 and are called acoustic

modes, while the rest are called optic modes. As ωi,k are frequencies of oscillation they

have to be real. If somehow one acquires imaginary frequencies, this result is non-physical

and could indicate instability in the lattice dynamics.

Applying the DFPT for finding the phonon dispersions of a crystal, one would calculate

the energy of the system under the perturbation, in this case a phonon of wavevector k

and then expand the energy in the second order:

E = E0 + 1
2
∑
I,α

∑
J,β

CI,α;J,β uI,αuJ,β , (1.68)

where CI,α;J,β are the force constants defined in (1.63) and uI,α, uJ,β are the displacements

of the atoms. First order of the expansion is ignored, as it is zero in the energy minimum.

Force on a particular atom is then

FI,α = −
∑
J,β

CI,α;J,β uJ,β (1.69)

and the Fourier transform of CI,α;J,β, the dynamical matrix DI,α;J,β, gives us the phonon

dispersions by finding it’s eigenvalues for a particular wavevector k and phonon mode i
∑
J,β

DI,α;J,β εi,k = ω2
i,kεi,k . (1.70)

1.4.4 Elastic properties

The stress tensor σαβ for a particular structure is given by

σαβ = − 1
Ω
∂Etot
∂ uαβ

, (1.71)
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1.5. Dielectric function

where uαβ is the strain tensor defined as

uαβ = 1
2

(
∂uα
∂rβ

+ ∂uβ
∂rα

)
, (1.72)

with u’s being the displacements. Elastic properties are described by stress strain rela-

tions, with elastic constant, to linear order, given as

Cαβ;γδ = 1
Ω

∂2Etot
∂ uαβuγδ

= − ∂σαβ
∂ uγδ

. (1.73)

For a two-dimensional structure of square, rectangular or hexagonal symmetry, non-zero

elastic constants are C11, C22, C12, C66[33], where 1, 2, 6 are shorter notations for double

indices xx, yy and xy, respectively. Hexagonal structures also have an additional relation

which gives C66 as

C66 = 1
2(C11 − C12) . (1.74)

The in-plane stiffness (2D Young’s moduli) in [10] and [01] directions[33] are given by

Y[10] = C11C22 − C2
12

C22
, Y[01] = C11C22 − C2

12
C11

, (1.75)

with Poisson’s ratios

ν[10] = C12

C22
, ν[01] = C12

C11
(1.76)

which for hexagonal structures simplify to

Y = C11(1− ν2) , ν = C12

C11
(1.77)

as C11 = C22.

Treatment of strain in DFPT is given, in great detail, by Hamman, Wu, Rabe and

Vanderbilt in [34]. Strain is treated as a perturbation only trough the metric tensor, and

as such the elastic properties can be acquired trough DFPT with the same treatment as

other types of perturbation.

1.5 Dielectric function

The imaginary part of the complex dielectric function ε2
α,β(ω), when treated within the

adiabatic perturbation theory, can be viewed as a response function

ε2
α,β(ω) = 1 + 4πe2

ωm2

∑
n,n′

∑
k

M̂α,β

(Ek,n′ − Ek,n)2 ...

...

{
f(Ek,n)

Ek,n′ − Ek,n + ~ω + i~Γ + f(Ek,n)
Ek,n′ − Ek,n − ~ω − i~Γ

}
,

(1.78)
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1.6. Computer codes

where Γ is the adiabatic parameter, Ek,n are the energy eigenvalues, f(Ek,n) is the Fermi

distribution indicating the occupation of bands and M̂α,β are the matrix elements

M̂α,β = 〈uk,n′|p̂α|uk,n〉〈uk,n|p̂β|uk,n′〉 , (1.79)

with n and n′ being occupied and unoccupied bands respectively. uk,n′ are the periodic

parts of the Bloch wavefunctions which are further expanded in a plane wave basis set. The

real part of the dielectric function can be obtained through Kramers-Kroning relations:

ε1
α,β(ω) = 1 + 2

π

∫ ∞
0

ω′ε2
α,β(ω′)

ω′2 − ω2 dω′ (1.80)

Dielectric function defined as in (1.78) does not take into account the non-local contri-

butions to the Hamiltonian, meaning that the kernel K used in derivation of a response

function (1.56) has the exchange-correlation energy set to zero. This is called the "random

phase approximation". Once the dielectric tensor is obtained, one can proceed to calculate

the various optical spectra[35], like the absorption spectrum

α(ω) =
√

2ω
√
|ε(ω)| − ε1(ω) , (1.81)

refractive index

n(ω) =
√
|ε(ω)|+ ε1(ω)

2 , (1.82)

extinction coefficient

k(ω) =
√
|ε(ω)| − ε1(ω)

2 , (1.83)

reflection spectrum

R(ω) = [n(ω)− 1]2 + k2(ω)
[n(ω) + 1]2 + k2(ω) (1.84)

and energy loss spectrum

L(ω) = ε2(ω)
(ε1(ω))2 + (ε2(ω))2 . (1.85)

1.6 Computer codes

Throughout this thesis, we have used the theoretical framework of density functional

theory implemented inside two software packages. A major feature of both is that they

are Open-Source and free to use software.
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1.6. Computer codes

1.6.1 Quantum ESPRESSO

Quantum ESPRESSO[36] is an integrated suite of Open-Source computer codes for electronic-

structure calculations and materials modeling at the nanoscale, based on density func-

tional theory, pseudopotentials and plane waves. It is an open collaboration, available to

everyone, coordinated by the Quantum ESPRESSO Foundation. It includes a set of com-

ponents, each designed for a different part of density functional theory. Some capabilities

of Quantum ESPRESSO include the ground-state calculations, structural optimization

and molecular dynamics, response properties by the DFPT and more. On their official

web pages, a database of pseudopotentials that were used in published scientific work is

readily available for download. Majority of work carried out in this thesis was done in

Quantum ESPRESSO.

1.6.2 ABINIT

ABINIT[37] is a software package whose main code allows, using DFT, calculations of

total energy, charge density and electronic structure system composed from electrons and

nuclei. ABINIT uses pseudopotentials or projector augmented wave (PAW) atomic data

and planewave basis. Using DFPT, ABINIT can calculate the response functions such as

phonons, effective charges and similar. ABINIT is distributed under the GNU General

Public License.
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Chapter 2

Two-dimensional crystal structures

We have chosen the planar honeycomb, buckled honeycomb, planar triangular and puck-

ered structures in analogy with other monoelemental two-dimensional materials, as we

expect possible structures of proposed elements will the other elements due to similar

valence electron structure. Graphene[38], borophene[10], silicine[7], germanene[9] and

phosphorene[39] are materials we base our possible structures of antimony, indium and

aluminium on.

2.1 Description of crystal lattices

2.1.1 Planar honeycomb

Planar honeycomb structure is chosen in analogue to graphene. Planar honeycomb crystal

structure is of hexagonal symmetry (R3m), with Bravais lattice containing two atoms in a

lattice basis. Throughout this thesis, we will use shorthand α to refer to planar honeycomb

structure. We can choose the unit cell vectors as

a1 = a (1, 0, 0)

a2 = a

(
−1

2 ,
√

3
2 , 0

)

a3 = c (0, 0, 1) ,

(2.1)

where a is the lattice constant (Fig. 2.1) and c is the height of the unit cell. Height c is

necessary for the definition of the simulation unit cell, despite the two-dimensional nature

of the planar structure. In practice, it is chosen to be large enough to act as a vacuum
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2.1. Description of crystal lattices

above the plane where atoms are placed, and eliminate the interaction between periodic

images of the crystal. Each atom has three equidistant neighbours, with distance given

by d = a/
√

3. The angle between bonds is 120◦. The unit cell used in computations is

shown in Fig. 2.1 as the shaded rhombus. The chosen reduced coordinates of the atoms

in the cell are
Atom 1 :

(1
3 ,

2
3 , 0

)
Atom 2 :

(2
3 ,

1
3 , 0

)
.

(2.2)

(a) (b)

Figure 2.1: (a) top and (b) side view of α-structure, with in-plane unit cell vectors a1 and

a2, and bond angle α. Unit cell is shaded gray. Numbers denote atomic positions from

2.2.

The reciprocal lattice vectors are given by

b1 = 2π
a

(
1, 1√

3
, 0
)

b2 = 2π
a

(
−1

2 ,
2√
3
, 0
)

b3 = 2π
c

(0, 0, 1) .

(2.3)

The first Brillouin zone with its in-plane high symmetry points is shown in the Fig.2.2.
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2.1. Description of crystal lattices

Figure 2.2: The first Brillouin zone of hexagonal unit cell and its high symmetry points.

2.1.2 Buckled honeycomb

Buckled honeycomb structure is chosen in analogue to silicene and germanene. Buckled

honeycomb crystal structure is of hexagonal symmetry (R3m), with Bravais lattice con-

taining two atoms in a basis. Throughout this thesis, we will use shorthand β to refer to

buckled honeycomb structure.We can choose the unit cell vectors again as

a1 = a (1, 0, 0)

a2 = a

(
−1

2 ,
√

3
2 , 0

)

a3 = c (0, 0, 1) ,

(2.4)

where a is the lattice constant (Fig. 2.3) and c is the height of the simulation unit cell.

In the buckled structure, one atom in the basis is found at height h above the lattice

plane, also called interlayer distance, thus creating two triangular sublattices. Each atom

has three equidistant neighbours with the same angle between bond α. The unit cell

used in computations is shown in Fig. 2.3 as the shaded rhombus. The chosen reduced

coordinates of the atoms in the cell are

Atom 1 :
(1

3 ,
2
3 , 0

)
Atom 2 :

(
2
3 ,

1
3 ,
h

c

)
.

(2.5)
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2.1. Description of crystal lattices

(a) (b)

Figure 2.3: (a) top and (b) side view of β-structure, with in-plane unit cell vectors a1

and a2. Two sublattices are designated with different colors. Bottom sublattice atoms are

coloured yellow, while top sublattice atoms are coloured blue. Bond length is designated

as R and the angle between bonds is designated as α. Unit cell is shaded gray. Numbers

denote atom positions from 2.5.

