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Phase diagram for charge-density waves in a magnetic field
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The influence of an external magnetic field on a quasi-one-dimensional system with a charge-density wave
(CDW) instability is treated within the random-phase approximation which includes both CDW and spin-
density wave correlations. We show that the CDW is sensitive to both orbital and Pauli effects of the field. In
the case of perfect nesting, the critical temperature decreases monotonically with the field, and the wave vector
of the instability starts to shift above some critical value of magnetic field. Depending on the ratio between the
spin and charge coupling constants and on the direction of the applied magnetic field, the wave-vector shift is
either parallel(CDW, ordey or perpendicula(CDW, orde) to the most conducting direction. The CDW
order is a field-dependent linear combination of the charge- and spin-density waves and is sensible only to the
Pauli effect. The wave-vector shift in CDy\depends on the interchain coupling, but the critical temperature
does not. This order is affected by the confinement of the electronic orbits. By increasing the relative strength
of the orbital effect with respect to the Pauli effect, one can destroy the CB8¥ablishing either a CDY\or
a CDW,, (corresponding to the perfect nesting wave vectBy increasing the imperfect nesting parameter, one
passes from the regime where the critical temperature decreases with the field to the regime where it is initially
enhanced by the orbital effect and eventually suppressed by the Pauli effect. For a bad nesting, the quantized
phases of the field-induced CDW appear.

I. INTRODUCTION The Pauli term breaks the rotational symmetry of the
complex vectorial SDW order parameter, constraining its di-
The open and almost flat Fermi surface that characterizggction perpendicularly to magnetic field. With this con-
the quasi-one-dimensionaQ1D) electronic systems gives straint taken into account, the SDW phase diagram depends
rise to the formation of chargéor spin density waves™®  only on the orbital coupling, provided that the system is per-
Moreover, the external magnetic field couples to the ¢gim  fectly magnetically isotropic in the absence of magnetic
Pauli term) and to the orbitgvia Peierls substitution in the field. However, the fluctuations of the component of SDW
Hamiltonian of the electrons. This coupling affects the prop- parallel toH around its zero value remain affected by both
erties related to density wa¥®W) formation like the order Pauli and orbital coupling. Moreover, the Pauli term intro-
parameter, the critical temperature, and the wave vector aduces a finite coupling between these fluctuations and the
instability. The scale for the Pauli impact in the momentumnoncritical CDW fluctuations.
space is the wave numbep=ugH/vg, while the orbital The influence of a magnetic field on the CDW systems is
effect enters through the inverse magnetic lengih  even richer, because both Pauli and orbital effects can affect
=ebHcos), where is the inclination of the magnetic field the CDW ordering. This fact is of direct experimental inter-
H from the transverse direction in the b,c) plane(a plane est, since, e.g., the critical temperature can easily be mea-
perpendicular to the chaipsThe ratio of these two charac- sured. Furthermore, there is a finite magnetic field at which
teristic wave numberg=q,/qp=ebvrcosd/ug is of the or-  the wave vector of ordering starts to vary with the magnetic
der of unity in real materials. It will play an important role in field. The description of these features, together with the in-

the phase diagram for the CDW in a magnetic field. teresting CDW-SDW mixing, is the main objective of the
The Pauli term introduces a finite coupling between thepresent detailed analysis.
CDW and the component of the SDW paralleHpand may The various aspects of the interaction between the elec-

lead to a finite, magnetic-field-dependent, shift in the waverons in Q1D systems and the external magnetic field have
vector of instability? It is therefore necessary to treat CDW already been subjects of numerous analyses. The quadratic
and SDW together. A simple relevant model is the extendedlecrease of the mean-field critical temperature in one-
Hubbard or ¢;,9,) model>*® with coupling constants dimensional CDW systems due to the Zeeman splitting was
Us=g,/2 and U,=(2g;—g,)/2 for the SDW and CDW, proposed theoreticalf/and found experimentally in the or-
respectively. Since the Pauli term mixes the CDW with theganic compound TTF-TCN®The recent very precise mea-
SDW, the ratiov=—U /U will be the second relevant pa- surements in PgfAu(mnt),] (Ref. 7) show the decrease of
rameter for the CDW phase diagram. T. which differs considerably from the theoretical vafue.
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The effect of the Pauli coupling on the CDW order parametef~ermi surface with the states defined with respect-1Q/2,
can be formulated as a breaking of degeneracy of two densitwhere Q=(2kg,#/b) is the wave vector of perfect nesting
waves, those with parallel and antiparallel spin with respectealized fort,=0, and p;’s are the Pauli matrices in that
to H, each component being a CDW-SDW hybrid. This isspace. The chains lie in they plane and are parallel to the
reminiscent of the treatment of two coexisting CDW’s with axis. b is the lattice constant in the direction. The longitu-
overlapping electronic bands!® The coupling of two dinal electronic dispersion given by, is linearized in the
CDW's with different wave vectors may stabilize a soliton vicinity of the Fermi wave numbers kg, with v being the
lattice in the relative phase of two waves. longitudinal Fermi velocity.t, is the hopping integral be-
On the other side, the orbital coupling alone leads to aween nearest neighboring chains atjdparametrizes the
increase of the critical temperature for COW's™*Such an  jmperfect nesting. The spin space is chosen to have the third
increase was observed in, e.g., NgS& The aim of the component parallel téd.
present work is to introduce both orbital and Pauli couplings, | et us now introduce the relevant interaction part of the
into the RPA calculation of the DW matrix susceptibility, and Hamiltonian. Since the further considerations are limited to
to determine some mean-field properties, in particular thene - RPA response, it is sufficient to keep only the con-
phase diagram for CDW systems in a magnetic field. tributions with bilinearly coupled electron-hole operators for

