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Bursts in average lifetime of transients for chaotic logistic map with a hole

V. Paar and N. Pavin
Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia

~Received 30 October 1996!

Chaotic transients are studied for a logistic map atr54, with an inserted narrow hole. We find that average
lifetime t of chaotic transients that are dependent on the hole position roughly follows the Frobenius-Perron
semicircle pattern in most of the unit interval, but at the positions that correspond to the low period
~1,2,3, . . . ), unstable periodic orbits of the logistic map atr54 there are bursts oft. An asymptotic relation
between the Frobenius-Perron and Kantz-Grassberger average lifetimes, at these positions, is obtained and
explained in terms of missing preimages determined from a transient time map. The addition of noise leads to
the destruction of bursts of average lifetime.@S1063-651X~97!11204-1#

PACS number~s!: 05.45.1b
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A transiently chaotic trajectory looks chaotic up to a c
tain time and then switches into a nonchaotic behavior
governs the rest of the trajectory@1#. Transient chaos play
an important role in nonlinear systems. It was first obser
in the Lorenz model@2–4# and subsequently found in differ
ent kinds of nonlinear systems, for example, in lo
dimensional maps@5–10#, nonlinear oscillators@11#, coupled
map lattices@12,13#, etc. Of particular importance was th
discovery that chaotic transients appear in dynamical s
tems passing through crises@14# and characterizations o
natural measure on repellers@15–20#.

In one-dimensional maps, transient chaos occurs if a
interval I is mapped under the dynamicsf (x) not only onto
itself but also partially outside itself@1#. It is irrelevant how
the map looks forx values outsideI , because there is n
feedback from these regions. A typical example of suc
map is the famous logistic mapxn115 f (xn), where
f (x)5rx(12x) @19–23# in the case where control param
eter r is larger than 4. In that case almost all orbits esca
from the unit intervalI through the gap at the vertex o
parabola and the invariant set is a repelling Cantor setI
@1,8#.

The logistic map atr54 maps the unit intervalI onto
itself @21,22#.

In this paper we investigate the map producing chao
transients defined on the unit intervalI by

f ~x!5H 43x3~12x!, x¹I ~0!

`, xPI ~0!,
~1!

where I (0) is a narrow interval„j2(d/2),j1(d/2)… within
I . This map coincides with the logistic map atr54 except
for a narrow hole in the intervalI (0) of width d at position
x5j ~Fig. 1!.

In the unit intervalI , the logistic map atr54 is chaotic,
but with many embedded unstable periodic orbits: o
period-1 orbit, one period-2 orbit, two period-3 orbits, thr
period-4 orbits, six period-5 orbits, etc.@20#.

In an analogy to the case of the logistic map atr.4 @20#,
the intervalI (0) represents a loss region through which t
orbit initially in the unit intervalI can leak out. The orbits fo
the map~1! in the unit intervalI are similar to those of the
551063-651X/97/55~4!/4112~4!/$10.00
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logistic map atr54, until they fall in the loss region. In the
first iteration, the intervalI (0) aroundj escapes; in the sec
ond iteration, its preimages escape; and so on. Finally,
invariant set inI is a chaotic repeller.

A basic difference of the map~1! with respect to the pre-
viously studied single-humped one-dimensional maps@1,8#
should be noted: in the latter case the number of succes
preimages of the interval corresponding tof (x).1 increases
as 2n, while for the map~1! some subsets of preimages of th
interval I (0) are missing, depending on position of the hol

An important question concerning the chaotic map~1! is
the following: what is the average lifetimet of chaotic tran-
sients for a set of a large number of initial positionsx0,
uniformly distributed in the unit intervalI?

Employing first the Frobenius-Perron equation, we ha
@19#

F12E
j2d/2

j1d/2 1

pAx~12x!
dxG t

5
1

e
. ~2!

From this expression we calculate dependence of the ave
lifetimes t, which are shown in Fig. 2, on the hole positio
j for a fixed widthd50.01~dashed line!. In accordance with

FIG. 1. Logistic map atr54 with an additional hole of width
d at the positionj on the unit interval@Eq. ~1!#. As an illustration,
the hole position is~a! j50.5, ~b! j50.75, and the hole width is
d50.1. Only the first order preimages are shown. Observe that
preimageI 2

(1) is missing forj50.75.
4112 © 1997 The American Physical Society



iv

ife

r-
a
ay
-
d
ss
xi
o
ab

o
ap
m
i

of

te

a
.
di
ad

a
lo

g
t
in

otic
to
e

th

e
in

ra
f
a

rg

ap

-
cal-
t

55 4113BURSTS IN AVERAGE LIFETIME OF TRANSIENTS . . .
its stochastic character, the Frobenius-Perron equation g
a smooth semicirclelike pattern.

