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Bursts in average lifetime of transients for chaotic logistic map with a hole

V. Paar and N. Pavin
Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
(Received 30 October 1996

Chaotic transients are studied for a logistic map=a#, with an inserted narrow hole. We find that average
lifetime 7 of chaotic transients that are dependent on the hole position roughly follows the Frobenius-Perron
semicircle pattern in most of the unit interval, but at the positions that correspond to the low period
(1,2,3 .. .), unstable periodic orbits of the logistic maprat 4 there are bursts af. An asymptotic relation
between the Frobenius-Perron and Kantz-Grassberger average lifetimes, at these positions, is obtained and
explained in terms of missing preimages determined from a transient time map. The addition of noise leads to
the destruction of bursts of average lifetini81063-651X97)11204-1

PACS numbd(s): 05.45+b

A transiently chaotic trajectory looks chaotic up to a cer-logistic map at =4, until they fall in the loss region. In the
tain time and then switches into a nonchaotic behavior thafirst iteration, the interval (®) aroundé escapes; in the sec-
governs the rest of the trajectof§]. Transient chaos plays ond iteration, its preimages escape; and so on. Finally, the
an important role in nonlinear systems. It was first observedhvariant set inl is a chaotic repeller.
in the Lorenz modef2—4] and subsequently found in differ- A basic difference of the mafi) with respect to the pre-
ent kinds of nonlinear systems, for example, in low-viously studied single-humped one-dimensional migh§]
dimensional mapgs—10|, nonlinear oscillator§11], coupled  should be noted: in the latter case the number of successive
map lattices[12,13, etc. Of particular importance was the preimages of the interval correspondingf{e) >1 increases
discovery that chaotic transients appear in dynamical sysas 2", while for the map1) some subsets of preimages of the
tems passing through cris¢44] and characterizations of interval |(®) are missing, depending on position of the hole.
natural measure on repellgE5—-20. An important question concerning the chaotic niapis

In one-dimensional maps, transient chaos occurs if a unihe following: what is the average lifetimeof chaotic tran-
intervall is mapped under the dynami€éx) not only onto  sients for a set of a large number of initial positions
itself but also partially outside itseffL]. It is irrelevant how  yniformly distributed in the unit interval?
the map looks forx values outsidd, because there is no  Employing first the Frobenius-Perron equation, we have
feedback from these regions. A typical example of such q19]
map is the famous logistic mapx,,,="f(x,), where

f(x)=rx(1—x) [19-23 in the case where control param- { £+di2 1 1

eterr is larger than 4. In that case almost all orbits escape 1—f ————dXx| =—. 2

from the unit intervall through the gap at the vertex of g-d2 mYx(1—x) €

parabola and the invariant set is a repelling Cantor sét in ) ]

[1,8]. From this expression we calculate dependence of the average
The logistic map ar =4 maps the unit interval onto lifetimes 7, which are shown in Fig. 2, on the hole position

itself [21,27). ¢ for a fixed widthd=0.01(dashed ling In accordance with

In this paper we investigate the map producing chaotic
transients defined on the unit interdaby

4XxX(1—x), xgl©@ (a) Ii (b) Ji

f(X)Z o [ (0) (1) I “ : }

CoXEn f(x) - fx)| /O T;

wherel(© is a narrow interval¢—(d/2),£+ (d/2)) within ,,,:r 1_-7 |

I. This map coincides with the logistic map rat4 except
for a narrow hole in the interval®) of width d at position
x=¢ (Fig. 1. it | U 8| L
In the unit intervall, the logistic map at =4 is chaotic,
but with many embedded unstable periodic orbits: one
period-1 orbit, one period-2 orbit, two period-3 orbits, three

period-4 orbits, six period-5 orbits, ef@0]. FIG. 1. Logistic map at =4 with an additional hole of width

In an analogy to the case of the logistic map a4 [20],  { at the positior¢ on the unit interva[Eq. (1)]. As an illustration,
the intervall () represents a loss region through which thethe hole position iga) £=0.5, (b) £&=0.75, and the hole width is
orbit initially in the unit intervall can leak out. The orbits for d=0.1. Only the first order preimages are shown. Observe that the
the map(1) in the unit intervall are similar to those of the preimagel Y is missing foré=0.75.
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FIG. 2. Average lifetimer of chaotic transients associated with
map (1) depending on the hole positigh(solid circles. The width
of the holed is kept fixed atd=0.01. In each case the average
lifetime is obtained from exponential decay of trajectories, starting
from the set of 1@ initial positions uniformly distributed over the
unit interval. One unit of average lifetime corresponds to one itera-
tion step. Classification numbés, corresponding to the period of *
the corresponding unstable periodic orbits for the logistic map at
r=4, is assigned to pronounced pedkee the text Dashed and
solid lines correspond to Frobenius-Perron and Kantz-Grassberger
equations, respectivelisee the text

its stochastic character, the Frobenius-Perron equation gives
a smooth semicirclelike pattern.