functions in the form of a X4 matrix. In Sec. Ill we ana-

lyze in detail the phase diagram for CDW's in the case of a + +

perfectly nested Fermi surface. In particular we consider the Hint:f dx; [—UM(R)-M(R)+UM4(R)M4(R)].
influence of the parameteis » and of the interchain hop- - (3)
ping t, on the critical temperature, the wave vector of the

instability, and the CDW-SDW coupling. We also shortly dis- The two-fermion operators in E¢3) are defined by

cuss the effects of the imperfect nesting on the critical tem-

. L . —pt
perature as a function of magnetic field. The concluding re- Mi=¥'p. oV,

i=1,2,3,4, (4

marks are given in Sec. IV.

Il. MODEL

Quasi-one-dimensional electrons in an external magneti
field are usually modeled by the anisotropic two-dimensional

Hamiltonian

b
Hozﬁ J dqyf dX‘I’T(X,Qy)[HlD+HQ1D,orb

+Hpauil V(x,0y) 1
with
Hip=ivEpady, (29)
Ha1p,0rb=2tpp3 SiN(g,b—qgoX) + 2ty cosAqyb—qox),
(2b)
Hpaui= —ozugH. (20)

Here W™ and ¥ are four-component fermion fields,
\I}T:(\If}:‘» 1\1,}-— 1’\I,I+ 1\II1.7)1

where the indiceg,| span the spin space awmx] are corre-
sponding Pauli matrices. Indices(—) denote the rightleft)

where o,=1. The first three components=1,2,3) define
the complex SDW vector amplitud®, while the fourth
componentM, is the complex CDW scalar amplitude. The
SDW and CDW coupling constants in E) are related to
fhe usual backward g¢) and forward @) electron-
electron coupling constants by ,=g,/2 and U.=(0;
—29,)/2. Weshall specify later the range of these constants
for the most interesting physical cases relevant for our analy-
sis.

The mean-fieldMF) critical temperature for the spin- or
charge-density wave is defined as the temperature at which
the corresponding RPA susceptibility diverges. In our case
the Pauli term introduces a finite coupling between the com-
ponent of SDW parallel to the magnetic fiel§) and the
CDW (M,). This coupling is appropriately treated by intro-
ducing the DW susceptibility matrix, with the elements de-
fined as retarded correlators

Xij (At =t)=(M;M[)= — 6(t—t"){([M;(q,t),M[(a,t")]),
i,j=1,....,4, (5

where g is the deviation of the wave vector from
(2kg ,7/b). The RPA result for this matrix fs

M 0 0 0
0 M 0 0
Lxij(d,w)]= 0 Xg(\/lT6”2+ Uexg) ool : (6)
0 0 ng5/f| X1+ 8- Usxg)

fl
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with ments vanish in the absence of a magnetic field. The insta-
bility condition (11) then reduces to $U_x,=0, and the
Xg=VX1(0,@)x (0, @), (78 ordering involves only the CDW componeht,. For finite
magnetic fields the relatiofll) contains contributions origi-
X1,1(0:@n) = Xx0(Ax* 20y, qy  @p), (7B nating from both orbital and Pauli terms in the Hamiltonian
(1) and(3). The former enters through the bubble suscepti-
o=[x1(d,0) —x,(0,0)]/2xq, (79 ility (8), while the latter introduces the CDW-SDVie.,
M,-M3) hybridization measured through the paramefer
f”E:L’L(Uc_us))(g V1t 52_UCU5X5' (7d  As it is seen from Eq(7), ¢ is finite if g,# 0. More explic-

L itly, after diagonalizing thevl;— M, block of the matrix(6)
fr=1-Usxo(q,0). (7® " the normal components of the “vectot?) read
xo(Q,w) is the susceptibility which includes orbital contri-

butions of a magnetic field, 1 1
M_:N[5M3+AM4], M+:N[5M4_AM3], (12)