The reciprocal lattice vectors are given by

b1 = 2π
a

(
1, 1√

3
, 0
)

b2 = 2π
a

(
−1

2 ,
2√
3
, 0
)

b3 = 2π
c

(0, 0, 1) .

(2.6)

The first Brillouin zone with its in-plane high symmetry points is shown in Fig. 2.2.

2.1.3 Planar triangular

Planar triangular structure is chosen in analogue to borophene. Planar triangular crystal

structure is of hexagonal symmetry (R3m), with Bravais lattice containing one atom in

a basis. Throughout this thesis, we will use shorthand γ to refer to planar triangular

structure. We can choose the unit cell vectors in the same manner as for the honeycomb

structure
a1 = a (1, 0, 0)

a2 = a

(
−1

2 ,
√

3
2 , 0

)

a3 = c (0, 0, 1) ,

(2.7)
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2.1. Description of crystal lattices

where a is the lattice constant (Fig. 2.4), and height c is used in the same manner as in

the case of α-structure. Each atom has six equidistant neighbours with the distance given

by d = a. The angle between bonds is 60◦. The unit cell used in computations is shown

in Fig. 2.4 as the shaded rhombus. The chosen reduced coordinates of the atom in the

cell is

Atom 1 :
(1

2 ,
1
2 , 0

)
(2.8)

Figure 2.4: Top view of γ-structure, with in-plane unit cell vectors a1 and a2, and bond

angle α. Unit cell is shaded gray. Numbers denote atom positions from 2.8.

The reciprocal lattice vectors are given by

b1 = 2π
a

(
1, 1√

3
, 0
)

b2 = 2π
a

(
−1

2 ,
2√
3
, 0
)

b3 = 2π
c

(0, 0, 1) .

(2.9)

The first Brillouin zone with its in-plane high symmetry points is shown in the Fig. 2.2.

2.1.4 Puckered

Puckered structure is chosen in analogue to phosphorene. Puckered structure is of or-

thorhombic symmetry (Cmca), with Bravais lattice containing four atoms in a basis.

Throughout this thesis, we will use shorthand δ to refer to puckered structure. Unit cell
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2.1. Description of crystal lattices

vectors are given as
a1 = a (1, 0, 0)

a2 = b (0, 1, 0)

a3 = c (0, 0, 1) ,

(2.10)

with a, b being the in-plane lattice parameters and c being the height of the simulation

unit cell. Puckered structure also has two distinct sublattices, one being at the height h

above the lattice plane. Each atom has 3 neighbours, with two distinct bond lengths R1

and R2, as shown in Fig. 2.5. The structure has two unique bond angles, α and β. The

unit cell used in computations is shown in Fig. 2.5 as the shaded rectangle. The chosen

reduced coordinates of the atoms in the unit cell are

Atom 1 : (0, 0, 0)

Atom 2 : (0.50, 0.35, 0)

Atom 3 : (0, 0.85, h/c)

Atom 4 : (0.50, 0.50, h/c) .

(2.11)

(a) (b)

Figure 2.5: (a) top and (b) side view of δ-structure, with in-plane unit cell vectors a1

and a2. Two sublattices are designated with different colors. Yellow colour is the bottom,

while blue is the top sublattice. Bonds are designated with R1 and R2, while bond angles

are designated as α and β. Unit cell is shaded gray. Numbers denote atom positions from

2.11.
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2.2. Results and discussion

The reciprocal lattice vectors are given by

b1 = 2π
a

(1, 0, 0)

b2 = 2π
b

(0, 1, 0)

b3 = 2π
c

(0, 0, 1) .

(2.12)

The first Brillouin one with its in-plane high symmetry points is shown in the Fig. 2.6.

Figure 2.6: The first Brillouin zone of orthorombic unit cell and its high symmetry points.

2.2 Results and discussion

2.2.1 Relaxed structures

Each of the three studied elements were initially put in the structures outlined above.

By analogy, if they were to form two-dimensional crystals, it was expected they would

form a structure similar to elements for which two-dimensional allotropes were already

synthesized. From here on out, we will refer to two-dimensional allotropes of antimony,

indium and aluminium using the usual convention for naming two-dimensional stuctures

- by adding the suffix "-ene" - antimonene, indiene and aluminene. Optimized structural

parameters of antimonene, indiene and aluminene are given in Table 2.1.
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2.2. Results and discussion

Table 2.1: Optimised parameters of aluminium, indium and antimony in the relaxed

monolayer structures, where Ecoh/atom is the cohesion energy per atom of the unit cell, a

and b are lattice constants, h is the interlayer distance, α and β are angles between bonds

and R1 and R2 are bond lengths as denoted in Section 2.1.

Struct. Elem.
Ecoh

(eV/atom)
a (Å) b (Å) h (Å)

α, β

(degrees)
R1, R2 (Å) Ref.

α

Al -2.32 4.46 120.00 2.57

In -1.62 5.02 120.00 2.89

Sb -3.01 4.99 120.00 2.88

C -7.91 2.47 120.00 1.43 [40]

In -1.81 4.96 120.00 2.86 [41]

Al -1.96 4.49 120.00 2.59 [42]

β

Sb -3.54 4.12 1.62 91.34 2.88

Si -4.57 3.87 0.44 116.30 2.28 [40, 43]

Ge -3.20 4.06 0.64 112.30 2.44 [43]

As -2.99 3.61 1.39 92.22 2.50 [44]

Sb -4.03 4.12 1.65 90.8 2.89 [17]

Sn -2.68 4.47 0.73 113.50 2.70 [45]

γ

Al -2.76 2.68 60.00 2.68

In -1.83 3.16 60.00 3.16

B -5.99 2.89 0.80 60.00 2.93 [46]

δ

Sb -3.54 4.33 4.92 2.74 95.16, 110.03 2.85, 2.91

Sb -4.03 4.36 4.74 2.93 95.3, 102.4 2.87, 2.94 [17]

As -2.95 3.68 4.77 2.70 94.6, 100.8 2.50, 2.49 [47]

P -3.48 3.31 4.56 2.16 96.3, 103.1 2.24, 2.22 [48]

Cohesion energy is of prime importance for stability of a certain structure. We have

defined cohesion energy as the difference between total energy of the crystal structure and
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2.2. Results and discussion

energy of a free constituting atoms

Ecoh = Ecrystal −NEfree , (2.13)

where Ecrystal is total electronic energy of the crystal cell, Efree is electronic energy of a

single isolated atom andN is the number of atoms in the unit cell. All of the elements have

negative cohesive energies which indicates that forming the predicted crystal structure is

more favourable than atoms remaining in an isolated form (table 2.1).

Figure 2.7: Dependence of total electronic energy Etot per atom (coloured triangles) and

pressure (black squares) on lattice constant for (a) α, (b) β, (c) δ antimonene allotropes,

(d) α and (e) γ indiene allotropes and (f) α and (g) γ aluminene allotropes from table

2.1. Dashed lines give equilibrium lattice constants a0 (blue for Sb, cyan for In, orange

for Al) and b0 (purple for Sb).

Equilibrium lattice constant(s) can be found from the total energy minimum and zero

pressure conditions (no stress acting on the crystal unit cell), as the stress is related to
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2.2. Results and discussion

the total energy through:

σα,β = − 1
Ω
∂Etot
∂εα, β

. (2.14)

Figure 2.7 shows the dependence of total electronic energy per atom of a given structure

on lattice constant, with the minima a0 and b0 corresponding to the lattice constants from

table 2.1.

If indium and aluminium are placed initially into a buckled or puckered structure and

then allowed to undergo unit cell optimization, the result is a structure that is formed by

two layers of the planar triangular structure. Fig. 2.8 shows that the minimum of total

electronic energy Etot for the proposed β-In is found for lattice constant of a = 3.23 Å with

an interlayer distance of h = 2.91 Å. This gives a smaller bond length between atoms in

the same sublattice than between the atoms in different sublattices, which is not the case

in the true β type structure, as found for example in silicene and germanene [7, 9]. Total

energy landscape supports this stand-point. We manually changed the interlayer distance

and observed the behaviour of the total energy. As the distance between the sublayers

increases, the total energy decreases along with the lattice constant. This happens until

the two sublayers separate enough to constitute two layers - a bilayer - instead of a single

buckled monolayer. The hypothesis is that separated layers are energetically more stable

than the buckled monolayer. To verify the true nature of the relaxed structure, we have

calculated the charge density in-between the sublayers of the final, relaxed structure (Fig.

2.8. As can be seen, there is no charge density between the sublayers, indicating that this

is the case of a triangular bilayer instead of a single buckled monolayer.

Structural relaxation for puckered type of structure has the same result, only with a

different stacking of two triangular layers. Starting β-In and β-Al end with AB stackings

of layers, while δ-In and δ-Al end with AA stackings of two triangular layers. Thus, we

conclude that buckled or puckered structures of indium and aluminium relax through the

unit cell optimization algorithm to the bilayers of planar triangular structure.
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2.2. Results and discussion

(a)

(b)

Figure 2.8: (a) Dependence of total electronic energy Etot (black squares) and interlayer

distance h (brown triangles) on lattice constant a for the proposed structure of β-In.

Equilibrium Etot and h are emphasized with broken lines. Insets show the relaxed struc-

tures for a given lattice constant. Red arrows indicate progression of the starting, two

intermediate and the final β-In structure. (b) Charge density between sublayers of fully

relaxed "β-In", showing no charge in the interlayer space.
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2.2. Results and discussion

We compared the results of Table 2.1 with previous published studies, either with

the same elements or with similar elements that form the same 2D structures. Different

possible structures of antimonene were studied in reference [17], of which we can directly

compare β-Sb and δ-Sb. As seen in Table 2.1, parameters of β-structure are in excellent

agreement. However, we are unable to reproduce the results for δ-Sb at the GGA level of

theory. Although one lattice constant agrees well (4.36 Å compared to our 4.33 Å), we

notice larger discrepancy in the other lattice constant (4.74 Å compared to our 4.92 Å). We

have used two different types of pseudopotentials, one ultrasoft and one norm-conserving,

leading to the same lattice constant. Lattice constant of α-In is in an agreement with

reference [41], as well as the α-Al with reference [42]. We are unable to compare γ-In, as

there are no previous studies of it, up to our knowledge, as well as γ-Al since in reference

[42] the Authors didn’t consider this kind of allotropic modification.

