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The topological aspects of the conversion of collective charge density wave trans-
port into the ohmic one in front of extended barriers are discussed in the frame of
Gor’kov’s model. It is shown that simultaneous phase slips form a family of dis-
location lines. The shape and dynamics of these lines depend on the morphology
of the barrier. They influence the amplitude of the narrow band noise, but do not
modify its fundamental frequency.

1. Introduction

The Peierls ground state1), one of the possible low-temperature broken symme-
tries which characterize quasi-one-dimensional systems, is a periodic deformation
of the ionic lattice, accompanied with the formation of the electronic charge density
wave (CDW). In an ideal crystal lattice, the energy of the electron-ion system does
not depend on the phase of the CDW, while the gap in the electron spectrum, which
opens at the Fermi level, prevents the low-energy single particle excitations. The
CDW should therefore slide without dissipation under the influence of the external
electric field, exhibiting the so called Fröhlich superconductivity2).

The CDW has been found by now in few classes of materials3), but the be-
haviour which resembles to the Fröhlich superconductivity has been observed only
in some experiments4) on the blue bronze K0.3MoO3 at very high electric fields
and well below the temperature of the phase transition. Otherwise, one encounters
the collective dissipative flow of CDW which starts above a finite threshold electric
field, characterizing a particular system.
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A remarkable property of the collective CDW transport is the generation of
multiharmonic voltage oscillations, usually called the narrow band noise (NBN)3).
The fundamental frequency of the NBN is proportional to the collective current,
i.e. to the CDW velocity. The spectral lines are narrow, but still finite, suggesting
the spatial distribution of the CDW velocities within the system. Some experiments
show that the NBN amplitude varies also in time, on scales much longer than the
NBN periodicity5,6). Similar conclusions follow also from the broad band noise
(BBN), the low frequency oscillations which appear simultaneously with the NBN.
The characteristic 1/f dependence of the BBN amplitude on frequency implies the
spatial and/or temporal inhomogeneities of the CDW velocity within the sample6).

A lot of theoretical work was devoted to the mechanisms which disturb the per-
fect Fröhlich superconductivity7), and cause the above experimental findings. One
of the most obvious comes from the impurities and/or other sample defects. They
destroy the translational invariance of a system, which is the basic condition for the
Fröhlich superconductivity. The specific mechanism by which the CDW interacts
with impurities and, in particular, the effects of impurities on the CDW dynamics
and the NBN generation above the threshold electric field, remain however still
controversial to some extent. At present, the theoretical interpretations of these
effects point into two main directions.

The first one is concerned with the effects of so called weak impurities, which are
randomly distributed within the bulk of the specimen. The individual strength of
weak impurities is not sufficient to stop locally the CDW transport. It was however
pointed out by Fukuyama, Lee and Rice (FLR)8,9), that the cooperative action of
sufficiently dense weak impurities can pin the CDW phase within the phase coherent
domains, at lengths much larger than the corresponding correlation lengths.

It is by now well accepted that the FLR weak pinning is responsible, at least
partially, for the finite threshold field. This approach became also a basis for a vari-
ety of so called bulk models10−13) for the CDW dynamics above the threshold. The
main assumption of these models is that the CDW deformations due to the weak
impurities are approximately elastic. While the energy of the long wavelength phase
excitations can be arbitrary low, the energy of the amplitude fluctuations is of the
order of the CDW condensation energy and thus much higher than the weak-pinning
energy. The amplitude excitations are therefore neglected within these models, and
the CDW is considered as an elastic medium having only the phase degrees of free-
dom. The variations of the order parameter on the microscopic scales due to the
interaction of the CDW phase with weak bulk impurities is then usually substi-
tuted by some effective phenomenological potential which reflects the periodicity of
the CDW itself. The temporal modulations of the bulk CDW velocity due to this
potential are expected to be responsible for the generation of the NBN.