Xo(@ o) = 2 P(q—1q,,@n)I¥(ay), ®
|=—o0 with

whereP(k—1qg,w},) is the one-dimensional bubble. The co-
efficients1(q,) bring in the orbital quantization due to the N=&°+A%
finite transverse dispersid@b),'>1°

4t, qyb> ( 2t )
I = J,_op| —— sin——1|J;/| —— coxy,b |,
1(Qy) ; -2l (quO 5 | vedo Ty

and

2
+ 682,

1-v 1-v
) A=——Uxg+ \/(TUXQ
whereJ, are Bessel functions.
Even without further diagonalization of the matii®), it  while the corresponding diagonal susceptibilities are
is evident that the critical temperatures for the condensation
of density waves follow from the conditions

1+V \/ 1—y 2
Tl Y 2_ + 2
f+(q, . T¢)=0 a0 Xz X | NITOm o UxeE ( 5~ Uxq +5}.
(13
and
f||(qH ,T\(\:)zo, (11) In these equations we have defined
where all functions have to be taken in the static=(0) U=-U,, »=UJ/U=-U,/U, (14

limit. T; is the critical temperature for the SDW with the

orientation of the spin perpendicularith i.e., for the degen-  as a convenient parametrization of coupling constants for the

erate componentsl; andM,. Tl is the critical temperature problem of the CDW in the magnetic field. The value iof

for the hybrid of the CDW and the SDW with the spin par- depends on the interactions which participate in the Hamil-

allel toH, i.e., of the coupled blockN 3,M,) in the matrix  tonian (1) and (3). The global phase diagrdnat H=0 in

[ xij(d,0=0)]. The corresponding wave vectogs and q (v,U) space is shown in Fig. 1, where the regime which we

of the ordering are those which maximize the respectiveanalyze is the upper half-plan& &0). The superconducting

critical temperature§; and T‘(‘:. The true critical tempera- (SC) instability which is present in this diagram is ignored in

ture of the DW instability is equal to mék; ,'ﬁi}. our RPA approach. However, since we are interested in the
Having in mind real systems, it is appropriate to distin-the effects of magnetic field, this omission can be justified

guish the most important situations realized for two characeven in the case when fét=0 the singlet SC statéSS in

teristic interaction schemes. In the case of repulsive interad=ig. 1) is stable, i.e., whew<—1/3. Namely, the supercon-

tions (Us>0,U.>0), usually analyzed in terms of the ducting phase is suppressed by the orbital effect of a mag-

Hubbard model ,=U>0), the stable ordering following netic field. The critical field at which the critical temperature

from (7) is the SDW one, determined by the conditid®).  for the singlet SC state drops to zero is giveri%y

In other words, as far as the system possesses the internal

magnetic isotropy, there is no effect of Pauli coupling on the

ordering. Its spin is oriented perpendicularlyHo while the ch

wave vector is given by, =0 in the case of the good nest-

ing (t,<<T.), and may pass through the well-known cascade

of phase transitions due to the orbital effects when the deviavhereT,. is the critical temperature for the singlet supercon-

tion from the good nesting is large enouglj*T).16~° ducting state in the absence of a magnetic field. Considering
In the case of predominant electron-phonon interactior{g:+d,) as the corresponding effective coupling constant,

(U.<0,U>Us=0) the system prefers the CDW ordering. one easily finds thal is related to the critical temperature

As it is obvious from Eq.6), the off-diagonal matrix ele- for the charge-density wave at zero magnetic fi@fl, by

~ 1672T2(U,v)

_—— (15)
7\2¢(3) ugmts
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the wave vector of perfect nesting. The corresponding criti-
U cal temperatureT2=(2yEF/w)exp(—m)F/U) defines the
temperature scale of the problem.

We want now to calculate the position of the minimum of
SS CDW SDW x_*[Eq.(13)] in the momentum space. The criterion of local
stability of the ordering withg=0 at finite H can be derived
from the quadratic expansion qf * with respect tog, and
gy . ForT=T(H) it suffices to expand the] bracket in Eq.

-1 -3 0 1 v (13). Noting that there is no bilinearly mixed terna,@,),
one gets
SDW TS SS U™ txgx“t=U"1— xo+adi+ ayq)2/+ bny,
+(0505, 05 - - ), (18
with
100 [ 1 1 axo\ 2
FIG. 1. A phase diagram of the one-dimensional system in thea,= — > — + F(U +x0) — T-053 30, ]
(v,U) plane, in the absence of a magnetic field. 90 Xo (1=)U%q qx(lg)
s _ TUE 1-3v B 1(92)(0
Te=T? ex;{ o 175l (16) ay=— E_aqy , (20)
Equationg(15) and(16) give the estimation for the magnetic and
field above which our RPA results are valid even in the re- 1 o%y
gime when the singlet superconductivity overwhelms the by=———40, (22)
CDW. 4l aqy

It is useful for further discussion to mention here a few i the values ofto=xo(0y, 0y, w,=0) and its derivatives
characteristic possibilities regarding the value of the paramg,yan, atq, =24 ,q,=0. F(;(r tr};e later purposes we include
eterv in the CDW(i.e., U>0) systems. Taking into account (~q4x) of pt’hey fourth-order terms in the expansion
only pure backward electron-phonon interaction one ha?lS) Ngte that the expansion(18) is valid for
v=0. The inclusion of the presumably weaker rEpUISiveqx<.4TrT2/vF,qy<41-rT2/(tbb).