On the other hand, we directly calculate the average life-
time for each of the hole positiong=0.5d, 0.&d,
0.7, ...,1-0.5d along the unit interval, where the inter-
vals of the neighboring holes overlap. In each case, the av-
erage lifetimer was determined from an exponential decay
of the number of survivorgl]. The calculated average life-
times are shown in Fig. &olid circles connected by a solid
line). In a sizeable fraction of the unit interval, the gross
behavior of the calculated average lifetime is well approxi- +
mated by the Frobenius-Perron equation, but at some posi-
tions there appear narrow bursts of average lifetime, sizeably
exceeding the Frobenius-Perron predicti@h The largest
peak 7;=1.95rp [7p denotes solutions of Eq2)] is ob-
tained for the hole positiod=0.75, which corresponds to
the position of the period-1 unstable orbit of the logistic map
atr=4. This peak is associated with the classification num-
ber k=1. The second pronounced group of two peaks is
obtained at the hole positions=(5—5)/8=0.345 and
£=(5+/5)/8=0.904, which correspond to the positions of
the period-2 orbit of the logistic map at=4. The corre-
sponding average lifetimes arer,=1.2%, and
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FIG. 3. Time maps for chaotic transients corresponding to map
(1) with the hole positior¢ equal to(a) 0.5, (b) 0.75, and(c) 0.345.
The width of the hole ifl=0.1. (In order to get clear visual pre-

m,=1.26rp, respectively. These two peaks are associategentation, this value is ten times larger than that used in other cal-

with the classification numbéc=2. The third group of six
peaks, associated with the classification nuniseB, corre-
sponds to the holes at 0.117, 0.413, 0.970, 0.188, 0.611, and

culations in this paper.(b) and (c) correspond to the two most
pronounced peaks in Fig. 2.

0.950. In these casesy/Tep is between 1.05 and 1.10. gistic map atr =4, the average lifetime of the corresponding
These six peaks are grouped into two groups, correspondirtgansient orbit for the mafil) is prolonged. This means that
to two unstable period-3 orbits, which are labeled by an adthe hole at the position of an unstable periodic orbit acts in

ditional index 1 or 2(Fig. 2.

such a way as to prolong the wandering of transiently chaotic

We see that if the hole is placed at a position visited by arorbit on the unit interval; thus, inserting a narrow hole into
unstable periodic orbit of low period, in the case of the lo-the logistic map ar =4 may serve as a probe to test the
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FIG. 5. Dependence of average lifetimef the largest peak in
Fig. 2 (corresponding to the hole positigh=0.75) on the ampli-
tude of noise added on the r.h.s. of the logistic equation in ¢hap
For comparison, the predictions of the Frobenius-Pefdashed
line) and Kantz-Grassberger equati@ot-dashed linewithout ex-
ternal noise are presented.

lifetime t=n in analogy to previously studied single-humped
maps[1,8].

For higher values ofi some of the expected'preimages
are missing, as are those which accidentally fall in the inter-
val 1), For example, the number of=5 preimages is not
2"=32, but it is equal to 30. Obviously, the number of the
nth-order preimages approachds&s the width of the hole
diminishes.

In the limit of small hole widthd<1 the average lifetime
can be approximately related i, by

FIG. 4. Fractal dimension of the chaotic repeller associated with

map (1). (a) Determination of the fractal dimension as the slope of
the log-log plot ofN(r) vs 1t for £=0.75,d=0.01. The slope is

D =0.99452+0.00005.(b) Fractal dimensiorD of the repeller in
dependence on the hole positigh The vertical axis displays
1/(1-D). It is seen that the graph 1/(1D) vs ¢ is practically
identical to the graphr vs ¢ in Fig. 2.

positions of low-period, unstable periodic orbits.

Let us now explain this pattern. If the hole is placed at th
position of the logistic map at=4, the number of preimages
and, consequently, the total width of all preimages are re
duced, and fractal dimension of the repeller becomes large
i.e., closer to unity. Then, according to the Kantz-
Grassberger relation, the orbit will spend more time in th
vicinity of the repeller, i.e., the average lifetime of the tran
sient will be longer.

