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A three-component plasma in which one component is higly degenerate and the
other two are in classical regime is considered. The frequencies of acoustic and
optical plasma modes are found using the RPA and expanding the response function
in the low- and high-frequency limit.

1. Introduction

The problem of collective behaviour of charge carriers in solids was first ad-
dressed by Kronig and Korringa [1–2]. They introduced the concept of solid state
plasma. The first rigorous treatment of electron plasma in metals was developed
by Bohm and Pines [3–6] by applying the Random Phase Approximation (RPA).
Subsequently, many authors studied plasma effects in metals. A rather complete
list of references may be found, for instance, in the review article by Glicksman [7].

In contrast to normal metals in which only one kind of charge carriers exists
(conduction electrons), semiconductors have more than one type of carriers. This
naturally leads to the concept of multicomponent plasma. In a multicomponent
plasma, in addition to high-frequency (optical) oscillations (as in a one-component
plasma) there exist a low-frequency modes, the so-called acoustic branches. This
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name originates from the fact that, as in the case of lattice acoustic waves, the
frequency of plasma acoustic waves tends to zero when the wavelength approaches
infinity. Moreover, this mode can be appreciably Landau damped.

A problem of two-component plasma formed by electrons and holes in semicon-
ductors was first considered by Pines and Schrieffer [8–9]. Later, Fröhlich [10–11]
and Salustri [12] studied oscillations of a two-component plasma composed of s-
and d-band electrons in metals.

The extension to an N -component plasma was natural, having its applications
not only in solid state physics. Various properties of an N -component plasma have
been studied by many authors [13–24].

In our earlier papers we studied the properties of a multicomponent classical [25]
and a degenerate (quantum) [26] plasma. However, there could also exist systems
in which one component is higly degenerate, and the other two are in the classical
regime. In this paper we want to study plasma dispersion relations in such mixed
systems.

2. Calculation

The dispersion relation of a three-component plasma may be expressed in the
form [27]

1 +
4π

ε0k2

3
∑

j=1

e2jWj(k, ω) = 0, (1)

where ε0 is the dielectric constant of the medium, k is the wave vector, ω is the
eigenfrequency, ej is the charge of the j

th species and Wj(k, ω) is the corresponding
response function. In the effective-mass approximation,

E(p) =
h̄2p2

2m
. (2)

After applying the RPA for the response function, one obtains [28]

W (k, ω) =
2

(2π)3

∫

f(p+ k)− f(p)

h̄ω −
h̄2

2m (2pk+ k2) + iδ
d3p. (3)

Here f(p) is the Fermi-Dirac distribution function in the state of the wave vector
p and δ is the positive infinitesimal.

An important role in the behaviour of a plasma is played by the screening
wave vector ks. For a rare plasma, when the motion of particles is described by the
classical Maxwell-Boltzmann statistics, it is given by the Debye-Hückel wave vector

ks = ωp

√

m

kBT
, (4)
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where kB is the Boltzmann constant, T the temperature and ωp the unperturbed
long-wavelength plasma frequency

ω2

p =
4πNe2

ε0m
, (5)

N being the concentration of particles. In the opposite case, namely for a dense
plasma, the Debye-Hückel wave vector should be replaced by that calculated in the
Thomas-Fermi approximation:

ks = ωp

√

3m

2EF
, (6)

where EF is the Fermi energy.

We shall consider the case when the first component of a three-component
plasma is in the quantum regime, whereas the second and the third one obey
classical statistics. In other words, it will be supposed that the following equations
hold:

EF1 ≫ kBT1, (7)

EFj ≪ kBTj j = 2, 3. (8)

Next, our somewhat simplified model will be based on the assumption that the
plasma frequencies of the coupled system are well separated. This assumption will
be realized if both the frequencies ωpj and the screening wave vectors ksj satisfy
the conditions

ω2

p1 ≫ ω2

p2 ≫ ω2

p3 (9)

k2s3 ≪ k2s2 ≪ k2s1. (10)

As is demonstrated later on, Eqs. (9) and (10) ensure that the damping of the
waves is small in the collisionless plasma.