Coulomb interaction between electrons shiftto some posi- The dependence of the critical temperature for the order-

tive value. From the other side, a pure Hubbard model with = L )
X L . ing atg=0 on the magnetic field follows from the equation
attractive on-site interaction corresponds ite- —1. Alto-

gether,v covers a wide range of theoretically allowed values, Uye=1 (22)
. . Xo= 4
but it should be noted that in the most frequent electron-
phonon CDW systems this range is limitedite 0. For small values of this expression reduces to the known

Finally, it should be noted that the functidf from the  result for the suppression of the critical temperature due to
matrix (6) can be expressed in the factorized form,the Pauli splitting of the electron band,

fl=x2y"*x>1. Thus, forU>0 the condition(11) reduces
o o To=T1-74(3)(ugH/2nTY?]. (23

. The dependence of the coefficieats, a,, andb, on the
x-7(q,Tc)=0, (17)  magnetic field follows straightforwardly from Eqé8) and
(9). To this end we use the relation

i.e., to the divergence of the susceptibiltyl _M"). Indeed,

in the limit H—O0 the componer_wM, reduces to t_he.pure P(g,) = 1 In 2vEe —ReV EJF iUFqX) +Re\p<£”
CDW componentM, and the divergence of_ coincides TUE T 2 4xT 2
with the condition for the CDW instability, + U x,=0. (24)

Since the further discussion involves only the ordering withherew denotes the digamma function, and expand the co-
finite componentdM; andM 4, we simplify the notation for efficients (9) (with t,=0) in terms ofq, up to the quartic

T¢ andgq in Eq. (17) by skipping the indey. contribution. Taking into account also E(22) one gets at

T=T.H)
I1l. DISCUSSION = - > ReV 2vU J Revw i
' aX_ZTrUF (?q)z( (1—v)mve | 90y =24
X~ “HP

Fort,=0, the wave vector of CDW ordering fét=0 is
defined by the maximum of the susceptibilipy(q, w,=0)
(8) in the limit qo— 0. Of course it is located &=0, i.e., at with W=V (3+ivgq,/4nT), and

(25
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— 1 tb 2b2 26 AN
&= e\27T.yh Gy (26) \\‘
SN CDW,
1 tb 2 tb 2 1 \\\ \ weemnrne J=0
= 4 S — L. NGRS ---- U=0.2nv,
by 7TUF<27TTC7]h> b [(ZWTC‘)']h By 2% RS ™ iy
(27) ..\\N\\\\*\\ —-— U=0.6nv,
The coefficientsy, and 8, in Eq. (27) are given by - SDW
0.2
1 1
ay,=ReV §+ ih(1+ 5/2) | + Re¥ §+|h(1— 7l2)
1
—2 ReV| s +ih (28 0
2 - 0 1 2
and " o
FIG. 2. Scaled critical magnetic fiekl.,=ugH:/(27T) as a
1 1 1 1 function of the parameter for few choices of the coupling con-
By=-Re¥| = +ih(1+ )|+ = Re¥| = +ih(1— 77)) stant:U/7ve=0, 0.2, 0.4, 0.6. Note that one has to insggH)
Y4 2 4 2 [and notT.(H=0)] into the defining expression fdr., in order to

get a phase diagram witd dependence.

1 1

> Re\lf(z +ih(1+ 77/2))
second casey=1) the interactions in the CDW and SDW
channels are of equal strengths and opposite signs, i.e., we
are at the CDW-SDW boundary. There, the longitudinal

(29  splitting of the wave vector starts already lgt,=0. The
change of sign o&, ath.,(v,U) causes a second-order tran-

respectively. Here we have introduced the dimensionlessition from the phase witlq= 0 named CDW,, to a phase

variable h=ugH/27T. Note that the quantitiea, anda,  with q=(q,(h),0), named CDW,. The dependence of the

determine the longitudinal and transverse correlation length@ave vector on the magnetic field is the solution of the equa-

for CDW fluctuations €,=U/a, andé,=U\/a,) when the tion axy~*/3q,=0, and can be written in the form

temperature is close {6, .