An alternative approach to the CDW dynamics invokes strong and isolated
crystal defects, for example the ohmic contacts, sample and grain boundaries, etc.
At such places the CDW transport is partially or completely suppressed, i. e.
the CDW velocity passes through sharp discontinuities. Different phase winding
rates in regions with different velocities, would cause the boundless accumulation
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of electronic charge. This can be prevented only by a local conversion.of the CDW
current into the ohmic one. Gor’kov14) proposed that this conversion proceeds
through phase-slippages (PS) in the vicinity of strong defects. The process of PS
had been originally invoked for the explanation of the finite resistivity in thin
superconducting fibers15,16). It is a fast and localized annihilation of the order
parameter amplitude, during which its phase slips by 2π. Thus on the contrary to
the ”phase only” models, the PS models take into account fast and localized CDW
deformations, including the amplitude degrees of freedom. The NBN is attributed
just to these deformations.

In the first microscopic analysis of the PS process in the CDW, Gor’kov consid-
ered the limit of so called dirty systems14), i.e. systems with very short relaxation
times for band electrons. The problem can be then reduced to a diffusion equation of
Ginzburg-Landau type. The detailed analytical14) and numerical17,19) treatments
of this equation in the one-dimensional case led to qualitative, and sometimes quan-
titative explanations of NBN and some other effects linked to the CDW dynamics.
It was also shown20) that the spatial variations of the external electric field lead
to the appearance of finite numbers of dynamical domains with different mean
velocities, and correspondingly, to the PS generation in the bulk of the specimen.

The opposite case of clean CDW systems, i. e. long electron relaxation times,
was addressed by Artemenko et al.21). Due to the long range correlations in this
limit it is not possible to formulate a local equation of motion. PSs have to be
treated on quantum level, as amplitude solitons with adiabatic dynamics. The
main physical consequences are however the same as in Gor’kov’s limit.

Although the PS model is in both limits14,21) formulated for a three-dimensional
system, the analyses were up to now limited mostly to the one-dimensional solu-
tions. On the other hand, Ong and Maki22) proposed that the conversion of the
CDW current occurs through the formation of phase vortices in front of strong
barriers. They used the vortex solution of the static Landau equation for the com-
plex order parameter and imposed phenomenologically their transverse motion in
order to ensure the evacuation of accumulated charge. Similar model of static elas-
tic medium was considered by Feinberg and Friedel23) who established the analogy
of CDW vortices and dislocation lines in the three-dimensional crystal lattice, and
analyzed the role of these lines in the depinning of CDW in front of the barrier.

In this paper we show that the Ginzburg-Landau diffusion equation has a special
type of three-dimensional solutions, dynamic phase vortices, i.e. dislocation lines.
These dislocation lines are shown to be a 3D generalization of the one-dimensional
PS centers. In fact, the core of our dislocation lines is an array of simultaneous PS
centers. We also show that the motion of dynamical dislocation lines depends on the
details of boundary conditions imposed by the transverse barrier. This possibility
was already mentioned in Ref. 14, and partially elaborated in Refs. 24 and 25.
Here we extend the analysis by undertaking the thorough numerical analysis, and
discussing the effects of chain discreteness and lateral sample boundaries.

The Gor’kov’s model and the corresponding description of the PS process in
the one-dimensional system is shortly reviewed in Sect. 2. This description is ex-
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tended in Sect. 3. to dynamical dislocation lines as the solutions of the problem
with a flat transverse barrier and general boundary conditions. In Sect. 4 we con-
sider the particular example of boundary condition with the linearly varying CDW
phase in one transverse direction. We obtain a train of moving dislocation lines, in
correspondence with the phenomenological picture of Ref. 22. The limitations and
possible generalizations of our results are discussed in the concluding Sect. 5.