As all three antimonene allotropes were synthesized experimentally, we can make the

comparison of the lattice constants. α-Sb synthesized on Ag(111) in [13] has a lattice

constant of 5.01 Å which is in excellent agreement with our calculated lattice constant

of 4.99 Å. β-Sb was synthesized on two different substrates, on PdTe2[14] and on ger-

manene[15]. On PdTe2 it has the lattice constant of 4.13 Å which is almost in perfect

agreement with our results of 4.12 Å. On germanene, the lattice constant is 4.07 Å which

differs the previous experimental value and our calculations by 1%, indicating that the

choice of substrate influences the lattice constant of β-Sb. For δ-Sb, obtained on WTe2

[16], experimental lattice constants are 4.8 Å and 4.4 Å, which are in a good agreement

with our calculated results of 4.92 Å and 4.33 Å.

2.2.2 Lattice dynamics

Obtaining the relaxed structures (in terms of forces) is the first step in investigating the

stability of a certain crystal structure. Requiring the forces to go to zero at equilibrium

ensures that the further application of higher order DFPT will not contain any residual

forces, which might influence the subsequent calculations of phonon frequencies. Second

step is to verify the lattice dynamical stability of the structures, and whether or not the

crystal is stable with respect to small atomic displacements, i.e. all phonon frequencies

have to be real[49]. For the structures given in table 2.1, we have, thus, calculated full

phonon dispersions using DFPT. This allows us to check for lattice dynamical instabilities
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2.2. Results and discussion

throughout the Brillouin zone.

Antimonene

Calculated phonon dispersions of different antimonene allotropes are shown in Fig. 2.9.

We can see that the β-Sb has real phonon frequencies along the high symmetry directions

of the Brillouin zone. Therefore, it satisfies the second condition of crystal stability. α-

Sb has two modes, out-of-plane acoustic and optic modes, with imaginary frequencies

across the Brillouin zone, while δ-Sb has one acoustic and one optic mode with imaginary

frequencies around the Γ-point.

(a) (b) (c)

Figure 2.9: Phonon dispersions of (a) α, (b) β and (c) δ antimonene allotropes. Phonon

modes with imaginary frequencies are shown in red colour.

As lattice dynamics of antimonene was a subject of earlier research, we have com-

pared the obtained phonon dispersions with the ones from references [17] and [12]. The

dispersions for β-Sb are in excellent agreement with already published theoretical results.

Comparing the acoustic modes, in all cases they are real with the highest frequencies

around 70 cm−1 at the K-point and with optical modes in good agreement at the Γ-point.

Minor differences in the shapes of dispersion curves can be attributed to different pseu-

dopotentials and methods of calculations used: we have used DFPT implemented inside

Quantum ESPRESSO, while in reference [17] Phonopy code, based on the frozen phonon

method, was used to obtain phonon dispersions.

δ-Sb is sometimes in literature referred as α-Sb, although we reserve prefix α for planar

honeycomb structures. Although agreeing with phonon dispersions of ref. [17] in highest

optic modes in both general shape and frequencies at high-symmetry points, the most

striking difference is that we acquire imaginary frequencies for two of the phonon modes.
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2.2. Results and discussion

To verify our results, we have calculated phonon dispersions of δ-Sb with a different type

of pseudopotential (norm-conserving) and obtained similar results, with same phonon

modes unstable as with the first pseudopotential (ultrasoft). These differences could

be accounted by the discrepancies in optimized lattice constants, as one of the lattice

constants of δ-Sb is 3.8% larger than the one Authors have published in ref [17]. As

lattice constants determine bond length and relative positions of atoms in regard to one

another, thus are force constants that influence phonons affected - leading to different

phonon frequencies.

For α-Sb no comparison can be given, as there are no other studies on the lattice

dynamics of this allotrope of antimony up to our knowledge. However, antimonene was

experimentally synthesized with planar honeycomb structure on a Ag(111) substrate in a

recent work [13], indicating that α-Sb can have stable lattice dynamics. The discussion

on the substrate dependent stability of antimonene allotropes is continued in the next

chapter.

Indiene

Calculated phonon dispersions of two indiene allotropes are shown in Fig. 2.10. α-In

has real frequencies along all high-symmetry directions of the Brillouin zone. It, thus,

satisfies the second condition for crystal stability. γ-In has the lowest phonon mode’s, the

out-of-plane transverse acoustic (TA) mode, frequencies entirely imaginary.

We compared the obtained dispersions with the previous study [41]. For the α-

structure, we were not able to fully reproduce the results. Though both show real frequen-

cies, they differ in shape of the modes, as well as numerically e.g. with the highest optical

modes at the Γ-point being 150 cm−1, compared to ∼ 140 cm−1 from reference [41]. We

attribute the differences to different pseudopotentials used. While in our studies the In

pseudopotential included the d-electrons, in Ref. [41] the pseudopotential contained only

3 electrons (two s-and one p-electron).

As the mentioned study did not include a type of γ-In structure, we are unable to give

any comparison.

36



2.2. Results and discussion

(a) (b)

Figure 2.10: Phonon dispersions of (a) α and (b) γ indiene allotropes. Phonon mode with

imaginary frequencies are shown in red colour.

Aluminene

Calculated phonon dispersions of two aluminene allotropes are shown in Fig. 2.11. Both

structures have imaginary frequencies in the lowest acoustic mode(s), thus not satisfying

the conditions of crystal stability. In the α-Al the unstable phonon modes are the in-

plane TA mode and out-of-plane TA mode, while with γ-Al the unstable mode is the

out-of-plane TA mode.

Aluminene was studied previously by Kamal et al.[42]. We are unable to reproduce

the results for the α-structure. In the study by Kamal et al., all phonon frequencies are

real. What we do note is that the frequencies of optical modes at the Γ-point do match

at 125 cm−1 and ∼ 350 cm−1 and modes have an overall similar behaviour. We also could

not fully reproduce the γ-structure phonon dispersions, with main differences being the

maximum phonon frequencies at the M -point with ∼ 350 cm−1 and ours ∼ 450 cm−1.

We attribute the differences to pseudopotentials used.
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2.2. Results and discussion

(a) (b)

Figure 2.11: Phonon dispersions of (a) α and (b) γ aluminene allotropes. Phonon modes

with imaginary frequencies are shown in red colour.

At this stage of research on 2D allotropes of aluminium and indium (prior to ex-

perimental verification) it is very difficult to give any further comment based purely on

theoretical simulations. Several factors, including both the lattice dynamics and substrate

interaction, simultaneously influence the ’true’ stability of their 2D allotropes. Therefore,

it is ambiguous to regard any of the up to know published results as the correct ones,

without carrying out further theoretical analyses. With that in mind, we continued to

study their stability by taking into account the strain modifications caused by the suitable

substrates.
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Chapter 3

Strain engineering

Strain is used as a fairly straightforward way of modifying the properties of two-dimensional

materials. It is readily achievable by experimental methods, such as using a cantilever-

beam arrangement [50] or a four-point bending apparatus in which the substrate is usually

held by titanium clamps [51]. Its effects on electronic and optical properties of a wide

range of two-dimensional materials were studied in great detail [52–55]. Two-dimensional

materials are extremely suitable for strain engineering since they can handle much higher

mechanical stresses than their bulk counterparts [4]. Because of that stronger effects can

be expected. Imposed strains can be separated in compressive (shrinking) and tensile

(stretching) strain. On a unit cell level, strain is taken into account through appropriate

modifications of the lattice constants.

Phonon modes which are unstable i.e. have imaginary frequencies in phonon dis-

persions (Figures 2.9-2.11), are exclusively acoustic modes, except in the case of δ-Sb,

where it is one acoustic and one optic mode. Acoustic phonon modes are products of

in-phase movements of atoms in the crystal lattice. As in-plane strain changes the crys-

tal lattice by modifying the distances between atoms, the possible consequence is the

change in force constants that determine phonons, given in (1.63). Thus, strain can in-

fluence phonon modes of a crystal and potentially stabilize them. Our motivation is to

use strain engineering to try to modify the lattice dynamical stability of the studied two-

dimensional allotropes of indium and aluminium. Antimony already has stable lattice

dynamics, proven experimentally and theoretically in references [13, 14, 17]. However, its

lattice dynamics will nevertheless be studied in order to reveal the behaviour of phonons

under external strain.

39



3.1. Types of strain in two-dimensional structures

3.1 Types of strain in two-dimensional structures

As we are dealing with plane geometries, we can separate any direction of strain into two

components. Taking the example of the honeycomb structure, the unit cell is of hexagonal

symmetry with two atoms in the basis. By convention, chosen axes for probing strain

effects are along the bond between two atoms and perpendicular to it, called armchair

and zigzag, respectively. The names come from the fact that if we were to cut the crystal

along the mentioned directions, their shape would remind of an armrest of a chair for

armchair and a zig-zag shape for zigzag (Fig. 3.1). A special case is strain equal in both

directions, called biaxial strain.

Figure 3.1: Armchair and zigzag strain directions. Left cut of the lattice is the zigzag

termination of the crystal, while on the bottom (top) one is the armchair termination.

For puckered and triangular structures we keep the nomenclature even though they

do not carry the same literal meaning. In the puckered case, strain is applied along the

unit cell axes while in the triangular case it is along one bond and perpendicular to it

(Fig. 3.2).
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3.1. Types of strain in two-dimensional structures

(a) (b)

Figure 3.2: Strain directions for (a) puckered and (b) triangular structure.

Formally, strain is defined as

ε = a− a0

a0
, (3.1)

where a0 is the lattice constant of the non-strained structure and a is the lattice constant of

the strained structure. Computationally, we modify the unit cells of hexagonal symmetry

as indicated in Fig. 3.3.