The wave vector of ordering stays @0 as far as the

coefficientsa,(h) anday(h) are positive, and starts to move dxy=—-"F, u(h). (31)

in the longitudinal or transverse direction when the former or v

later coefficient changes sign. As it is seen from E@$)

and (26), the functiona,(h)/a,(h=0) contains the interac- The functionf,, ,(h) is shown in Fig. 3 folJ/7v=0.2 and

tion parameters U/vg and », while the function few values of ». In the Ilimit h>1 one has

a,(h)/a,(h=0) depends only on the ratioy=qo/q, Ax(h)—2ugH/ve, as it was already shown previously in

—ebv costlug which measures the relative impact of the the case of repulsive Hubbard model=( —1).*

orbital and Pauli coupling on the CDW. Note that the param- The transverse component of the CDW wave vector.

eter » can be easily changed by varying the angleetween The critical field hcy at which a finite transverse component

the direction of magnetic field and tleeaxis. Since the rea- of the CDW vector develops is shown in Fig. 4. The line

sons for possible deviations of stable componeptsand  hcy(7) corresponds to the second-order transition from

q, from zero are essentially different, it is appropriate toCDW, to a phase CDW with a transversely shifted wave

consider each case separately. vector. At small values oy the dependench,( 7) is given

The longitudinal component of the CDW wave vedbe by
coefficient a, changes its sign at the critical field

he=weHc /27T shown in Fig. 2. For small values efthis hey=~h0y1+0.0887. (32)
dependence is given by e

l+'h
2

1Re‘lfl ih(1 /2 3Re\lf
~p ReV[ZHih(d=n/2) [+ 5

U Here we use the approximative expression VR&
) (30) +ix)~W(3)+8.414%(1+3.81x%) 1, valid for small val-
TUE ues of the argument. The dependence of the wave-vector

hey~ h2< 1-2.47

0 0 o o componenty, on h for a fixed value ofy can be represented
with he=ugH/(27T)=0.304. As it is seen in Fig. 2, all py

curvesh,(v) pass through two common points, given by

v=0,h;,=0.304 andv=1h.,=0. At these pointsh., does 5 T

not depend orJ. The first point ¢=0) corresponds to the Qy=— arcsir{hg (h)}, (33
CDW ordering with the SDW coupling equal to zero. In the Y'b t, ~7



h

FIG. 3. The functionf, ,(h), determining the dependence of
the longitudinal shift of the wave vector on the magnetic fiede
Eq. (31)], for U/mveg=0.2 andv=-1 (A), —0.5(B), 0.0(C), 0.25
(D), 0.5(E), 0.75(F), 0.99(G).

with the functiong,(h) shown in Fig. 5. Note that unlike
h.y the wave-vector componeqy, depends oy, . For small
values ofh—h., the functiong, reduces, after using Eqg.

(18), to
9,(M~27h\ = 5%,
B

with a, and 8, given by Eqgs(28) and(29), respectively. On
the other hand, in the high-field limit>h., and for »=0

the function g,_o(h) is asymptotically given by
g,-0(h>1)—h+«, wherex is of the order 1. Note that

(39

the transverse shift of the wave vector does not depend on

the interaction ¢ or U). It depends, however, on, i.e., on
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0.50

5.0

o 0.25 |

0.00
0.25

0.:\’:0 0.;10 0.‘45 0.50
FIG. 5. A functiong,(h), determining the dependence of the

transverse shift of the wave vector on the magnetic fiskk Eq.

(33)], for =0 (A), 0.5(B), 1(C), 1.5(D), 2 (E). The inset shows

the largex behavior for a case with no orbital effectg£€0).

The phase diagram for h larger than,hand/or k.. To
provide some ideas on the variation of the wave vector of
instability at magnetic fields larger than critical values,
andh.,, it is useful to consider the symmetry and the shape
of functions x4(q), x4(q), and x_1(q) at strong magnetic
fields (h of order 1. Note first that all these functions are
even ing, andqy . The functionxgl(q) atT<t, has the line
of local maxima given

T
2l

1

4t b
b G + ;/“/

— sin—
v

. (35)

qx:i[

the relative impact of the Pauli and orbital effects. The rea-

son for this is in the fact that all interaction dependenc

enters withs [see Eq.(7)], which is equal to zero ifj,=0

and if the nesting is perfect. Thus, only a phase CDW/
affected by the finiteness of the SDW coupling constagt
(i.e., v).