2. Gor’kov’s model

Under the circumstances specified in the Introduction, the collective CDW dy-
namics follows trom the Landau type of equation14),

∂∆

∂t
=

∂2∆

∂r2
⊥

+
∂2∆

∂x2
+∆− |∆|2∆− iE∆ , (1)

for the complex CDW order parameter ∆ = |∆(r, t)| exp(iΦ(r, t)). Here |∆| is
measured in terms of its thermodynamic value |∆∞|2 = (6/5)π2T 2

P δ, where δ ≡
1 − T 2/T 2

P , and TP is the temperature of the Peierls phase transition. As already
mentioned, in the region of applicability of Gor’kov’s equation the concentrations
of impurities are close to the critical one, above which the Peierls phase transition
would be completely suppressed. Therefore TP ≪ T 0

P , where T 0
P is the Peierls

temperature in absence of impurities. The length and time scales are defined by
the correlation lengths ξx,⊥ and the characteristic frequency ω0 ≡ (10/27)|∆∞|2τc,
respectively. Here τc = 4γ/3πT 0

P , where γ is the Euler constant, and τc corresponds
to the critical relaxation time for the normal electrons. The unit of the electric field
E is defined by the condition eEvF = (5/36)|∆∞|2.

Equation (1) has a simple particular solution

∆(r, t) = exp(−iEt) , (2)

which represents the uniform CDW motion with a velocity proportional to the
constant external electric field. The presence of various inhomogeneities disturbs,
i.e. slows down or even completely stops, this flow. In the Gor’kov’s approach (1),
the weak and smooth disturbances of this kind are neglected, the only exception
being the possible spatial variations of the electric field E(r). This approximation
is justified for E(r) ≫ ET , where ET is the bulk threshold field caused by the finite
concentration of weak impurities inside the sample. On the other hand, the effects
of strong obstacles enter into the problem (1) through the appropriate boundary
conditions. E.g., the local stoppage of the CDW is modeled by imposing the static
value of ∆ at the obstacle.

The simple example of this kind is the CDW flow in the semi-infinite geometry,
with the static value

∆(x = 0, r⊥) = ∆(x = 0) = ∆0 (3)
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at the planar transversal boundary. Then the problem (1) allows for a particular
solution ∆(x, t) which does not vary transversally. As was shown numerically17),
∆(x, t) comprises planar PSs, which occur periodically in time with the period
equal to 2π/E in reduced units. At the moment of PS, the amplitude of the CDW
collapses at xPS ≈ E−0.284, while its phase simultaneously slips for 2π, which
enables the conversion of charge from the CDW condensate to the ohmic carriers.
The diffusion of minimum in ∆(x, t) resulting in the PS, is a nonlinear process,
with a characteristic space scale defined by xPS . It is responsible for the additional
local variation of the electric field14)

δE(r, t) = λ

{

|∆|2E − 16

9
ε |∆|2 Φ̇

}

, (4)

where

ε =
v̄2F
(

v2F
)
≈ 1, λ ≡ 8

3
(∆∞|τc)2 ≪ 1. (5)

The correspoding contribution to the sample voltage

V (t) =

∫

δEdr (6)

is in the presence of constant external electric drive E periodic, highly nonsinusoidal17)

and, as such, is a possible source of NBN.

3. General solution for dynamical dislocation lines

Let us now generalize the boundary condition (3) by allowing the transverse
dependence of ∆(x = 0, r⊥),

∆(x = 0, r⊥; t) = ∆0(r⊥). (7)

The corresponding solution ∆(r, t) depends now on all three space coordinates,
so that the numerical integration becomes very complicated. We continue instead
by using an approximate analytical method justifiable in the asymptotic limit of
large electrical fields, E ≫ 114,17,18). The previous analytical and numerical re-
sults, concerning the one-dimensional CDW dynamics, show that in this limit one
loses some important quantitative properties of the PS diffusion, in particular the
multiharmonicity of the NBN. In this work we are however mainly concerned with
the qualitative topological aspects of the PS process, which are independent of the
value of E. The results valid in the regime E ≫ 1 are therefore sufficient for our
purposes.

