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Image-potential states on dielectric-covered metal surfaces:
Variational versus numerical approach

B. Trnini¢-Radja* and M. Sunjié
Department of Physics, University of Zagreb, P.O. Box 162, 41001 Zagreb, Croatia, Yugoslavia

Z. Lenac
Pedagogical Faculty, 51000 Rijeka, Croatia, Yugoslavia
(Received 21 March 1989)

We find a set of simple variational hydrogeniclike wave functions for the three lowest image-
potential states of electrons trapped on dielectric layers supported by a metallic substrate. We cal-
culate the variational parameters and find excellent agreement with the numerical calculations, both
for eigenenergies and eigenfunctions. A simple form of the wave functions and their accuracy en-
able analytical formulation and treatment of many-body processes in these quasi-two-dimensional

electronic systems.

INTRODUCTION

Many transition-metal surfaces support unoccupied
electronic surface states and image-potential states, the
latter arising from the attractive long-range electrostatic
potential. The existence of these localized states is possi-
ble in a gap in the surface-projected bulk density of
states, which indicates that the lattice provides a strong
repulsive potential in this energy region. In the past de-
cade the observation of these states, using the techniques
of optical absorption, inverse photoemission, and
electron-energy-loss spectroscopy (EELS), has led to
intensified theoretical studies of these phenomena.' ™3

These (high-resolution) experimental techniques can be
also used to study image-potential states on dielectric sur-
faces, like liquid He, where they were first predicted4 and
observed,’ and dielectric-covered metal surfaces.®’ In
general, one can distinguish between two classes of sur-
face states: the lowest—or “‘crystal induced”’—state is lo-
calized in the surface region, its character is determined
by the scattering on atomic core potentials, and it is only
weakly influenced by the long-range image potential. In
fact, it can exist even in the models which assume a sharp
surface-potential step. On the other hand, proper image-
potential states extend far outside the solid, are given to a
good approximation by the solutions of the classical im-
age potential with an infinite repulsive barrier, and are
only weakly influenced by the surface scattering. In this
respect, they form a model system of a two-dimensional
electron gas similar to the electrons adsorbed on liquid
helium.*> However, we are not aware of any systematic
experimental study of these states for finite layer
thicknesses and different substrates.

The aim of this paper is, therefore, to find simple and
accurate analytic forms of wave functions of electrons in
image-potential states on dielectric-covered metal sur-
faces. Using a one-dimensional model of the electrostatic
attractive potential, Cole® has calculated numerically the
eigenvalues and eigenfunctions of electrons in an image-
potential state on a layer of dielectric (H,,He,Ne) deposit-
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ed on a metallic substrate. However, for application in
further theoretical work, numerical wave functions are
not very useful.

In this paper we suggest variational solutions for the
three lowest bound states in the image potential of the
dielectric-metal system and evaluate their energies, wave
functions, and mean positions. We also calculate numeri-
cally the wave functions and energies and compare with
the variational results, for three inert dielectrics: liquid
He, solid Ne, and Ar.

The simplicity (analytic form) and high accuracy of
these variational wave functions make possible the stud-
ies of the many-body effects in the quasi-two-dimensional
systems of electrons trapped in image-potential states.’
The spatial extension of these states changes the form of
the effective electron-electron interaction and modifies
the phase diagrams for the formation of a two-
dimensional Wigner lattice. At higher densities, the self-
consistent variational calculations should also include
this electron-electron interaction. It turns out'® that our
variational trial functions are still a good starting point,
and the results of the present work are quantitatively
modified only for the case of helium, i.e., the weakest im-
age potential, at (unphysically) high densities.

FORMULATION OF THE PROBLEM

Figure 1 shows the geometry of the system. A smooth
layer of dielectric of thickness d with the static dielectric
constant €, is deposited on a (metal or dielectric) sub-
strate. The electrons above the dielectric move freely
parallel to the surface, and in the perpendicular direction
they experience the attractive electrostatic potential and
the repulsive exchange potential of atomic closed shells.
These two potentials can trap electrons in a series of
Rydberg-like bound states that we are going to study in
this paper.