0.50

0.45 |

53 0.40 |

0.35 |

0.30
. 3.0

n

FIG. 4. Scaled critical magnetic fielo,,=ugH¢,/(27T) as a
function of the parametes.

e\Nhen the Pauli term is introduced, the maximayefq) will
move to the left and those qf| () to the right by 2j, along
the axisq, . The lines of local maxima of the susceptibilities
Xo. X1, andy, are shown in Fig. @. For h large enough
the function x4(q)=+x;x,, together with the function
—x-%(q), will have two pairs of degenerate maximadn
space as candidates for absolute maxima. These two pairs
have approximate positions at *@qp,0) and
(0, (2/b)arcsin@egp/2t,)) [denoted as A,Aand B,B, re-
spectively, in Fig. 6], in accord with the asymptotic limits
given by Egs.(31) and (33). In Fig. 6, we also show the
function — y_1(q) for three characteristic choices of param-
etersv, n, andU, i.e., when the absolute maxima are at
(0,=q,) [Fig. 6(b)], at (+2qp,0) [Fig. 6(c)], and when the
two pairs of maxima have the same vallkgg. 6(d)]. As it
was shown above, the phase transitions from the GD@V
CDW, and CDW, [Figs. Gb) and Gc)] are of the second
order. The transition between the orderings CPWnd
CDW,, caused by the competition of two maxima in
—x-Yq) [Fig. 6d)] is of the first order since the wave
vector has a discontinuous jump between points,Q) and
(0,9y) (i.e., between points A and B in Fig).6

To complete the phase diagram it is necessary to calculate
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FIG. 6. (@ The lines of local maxima inq space of the susceptibilityo(dy,d,) (full line) without magnetic field, of
X1=Xo(dx+20p,q,) (dot-dashed ling and of x,=xo(dx—29p,qy) (dashed ling (A,A’) and (B,B’) are the two pairs of de-
generate maxima 0fg4(dy,dy). (b), (c), and(d) show the function— xy-*(q) at T=0.42T% and ugH=1.14T%, respectively, for three
cases:v=—1 (CDWy is stable, provided that the maxima are in the points'B,B=—0.1 (CDW, is stable; the points A,Aare
dominanj, and »= —0.33 (the first-order critical point between CDY\and CDW,, since all four points, A, A B, and B are of equal

heighy.

the magnetic-field dependence of the critical temperaturesng a parametey for its presentation, as shown in Figgby

defined as the solutions of E¢(p) for g=(0,0), g=(q,,0),
andg=(,q,), and denoted by, T,, andT,, respectively,
and to determine m@Xy(H),Ty(H),T,(H)]. The dependence
of critical temperature3,, T,, andT, onH for few values
of v and » and forU/@v=0.2 is shown in Fig. {&). The
sections of linesT,(H) and T (H) determine the critical

and 7c), respectively. We stress a particularly interesting
situation v—1~ for which the critical fieldh., goes to
zero, and three phasd€DW,, CDW,, and SDW are
present in the narrow range of parameterNote also the
presence of the point in Figs(¥ and 7c) at which the
CDW,, CDW,, and CDW, orders meet. The depen-

magnetic fields and the temperatures of the first-order trangence () which defines this tricritical point is shown in
sitions. Note that the present analysis is based on the Landquilg_ 7(d). The corresponding magnetic field weakly varies
with v (i.e., ), as is seen in Figs.(B) and 7c). The line in

expansion

F=fdqu:1<q>[M,<q)Mt<q>]+(¢<{M‘l}>, (36)

Fig. 7(d) thus divides the region where the wave vector shifts
first in transversal direction from the region in which only a
longitudinal shift is possible. Furthermore, among the CDW

which is restricted to the range of temperatures not far belowphases from Figs.(B) and 7c) only the phase CDWhas a
finite fraction of the componertl; [see Eq.(12)], and is

Since the complete phase diagram depends on three ptrus a CDW-SDW hybrid. The ratio of componets and
rametersH, v, and# (with fixed U), it is appropriate to use M, follows from the constraintM ; =0. At T=T,, it is

max{ To(H), Tu(H), Ty(H)].

two planes, H,v) (7 being a parametgand H,7) (v be-

given by
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FIG. 7. (@) The critical temperaturegy, T,, andT, for the CDW instabilities with the wave vectogs= O (full line), g=(q,,0) (dotted
line), andqg = (0,q,) (dot-dashed ling respectively. For all curves/7vg=0.2. (b) The phase diagram itw, uBH/ (27 TY)) plane for
7=0. The changes of the diagram with finite(here, 7= 1) are shown by dashed lings) The phase diagram iy, uB H/(27TT8)) plane
for v=—1. The changes of the diagram whes — 0.5 are dashedd) The curve in the ¢, %) plane which defines the tricritical point {i)
and(c).