The PSs appear due to the matching of the local, almost static variations of
∆(r, t) close to the boundary at x = 0, and the uniform CDW flow (2) far from the
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boundary. We assign, respectively, to each region the functions ∆L and ∆R, which
satisfy the conditions

∆L(x → ∞) = 0 ,

∆R(x = 0) = 0 , (8)

and assume that the total solution of Eqs. (1, 7) is of the form

∆(r, t) = ∆L(x, r⊥) + ∆R(x, t) . (9)

The bulk part ∆R should be insensitive to the boundary condition (7) and there-
fore r⊥-independent. The exact particular solution of Eq. (1), satisfying the condi-
tion (8) is

∆R(r, t) = tanh
x√
2
e−iEt. (10)

On the other hand, the part ∆L has to satisfy both Eq. (1) and the boundary
conditions (7) and (8). The former is simplified after neglecting the weak time

dependence of ∆L, i.e. the term ∆̇L, and the potential part ∆L − |∆L|2∆L due
to the relative predominance of the term iE∆L when E ≫ 1. Equation (1) then
reduces to the linear equation

∂2∆L

∂r2
⊥

+
∂2∆L

∂x2
≈ iE∆L . (11)

Taking into account the conditions (7) and (8), and passing to the Fourier transform
of Eq. (11) with respect to r⊥, one gets the solution in the integral form,

∆L(x, r⊥) =
1

(2π)2

∫

d2r′
⊥

∫

d2q⊥∆0(r
′

⊥
) exp(iq · (r⊥ − r

′

⊥
)

−
√

1

2
(q2

⊥
+
√

q4
⊥
+ E2 ) x− sgn(E)

√

1

2
(−q2

⊥
+

√

q4
⊥
+ E2 ) x . (12)

The places and moments of PSs are determined by the condition

∆(xps~r
ps
⊥
, tps) = 0 , (13)

i.e. by

|∆L(xps~r
ps
⊥
)| = tanh

xps√
2
, (14a)

ΦL(xps , r
ps
⊥
) + Etps = (2n+ 1)π sgn(E) , (14b)

where ∆L ≡ |∆L| exp(iΦL).
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jelčić and bjelǐs: dynamical dislocation lines . . .

Equation (14a) defines a PS surface xps(r⊥) at which the PSs occur. In the case
of the boundary conditions (3) this was a plain at distance xps from the boundary
at x = 0. The intersection of the surface xps(r⊥) with the set of equiphase surfaces
differing in phase by 2π, defined by the condition (14b), determines the family of
continuous curves at which the PSs occur simultaneously at a given time tps, i. e.
the family of dislocation lines. The motion of each dislocation line on the surface
xps(r⊥) is determined by a velocity in a direction orthogonal to the equiphase line
at a given point r⊥,

vΦ(rps(t)) = − E

|∆ΦL|r=rps

. (15)

As is evident from Eqs. (14a, b, 15), the shape and dynamics of dislocation lines
depend on the functions |∆Lr)| and ΦL(r), i.e. via Eq. (12) on the function ∆0(r⊥)
which specifies the boundary condition (7). On the contrary, the time interval
between two PSs at a given point of xps(r⊥) is independent of ∆0(r⊥), and is given
by

tn+1
ps − tnps =

2π

E
. (16)

In other words, the transversal ∆L dependence does not influence the fundamental
PS periodicity at a given r⊥ (i.e. chain), but only time shifts between the PSs at
different chains. This influences also the PS voltage. The time dependent part of
the expression (6) for the solution of the form (9) reads as

δV (t) ∼
∫

dx

∫

dr⊥|∆L(x, r⊥)| tanh
x√
2
cos(Et+ΦL(x, r⊥))

≈
∫

dr⊥|∆L(xps(r⊥), r⊥)|2 cos(E(t− tps(r⊥)) , (17)

where in the second line we have taken into account that ∆L and ∆R overlap appre-
ciably only in the narrow PS region. The frequency of NBN is thus not influenced
by the transverse motion of dislocation lines. However, a continuous distribution of
tps(r⊥) throughout the sample cross section may lead to a reduction, or even to an
annihilation, of the overall NBN amplitude with respect to the planar condition (3).