Confining oneself to the case e1 = e2 = e3 and N1 ≈ N2 ≈ N3, one can easily
verify that Eqs. (9) and (10) will be satisfied if the species of the plasma have
disparate masses and disparate characteristic energies:

m1 ≪ m2 ≪ m3, (11)

Ef1 ≫ kBT2 ≫ kBT3. (12)

Expanding the response function in the power series of the wave vector, one has
in the classical limit:

4πe2

ε0k2
W (k, ω) = i

ω2

pωm

k3kBT

√

πm

2kBT
exp

(

−
mω2

2k2kBT

)

−
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−

(ωp

ω

)2

×

[

1 + 3

(

k2kB
mω2

)2

+ 15

(

k2kBT

mω2

)2

+ . . .

]

mω2
≫ k2kBT (13)

and

4πe2

ε0k2
W (k, ω) =

ω2

pm

k2kBT

[

i
ω

k

√

πm

2kBT
exp

(

−
mω2

2k2kBT

)

+ 1−

−
mω2

k2kBT
+

1

3

(

mω2

k2kBT

)2

− . . .

]

mω2
≪ k2kBT, (14)

whereas the corresponding high- and low-frequency expansions for the degenerate
quantum plasma are, respectively,

4πe2

ε0k2
W (k, ω) = −

(ωp

ω

)2

[

1 +
6

5

k2EF

mω2
+

12

7

(

k2EF

mω2

)2

+

+
h̄2k4

4m2ω2
+ . . .

]

mω2
≫ k2EF (15)

and

4πe2

ε0k2
W (k, ω) =

3ω2

pm

2k2EF

[

i
πω

2k

√

m

2EF
+ 1−

mω2

2k2EF
−

−
h̄2ω2

24E2

F

−
h̄2k2

24mEF
− . . .

]

mω2
≪ k2EF . (16)

The imaginary terms in Eqs. (13), (14) and (16) arise from the residue in the
integral (3). They describe the famous Landau damping.

It is convenient to separate the plasma frequency into the real and the imaginary
part:

ωj = Ωj − iγj j = 1, 2, 3, (17)

where we assume that in the long-wavelength limit the damping term γj is negligibly
small,

γj ≪ Ωj . (18)

Taking the high-frequency expansions (13) and (15) for all the three components
of the plasma we calculate the frequency of the optical plasma mode by virtue of
the conditions (9) and (10):
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Ω1 = ωp1







1 +
6k2EF1

5m1ω2

p1

+

(

2k2EF1

3m1ω2

p1

)2 [

108

175
+

9

16

(

h̄ωp1

EF1

)2
]

+ . . .







1/2

, (19)

γ1 = 0. (20)

Similarly to acoustic phonons, the frequencies of the second and the third modes
go to zero as k → 0. They are called acoustic plasma modes. The upper acoustic
frequency is obtained by applying the low-frequency expansion (16) to the first com-
ponent and the high-frequency expansion (13) to j = 2, 3. Under the assumption
that Ω2 is much larger than γ2, we arrive at

Ω2 =
kωp2

√

√

√

√

3m1

2EF1

[

ω2

p1 +
2k2EF1

3m1

(

1−
h̄2ω2

p1

16E2

F1

)]

, (21)

γ2 =
3πm1ω

2

p1Ω
4

2

8EF1ω2

p2k
3

√

m1

2EF1

. (22)

It is interesting to note that the frequency of the second component does not
depend on temperature although this component is described by classical statistical
physics. This is because the collective motion of the second species is screened by
the oscillations of the first species and they are distributed according to quantum
statistics.