On the other hand, we directly calculate the average l
time for each of the hole positionsj50.5d, 0.6d,
0.7d, . . . ,120.5d along the unit interval, where the inte
vals of the neighboring holes overlap. In each case, the
erage lifetimet was determined from an exponential dec
of the number of survivors@1#. The calculated average life
times are shown in Fig. 2~solid circles connected by a soli
line!. In a sizeable fraction of the unit interval, the gro
behavior of the calculated average lifetime is well appro
mated by the Frobenius-Perron equation, but at some p
tions there appear narrow bursts of average lifetime, size
exceeding the Frobenius-Perron prediction~2!. The largest
peakt151.95tFP @tFP denotes solutions of Eq.~2!# is ob-
tained for the hole positionj50.75, which corresponds t
the position of the period-1 unstable orbit of the logistic m
at r54. This peak is associated with the classification nu
ber k51. The second pronounced group of two peaks
obtained at the hole positionsj5(52A5)/850.345 and
j5(51A5)/850.904, which correspond to the positions
the period-2 orbit of the logistic map atr54. The corre-
sponding average lifetimes aret251.29tFP and
t251.26tFP , respectively. These two peaks are associa
with the classification numberk52. The third group of six
peaks, associated with the classification numberk53, corre-
sponds to the holes at 0.117, 0.413, 0.970, 0.188, 0.611,
0.950. In these cases,t3 /tFP is between 1.05 and 1.10
These six peaks are grouped into two groups, correspon
to two unstable period-3 orbits, which are labeled by an
ditional index 1 or 2~Fig. 2!.

We see that if the hole is placed at a position visited by
unstable periodic orbit of low period, in the case of the

FIG. 2. Average lifetimet of chaotic transients associated wi
map~1! depending on the hole positionj ~solid circles!. The width
of the holed is kept fixed atd50.01. In each case the averag
lifetime is obtained from exponential decay of trajectories, start
from the set of 106 initial positions uniformly distributed over the
unit interval. One unit of average lifetime corresponds to one ite
tion step. Classification numberk, corresponding to the period o
the corresponding unstable periodic orbits for the logistic map
r54, is assigned to pronounced peaks~see the text!. Dashed and
solid lines correspond to Frobenius-Perron and Kantz-Grassbe
equations, respectively~see the text!.
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gistic map atr54, the average lifetime of the correspondin
transient orbit for the map~1! is prolonged. This means tha
the hole at the position of an unstable periodic orbit acts
such a way as to prolong the wandering of transiently cha
orbit on the unit interval; thus, inserting a narrow hole in
the logistic map atr54 may serve as a probe to test th
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FIG. 3. Time maps for chaotic transients corresponding to m
~1! with the hole positionj equal to~a! 0.5, ~b! 0.75, and~c! 0.345.
The width of the hole isd50.1. ~In order to get clear visual pre
sentation, this value is ten times larger than that used in other
culations in this paper.! ~b! and ~c! correspond to the two mos
pronounced peaks in Fig. 2.
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4114 55V. PAAR AND N. PAVIN
positions of low-period, unstable periodic orbits.
Let us now explain this pattern. If the hole is placed at

position of the logistic map atr54, the number of preimage
and, consequently, the total width of all preimages are
duced, and fractal dimension of the repeller becomes lar
i.e., closer to unity. Then, according to the Kant
Grassberger relation, the orbit will spend more time in
vicinity of the repeller, i.e., the average lifetime of the tra
sient will be longer.

In order to elaborate this explanation, let us first inves
gate the structure of transient time maps~Fig. 3!, which
present lifetimes of individual trajectories, expressed in
number of iteration steps, for 106 initial points uniformly
distributed along the unit interval.

Let us now consider the time map corresponding
j50.5; in this case, the average lifetime is close totFP .
Trajectories starting inI (0) escape the unit interval in the firs
step, corresponding to lifetimet50. The two first-order pre-
images ofI (0), denoted byI 1

(1) and I 2
(1) in Fig. 1~a!, corre-

spond to the lifetimet51. In general, the maximum numbe
of preimages ofnth order in Fig. 3~a! isNn52n, each having

FIG. 4. Fractal dimension of the chaotic repeller associated w
map~1!. ~a! Determination of the fractal dimension as the slope
the log-log plot ofN(r ) vs 1/r for j50.75,d50.01. The slope is
D50.9945260.00005.~b! Fractal dimensionD of the repeller in
dependence on the hole positionj. The vertical axis displays
1/(12D). It is seen that the graph 1/(12D) vs j is practically
identical to the grapht vs j in Fig. 2.
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lifetime t5n in analogy to previously studied single-humpe
maps@1,8#.