4. Straight dislocation lines

To illustrate the above conclusions we choose a simple boundary condition

∆0(r⊥) = |∆0| exp(iQy) , (18)

where y is the transverse rectilinear coordinate and Q and |∆0| are real constants.
The straightforward integration of Eq. ( 12), with the condition (18) taken into
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account, leads to the result

∆L(Q,E;x, y) = |∆0| exp[ iQy + (iα− β)x] , (19)

with

α = −sgn(E)

√

1

2
(−Q2 +

√

Q4 + E2 ) ,

β =

√

1

2
(Q2 +

√

Q4 + E2 ) . (20)

The corresponding conditions defining the PS dislocation lines are

|∆0|e−βxps = tanh
xps√
2
, (21a)

αxps +Qyps + Etnps = (2n+ 1)π sgn(E) . (21b)

As follows from Eq. (21a), the surface xps(r⊥) is a plane parallel to the boundary
at x = 0, positioned at the distance

xps(y, z) ≈
1

β
ln(

√
2 |∆0|β) . (22)

The geometrical form of simultaneous PSs in this plain is a train of parallel straight
dislocation lines in the z-direction, defined by

yps(tps) = −E

Q
tps +

2nπ

Q
sgn(E) + const. (23)

The distance between two neighbouring lines is

D =
2π

Q
. (24)

The dislocation lines travel along the y-axes with a constant velocity

vy = −E

Q
. (25)

Thus in one PS period 2π/E, each dislocation line crosses the width D, i.e. the
train of dislocation lines sweeps the whole sample cross section.
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In order to visualize the PS dislocation lines we show in Figs. 1 (a, b) the order
parameter and the corresponding equiphase lines in the (x, y) plane for E = 10
and Q = −0.5 and for |∆0| at the moment tps for which the PS lines cross the
points (xps, yps = (2n + 1)D/2). These figures are graphical presentations of the
expressions for the CDW amplitude and phase

|∆(r, t)|2 =

(

tanh
x√
2

)2

+ |∆0|2e−2βx + 2|∆0| tanh
x√
2
e−βx cos(αx+Qy + Et) ,

tanΦ(r, t) =
− tanh(x/

√
2) sinEt+ |∆0| e−βx sin(αx+Qy)

tanh(x/
√
2) cosEt+ |∆0| e−βx cos(αx+Qy)

, (26)

respectively. One recognizes the typical vortex structure in the regions close to
the point (xps, yps). Note that at these points the phase of the order parameter
becomes undefined. The uniqueness of the solution is however preserved due to
|∆(xps, yps, tps)| = 0. Far from the dislocation lines, the vortex structure is de-
formed in order to accommodate to the periodicity in the y-direction and to the
boundary conditions at x = 0 and x → ∞. Furthermore, by increasing x, the
equiphase lines approach asymptotically the range of constant phase Φ = Etps,
determined by ∆R(x, t) from Eq. (10).
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Fig. 1. (a, previous page) The order parameter ∆(r, t) (Eq. (26)) for E = 10 and
Q = −0.5 and for |∆0| = 1. The presented pattern repeats periodically on the y-
axes. The characteristic x and y scales are xpj = 0.49 and D = 4π in reduced units,
(b) The corresponding equiphase lines, marked in the intervals π/6 starting from
the value Φ(x → ∞) = αxps ≈ −π/3, and evaluated with the numerical precision
δΦ = 0.01.

A vortex structure presented in Fig. 1 remains qualitatively the same when Q
and E vary. However, the characteristic scales xps, and D, and correspondingly the
angle θ between the equiphase lines and the boundary at x = 0, depend on Q and
E. The latter is deduced from Eq. (26) in the limit x → 0,

Φ(x ≪ 1) ≈ αx+Qy . (27)

The equation for the equiphase lines in this limit is thus

y =
Φ0

Q
− α

Q
x , (28)
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i.e.

tanΘ ≈ −α/Q . (29)

The dependence of α, β, xps and θ on the parameter Q for E = 10 is shown in
Fig. 2. It is evident that for Q = 0, i.e. for D → ∞, the equiphase lines become
parallel to the boundary. Simultaneously, the velocity of the dislocation lines vy
tends to infinity. This is the limit of planar PSs, realized by an instant sweep of the
whole sample cross section by a single dislocation line.

In the opposite limit of large Q, i.e. D → ∞, the equiphase lines become
perpendicular to the boundary, the density of lines tends toward infinity, and vy →
0. In the picture of discrete chains, this limit corresponds to uncorrelated chains,
with the PS process at each chain determined by a local boundary condition to
which this chain is subjected.