(a) (b)

Figure 3.3: Strain-modified unit cell of honeycomb and triangular structures in (a) arm-

chair and (b) zigzag directions. a is the unstrained lattice constant while a′ is the new,

strained, lattice constant. Unstrained unit cell is shaded in gray.
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3.2. Results and discussion

The lattice constant and unit cell vectors are then modified in armchair case as

a′ =1
2a
√

1 + 3p2

a1 =a′(cos β,− sin β, 0)

a2 =a′(− cos(60◦ − β), sin(60◦ − β), 0)

(3.2)

and
a′ =pa2

1
sin(30◦ + β)

a1 =a′(cos β, sin β, 0)

a2 =a(− cos(60◦ + β), sin(60◦ + β), 0)

(3.3)

in zigzag case, where p is the percentage of strain imposed. After the unit cells are

modified as per above equations, we allow the relaxation of atomic positions.

3.2 Results and discussion

3.2.1 Stress-strain relations

We have obtained the stress-strain relations for antimonene, indiene and aluminene al-

lotropes using the procedure similar to methods used in references [17, 48, 56]. A range of

strains from 80% to 140% was imposed in steps of 2% (Fig. 3.4). From the stress-strain

relations we can obtain the critical strains as the minima of the stress-strain functions.

Critical strain indicates the elastic range of strain a certain structure can undertake. This

information is very useful, as they give predictions on how much one could stretch the

materials before inelastic or plastic effects occur. From the graphs, we have read out the

critical strains of each strained structure (table 3.1). What can be observed is that most

of the structures show elastic anisotropy with regard to different strain directions, found

also in other monoelemental 2D materials, like phosphorene [48], with notable exception

of α-In and α-Al, which show almost isotropic properties in both strain directions (See

Section 5.3).

42



3.2. Results and discussion

Figure 3.4: Stress-strain relations for (a) α-Sb, (b) β-Sb and (c) δ-Sb allotropes, (d) α-In

and (e) γ-In allotropes and (f) α-Al and (g) γ-Al allotropes. Critical strains are denoted

as εcrit. Missing points indicate failures in the convergence of the calculations.

For β-Sb and δ-Sb we can directly compare the results with reference [17]. Critical

strains for β-Sb from reference [17] are 18% and 15% for armchair and zigzag directions,

respectively, while we acquire critical strains of 16% and 26%. We note large difference

in the zigzag directions, which we attribute to difference in methods of calculations -

different computer code, pseudopotential and simulated unit cell. We have used ultrasoft
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3.2. Results and discussion

Table 3.1: Critical strains in armchair and zigzag strain directions of antimonene, indiene

and aluminene allotropes.

Struct. Elem.
εcrit

- armchair (%)

εcrit

- biaxial (%)

εcrit

- zigzag (%)
Ref.

Planar - α

Al 26 14 24

In 30 18 30

Sb 20 18 16

C 19 - 27 [57]

Buckled - β

Sb 16 18 26

Si - 20 - [58]

Sb 18 - 15 [17]

Triangular - γ

Al 24 14 32

In 28 18 38

Puckered - δ

Sb 40 14 24

P 30 - 27 [48]

Sb 32 - 18 [17]

pseudopotentials and a strained hexagonal unit cell with 2 atoms in the lattice basis,

while in reference [17] the Authors have used PAW pseudopotentials and a rectangular

unit cell with 4 atoms in the lattice basis. To better compare the results, we have also

run our calculations for a rectangular unit cell to minimize the calculation differences

and better compare the results, which confirmed our results of critical strain of 16% and

26% in armchair and zigzag directions, respectively. Critical strains for δ-Sb from [17]

are 32% and 18%, while we acquire critical strains of 40% and 24%. The discrepancy is

substantial, though we also obtain a strong anistropy with regard to armchair and zigzag

critical strains, with similar difference between them (14% in reference [17] and 16% in

our calculations).
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3.2. Results and discussion

3.2.2 Lattice dynamics under strain

To examine the influence of strain on lattice dynamics, we have calculated the phonon

dispersions of structures from Table 2.1 in steps of 2% strain up to 20%. It has been

verified that larger strains, although still under the critical values (Section 3.2.1), do

not lead to different behaviour of lattice dynamics. All the compressive strains lead to

instabilities in the lattice dynamics, i.e. to the imaginary frequencies of the phonon modes,

so we will not be discussing them in detail in the main text. Some illustrative examples

can be seen in the Appendix C.

Antimonene

Freestanding α-Sb has two unstable acoustic modes (Fig 2.9). However, no amount of

tensile strain stabilizes all of them. When subjected to strain, both out-of-plane phonon

modes become unstable but one of the in-plane acoustic modes becomes unstable in all

cases of strains. Thus, we conclude that the stability of α-Sb will not be due to the

influence of strain on its lattice dynamics (see Section 4.1.1). We show an example of

influence of strain on α-Sb phonon dispersions in Fig. 3.5.

(a) (b) (c)

Figure 3.5: (a) Phonon dispersions of (a) armchair, (b) zigzag and (c) biaxially strained

α-Sb. A stabilization of one of the modes can be seen. Strain percentages are given in

legends.

The case of freestanding β-Sb under strain is interesting, since unstrained β-Sb had

stable lattice dynamics (Fig 2.9). However, when any kind of strain is applied, β-Sb lattice

dynamics become unstable around the Γ-point. We notice this effect for all strains in all

directions. In Fig. 3.6 we show an example of phonon dispersion of β-Sb under strain.
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3.2. Results and discussion

(a) (b)

Figure 3.6: (a) Phonon dispersions of armchair strained β-Sb. (b) Phonon dispersions of

zigzag strained β-Sb. Strain percentages are given in legends.

δ-Sb also has unstable lattice dynamics (Fig 2.9). As in the α-Sb case, no amount

of tensile strain stabilizes them. We can see the stabilization of the optic mode, but the

out-of-plane TA mode remains unstable for all percentages of strain. In Fig. 3.7, we show

examples of phonon dispersions of δ-Sb under strain.

(a) (b)

Figure 3.7: (a) Phonon dispersions of armchair strained δ-Sb. (b) Phonon dispersions of

zigzag strained δ-Sb. Strain percentages are given in legends.

The lattice dynamics of freestanding antimonene are counterintuitive, as they all have

been synthesized in experiment. Since the lattice dynamics do not become stable due to

strain, possible source of their structural stability most probably could be the interaction
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3.2. Results and discussion

with the substrate they are synthesized on. The discussion on antimonene allotropes is

continued in the next chapter, where we examine the influence of substrates.

Indiene

Freestanding α-In, as seen in Fig. 2.10, already has stable lattice dynamics. Under tensile

strain, phonon frequencies remain real throughout the Brilloun zone for the entire range

of strains in the armchair direction, while in the zigzag direction the frequencies remain

real up to 14% strain. After 14% strain the lowest out-of-plane TA phonon mode becomes

unstable. We show in Fig. 3.8, as an example, phonon dispersions of α-In for armchair

and zigzag strains of 10% and strain that shows imaginary frequencies in zigzag direction

- 18%. Under biaxial strain, α-In maintains stable lattice dynamics even up to 20% strain.

(a) (b)

Figure 3.8: (a) Phonon dispersions of armchair and zigzag strained α-In. (b) Phonon

dispersions of α-In strained in the zigzag direction by 18%, showing imaginary frequencies

near the Γ point in the M-Γ direction. Strain percentages are given in legends.

Freestanding γ-In has an unstable mode, as seen in Fig. 2.10. When strained in the

armchair direction, the unstable phonon mode becomes stable for the range of strains of

12-14%, while in the zigzag direction the phonon mode is stable for the strain of 12%.

When strained biaxially, the unstable phonon mode becomes stable for the strains of

6-8%. Lattice dynamics for different strain percentages of γ-In are shown in Fig. 3.9.
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3.2. Results and discussion

(a) (b) (c)

Figure 3.9: Phonon dispersions of (a) armchair, (b) zigzag and (c) biaxially strained γ-In.

Strain percentages are given in legends.

Aluminene

Both studied freestanding aluminene allotropes have an unstable phonon mode, as seen in

Fig. 2.11. When strained in the armchair direction, α-Al unstable phonon mode becomes

stable only for strains of 14 and 18%. However, when strained in zigzag direction, the

phonon mode is stable as soon as 4% strain is applied. This is reflected on lattice dynamics

stability when strained biaxially - it has the same strain stability range as the zigzag

direction - from 4% and on. In Fig. 3.10 we show the phonon dispersions with stable

lattice dynamics for armchair directions, as well as the first percentage of strain that lead

to stable lattice dynamics in zigzag and biaxial directions.

(a) (b) (c)

Figure 3.10: Phonon dispersions of (a) armchair, (b) zigzag and (c) biaxially strained

α-Al. Strain percentages are given in legends.

When γ-Al is strained in the armchair direction, we find a range of a stable phonon

mode for strains of 4-16%, while in zigzag direction it is for strains of 2-14%. When

strained biaxially, the phonon mode is stable for a small range of strains of 2-4%. In
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3.2. Results and discussion

Fig. 3.11 we show the phonon dispersions of first percentage of strain that lead to stable

lattice dynamics for armchair and zigzag directions, as well as the percentages of strains

with stable lattice dynamics in biaxial direction.

(a) (b)

Figure 3.11: Phonon dispersions of (a) armchair and zigzag and (b) biaxially tensile

strained α-Al. Strain percentages are given in legends.

From the results of this section, it can be seen that it is quite possible to stabilize the

lattice dynamics of 2D allotropes in several cases. This observation leads to the hypothesis

that unstable free-standing 2D allotropes could be experimentally found under strained

conditions. These conditions can be readily achieved using the suitable substrates which

interact with the monolayers deposited on them. The next step is, thus, to simulate the

behaviour of the studied 2D allotropes deposited on substrates.

As a final note, we condensed all the results presented in this chapter in a convenient

way in Fig. 3.12, showing ranges of lattice dynamics stability of each studied structure.