In order to elaborate this explanation, let us first investi-
gate the structure of transient time maf#sg. 3), which

(]

7= 2 anNy, 3
n=1

whereN,, is the number of preimages of tmh order and

ay is a coefficient. In cases wheM,=2" (such as, for ex-

ample,£=0.5[Fig. 3@]), the average lifetimé&3) approxi-

mately corresponds to the Frobenius-Perron prediction and is

labeled by7ep,

r,

4

o
-1__ n
TFP~nZl anz .

On the other hand, for a peak&t0.75, at the position of

€unstable periodic orbit of periok=1 [Fig. 3(b)], we have

approximatelyN,,=2""1, which, after insertion int¢3) and
using (4), leads to an approximate expression

®

71~2TFP .

present lifetimes of individual trajectories, expressed in the

number of iteration steps, for 4dnitial points uniformly
distributed along the unit interval.

Let us now consider the time map corresponding to

£=0.5; in this case, the average lifetime is closeri® .
Trajectories starting ih®) escape the unit interval in the first
step, corresponding to lifetinte=0. The two first-order pre-
images ofl(®, denoted byl{" andI{ in Fig. 1(a), corre-
spond to the lifetimg=1. In general, the maximum number
of preimages ohth order in Fig. 8a) is N,=2", each having

In general, for the peaks at positions corresponding to the
unstable periodic orbits of peridd we get approximately

2", n<k
No=1 onkiak 1), =k ©
which leads to
4 8 2"
7'2”§7'FP1 T3~77'Fp,..., Tk%Ek—_lTFP. (7)
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The true value of the number of preimages is slightly
smaller than the estimaté) because one should deduce

those preimages which fall dn®.
The average lifetimesy, 75, and 73 obtained by direct
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we obtain the average lifetime dependencing on the hole

calculation from exponential decay of trajectories are ratheposition &. This result coincides with Fig. 2, which was ob-

close to these values. The smaller the hole wditthe closer

tained by direct calculation of from the exponential decay

directly calculated average lifetimes are to the above estiof trajectories. Thus, the solid line in Fig. 2, in fact, corre-

mates. For example, fat=0.0001, we get by direct calcu-
lation 7,=2.000rp for the peak classified ak=1, and
5= 1.331rgp for two peaks classified ds=2. These values
are very close tor;=2.000rrp and 7,=37:p=1.333r¢p,
given by Eqs(5) and(7), respectively.

sponds to the Kantz-Grassberger equation.

The average lifetimes, 75,73, ... correspond to the
Kantz-Grassberger lifetimd&q. (8)]. Equationg5) and(7),
therefore, represent the relations between the Kantz-
Grassberger and Frobenius-Perron average lifetimes.

We have further investigated the relation between Kantz-

From each transient time map we can determine the cofigrassberger and Frobenius-Perron predictions by adding

responding fractal dimensioB of the chaotic repeller by

noise to the r.h.s. of the mafl). In Fig. 5, the average

using a method similar to the one that was used in analyzingfetime r, expressed in the number of iteration steps for

the winding number for the circle map in mode-locked inter-

vals [24]. Accordingly, we present the log-log plot of
N(r)=[1—S(r)]/r vs 1k, whereS(r) is the total width of
all preimages that are larger than a given scal€herefrom
we get, for exampleD =0.9945 foré=0.75,d=0.01[Fig.

£=0.75 dependent on the noise amplitude is presented. For
comparison, the values ofr corresponding to Kantz-
Grassberger and Frobenius-Perron predictions in the absence
of noise are displayed. Calculation shows that #+0.75

peak of 7 is rather stable against noise up to the noise am-

4(a)]. In Fig. 4(b), the dependence of the calculated values ofplitude ~10~ 2. However, with further increase of the noise

1/(1-D) (whereD is the fractal dimensignon the hole
position ¢ is presented, keeping the width=0.01.

amplitude there is a rapid reduction affrom the value
corresponding to the Kantz-Grassberger valygowards the

On the other hand, the Lyapunov exponent is almost infower value, corresponding to the Frobenius-Perron equation

dependent of the position of the holgé being equal to the

value A =In2, which corresponds to the=4 logistic equa-

tion.
Inserting

these calculated fractal

Tep~ 37, i.€., the peak is gradually washed out. Stability of
the average lifetime below the threshold of noise is in accor-
dance with previous indications that transients seem to be

dimensions andstable against noigel, 15|, while the noise-induced destruc-

Lyapunov exponent into the Kantz-Grassberger equatiotion of peaks above the threshold of noise may be associated

[15]

with the noise-induced cha¢g5].
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