The above conclusions become particularly important regarding the NBN am-
plitude. Taking into account that E ≫ 1, one gets the periodic contribution to the
voltage (6)

δV (t) =
√
2λ

(

1− 8

9
ε

)

A(Q,Ly)
E

Q4 + E2

×
[

E sin

(

Et+
QLy

2

)

+Q2 cos

(

Et+
QLy

2

)]

. (30)
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Fig. 2. (a, previous page) The dependence of α and β, Eq. (20) on Q for E = 10.

For Q = 0, α = β =
√

E/2. (b) The corresponding distance xps (Eq. (21a)) of
the PS-plane from the boundary for |∆0| = 1, and the angle θ (Eq. (29)) of the
equiphase lines Φ(x → 0) = Φ0 with respect to the x-axes.

The amplitude

A(Q,Ly) = LyLz

sin(QLy/2)

QLy/2
, (31)

which results from the integration over the sample cross section S = LyLz, is
sketched in Fig. 3. Note that A(QLy → 0) → LyLz, i.e. the voltage (30) reduces in
the limit of small Q to

δV (t) =
√
2λ

(

1− 8

9
ε

)

LyLz sin(Et) , (32)

i.e. to the expression corresponding to the planar regime. However, for Ly =
2nπ, where n /=0, the overall voltage amplitude vanishes. These cases corre-
spond to Ly = nD. The sample cross section consists of an integer number of
bands of width D. Each of them contains full range of PS phases and does not
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Fig. 3. The amplitude of the time dependent part of the voltage (30) in the contin-
uous (Eq. (31), full line) and discrete (Eq. (34), dashed line) picture, for the system
of width Ly = 10. The distance between the chains in the discrete case is assumed
to be ay = 1.

contribute to the voltage. The maxima in the voltage, on the contrary, correspond
to Ly = (n+1/2)D. In fact, then only the band of width D/2 contributes, since in it
only the phases of the same sign participate. By increasing Q, i.e. by decreasing D,
this contribution diminishes, so the voltage amplitude finally vanishes for Q ≫ E.

The above result will be modified after taking into account the discrete chain
structure. For a system consisting of Ny(Nz) chains at distance ay (az), the inte-
gration over the sample cross section is to be replaced by

∫

dy

∫

dz → LyLz

1

Ny

Ny−1
∑

n=0

, (33)

where Li = Niai (i = y, z) and n is the index of the chain at the position yn =
(n+ 1/2)ay. The voltage amplitude A then becomes

A(Q,Ly, ay) = LyLz

sin(QLy/2)

Ny sin(Qay/2)
. (34)
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As is evident from Fig. 3, the effect of sample discreteness is weak in the limit of
small Q, Q ≪ a−1

y . In particular, the amplitude (34) reduces to the expression (31)

in the continuous limit ay → 0. However, for Q ≥ a−1
y , one encounters the effects

of sample discreteness. We note in particular the case Qay = 2π, i. e. D = ay.
A dislocation line passes exactly from one chain to another in one PS period. In
other words the PSs are again simultaneous throughout the sample cross section.
Instead of the zero NBN amplitude, which one would expect in a continuous limit,
we obtain again the planar result. Analogous reasoning holds also for Qay = 2kπ,
i.e. D = ay/k, when the boundary conditions are again identical at all chains.

To conclude the above analysis, let us note that the sign of Φ changes for Q →
−Q, as can be seen from the expression (26). This corresponds to the replacement
of a vortex structure presented in Fig. 1. by the anti-vortex one. Simultaneously,
the sign of vy is reversed, i.e. the vortex and the anti-vortex travel in opposite
directions (for the electric field E of a given sign). Similar conclusion holds for the
x → −x replacement. In our semi-infinite geometry the latter case corresponds
to the effects of the barrier at the right end. Thus, with fixed Q and E, the PS
generation at opposite boundaries proceeds through the generation of vortices and
anti-vortices. Note that the sign of the electric field E alters the sign of the vortex
(anti-vortex) velocity, but does not influence its topological structure.