49



3.2. Results and discussion

Figure 3.12: Lattice dynamics stability of two-dimensional allotropes in relation to strain

imposed. Red areas denote unstable lattice dynamics, green areas stable lattice dynamics,

while black areas are errors in the calculations.
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Chapter 4

Substrates

It is not expected that any allotrope of indiene or aluminene could be obtained by the

method of mechanical exfoliation, as it requires an already layered material, such as

graphite or phosphorus. Antimonene on the other hand, whose bulk counterpart has a

β-antimonene type structure with the unit cell formed from an ABC stacking of individ-

ual β-antimonene layers, which in theory enables the process of mechanical exfoliation,

was experimentally obtained in all three allotropes proposed in this thesis [13–16]. How-

ever, only β-antimonene was obtained trough exfoliation [10]. Thus, for experimental

realization of indiene, aluminene and other allotropes of antimonene, a type of chemical

synthesis is needed with the help of a suitable substrate. We also note that of several

other monoelemental two-dimensional monolayers have been successfully synthesized on

top of substrates, mostly metallic surfaces or other monolayers, which possess hexagonal

symmetry [13, 15, 59].

Metallic surfaces are especially suitable, as they do not form chemical bonds with

the synthesized monolayers, but they can induce strain through the substrate-monolayer

interaction. The choice of the substrate has to satisfy two conditions: (i) sixfold hexagonal

symmetry and (ii) the lattice mismatch of the substrate and the monolayer has to induce

suitable strain upon the monolayer to induce the required changes in the lattice dynamics,

as per previous chapter. We have chosen several promising substrates as candidates [60],

however within the theoretical framework and chosen approximations we have been able

to converge calculations only for Ag(111) and Cu(111), as well as graphene.

We have simulated the metallic surfaces by considering a slab unit cell with five layers

of atoms, with the two-dimensional monolayer on top of it. As we do not expect large
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changes in the surface of the metal, we have fixed the unit cell and only allowed the

relaxation of atomic positions inside it. We have fixed bottom two substrate layers, as

it was indicated (in previous theoretical research) that there is no significant interaction

between the bottom substrate layers and the monolayer [59]. In this picture, the atoms

of the monolayer move on the potential surface formed by the metallic surface and settle

into the energetically most favoured positions: the ones that atoms would supposedly

occupy in an experiment (Fig. 4.1). With graphene as the substrate, we do not expect

a simple picture as with the metallic surface. Atoms of a deposited monolayer influence

graphene’s atoms and vice versa, so we have allowed full unit cell optimization of a such

unit cell. We have included van der Waals interaction for both cases in our calculations

[61].

Figure 4.1: Surface potential of Ag(111). Ag atoms are coloured in gray. Hexagon tips

coloured in yellow represent the minima of the potential energy.

Upon placing the monolayer atoms in the unit cell of the substrate, a natural lattice

mismatch occurs. This lattice mismatch is the strain that is applied to the freestanding

monolayer and it is purely biaxial in the beginning of the relaxation. Using this strategy

we were able to circumvene using the supercells of the heterogenous monolayer-substrate

systems, which are very time consuming taking into account the available computational

resources. However, the initial strain can morph into an armchair or zigzag strain, de-

pending on how the atoms of the monolayer settle on the surface. The settling of the

atoms will be a consequence of the monolayer-substrate interactions, i.e. interatomic

forces which will effectively lead to the strained monolayer lattice. The settling of atoms

on the substrate surface was simulated by the relaxation of the atomic positions via
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BFGS algorithm described in section 1.2.1. Table 4.1 gives the initial lattice mismatches

between the surfaces of Ag(111), Cu(111) and 2x2 graphene supercell we have used as the

substrates, as well as the bond lengths R1, R2 and bond angles α, β after the relaxation.

At room temperature, the thermal effects could perturb the structural geometry of

monolayers. This has to be taken into account in order to at least qualitatively assess

the monolayer structures prior to their synthesis on the substrates and fabrication toward

potential Sb, In or Al-based devices. We, thus, conducted ab-initio molecular dynamics

simulations at 300 K of antimonene, indiene and aluminene on suitable substrates. We

have taken time steps on different timescales and total time of simulation: 1 fs for the

total time of 0.1 ps and time steps of 1 ps for the total time of 1 ns.
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4.1. Results and discussion

4.1 Results and discussion

4.1.1 Structures on substrates

Antimonene

As we have seen from section 3.2, no amount of strain stabilizes the unstable phonon

modes of the two unstable antimonene allotropes (α-Sb and δ-Sb) and even, in the case

of β-Sb, unstabilizes the stable phonon modes of the unstrained structure. However, as

proven by the experiments, all three allotropes should be stable when synthesized on a

substrate. This was done for α-Sb in ref. [13], β-Sb in ref. [14] and [15], and δ-Sb in ref.

[16]. It is clear that the stability of antimonene is ensured through its interaction with the

substrate upon which it is deposited. Aim of this section is, thus, to verify what governs

the antimonene synthesis on the substrates.

α-Sb was synthesized on the surface of Ag(111) [13]. Its lattice mismatch in our

simulation is 17%, which is just inside the critical strain range for biaxial strain (table

3.1). After structural relaxation of the initial unit cell, we acquire two bond lengths of

3.70 Å and 3.22 Å, with bond angles of 114.92◦ and 130.16◦. These results imply a case of

zigzag strained α-Sb, with atoms places above the middle points of triangles formed by Ag

atoms. Comparing there results with experiment, we notice disagreement with ref. [13],

as the Authors obtain perfectly biaxial α-Sb. However, as we have allowed the relaxation

of top three layers of the substrate, this results in a surface potential that is not perfectly

biaxial, as seen in the placement of monolayers. When β-Sb is placed on the same surface,

we acquire almost the same final picture - atoms from the top β-Sb sublattice descend,

forming an α-Sb structure with almost exactly the same structural parameters. Ag atoms

of the top layer undergo some movement, but preserve their hexagonal symmetry (Fig.

4.2), with some of the Ag atoms protruding above the surface giving various distances

between substrate and the monolayer from 1.901 Å to 2.349 Å. This is repeated when α-

Sb and β-Sb are placed on Cu(111). Due to a smaller lattice mismatch (17% for Ag(111)

and 2% for Cu(111)), the final structure of antimonene is nearly perfectly hexagonal on

Cu(111), with negligible differences in bond lengths and bond angles of almost exactly

120◦. The top layer of Cu(111) is slightly perturbed, giving various distances between the

substrate and the monolayer from 2.169 Å to 2.249 Å.
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(a) (b)

(c) (d)

Figure 4.2: (a) top and (b) side view of relaxed α-Sb and β-Sb structures on Ag(111).

Sb atoms are coloured in blue, while the top layer of Ag atoms are coloured in pink. The

remaining Ag atoms are coloured in white. (c) top and (d) side view of relaxed α-Sb and

β-Sb structures on PdTe2. Sb atoms are coloured in blue, Pd atoms are coloured in black,

while Te atoms are coloured in yellow. Bond lengths are designated with R1 and R2 (R if

they are the same), the bond angles are designated as α and β. Minimum and maximum

distances between the substrate and the monolayer are designated as hmin and hmax (h if

they are the same), while hβ is the β-Sb interlayer distance.

The transformation of antimonene from β- to α- structure upon synthesis on a flat

substrate indicates that α-Sb is the preferred antimonene allotrope if placed on such a

substrate, as was the case in ref [13]. On the other hand, the synthesis of β-Sb obviously

depends on a usage of non-flat substrate, such as the ones used in refs. [14] (PdTe2) and

[15] (germanium). It would seem that the non-flat nature of the surface helps maintain the

β-Sb buckled nature. Additional contribution comes from the fact that both substrates

used in our work, Ag(111) and Cu(111,) are much closer to lattice parameters of α-Sb
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4.1. Results and discussion

(and within its elastic regime governed by critical strains) leading itself to α-Sb as the

preferred allotrope formed on such a surface.

Our view that the influence of the substrate, beyond only strain, is what stabilizes

any allotrope of antimonene could be supported by deposition on PdTe2, as in ref. [14].

We have performed structural cell relaxation of α-Sb and β-Sb on PdTe2. The structure

of the monolayer at the end of relaxation is in both cases the structure of β-Sb, as seen in

Fig. 4.2. The substrate and the monolayer have an exact AA stacking, with the bottom

sublayer of β-Sb above Pd atoms and the top layer above the Te atoms. The bond lengths

between Sb atoms are 2.85 Å with bond angles of 88.49◦. The interlayer distance of two

Sb sublayers, h, is 1.69 Å and the distance between the PdTe2 and the β-Sb monolayer

is 3.06 Å. Both distances are in agreement with theoretical results, from [14], of 1.65 Å

and 2.49 Å. The lattice constant of β-Sb is 3.98 Å, differing from the experimental value

by 4%.

From table 3.1, we can see that the lattice mismatch of 2x2 graphene and β-Sb falls

just outside the range of critical strains, at 19%, but β-Sb preserves it’s buckled structure

after the unit cell undergoes optimization. Graphene bond lengths shorten by a small

amount, from 1.423 Å to 1.410 Å, while the buckling height of β-Sb decreases from 1.62

Å to 1.27 Å. With α-Sb on graphene, changes in graphene bond lengths remain nearly

the same, with no changes in α-Sb. We do note different distances between graphene and

the deposited layer of antimonene: in α-Sb case it is 3.537 Å, while in β-Sb case it is

3.455 Å.

When δ-Sb is placed on Ag(111) surface, it does not maintain its puckered structure.

We acquire a bilayer of α-Sb with near AA stacking. The bottom α-Sb layer has the bond

lengths of 3.07 Å and 4.08 Å with bond angles 143.01◦ and 108.47◦. The top α-Sb has

bond length of 2.77 Å and 3.70 Å with bond angles 128.08◦ and 103.89◦. Protrusions of

Ag atoms are seen in this case, with distances ranging from 1.879 Å to 2.517 Å. These

values are close to distances between the Ag atoms and the monolayer in the α-Sb case.