In order to determine the electrostatic potential we
start with the screened (nonlocal) Coulomb interaction

9600 ©1989 The American Physical Society
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FIG. 1. Geometry of the system: layer of dielectric
(—d <z <0) on a metal substrate (z < —d). Wj,(z;d) is image
potential of this system for z >0.

which can be written outside a planar surface for z,z’' >0
in the form®!!

N 2
W(R,z,z')= f _(—g;?)_Ze‘Q'R‘%EQS—

X[e 2777 —D(Q,w)e 2T . (1)

Here, the first term in the square brackets represents the
direct interaction, and the second is the induced interac-
tion mediated via the exchange of polarization fluctua-
tions in the solid surface plasmons in a metal, or modified
surface excitations in the metal-dielectric system.

For the static problems we can use the high-frequency
(instantaneous) limit of D (Q,w®); furthermore, we shall
take a small-Q limit because all the lengths in the prob-
lem will be larger than k; ! or k¢ where dispersion of
surface plasmons starts playing a role.

In this limit, for the layer of an inert dielectric (€;) of
thickness d on a metallic substrate (e— o ), D can be ex-
pressed as® 12

_ Bte ¥
D= @
where
_ 60_1
B= g (3)

For a clean metal (d —-0) D —1, and for a thick dielec-
tric (d — o ) D — 3, as expected.

The image potential of the electron corresponds to the
local limit (R—0, z =z') of the electron self-energy de-
rived from the second (induced) terms in (1):

Won(x;d)=1 [ (;’f)z W, (0,z=2")
2
_._e - z
=—%-Jdoe*D(Q) . @

Both for a very thin and very thick layer, the potential
reduces to the well-known expression
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1 for d—0
B ford— o ,

(5
but in the intermediate considered here, case W, is
somewhere in between and has to be evaluated from (4).
Needless to say, approximating a dielectric layer with a
slab of a dielectric constant €, appropriate to the bulk
dielectric is not valid for very thin layers.

Inserting (2) for D (Q) into (4) leads to a series of im-
ages which can be written in a fast-converging from:

‘ |

—— 4B
1 1

z+d
z+nd z+(n+2)d

2
W (z;d)= —z—fg where Z =Z(d)—

1 1
z z+2d

2
e
Wim=""7

n=1

+ i (_l)an+1[

(6)

Here the (z +d) ! and B/z terms are due to the images
in the metal and dielectric, respectively, and the other
terms are their higher-order images.

ONE-PARAMETER VARIATIONAL
WAVE FUNCTIONS

Assuming a strong repulsive barrier at the surface of a
dielectric (z =0) and the attractive electrostatic potential
(4), the eigenstates can be easily calculated in the limiting
cases d =0 and d = o, where the potential reduces to the
limiting form (5). The wave functions are*

IK,a)=e™®Rla), K=K, 7

where the ground-state wave function |a ) is of the Ryd-
berg type:

¢0(z)=|a)=2a3/zze T z20 (8)

and the energy (in Ry) of the ground state is

22 2
WK | E, E0=—5ﬁ;a2=—%x2, )

Eo(K)="

where a =k /4a,. The parameter « equals 1 for d =0 and
B for d = «. For the finite dielectric thickness d, i.e., for
the potential (4), Cole® found the eigenenergies E, nu-
merically.

For a finite layer thickness d, in analogy with the
asymptotic (d =0 or o) solutions (8) (and corresponding
wave functions for higher Rydberg states), we assume the
following variational wave functions.

(i) Ground state:

1 —ayp/4

Yo=3pe , Ni=16a,/a} . (10a)
0
(i) First excited state:
¢1=—]\}—<a1p+a2alp2)e‘“"’/8, N2=128ay/a} . (10b)
1
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(iii) Second excited state:

=L (b ptbraxp*+biadpe ",
27N, 1P T 02020 3P

(10c¢)
=432(10/a% N

where p=z /a,.

The orthonormalization conditions
<¢i|¢’j>=8ij an

give five relations which determine a’s and b’s as func-
tions of the variational parameters a,, a;, and a, for each
thickness d.

The average value E; =y, |H|¢; ) of the Hamiltonian

H—%%%—W (z;d) (12)
is minimized by requiring

JE;

3a, =0, (13)

which gives the values of ay=
tions

ao(d), and also the rela-

a,=a,(agd) ,
(14)
azzaz(al,ao,d) .

