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Image-potential states on dielectric-covered metal surfaces:
Variational versus numerical approach
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We And a set of simple variational hydrogeniclike wave functions for the three lowest image-
potential states of electrons trapped on dielectric layers supported by a metallic substrate. We cal-
culate the variational parameters and find excellent agreement with the numerical calculations, both
for eigenenergies and eigenfunctions. A simple form of the wave functions and their accuracy en-
able analytical formulation and treatment of many-body processes in these quasi-two-dimensional
electronic systems.

INTRODUCTION

Many transition-metal surfaces support unoccupied
electronic surface states and image-potential states, the
latter arising from the attractive long-range electrostatic
potential. The existence of these localized states is possi-
ble in a gap in the surface-projected bulk density of
states, which indicates that the lattice provides a strong
repulsive potential in this energy region. In the past de-
cade the observation of these states, using the techniques
of optical absorption, inverse photoemission, and
electron-energy-loss spectroscopy (EELS), has led to
intensified theoretical studies of these phenomena. '

These (high-resolution) experimental techniques can be
also used to study image-potential states on dielectric sur-
faces, like liquid He, where they were first predicted and
observed, and dielectric-covered metal surfaces. ' In
general, one can distinguish between two classes of sur-
face states: the lowest —or "crystal induced" —state is lo-
calized in the surface region, its character is determined
by the scattering on atomic core potentials, and it is only
weakly influenced by the long-range image potential. In
fact, it can exist even in the models which assume a sharp
surface-potential step. On the other hand, proper image-
potential states extend far outside the solid, are given to a
good approximation by the solutions of the classical im-
age potential with an infinite repulsive barrier, and are
only weakly infIuenced by the surface scattering. In this
respect, they form a model system of a two-dimensional
electron gas similar to the electrons adsorbed on liquid
helium. ' However, we are not aware of any systematic
experimental study of these states for finite layer
thicknesses and difterent substrates.

The aim of this paper is, therefore, to find simple and
accurate analytic forms of wave functions of electrons in
image-potential states on dielectric-covered metal sur-
faces. Using a one-dimensional model of the electrostatic
attractive potential, Cole has calculated numerically the
eigenvalues and eigenfunctions of electrons in an image-
potential state on a layer of dielectric (H2, He, Ne) deposit-

ed on a metallic substrate. However, for application in
further theoretical work, numerical wave functions are
not very useful.

In this paper we suggest variational solutions for the
three lowest bound states in the image potential of the
dielectric-metal system and evaluate their energies, wave
functions, and mean positions. We also calculate numeri-
cally the wave functions and energies and compare with
the variational results, for three inert dielectrics: liquid
He, solid Ne, and Ar.

The simplicity (analytic form) and high accuracy of
these variational wave functions make possible the stud-
ies of the many-body effects in the quasi-two-dimensional
systems of electrons trapped in image-potential states.
The spatial extension of these states changes the form of
the effective electron-electron interaction and modifies
the phase diagrams for the formation of a two-
dimensional Wigner lattice. At higher densities, the self-
consistent variational calculations should also include
this electron-electron interaction. It turns out' that our
variational trial functions are still a good starting point,
and the results of the present work are quantitatively
modified only for the case of helium, i.e., the weakest im-
age potential, at (unphysically) high densities.

FORMULATION OF THE PROBLEM

Figure 1 shows the geometry of the system. A smooth
layer of dielectric of thickness d with the static dielectric
constant eo is deposited on a (metal or dielectric) sub-
strate. The electrons above the dielectric move freely
parallel to the surface, and in the perpendicular direction
they experience the attractive electrostatic potential and
the repulsive exchange potential of atomic closed shells.
These two potentials can trap electrons in a series of
Rydberg-like bound states that we are going to study in
this paper.

In order to determine the electrostatic potential we
start with the screened (nonlocal) Coulomb interaction
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Metal Vacuum

2 1 for d —+0
W; (z;d)= —Z where Z—=Z(d)~ '

&m ~ 4 p for d~ao,
(5)

but in the intermediate considered here, case 8; is
somewhere in between and has to be evaluated from (4).
Needless to say, approximating a dielectric layer with a
slab of a dielectric constant eo appropriate to the bulk
dielectric is not valid for very thin layers.

Inserting (2) for D(Q) into (4) leads to a series of im-
ages which can be written in a fast-converging from:

e 1 1 1+p
4 z+d z z+2d

FIG. 1. Geometry of the system: layer of dielectric
{—d &z &0) on a metal substrate {z& —d). 8' {z;d) is image
potential of this system for z )0. 1 )npn +1

n=1

1 1

z+nd z+(n+2)d

which can be written outside a planar surface for z,z') 0
in the form '"

2dg (g.R 2ne
(2n. )

x[ Qlz z
I —D(Q ) Q(z+z)]

Here, the first term in the square brackets represents the
direct interaction, and the second is the induced interac-
tion mediated via the exchange of polarization Auctua-
tions in the solid surface plasmons in a metal, or modified
surface excitations in the metal-dielectric system.