The distance between two α-Sb layers is 2.767 Å. The breakdown of puckered structure

is again seen when Cu(111) acts as a substrate. However, we obtain a bilayer composed

of α-Sb at the bottom and β-Sb on top. Type of stacking is AB, with lower atoms of

the β-Sb above empty space of the α-Sb hexagon below it. Both are nearly perfectly

biaxial, with the bond lengths of α-Sb 2.95 Å and bond angles of nearly 120.00◦. The
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4.1. Results and discussion

bond lengths of top β-Sb are 3.03 Å with bond angles of 115.10◦. Distance between the

substrate Cu atoms and α-Sb atoms is 2.265 Å with extremely small variations, which

is in agreement with single α-Sb monolayer on Cu(111), while the distance between the

α-Sb and β-Sb layers is 2.394 Å. The interlayer distance, h, of β-Sb is 0.678 Å. On

graphene, the resulting structure is a bilayer of β-Sb, with AA stacking. The bond angles

of β-Sb are 2.91 Å with bond angles of 116.87◦. The distance from graphene to bottom

β-Sb layer is 3.22 Å, while distance between two monolayers is 2.89 Å. Graphene bond

lengths increase by a small amount, from 1.423 Å to 1.434 Å. The interlayer distance, h,

of β-Sb is 0.469 Å.

Indiene

Looking at the lattice mismatch of α-In and two metallic substrates, 16% for Ag(111)

and 2% for Cu(111), we expect that α-In deposited on them could form stable monolayer

structure, as α-In lattice dynamics remain stable for strains of up to 14% in the zigzag

direction (and more in armchair and biaxial directions). After relaxation of α-In on

Ag(111) and Cu(111) surfaces, we obtain an almost purely biaxially strained lattice,

unlike α-Sb on Ag(111) where we see strain that is more zigzag in nature. We also notice

the atomic protrusions of surface atoms, though they are larger than in the case of α-Sb,

with the varying distance between substrate and the monolayer from 1.798 Å to 2.600 Å.

Indium atoms also relax above the triangles formed by the Ag or Cu atoms on the (111)

surface (Fig 4.3).

As the lattice mismatch of γ-In is too large (table 4.1) and the strain imposed to it is

far outside the range of critical strains, we do not believe γ-In could possess stable lattice

dynamics on these substrates.
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(a) (b)

Figure 4.3: (a) top and (b) side view of relaxed α-In on Cu(111). In atoms are coloured

in turquoise, while the top layer of Cu atoms are coloured in pink. The remaining Cu

atoms are coloured in brown. The Bond length is designated with R, the bond angle is

designated with α and the distance between the substrate and the monolayer is designated

as h.

Aluminene

With Ag(111) as a substrate, α-Al is not expected to form a stable structure, as the

lattice mismatch between the substrate and an unstrained α-Al is far outside the range

of critical strains (tables 3.1 and 4.1. However, Cu(111) and 2x2 graphene could possibly

serve as the substrates, as the lattice mismatches are 16% and 10%, respectively. When

α-Al is placed on top of Cu(111) surface, it experiences almost purely biaxial strain, with

bond lengths between atoms of an average 2.95 Å, and bond angles of 119.8◦ and 120.2◦.

The Cu atoms again show protrusions from the substrate top layer, with the substrate-

monolayer distance varying from 1.719 Å to 2.046 Å. As with the α-Sb and α-In case,

the monolayer remains in its planar geometry.

With α-Al on graphene, it also experiences biaxial strain of 10%, leading to stable

lattice dynamics. The stress is perfectly biaxial, with bond angles of 120.0◦. The graphene

bonds lengths shorten from 1.423 Å to 1.416 Å, which corresponds to small compressive

strain in graphene. The distance between graphene and α-Al is 3.7 Å. Relaxed structure

of α-Al on graphene is shown in Fig. 4.4.
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(a) (b)

Figure 4.4: (a) top and (b) side view of relaxed α-Al on graphene. Al atoms are coloured

in orange, while the C atoms are coloured in pink. The Bond length is designated with

R, the bond angle is designated with α and the distance between the substrate and the

monolayer is designated as h.

We also placed a ’β’-Al (bilayer triangular) structure on top of a Cu(111) substrate.

It relaxes to a structure identical to α-Al on Cu(111), drawing similarities with the case

of α-Sb and β-Sb on Ag(111) and Cu(111), in which β-Sb relaxes to a structure almost

identical to α-Sb. It would seem that non-corrugated Ag(111)- and Cu(111)-like metallic

surfaces favour structures of planar geometries, regardless of the type of element or initial

structure placed on the substrate.

As the lattice mismatch of γ-Al is too large (table 4.1.1) and strain imposed to it is

far outside the range of critical strains, we do not believe γ-Al could possess stable lattice

dynamics on these substrates.

4.1.2 Molecular dynamics on substrates

Molecular dynamics simulations performed for Sb, In or Al allotropes on substrates show

stability at finite temperature, regardless of timescale chosen. Monolayer and substrate

atoms carry out thermal movements around the equilibrium positions, with changes in

bond lengths, bond angles and interlayer separations. However, both the monolayer and

substrate structures preserve their crystalline structures. As an example, in Fig. 4.5 we

show α-Al on Cu(111) at different time steps during the molecular dynamics simulation.
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(a) (b)

(c) (d)

Figure 4.5: Molecular dynamics of α-Al on Cu(111). Al atoms are coloured in pink, while

Cu atoms are coloured in brown. (a) t = 1 ps (b) t = 350 ps (c) t = 700 ps (d) t = 1000

ps

To prove that the studied monolayers retain their crystalinity, we have plotted the

radial distribution functions g(r) of α-Sb, α-In and α-Al on the suitable subtrates (Fig.

4.6). They show sharp peaks at particular interatomic distances. As there are no diffuse

characteristics in the radial distributions, these results show that the studied monolayers

on the substrates remain in their crystalline forms with respect to the thermal fluctuations.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.6: Radial distribution functions g(r) of α-Sb on (a) Ag(111), (b) Cu(111) and

(c) graphene; α-In on (d) Ag(111), (e) Cu(111) and (f) graphene and α-Al on (g) Cu(111)

and (h) graphene.
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Chapter 5

Characterization of predicted

structures

As physical characteristics of 2D materials are important for their potential applications,

we have perfomed ab initio calculations of their electronic, optical and elastic proper-

ties. In chapter 5 we show the results only for allotropes that we have determined are

experimentally potentially viable, as per previous chapter. The results for the remaining

allotropes are shown in Appendix D.

5.1 Electronic band structure

Antimonene

As known from previous published studies, β-Sb and δ-Sb are semiconductors [17]. We

have also in part reproduced these results, as shown in Fig. 5.1. Per our calculations,

α-Sb has metallic character. Band gap Eg of β-Sb is an indirect band gap with the value

of 1.31 eV, while δ-Sb has a small direct band gap of 0.06 eV.

Comparing the results with previous theoretical results from [17], we can see some

discrepancy as the Authors report indirect bands gaps 0.76 eV and 0.28 eV for β-Sb

and δ-Sb, respectively. The differences for β-Sb could be attributed to different levels of

approximation used for the exchange-correlation energy, as it is know that LDA under-

estimates the band gap, compared to GGA. We are unable to reproduce the band gap of

δ-Sb in both in the nature and the band gap value, however, we do note the difference

in pseudopotentials used as the well as difference in obtained lattice parameters of δ-Sb.
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5.1. Electronic band structure

Authors from ref. [17] have also included spin-orbit coupling in their calculations.

(a) (b)

(c)

Figure 5.1: Electron band structure and density of states (DOS) of (a) α, (b) β and (c) δ

antimonene. Black lines in the electronic band structure graph represent valence bands,

while red lines represent conduction bands. Blue lines in the pDOS graph represent the

s-orbitals, while green lines represent the p-orbitals. d-orbitals do not contribute to DOS

in the shown energy range. The inset in (c) shows the bang gap of δ-Sb. Dashed red line

represents the Fermi level EF while the red arrow shows the band gap Eg.

Indiene and aluminene

The electronic band structures of indiene and aluminene were given in refs. [41] and

[42], respectively. Our results (Fig. D.1) also show metallic character, but we are unable

to reproduce the Dirac cones at the K-point the Authors have reported in both cases.

As both results were obtained within GGA, we can only attribute the differences to the

pseudopotentials and parameters of the calculations used. Our pseudopotential for In

contained thirteen valence electron while the one the Authors used in ref. [41] contained

only three. The Authors in ref [42] used the same pseudopotential, but a much larger

64



5.2. Optical properties

k-mesh for integrations inside the Brilloun zone.

(a) (b)

Figure 5.2: Electron band structure and density of states (DOS) of (a) α-In and (b) α-Al.

Black lines in the electronic band structure graph represent valence bands, while red lines

represent conduction bands. Blue lines in the pDOS graph represent the s-orbitals, while

green lines represent the p-orbitals. d-orbitals do not contribute to DOS in the shown

energy range. Dashed red line represents the Fermi level EF .

5.2 Optical properties

For potential optic and optoelectronic application, optical characteristics of materials

are of prime importance. Although calculated within the random phase approximation

(RPA), calculated spectra can serve as a guidance for further research that would improve

the results, such as including the hybrid functional corrections or excitonic effects using,

for example, GW approach.

Antimonene

We have calculated the dielectric function of antimonene allotropes (Fig. 5.3) and optical

properties of antimonene allotropes (Fig. 5.4). All spectra show high degree of anisotropy

with regard to the polarization of incident electromagnetic (EM) wave, which is to be

expected from the strong in-plane/out-of-plane anisotropy in two-dimensional materials.

xx components are virtually the same as yy, so we have included only the xx ones. zz

components show almost constant values throughout the visible part of the spectrum

(1.8-3.1 eV), with variations in the ultra-violet coming from high energy transitions.
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5.2. Optical properties

Figure 5.3: Dielectric function ε of antimonene allotropes.

The absorption spectra of all three allotropes show values below 106, meaning none

of them have extremely high absorption qualities [62]. As α-Sb and δ-Sb are a metallic

and extremely small gap semiconductor, respectively, they both show absorption from

small photon energies. β-Sb absorption starts around 1.8 eV, which is in-line with its

semiconducting character.