To calculate the lower acoustic frequency, we apply the low-frequency expansions
(16) and (14) to the first and to the second component, respectively, and the high-
frequency expansion (13) to the third component. Assuming again that the damping
term is small, after performing some algebra we obtain

Ω3 = kωp3

√

kBT2

m2ω2

p2 + k2kBT2

, (23)

γ3 =
m2ω

2

p2Ω
4

3

2kBT2k3ω2

p3

√

πm2

2kBT2

. (24)

Contrary to the frequencies Ω1 and Ω2, the frequency Ω3 increases with in-
creasing temperature. It should be further emphasized that, similarly to the upper
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acoustic frequency Ω2 which depends on m1 and EF1 but not on T2, the lower
acoustic frequency Ω3 depends on m2 and T2 but not on the temperature of the
third species T3.

Starting from Eqs. (21) and (23), in the limit k → 0 one obtains for the ratio
of the upper and the lower acoustic frequency

Ω2

Ω3

=
ωp2ks2
ωp3ks1

, (25)

which is large by virtue of Eqs. (9) and (10). Hence, at small wave vectors the slope
of the curve describing the upper acoustic frequency Ω2 as a function of k is much
larger than that of the curve describing the lower acoustic frequency Ω3.

Comparing Eq. (21) with Eq. (22) and Eq. (23) with Eq. (24), we conclude
that up to the unimportant numerical factor, at long wavelengths the ratio of the
imaginary to the real part of the acoustic frequency is

γj
Ωj

≈
ωpj

ωpj−1

≪ 1, j = 2, 3 , (26)

where in the last step we have used Eq. (9). This verifies Eq. (18), which we have
applied in the derivation of dispersion relations (21), (22), (23) and (24).

The optical mode is the same as in a degenerate quantum plasma [26], and the
behaviour of the two acoustic modes is also qualitatively the same (regarding their
dependence on k and their relative intensities). A new feature is the temperature
dependence of the third mode. This is illustrated in Fig. 1. Choosing ωp1/ωp2 = 10
and ks1/ks2 = 1, we have plotted the third (acoustic) frequency for four tempera-
tures defined by

EF1

kBT2

= 5, 20, 50, 100. (27)

As can be seen from the figure, this frequency increases with temperature, but
we should keep in mind that this is the temperature of the second species. We also
note that the frequency saturates earlier (as a function of k) at higher temperatures.

We also note here that in contrast to the frequency, the damping of the third
mode decreases with T2.

122 FIZIKA A 3 (1994) 2, 117–125
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Fig. 1. Acoustic plasma frequency Ω3 as a function of the wave vector k (in relative
units) for four different temperatures: (a) EF1/kBT2 = 5, (b) EF1/kBT2 = 20,
(c) EF1/kBT2 = 50 and (d) EF1/kBT2 = 100. Other parameters used in the
calculations are ks1/kF1 = 1, ωp1/ωp2 = 10.

3. Conclusion

We have studied the collective motion of a three-component plasma in which one
component is degenerate and the other two are in classical regime. Assuming that
each component is formed of free charged particles with isotropic effective masses,
calculating the response function in the RPA and confining our consideration to the
case where eigenfrequencies and screening wave vectors of the components are quite
different, we have calculated the real and the imaginary parts of plasma frequencies
by expanding the response function in the low- and high-frequency limits.

Although the behaviour of the frequencies is qualitatively the same as in a degen-
erate plasma, the frequency of the third species becomes temperature dependent—
but on the temperature of the second species.

Although our considerations are based on an extremely simplified model, we
believe that the results obtained describe the main features of a mixed three-
component plasma and that they can be useful in the understanding of the collective
behaviour of such systems.
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Razmatrana je tro-komponentna plazma u kojoj je jedna komponenta jako dege-
nerirana a ostala dvije su u klasičnom području. Frekvencije akustičkih i optičkih
titranja nadene su koristeći približenje slučajnih faza uz razvoj odzivne funkcije u
nisko- i visoko-frekventnoj granici.
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