For the static problems we can use the high-frequency
(instantaneous) limit of D(Q, co); furthermore, we shall
take a small-Q limit because all the lengths in the prob-
lem will be larger than k~ ' or kT„' where dispersion of
surface plasmons starts playing a role.

In this limit, for the layer of an inert dielectric (eo) of
thickness d on a metallic substrate (e~ ~ ), D can be ex-
pressed as '

Here the (z+d) ' and p/z terms are due to the images
in the metal and dielectric, respectively, and the other
terms are their higher-order images.

ONE-PARAMETER VARIATIONAL
WAVE FUNCTIONS

Assuming a strong repulsive barrier at the surface of a
dielectric (z =0) and the attractive electrostatic potential
(4), the eigenstates can be easily calculated in the limiting
cases d =0 and d = ~, where the potential reduces to the
limiting form (5). The wave functions are

where the ground-state wave function
~
a ) is of the Ryd-

berg type:

Po(z) = ~a) =2a ze ', z ~0

and the energy (in Ry) of the ground state is

p+eD( )=
1 +P —2gd

(2) h'Z'
Eo(K)= +Eo~ Eo o.

2m 2m

where

e —10

to+ 1

For a clean metal (d ~0) D —+ I, and for a thick dielec-
tric (d ~~ ) D ~p, as expected.

The image potential of the electron corresponds to the
local limit (R~O, z =z') of the electron self-energy de-
rived from the second (induced) terms in (1):

where a=v/4ao. The parameter x. equals 1 for d =0 and

p for d = ao. For the finite dielectric thickness d, i.e., for
the potential (4), Cole found the eigenenergies Eo nu-
rnerically.

For a finite layer thickness d, in analogy with the
asymptotic (d =0 or ~ ) solutions (8) (and corresponding
wave functions for higher Rydberg states), we assume the
following variational wave functions.

W; (x;d)= —,
' J 2 W;„d(Q, z=z')d

(2n. )

2 fdQe ~'D(Q) .
2

(4)

(i) Ground state:
—ay) /4

$0= pe, N() =16ao/ao3 .
0

(ii) First excited state:

(10a)

Both for a very thin and very thick layer, the potential
reduces to the well-known expression (a(p+a2a(p )e, N, =128ao/a, . (10b)= 1 2 alP/8 3

1
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Ground state

The average energy (in Ry) is
—

xD ao/2+e2a0 a0 ~ dx
E11(aii,d) =

4 p 1 + 3 —xDao/2]+pe
(A2)

) -0.05—
LU

where D =d/ap.
Minimizing the energy with respect to the parameter

ap, we find that ap is given by the implicit equation

I I I I

200 400 600 800 1000

—6
( 1+x )4 xDa&/—21+ e

The mean value z0 (in a.u. ) is

6
Zp

CXp

(A3)

(A4)

FIG. 7. Numerically calculated ground-state energies for
helium and neon. Solid lines are our results, as compared with
those of Ref. 8, denoted by triangles.

First excited state

The orthonormalization conditions connect the
coefficients in the trial function $1.

tional parameters appropriate to the layers of He, Ar,
and Ne with varying thicknesses. The presented results
enabled us to proceed with analytic modeling of quasi-
two-dimensional electrons in such systems, which show a
range of interesting phenomena.

At present we are not aware of any systematic experi-
mental study of these states, except for very thin dielec-
tric films with several layers of thickness.
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APPENDIX

In this Appendix we give the relations between the
coe%cients a;, b; and the parameters a, of the trial func-
tions (10). We also give the average values of the Hamil-
tonian (12), E;= ( 1)/;!H!g; ), and the mean values of z:

g
Z f Z ~

3'
a = a2

A 1

where

a 1 2cxpI+
24 n1

A, =4czp 2o.pa1+ n2 2

xD a1 /4—
X

1+Pe

where

W2= —2c p+a, +o.,x .

u1 is the solution of the equation

The average value Ei (in Ry) is

E, (a(i, a„d)=— 1+
1

dx 3Cx1X A2
CX1 1+

(1+x) A1

(A5)

(A6)

1 a1 a 1(ao a1)2

+ l+ x dx 5

(1+x)'
3A2 5x+3a, (1+x) +

A1 1

2a, (a0 —a, )(1+x) xDa1/4—
1+Pe

(A7)

The mean value of z (in a.u. ) is

4 20ao 4~pa1+ 2o.'1
Z 1

O.'1 A1

The analogous results for the second excited state are too lengthy to be given here.
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