The reflection spectra of α-Sb and β-Sb show low values of below 40% in the visible

part, increasing slightly in UV for β-Sb. δ-Sb shows values in the visible part of the

spectrum between 40% and 70%.
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5.2. Optical properties

Figure 5.4: Optical properties within random phase approximation (RPA) of antimonene

allotropes. xx denotes electric field polarized in-plane, while zz denotes electric field

polarized out-of-plane.

The zz component of the refractive index, n, of antimonene allotropes are nearly

constant throughout IR and visible parts of the spectrum, with the values 1.2, 1.7 and

1.85 for α-Sb, β-Sb and δ-Sb, respectively. The xx component shows some variation,

though the average value for α-Sb is near its nz value. In the visible part, β-Sb nx value

is higher, with the average of 2.5, decreasing to below 1 in the UV. δ-Sb shows a high

peak at 1.5 eV, reaching the value of 4.2, however, quickly decreasing to below 1 values

of β-Sb. This peak can be also seen in [18], with the value being somewhat smaller.

The peaks in the electron energy loss spectrum (EELS), L (ω), represent the charac-

teristics associated with the plasma resonance and the corresponding frequency is known

as plasma frequency [18]. If the incident EM wave has lower frequency than plasma

frequency, plasma oscillations screen the electric field. Thus, energy loss spectrum is con-
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nected with reflection, as edges in reflection spectrum correspond to peaks in L (ω). This

is seen in all three allotropes of antimonene, but none of them are of significance, since

the value of the highest peak is in the UV, per [18].

Extinction coefficient k(ω) gives the depth at which the incident EM wave loses a

portion of its intensity. The highest peaks give the shortest absorption lengths, however

at considered energies the absorption lengths are significantly greater than the thickness

of the monolayers, similar to the results presented in [18].

Indiene and aluminene

The dielectric function and the optical spectra of α-In and α-Al are shown in Fig. 5.5-

5.6. They also show anisotropic characteristics as antimonene and other two-dimensional

materials. However, unlike antimonene, the zz components of the spectra show peaks at

certain photon energies, around 3.8 eV in α-In and around 4.3 in α-Al case. The peaks

are smaller or equivalent in intensity to peaks in the xx direction.

Figure 5.5: Dielectric function ε of α-In and α-Al allotropes.
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The absorption spectum of α-In is low, with the most active region being the visible

part of the spectrum. In the α-Al case, the absorption peak is somewhat higher at the

start of UV, but still below the value of 106 [62].

Both α-In and α-Al are more active regarding the reflectance, compared to antimonene.

α-In show reflectivity of around 60% in the visible, while α-Al shows highest values of

around 70% in the near-UV, with lower values in the visible part of the spectrum.

The zz component of refractive index of α-In and α-Al is nearly constant in the visible

part of the spectrum, around 1.5. At the aforementioned energies, we can see a jump in the

refractive index, but after that it returns to the same constant value. The xx component

for α-In drops from the average ∼ 1.9 to ∼ 0.7 in the visible part, further decreasing in

the UV. α-Al also has high variance in the xx component of n, going from low 0.7 in the

red part to high 3.4 in the blue part of the visible spectrum, droping to similar levels as

α-In in the UV.

As with the antimonene case, the electron energy loss spectrum L(ω) and extinction

k(ω) follow the same behaviour, with the extinction coefficient giving absorption depths

much larger than the thickness of the material.
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5.2. Optical properties

Figure 5.6: Optical properties within random phase approximation (RPA) of α-In and

α-Al. xx denotes electric field polarized in-plane while zz denotes electric field polarized

out-of-plane.

Comparison

In this section we bring a short comparison with optical properties of other monoele-

mental two-dimensional materials, calculated using the same level of theory. We present

previous studies on graphene [63], silicene [64], germanene[63] and borophene[65], who

all show strong anisotropic properties regarding incident EM wave polarization. Com-

paring the absorption coefficients, all are the order of 106 and lower in the visible part

of the spectrum, similar to all of our presented allotropes. Nevertheless, even this lower

absorption coefficient could lead to extraordinary absorption properties of devices using

2D materials as absorbers. The reason is that a device of usual thickness would con-

tain much larger number of monolayers than a bulk material, scaled down to the same
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size [66]. The reflection of compared materials reaches maximum values of around 30%,

pointing out that our allotropes α-In and α-Al have improved reflection properties, given

that the reflection values of α-In in the visible part are around 60% and α-Al has high

reflection values in the UV. The refraction index behaviour of our allotropes with respect

to the incident EM wave shows the same behaviour as in the compared materials. Almost

constant refraction index is seen with the zz component, while the xx component shows

varying values throughout the sampled range of the EM spectrum. The electron energy

loss spectrum values, L (ω), also show connection to the reflection spectrum, with L (ω)

peaks corresponding to trail ends of reflection peaks.

5.3 Elastic properties

We have calculated the linear elastic properties of proposed Sb, In and Al two-dimensional

structures using DFPT, as per Chapter 1[67]. The results are given in table 5.1, with

calculated elastic properties of other two-dimensional materials given for reference. As

we can see, the stiffness given by the 2D Young modulus, Y2D, is low for all calculated

structures, with the most similar other materials being silicene and phosphorene. To

obtain the Y2D we have multiplied Y with unit cell size (20 Å). This is the method used

in some studies [33], while some other studies multiply it with the monolayer thickness

of 1 Å [68]. We have chosen the former method as it is unclear what should be the

thickness of the monolayer material with planar geometry. This in itself gives variations

in results acquired between different studies. Poisson’s ratio ν, the ratio of decrease in

length of material in the direction perpendicular to the increase of length in the direction

of an applied tensile strain, has much more variation. Most of the materials are closest in

elastic properties with silicene, with the two exceptions of α-In and α-Sb. α-In has very

low ν, meaning it does not shrink in the direction perpendicular to the strain, as with the

armchair ν of phosphorene. α-Sb, however, has a large ν, larger than the rest of compared

2D materials, meaning that applying tensile strain in one direction of α-Sb will shrink

the perpendicular length by a large amount. For reference, perfectly incompressible 3D

material (constant volume) would have a Poisson’s ratio of 0.5. In the two-dimensional

case, a material that has constant surface when strained, meaning perpendicular axis to

tensile strain shrinks by the same amount, has a Poisson’s ratio of 1.
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5.3. Elastic properties

Table 5.1: Linear elastic properties of the proposed structures and other similar 2D mate-

rials. C11 and C12 are the elastic constants relevant to materials with hexagonal symmetry,

Y2D is the two-dimensional Young modulus, while ν is the Poisson’s ratio.

Struct. Elem.
C11

(GPa)

C12

(GPa)

Y

(GPa)

Y2D

(N/m)
ν Ref.

Planar - α

Al 0.170 0.052 0.154 31 0.308

In 0.143 0.012 0.142 28 0.085

Sb 0.178 0.131 0.082 13 0.734

C 345 0.149 [69]

hBN 271 0.211 [69]

MoS2
118

-141
∼ 0.3 [69]

Buckled - β

Sb 0.256 0.033 0.252 53 0.129

Si 60 0.4 [69]

Sb 208 0.22 [19]

Triangular - γ

Al 0.242 0.118 0.184 37 0.489

In 0.145 0.054 0.125 25 0.372

Puckered - δ

P
23.0

- 92.3

0.064

- 0.703

Bulk

Al 69 0.334 [70]

In 10-13 0.445-0.455 [71]

Sb
79-83

55

0.16-0.46

0.25-0.33

[19]

[72, 73]

Looking at the elastic constants, C11 and C12, from table 5.1, we can see why the

values of Y2D and ν are different for each of the materials. The C11 notation is shorthand
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5.3. Elastic properties

for Cxx,xx meaning it is the force constant that depends on the variation of the position of

the two atoms along the same axis, while C12 notation is shorthand for Cxx,yy, meaning

it is the force constant that depends on the variation of the position of the two atoms

along one axis for the first atom and along the perpendicular axis for the second atom.

For the allotropes with large ν, for example α-Sb, the C12 is larger than in the rest of

the cases, and close to the values of C11. On the other hand, for α-In we see a low value

of C12, giving a small ν. To explain this difference in different α allotropes, we turn to

stress-strain relations. In Fig. 5.7, we have shown dependence of stress up to 6% tensile

strain.

Figure 5.7: Dependence of stress on uniaxial strain (armchair and zigzag values are the

same in this range). Blue line corresponds to α-Sb, cyan corresponds to α-In and orange

corresponds to α-Al. The inset shows displacements of atoms that determine the elastic

constant C12.

As we can see, the stress imposed on the strained structure is more than twice as much

in the case of α-Sb than α-In, which means the bonding of individual atoms is greater in

α-Sb than α-In - we need to impose more stress (and consequently use more energy) on

the structure to deform it by the same amount - pointing to stronger overall bonding in

Sb case than in In case in this type of structure. The low ν of α-In is also an indication of

a more covalent type of bond [74]. α-Sb shows more smeared type of bonding, giving an

indication to a metallic character. As the bonding is more spread out, so is the influence

on the C12 greater.
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Chapter 6

Conclusions

In this thesis, we have studied two-dimensional allotropes of antimony, indium and alu-

minium using ab initio simulations based on the density functional theory. Considering

the lattice dynamics of proposed structures, according to our predictions only, antimonene

and indiene could form stable freestanding structures, β-Sb and α-In. Our results con-

firmed the results from previous studies for these allotropes, while differing in the lattice

dynamic stability of δ-Sb and α-Al.

As strain influences the lattice dynamics of crystals, we have inspected the behaviour

of lattice dynamics of the proposed allotropes by imposing strain in the armchair, zigzag

and biaxial directions. We have used a strained hexagonal unit cell in this approach. Our

results demonstrate that all antimonene allotropes have unstable lattice dynamics, which

is in contrast with experimental results where all three considered allotropes were synthe-

sized. This brought us to the conclusion that substrate-monolayer interaction beyond the

imposed strain is what influences the stability of two-dimensional antimonene. Metallic

substrates Ag(111) and Cu(111) only allowed the formation of α-Sb, PdTe2 only allowed

the formation of β-Sb, while graphene allowed the formation of both. For indium and

aluminium allotropes, we have found that a wide range of strains stabilizes their lattice

dynamics, pawing a way for experimental synthesis of α-In and α-Al by choosing a suitable

substrate. Based on our calculations, Ag(111), Cu(111) and graphene are such substrates

for α-In, while Cu(111) and graphene are suitable for α-Al. On those substrates, strains

imposed on the monolayer are within the critical strains of each structure. The range of

stability for γ-In is small, so a substrate with exact lattice mismatch is unlikely. However,

γ-Al has a range of strains which show stable lattice dynamics, so a substrate with suit-
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able lattice mismatch could possibly be used for experimental synthesis. Unfortunately,

such substrates were not considered in this thesis.