5. Conclusions

The above analysis shows that the synchronization of PSs in front of a transver-
sally extended barrier leads to the generation of dislocation lines with topological
properties identical to those of static dislocation lines23), i.e. vortices22). The r-
dependences of phase and amplitude for the two types of dislocation lines however
differ. In the case of dynamical dislocations, it follows from Eqs. (1) and (7) and
is given by e.g. the expressions (26) and Fig. 1., while the static dislocation lines
are usually presented as solutions of the Laplace equation for an elastic medium22).
The dynamics of dislocation lines in Fig. 1. is characterized by the PS diffusion in
the longitudinal direction, and by mostly transverse motion and shape evolution
which depends on the morphology of a barrier, i.e. on the corresponding boundary
conditions for the CDW order parameter. This is to be compared with the usual
inertial motion of dislocation lines in elastic media. The transverse motion of dy-
namic dislocation lines, Eqs. (15) and (23) is reflected in the relative shifts of the
PS times at different points of the cross section. From the other side, the periodic-
ity of the PSs at a given point of the cross section (i.e. at a given chain), and the
corresponding periodicity of the NBN voltage, are not affected by the dynamics of
dislocation lines.

Let us note that this conclusion is a direct consequence of the static behaviour of
the order parameter close to the boundary. The previous one-dimensional results17)

show that, due to the nonlinear effects the PS process becomes more and more local-
ized to the PS centers by decreasing E. This suggests that the static approximation
of the Eq. (1) close to the barrier and the subsequent conclusions are well founded
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in particular in the physical range of the electrical fields (E ≪ 1). From the other
side, our results show that, while the boundary condition change the spatial scales
for the PS process, they do not change qualitatively its dynamical properties. The
above results are therefore expected to remain qualitatively the same in the phys-
ical limit of small electric field (E ≪ 1), the only exception being the sinusoidal
voltage which should be replaced by a multiharmonic one.

The motion of the dislocation lines is directly reflected also in the overall NBN
amplitude of the sample, which is in general reduced with respect to the planar
regime of simultaneous PSs. The periodic boundary condition, analyzed in detail
in Sect. 4, shows that the NBN amplitude may even vanish in some special circum-
stances. Such boundary condition is presumably too idealized and never achieved in
real samples. More realistically, the boundary conditions vary stochastically across
the boundary. Moreover, generally the barrier is not flat, i.e. its position as well
can vary transversally. Both effects would lead to a statistical distribution of the
PS positions and, more important, of the relative moments of the PSs at different
chains. The NBN amplitude will then be roughly proportional to

√

LyLz, instead
of the LyLz-law obtained in a planar regime.

Finally, the transverse motion of dislocation lines is not expected to be the rea-
son of the finite widths of the NBN spectral lines and the associated low frequency
peaks in the experimental voltage spectra. The temporal variations of the order
parameter in the regions of obstacles, neglected in our approach, may be at most
responsible for very slow temporal variations in the NBN amplitude, observed in
some experiments6). More likely however, both effects are to be associated with the
longitudinal and/or transversal variations of the external electric field, irregular
sample cross-sections and/or inhomogeneities in the weak impurity concentrations,
discussed in detail in Ref. 20.
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jelčić and bjelǐs: dynamical dislocation lines . . .

10) P. Monceau, J. Richard and M. Renard, Phys. Rev. B 25 (1982) 918; Phys. Rev. B 25

(1982) 931;
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DINAMIČKE DISLOKACIONE LINIJE U SISTEMIMA S VALOVIMA
GUSTOĆE NABOJA
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Originalni znanstveni rad

Razmatrana su topološka svojstva konverzije kolektivne struje nošene valom gustoće
naboja u omsku struju ispred barijere koja u potpunosti zaustavlja kolektivni trans-
port. U okviru Gor’kovljevog modela se pokazuje da centri istovremenih prokliza-
vanja faze formiraju familiju dislokacionih linija. Oblik i dinamika dislokacionih
linija ovise o morfologiji barijere. Takva ovisnost odražava se u amplitudi uskopo-
jasnog šuma, ali ne utječe na njegovu frekvenciju.
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