For higher values ofn some of the expected 2n preimages
are missing, as are those which accidentally fall in the int
val I (0). For example, the number ofn55 preimages is not
2n532, but it is equal to 30. Obviously, the number of th
nth-order preimages approaches 2n as the width of the hole
diminishes.

In the limit of small hole widthd!1 the average lifetime
can be approximately related toNn by

t21' (
n51

`

anNn , ~3!

whereNn is the number of preimages of thenth order and
an is a coefficient. In cases whereNn52n „such as, for ex-
ample,j50.5 @Fig. 3~a!#…, the average lifetime~3! approxi-
mately corresponds to the Frobenius-Perron prediction an
labeled bytFP ,

tFP
21' (

n51

`

an2
n. ~4!

On the other hand, for a peak atj50.75, at the position of
unstable periodic orbit of periodk51 @Fig. 3~b!#, we have
approximatelyNn52n21, which, after insertion into~3! and
using ~4!, leads to an approximate expression

t1'2tFP . ~5!

In general, for the peaks at positions corresponding to
unstable periodic orbits of periodk, we get approximately

Nn5H 2n, n,k

2n2k~2k21!, n>k
, ~6!

which leads to

t2'
4

3
tFP , t3'

8

7
tFP , . . . , tk'

2k

2k21
tFP . ~7!

h
f

FIG. 5. Dependence of average lifetimet of the largest peak in
Fig. 2 ~corresponding to the hole positionj50.75) on the ampli-
tude of noise added on the r.h.s. of the logistic equation in map~1!.
For comparison, the predictions of the Frobenius-Perron~dashed
line! and Kantz-Grassberger equation~dot-dashed line! without ex-
ternal noise are presented.
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55 4115BURSTS IN AVERAGE LIFETIME OF TRANSIENTS . . .
The true value of the number of preimages is sligh
smaller than the estimate~6! because one should dedu
those preimages which fall onI (0).

The average lifetimest1, t2, and t3 obtained by direct
calculation from exponential decay of trajectories are rat
close to these values. The smaller the hole widthd, the closer
directly calculated average lifetimes are to the above e
mates. For example, ford50.0001, we get by direct calcu
lation t152.000tFP for the peak classified ask51, and
t251.331tFP for two peaks classified ask52. These values

are very close tot152.000tFP and t25
4
3tFP51.333tFP ,

given by Eqs.~5! and ~7!, respectively.
From each transient time map we can determine the

responding fractal dimensionD of the chaotic repeller by
using a method similar to the one that was used in analyz
the winding number for the circle map in mode-locked int
vals @24#. Accordingly, we present the log-log plot o
N(r )5@12S(r )#/r vs 1/r , whereS(r ) is the total width of
all preimages that are larger than a given scaler . Therefrom
we get, for example,D50.9945 forj50.75,d50.01 @Fig.
4~a!#. In Fig. 4~b!, the dependence of the calculated values
1/(12D) ~whereD is the fractal dimension! on the hole
positionj is presented, keeping the widthd50.01.

On the other hand, the Lyapunov exponent is almost
dependent of the position of the hole,j being equal to the
valuel5 ln2, which corresponds to ther54 logistic equa-
tion.

Inserting these calculated fractal dimensions a
Lyapunov exponent into the Kantz-Grassberger equa
@15#
s

r
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r-
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n

t5
1

l~12D !
, ~8!

we obtain the average lifetimet dependencing on the hol
positionj. This result coincides with Fig. 2, which was ob
tained by direct calculation oft from the exponential decay
of trajectories. Thus, the solid line in Fig. 2, in fact, corr
sponds to the Kantz-Grassberger equation.

The average lifetimest1 ,t2 ,t3 , . . . correspond to the
Kantz-Grassberger lifetimes@Eq. ~8!#. Equations~5! and~7!,
therefore, represent the relations between the Ka
Grassberger and Frobenius-Perron average lifetimes.

We have further investigated the relation between Kan
Grassberger and Frobenius-Perron predictions by ad
noise to the r.h.s. of the map~1!. In Fig. 5, the average
lifetime t, expressed in the number of iteration steps
j50.75 dependent on the noise amplitude is presented.
comparison, the values oft corresponding to Kantz-
Grassberger and Frobenius-Perron predictions in the abs
of noise are displayed. Calculation shows that thej50.75
peak oft is rather stable against noise up to the noise a
plitude'1022. However, with further increase of the nois
amplitude there is a rapid reduction oft from the value
corresponding to the Kantz-Grassberger valuet1 towards the
lower value, corresponding to the Frobenius-Perron equa
tFP' 1

2t1, i.e., the peak is gradually washed out. Stability
the average lifetime below the threshold of noise is in acc
dance with previous indications that transients seem to
stable against noise@1,15#, while the noise-induced destruc
tion of peaks above the threshold of noise may be associ
with the noise-induced chaos@25#.
s.
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