These a’s finally determine the wave functions ; and
eigenenergies E; of the three lowest levels. (See Appen-
dix.)

The numerical solutions of the Schrodinger equation
are obtained in the standard way, and we might only
mention the appropriate boundary conditions. For p—0,
W,,,— —e?B/4z, so the wave functions are hydrogenlike
wave functions (10) of the form (Bp). For p— oo,
Wi — —e2/4(z +d), so the wave functions approach the
hydrogenlike wave function (10) shifted by d:
l,b( P +d /i ap ).

DISCUSSION OF THE RESULTS

Figure 2 shows the variationally calculated energies of
the ground and first excited states of the three rare-gas
layers as functions of the layer thickness.

The (bulk) values of €,=1.055 for He, 1.24 for Ne, and
1.66 for Ar are taken from Ref. 13. The repulsive poten-
tial at the dielectric surface, as mentioned earlier, arises
from the large gap between the filled and lowest empty
bands of the rare-gas solids. In the case of Xe and Kr the
hybridization lowers the bottom of the s band below vac-
uum in a three-dimensional solid, but not necessarily in a
layer. For the three gases considered, they are well above
the vacuum level. 147!

If we now calculate numerically these eigenvalues and
plot them in Fig. 2, it is almost impossible to resolve
them from the variational results. The relative difference
between the variational and numerical binding energies
are shown in Figs. 3(a)-3(c), and we see that the agree-
ment is extremely good. The highest discrepancy of some
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FIG. 2. Variational binding energies as functions of the layer
thickness d, for He, Ne, and Ar: ground states (solid lines) and
first excited states (dashed lines) are shown. The limiting values
are E;=—2Z%.85/(i +1) (i=0,1).
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FIG. 3. Ratios of the variational and numerical energies of
the first three image-potential states as functions of (a) helium,
(b) neon, and (c) argon, for layer thickness d.
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10% arises for the second excited state on a helium layer
of thickness 30-200 a.u., but, e.g., for the ground state,
they are practically negligible. The agreement is better
for lower states and for larger dielectric constants €, as
can be seen in Fig. 3, e.g., comparing the helium and ar-
gon cases.

The main motivation for this variational approach was
to find the approximate wave functions in a simple form,
which could be used in further studies of these quasi-
two-dimensional systems.’ The real test of the validity of
the variational approach is not only the eigenenergies,
but especially the electronic wave functions.

In Fig. 4 we show that the ground-state wave functions
are extremely well given by the variational form (10) with
a’s calculated for Ne at two different thicknesses, even in
the region of highest discrepancy (d =50 and 200 a.u.)

The ground state is particularly well approximated,
and we find certain deviations for higher excited states, as
expected. As a typical quantity to compare, we might
take the first moment (or average distance from the sur-
face) of the electron density—namely, these states charac-
teristically extend rather far into the vacuum. Figure 5
shows variationally calculated average distances Z for the
three lowest states of He, Ar, and Ne-with increasing
thickness d they gradually approach the bulk dielectric
results. This figure also gives the parameters ay(d) for
the three gases. Figure 6 again confirms the quality of
our variational wave functions: the deviations from the
numerically computed values of Z are indeed very small.

Finally, in Fig. 7 we compare our numerical results
with those of Cole® and find excellent agreement regard-
less of the different expressions for image potentials;
namely, Cole introduced a cutoff of the image potential
close to the surface and a finite barrier.

In conclusion, we have presented relatively simple ana-
lytic forms of the wave functions for the three lowest
image-potential states trapped on the surfaces of dielec-
tric layers on a metallic substrate, which are in excellent
agreement with much more complicated numerical re-
sults. We have also given explicit results for the varia-
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FIG. 4. The ground-state variational (dashed lines) and nu-
merical (solid lines) wave functions of Ne at thicknesses of 50
and 200 a.u.
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FIG. 5. The mean values Z for the ground (solid lines), first
excited (dashed lines), and second excited states (dashed-dotted
lines) of He, Ne, and Ar.
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FIG. 6. The ratios of variationally numerically calculated
average distances Z of the three lowest states as functions of (a)
He, (b) Ne, and (c) Ar for layer thicknesses d.
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FIG. 7. Numerically calculated ground-state energies for
helium and neon. Solid lines are our results, as compared with
those of Ref. 8, denoted by triangles.