As strain proved to be critical in stabilizing lattice dynamics of certain monolayers, it

is not expected that their free-standing form could be acquired. If such a monolayer is

etched from the surface of the substrate, without the imposed strain it would relax into

its unstrained form, becoming unstable in the process. However, since α-In has stable

lattice dynamics even at 0% strain, it would be feasible to expect that it will remain in

its monolayer form even after removal from the substrate.

Molecular dynamics were performed to test the substrate and monolayer stabilities

at finite temperature. In our simulations, both show only thermal fluctuations at fem-

tosecond and nanosecond scales, giving promise to their experimental realization. For

allotropes which show potential for experimental synthesis, we have simulated their elec-

tronic, optical and elastic properties.

Further predictions on stable indium and aluminium allotropes could be obtained using

stochastic approaches coupled with density functional theory [75]. The advantages of such

an approach are speed and unbiased nature of the algorithm for generating structures

only within symmetry constrains. Thus, the entire energy landscape is sampled, ensuring

that acquired structures are truly the energetically most favoured ones. However, these

approaches are beyond the scope of this thesis.

Also, we would like to highlight the issue of high tendency of considered elements to

oxidise in the atmosphere, forming oxide compounds. For their use in potential devices,

developing methods and supporting materials that decrease its oxidation sensitivity is a

crucial task and possible aim of future studies. One of the solutions could be enveloping

the monolayers in suitable non-reactive materials to prevent oxidation or functionalizing

their surfaces with appropriate elements, like hydrogen. In contrast to this, studying

oxidised forms of antimonene, indium and aluminene could be important for their possible

application. Surface functionalization of the monolayers could also serve as a another way

of stabilizing lattice dynamics, independent of the strain and the substrates studied in

this thesis.

To further expand on the results of our research, a wider range of metallic substrates

could be taken into account using the methods outlined and applied in this thesis. Since

we were unable to converge the results for metallic substrates expect for Ag(111) and
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Cu(111), perhaps another approach should be taken instead of cell relaxation, guided by

the results of experiments for already synthesized two-dimensional materials.

The results of this thesis have expanded on the knowledge of monoelement single-layer

structures and predicted experimental conditions for their possible synthesis. We have

used a novel method for straining the crystal lattice to find the ranges of lattice stability for

proposed new two-dimensional materials. By studying the monolayers on substrates, we

have identified the conditions of their experimental synthesis: (i) type and the symmetry

of the substrate, (ii) required strain for acquiring their stable lattice dynamics and (iii)

appropriate temperature conditions for their synthesis. Characterization of the proposed

structures revealed their optical activity in visible and UV parts of the electromagnetic

spectrum, while they also showed wide range of elastic properties. We hope the results

of this thesis will guide the new studies of their experimental synthesis, as well as further

expanding their characteristics with improved theoretical methods.
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Appendix A

Computational details

In this appendix we present computational details used in the making of this thesis.

Calculations were performed within formalism presented in Chapter 1, using computer

codes Quantum ESPRESSO and ABINIT. Exchange-correlation energy was calculated

within the GGA approach. Results were obtained using the plane-wave approach and

integrations over the Brilloun zone were replaced by a sum over discrete set of points as

per ref. [21].

A.1 Pseudopotentials

Pseudopotentials used are available online at pseudopotential repository of QUANTUM

ESPRESSO [36]. They were used without alterations. We have used ultrasoft pseudopo-

tentials for obtaining structural parameters and the phonon dispersions of the ground

state, strain, substrate, electron band structures, density of states (DOS), charge density

and molecular dynamics calculations. Certain calculations were repeated with norm-

conserving pseudopotentials. Norm-conserving pseudopotentials were used for obtaining

the optical properties.

Ultrasoft pseudopotentials used for Sb atoms were obtained using Perdew-Wang para-

metrization [28], while ultrasoft pseudopotentials for In, Al, Ag, Cu and C atoms were

obtained using Perdew-Burke-Ernzerhof parametrization [29]. All the norm-conserving

pseudopotentials were obtained using the procedure outlined in [76], with Perdew-Burke-

Ernzerhof parametrization. Valence electron configurations of the used pseudopotentials

are given in table A.1.
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A.2. Convergence

Table A.1: Valence electron configurations of used pseudopotentials. Index NC denotes

norm-conserving pseudopotentials, while the index US denotes ultrasoft pseudopotentials.

Element Configuration

AlNC 1s22s22p63s23p1

AlUS 3s23p1

Ag 5s15p04d10

C 2s22p2

Cu 4s14p03d10

InNC 5s25p14d10

InUS 5s25p14d10

SbNC 5s25p34d10

SbUS 5s25p34d10

A.2 Convergence

We have tested total energy convergence for cut-off energy of plane wave basis Ecut and

the k-mesh for the sampling of the Brilloun zone. We have set the total energy con-

vergence threshold at 0.001 eV. As phonon frequencies depend on higher derivatives of

total energy, we have tested their convergence on the parameters of Ecut and the k-mesh.

Converged parameters are shown in table A.2. We have only presented the convergence

parameters for phonon convergence, as all the parameters for the total energy convergence

are lower. As phonon dispersion calculations demand sequence of calculations - unit cell

optimization, self-consistent calculation and phonon dispersion calculations - with subse-

quent calculations depending on the results of the previous, we have shown the results

only for the structural parameters obtained at the higher convergence parameters. All

the phonon dispersion under strain were calculated for the convergence parameters of the

unstrained structure. Converged parameters for calculations on substrates are shown in

table A.3. During the structural relaxation, we have set the scf convergence threshold for

forces acting on atoms at 0.005 eV / Å−1 and stresses at 0.5× 10−4 kbar. As the height

of the unit cell c is large, the corresponding dimension in the reciprocal space is small, so

1 k-point is enough to sample it.
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A.2. Convergence

Table A.2: Results of the ground state energy and phonon frequencies convergence for

free-stranding monolayers.

Struct. Elem. Ecut (Ry) k-mesh

Planar - α

Al 80 8× 8× 1

In 70 10× 10× 1

Sb 60 16× 16× 1

Buckled - β

Sb 80 20× 20× 1

Triangular - γ

Al 40 16× 16× 1

In 100 16× 16× 1

Puckered - δ

Sb 70 14× 14× 1

Table A.3: Results of the ground state energy convergence for substrates.

Struct. Elem. Ecut (Ry) k-mesh

Sb on substrate

Ag 70 10× 10× 1

C 70 8× 8× 1

Cu 80 8× 8× 1

In on substrate

Ag 80 8× 8× 1

C 70 10× 10× 1

Cu 80 10× 10× 1

Al on substrate

Ag 80 8× 8× 1

C 120 10× 10× 1

Cu 80 8× 8× 1
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Appendix B

Indiene and aluminene in buckled

and puckered allotropic

modifications

To further show what happens with the structures β- and δ- of Al and In during structural

relaxation, we calculated total electronic energy per atom, Etot, and cohesive energies,

Ecoh. The final, relaxed structures, in the main text referred to as the bilayers of the γ

structure, all have total energies and cohesive energies lower than the starting ’true’ β

and δ structures, showing that the bilayer is energetically preferred structure.

Table B.1: Total and cohesion energy of buckled honeycomb and puckered indium and

aluminium structures initially and post relaxation.

Initially Post

Structure Element
Etot

(eV/atom)

Ecoh

(eV/atom)

Etot

(eV/atom)

Ecoh

(eV/atom)

Buckled

Al -73.417 -2.39 -74.163 -3.13

In -1970.101 -1.62 -1970.560 -2.08

Puckered

Al -72.879 -1.85 -74.084 -3.06

In -1970.343 -1.87 -1970.543 -2.08
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Appendix C

Lattice dynamics under compressive

strain

Imposing a compressive strain on all of the proposed allotropes yielded imaginary phonon

frequencies. As an example, we provide the behaviour of the lowest phonon mode of α-In

when strained in the armchair, zigzag or biaxial directions up to -10% (Fig. C.1).

(a) (b) (c)

Figure C.1: Lowest phonon mode of (a) armchair, (b) zigzag and (c) biaxially strained

α-In.

We have noticed development of instabilities with compressive strain in similar research

of other two-dimensional materials [77, 78].
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Appendix D

Characterization of triangular

structures

D.1 Electronic band structure

Both γ-In and γ-Al have metallic character, as seen in Fig. D.1. Unlike α-In and α-

Al, s-orbitals and p-orbitals both contribute to valence and conduction bands, revealing

sphybridization. In α-In and α-Al, valence and conduction bands are made mostly of

p-orbitals. Dirac cones are seen at three different points of the Brilloun zone.

(a) (b)

Figure D.1: Electron band structure and density of states (DOS) of (a) γ-In and (b) γ-Al.

Black lines in the electronic band structure graph are valence bands, while red lines are

conduction bands. Blue lines in the pDOS graph are the s-orbitals, while green lines are

the p-orbitals. d-orbitals do not contribute to DOS in the shown energy range. Dashed

red line is the Fermi level EF .
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D.2. Optical properties

D.2 Optical properties

Optical properties of γ-In and γ-Al also show anisotropy, as other two-dimensional mate-

rials. Due to smaller amount electronic bands, the spectra have lower amount of features.

The peaks in the zz components at photon energies of 4.2 eV and 3.8 eV, for γ-In and γ-Al

respectively, are also present. All spectra show periodic properties in the xx component.

Figure D.2: Optical properties within random phase approximation (RPA) of γ-In and

γ-Al. xx denotes electric field polarized in-plane while zz denotes electric field polarized

out-of-plane.
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