8(q) The values ofdy,/dT and aZXo/aqg as functions oft;, are
Ma(q) = M4(), 37 iven in Ref. 12. For smali, the coefficient, is given b
T T RTINE R ° § S i

and shown in Fig. 8 for few values of. Note that
[M3/My| tends to 1 as one approaches the CDVBDW Up
transition. A 327370

Influence of the imperfect nestinget us finally consider
a case when the imperfect nesting is introduced through a
finite effective next-nearest-neighbor hoppirig which can ~ WhereW”~ —16.83 and¥'V~—771.47. As one sees from
be usually increased by, e.g., applying a strong pressure onkg- (38), the orbital and Pauli effects are in competition, the
CDW system. For example, the relevant pressure scale ifprmer trying to enhance, and the latter to supprgss For
NbSe; is about 10 kbat??3 smallt,/T2(t,=0) the functions®x,/dq3 is proportional to

At small values of the magnetic field, the critical tempera-t;2. Moreover, the imperfect nesting decreases the coeffi-
ture for the phase CD\Wcan be readily found from the Eq. cienta,. Altogether, the general trend of the smg]lis to
(22 yielding flatten theH dependence of .

9 12 For the sake of space, we present the result for the critical

ﬂ) Z _Xzoq2_ ] (3g)  temperature which follows from EgL1) only for the case of
aT |2 aq5 ° attractive Hubbard interactiofii.e., U/mvg=0.2, v=—1)

’ 2
—wwua+wwum%2iw)} (39

n—ﬂ~—( daq)
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1.0 : : . field“] the cyclotron frequency becomes the first relevant
energy scale, giving the rise to a cascadelike shape, associ-
ated with the quantized field induced CDW phases. Notice
that our approach does not explain the strong field break-
down of the high field phase ifTMTSF) ,ClO,,%? since the
Pauli term does not affect the SDW.

0.8 -

06 |

IV. CONCLUSION

-MyM,

04

The main result of the present work concerns the phase
diagram of a CDW system in an external magnetic field.

02| B . There are three physical parameters which characterize this
ry diagram, namely the ratio of the SDW and CDW coupling
constants, the strength of the magnetic field, and its direction
09 % 010 050 050 0.40 with respect to the most conducting plangy(). The respec-
pgH/2RT,") tive parameters are, h, and . We recall thaty also mea-
sures the relative impact of the orbital coupling with respect

FIG. 8. The relative weight of the SDW and CDW componentsto the Pauli coupling.
in the hybrid phase CDW as a function of magnetic field, for In the case of a good nested Fermi surface the wave
U/arve=0.2 and forv=—1 (A), 0 (B), 0.99(C). vector of the CDW has a general tendency to shift from its

) ] ) zero- field value (Rg,#/b) as the magnetic field increases
(Ref. 24 and for 77=2.5_. In this regime the ork_)ltal_ effects [see Figs. ®—-7(c)]. This shift starts continuously, and
are strong enough, which excludes the stabilization of thenay occur either longitudinally or transversally with respect
CDWy ordering when the nesting is good. The interplay betg the chain direction. The longitudinal shift is governed
tween two effects of a magnetic field is a main characteristicso|e|y by the Pauli coupling, with the corresponding CPW
of the phase diagram for imperfect nesting, given in Fig. 9state being a hybrid of the pure CDW and of the SDW com-
As the parametet;, increases from zero, the critical tempera- ponent parallel to the magnetic field. Both the critical value
ture only monotonously shifts to lower temperatures, stillof the magnetic fieldh., at whichq, starts to shift, and the
decreasing with a magnetic field. In other words, our resultselative weights of the CDW and the SDW, depend on the
for the perfect nesting can be applied even to the systemgtio ». Both q,(h) and the CDW-SDW hybridization in-
with a moderate finite imperfect nesting, i.e., when the criti-crease with the magnetic field. It is important to mention that
cal temperature remains far above the valug,off he orbital hex, Oy, and the hybridization ratio do not depend tn
effects enter manifestly into play at rather large values obecause all mean-field properties concerning a longitudinal
t,, enhancing the critical temperature initially, as it was ob-tilt of the wave vector are given by pure one-dimensional
served in NbSg.'* The eventual suppression ®f by the  expressions.
Pauli term at high magnetic fields will make these diagrams The shift of the CDW wave vector in the transverse di-
basically different from the mean-field one for the FISDW rection is affected by both orbital and Pauli couplings.
with the orbital coupling only/ where no eventual suppres- Contrary to the CDW, the CDW, is not a CDW-SDW
sion of theT, is present. For a very bad nesting, i.e., for  hybrid, and therefore is not influenced by the parameter
comparable tat,* [wheret,* ~T°(t,=0) is the imperfect It exists only whent,, is finite, although the critical mag-
nesting parameter at which the CDW is destroyed at zeraoetic fieldh., does not depend d . However,, influences

the variation ofg, ath>h.,, as shown by Eq(33). q,(h)

10 ; ; . decreases witht, and increases with the magnetic field.
According to the general fact that the orbital effects lower
the dimensionality of the electronic motidh,the effect
0.8 - 1 of the increasingy is to favor the CDW,. After some criti-

0.80 cal value of (dependent onv), the orbital impact reduces
the phase diagram to the pure one-dimensional one, consist-
0.96 | ing only of the CDW, and CDW,, as it is seen from Fig.
7(b).
| At »=0 and forv<0, the shift of the wave vector is at
0.99 02 first directed perpendicularly, and jumps to the longitudinal
1.07 direction at some higher magnetic field. This jump between
CDW, and CDW, is a first-order transition. On the contrary,
for 0<w<1, the wave vector is shifted longitudinally for all
1.84 e — magnetic fields higher than the critical fidhd,(v). Further-
0 T oo Y 540 more, h,( v_) tends to zero as app_roaches _unity. The point
ugH/(@nT.%) H=0,v=1 is therefore tricritical, since>1 is the range of
SDW stability.