tional parameters appropriate to the layers of He, Ar,
and Ne with varying thicknesses. The presented results
enabled us to proceed with analytic modeling of quasi-
two-dimensional electrons in such systems, which show a
range of interesting phenomena. °

At present we are not aware of any systematic experi-
mental study of these states, except for very thin dielec-
tric films with several layers of thickness.
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APPENDIX

In this Appendix we give the relations between the
coefficients a;,b; and the parameters «; of the trial func-
tions (10). We also give the average values of the Hamil-
tonian (12), E; = ;| H|4, ), and the mean values of z:

40
Ground state
The average energy (in Ry) is
2 —xDay/2
a, & co dx Bte °
Eyagd)=——— ,  (A2)
0“0 16 4 fo (1+x)3 1+Be-—xDa0/2

where D =d /a,.
Minimizing the energy with respect to the parameter
a, we find that o, is given by the implicit equation

—xDay/2
__re xdx pBte 0
a0—6f 4 —xDay/2 ° (A3)
0 (1+x)" 148e 0
The mean value Z; (in a.u.) is
7,=2 . (Ad)
%o

First excited state

The orthonormalization conditions connect the

coefficients in the trial function ¥;:

2
a%=iAa]—l, 022—% %512 , (AS)
where
A =4a3—2a,0,+a? .
The average value E, (in Ry) is
E(agayd)=L |2 14 St
8 | 24 Ay
—a, o dx 3ax A,
0 (1+x) Ay
X f:; __x;a:; ] , (A6
e

where

A2= —2a0+a1+a1x .

=/ :1/’1'2 Y,dz . (A1)  a is the solution of the equation
o]
1 a% 1+ alay—ay) fw x dx 5 3a,(1+x) N 3A, St 2a,(apg—a;)(1+x) B+e—xba,/4
R et it A Nd L 5 . .
12 Al 2A1 0 (1+x)6 a, A] Al Al 1+ﬂe—xDa1/4
(A7)
The mean value of z (in a.u.) is
2003 —4ag0, + 2032
7= (A8)

a, Ay

The analogous results for the second excited state are too lengthy to be given here.



40 IMAGE-POTENTIAL STATES ON DIELECTRIC-COVERED. .. 9605

*Present and permanent address: Faculty of Mining, Geology
and Petroleum Engineering, University of Zagreb, P.O. Box
186, 41001 Zagreb, Croatia, Yugoslavia.

V. Dose, Surf. Sci. Rep. 5, 337 (1985).

2P. D. Johnson, and N. V. Smith, Phys. Rev. B 27, 2527 (1983).

3N. V. Smith and P. D. Woodruff, Prog. Surf. Sci. 21, 295
(1986). )

4M. W. Cole and M. H. Cohen, Phys. Rev. Lett. 23, 1238 (1969);
V. B. Shikin, Zh. Eksp. Teor. Fiz. 58, 1748 (1970) [Sov.
Phys.—JETP 31, 936 (1970)].

5C. C. Grimes and T. R. Brown, Phys. Rev. Lett. 23, 280 (1974).

6K. H. Frank, K. Horn, J. Wilder, and E. E. Koch, Appl. Phys.
A 44, 330 (1987).

7K. Wandelt, W. Jacob, N. Memmel, and V. Dose, Phys. Rev.

Lett. 57, 1643 (1986).

8M. V. Cole, Phys. Rev. B 3, 4418 (1971).

9M. Sunji¢ and Z. Lenac (unpublished).

107 Lenac and M. Sunji¢ (unpublished).

117, Penzar and M. Sunji¢, Phys. Scr. 30, 431 (1984).

127 Lenac, M.Sc. thesis, University of Zagreb, 1980.

I3M. L. Klein and J. A. Venables, Rare Gas Solids (Academic,
New York, 1976), Vol. II, Chap. 17.

14N. Schwentner, M. Skibowski, and W. Steinmann, Phys. Rev.
B 8, 2965 (1973).

15y, Saile and E. E. Koch, Phys. Rev. B 20, 784 (1979).

16N. Schwentner, F. J. Himpsel, V. Saile, M. Skibowski, W.
Steinmann, and E. E. Koch, Phys. Rev. Lett. 34, 528 (1979).