FIG. 9. The critical temperature vs magnetic field for a series of The Pauli and orbital terms together cause a rather com-

values ofty/t,* and forU/@ve=0.2 andv=—1. plex magnetic-field dependence of the critical temperature in

054 0

06

1

02 r 1.16
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systems with a finite imperfect nesting. This is illustrated instrong orbital contributions, provided by a badly nested
Fig. 9 in whicht] varies from zero to the range above the Fermi surface, affect the phase diagram. However, we be-
critical valuet,*, at which the CDW ordering is completely lieve that the Pauli term has an important role in this transi-
eliminated at zero magnetic field. A rich dependefigéH) tion, since it enables the shift of the wave vector from its
contains the suppression by the Pauli term, enhancement (§pmmensurable, perfect nesting position. We remind the

the orbital effects and, for large values &f a cascadelike 'cader that pure orbital effects can affect the wave vector
only if it is not at the perfect nesting positidtike in, e.g.,

shape characterizing the field-induced DW. This phase dia(TMTSF)ZCIO4 (Ref. 22]. The fact that the nesting in
gram |s.qU|t_e general and not limited to the value —1, NbSe is quite bad can be deduced from a relativelgl strong
chosen in Fig. 9. . _ ressure dependence Bf (dT,/dP~ —6.25 K/KB.2 In-

Our analysis for the perfect nesting case, showing a strongeeq from the comparison of a very weak enhancement of
dependence of the critical properties in magnetic field on the]-C with magnetic field* with our results in Fig. 9, it follows
ratio v, could find an appropriate experimental support, €.9-that the value ot/ should be rather large.
in the M X compounds. The low-dimensional nature of these Finally, our analysis of the imperfect nesting case can

materials corresponds to our model. From our analysis, 2omewhat enlighten the recent measurenfeintghe com-

particularly interesting possibility is that the C_oulomb and ound Pes[ Au(mn1),], where the suppression of the criti-
electron-phonon forces can be tuned in a predictable manm}gaI temperature proportional to the square of the magnetic

by external pressufe or chemically;® allowing us to ap- field was found, but with a coefficient smaller than that
proach the phase boundary between CDW and SDW, COM&ihich follows after taking only the Pauli coupling and a
Spo”d”?g tor=1. .A.‘S we approach the boundary from. the perfectly nested Fermi surfacé=rom Eq.(38) and from Fig.
QDW side, the C”“C"?" field for the CPW_)CDWX ransl- g gne can conclude that the reason for the flattening of the
tion he,=Ho,/2aT will decrease rapidly toward zero, re- suppression off is just the finiteness of;. However, the
gardless of the value of~T.. Even for largeTe, by ad- G ation is not so simple. At finite values gf the orbital

justing carefully », Hc, can decrease to experimentally ffects come into play, in contrast to the experimental results
reachable values, being extremely sensible to the variation of pay, P

: . which are independent on the field direction. If we just ig-
the parameter. We point out that a search for a magnetic- th bital effect et~74 K : fect
field-induced phase transitions in a CDW phase with stroné}lore e orbital effects, we gef~7. as an impertec

SDW fluctuationgintroduced by high pressure, for example . e;ting parameter fitting the experimentql_curve. Fi”"’?”y' we
could confirm our predictions indicate that the measurements of the critical properties in a

In NbSe, a phase transition in the 59 K CDW phase in- magnetic field, and with pressure large enough to almost or

duced by magnetic field was foufidby observing that a completely destr_oy the zero-field CDW, could Show very
threshold electric field for the collective CDW motion is StON9: cascadelike enhancement of Tadfor the quantized

strongly reduced when magnetic field increases beyond thf‘i\eld induced CDW phases.

critical point. The naive explanation that this is a simple
CDW,— CDW, one-dimension-like transition due only to
the Pauli term must be taken with caution. Namely, the ob- We are indebted to S. Brazovskii, N. Dupuis, and J.-P.
served effect strongly depends on the argyléndicating that  Pouget for inspiring discussions, and to M. LatKofdc the
the orbital effects are also involved. This might mean that thénelp in some of the numerical analyses.
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