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Relativistic Hartree-Bogoliubov description of ground-state properties of Ni and Sn isotopes

G. A. Lalazissis; D. Vretenar® and P. Ring
!Physik-Department der Technischen Univelishainchen, Garching, Germany
2physics Department, Faculty of Science, University of Zagreh, Croatia
(Received 8 December 1997

Relativistic Hartree-BogoliuboyRHB) theory is applied in the description of the ground-state properties of
Ni and Sn isotopes. The NL3 parameter set is used for the effective mean-field Lagrangian, and pairing
correlations are described by the pairing part of the finite range Gogny interaction D1S. Fully self-consistent
RHB solutions are calculated for the Ni (8 <50) and Sn (56 N=82) isotopes. Binding energies, neutron
separation energies, and proton and neutron rms radii are compared with experimental data. The model predicts
a reduction of the spin-orbit potential with the increase of the number of neutrons. The resulting energy
splittings between spin-orbit partners are discussed, as well as pairing properties calculated with the finite
range effective interaction in thep channel.
[S0556-28188)02205-3

PACS numbe(s): 21.10.Dr, 21.60-n, 21.30—X, 27.60:+]

I. INTRODUCTION AND OUTLINE OF THE MODEL However, if for the one-meson-exchange pairing interaction
in the RHB model one uses the coupling constants from
Relativistic models of nuclear structure provide a consis-standard parameter sets of the RMF model, the resulting
tent framework in which the nuclear many-body system ispairing correlations are much too strong. The repulsion pro-
described in terms of interacting baryons and mesons. Deduced by the exchange of vector mesons at short distances
tailed properties of finite nuclei along the-stability line  results in a pairing gap at the Fermi surface that is by a factor
have been very successfully described in the framework o®f 3 too large. On the other hand, it has been argued in many
relativistic mean-fieldRMF) models(for a recent review see applications of Hartree-Fock-Bogoliubov theory that there is
Ref.[1]). In addition to the single-nucleon mean field, pair- N0 real reason for using the same effective forces in both the
ing correlations have to be taken into account for a quantitaParticle-hole and particle-particle channels. In a first-order
tive description of the ground-state properties of open-shefipproximation, the effective interaction contained in the
nuclei. For nuclei close to thg-stability line, pairing has mean fieldl is aG matrix, the sum over all ladder diagrams.
been included in the relativistic mean-field model in the formThe effective force in thepp channel, i.e., in the pairing
of a simple BCS approximatiqiz], with the monopole pair- rp_)otentiaIA, should be th& matrix, the sum of all diagrams

ing force adjusted to the experimental odd-even mass diffe irreducible inpp direction. However, very little is known

ences. Pairing correlations are also crucial for the description . oo Co
. ) . about this matrix in the relativistic framework and only phe-
of deformations in heavy nuclei. However, as we move away . . .
. nomenological effective forces have been used in flpe
from the valley of3-stable nuclei, the ground-state proper- .
. e NI channel of the RHB model. In the RHB calculations of Ref.
ties calculated within the BCS approximation become unres:

. : ) ) : 7] pairing correlations have been described by a two-body
liable, in particular, properties that crucially depend on themgorce of finite range of Gogny typks],

spatial extensions of nucleon densities, as, for example,

nuclear radii. The reason is that the BCS scheme does not

prqvide a correct description of theT _scattering of ngcleonic VPP(1,2) = 2 e [r1-r)/u]? (W, +B,P"—H.P"

pairs from bound states to the positive energy particle con- iZ12

tinuum[3,4], and it leads to unbound systems. The solution,

of course, is a unified description of mean-field and pairing —M;P7P7), )

correlations, as, for example, in the framework of Hartree-

Fock-Bogoliubov(HFB) theory. Within a nonrelativistic ap- with the parameterg;, W,, B;, H;, andM; (i=1,2). For

proach to the nuclear many-body problem, HFB theory has the D1S[8] parameter set of the interaction the model was

long and successful history of applications. In particular,applied in the study of several isotope chains of spherical Pb,

HFB theory in coordinate spa¢8] has been used to describe Sn, and Zr nuclei. The pairing interaction is a sum of two

properties of exotic nuclei with extreme isospin values, bothGaussians with finite range and properly chosen spin and

on the neutron-rich sidpt], and proton drip-line nuclgi5]. isospin dependence. The Gogny force has been very care-
The relativistic extension of HFB theory was originally fully adjusted to the pairing properties of finite nuclei all

derived by Kucharek and Rinfg]. Starting from the La- over the periodic table. Its basic advantage is the finite range,

grangian of quantum hadrodynamics, they have been able twhich automatically guarantees a proper cutoff in momen-

show that the pairing correlations result from the one-mesotum space. In Ref§9,10] we have used the RHB model in

exchange(o, w, and p mesong The relativistic Hartree- coordinate space with the D1S Gogny interaction to study

Bogoliubov(RHB) model developed in Ref6] is based on properties of light nuclear systeni&€, N, O, F, Ne, Na, My

the Hartree approximation for the self-consistent mean fieldwith large neutron excess. Self-consistent solutions were cal-
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57 RELATIVISTIC HARTREE-BOGOLIUBOV DESCRIPTION ... 2295
culated for the ground states of a number of neutron-rictproduces the single-quasiparticle Hartree-Fock-Bogoliubov
nuclei. Predictions were obtained for the location of the neuequationg13]. The relativistic extension of HFB theory was
tron drip line, reduction of the spin-orbit interaction, rms introduced in Ref[6]. In the Hartree approximation for the
radii, changes of surface properties, and the formation o$elf-consistent mean field, the relativistic Hartree-
neutron skin and neutron halo. The effective interactions ifBogoliubov equations read
the pp channel of HFB theory were recently discussed in - -
Ref.[4]. In particular, the role of finite range and the impor- ( hp—m—A\ A )

Uk(")) (Uk(r)>
=Ey ,

tance of density dependence were analyzed. Finite range Vi(r) V(1)

forces have the obvious advantage of the automatic cutoff of
high momentum components. On the other hand, computa-
tions with zero-range forces are much simpler, although al oo ; ) ; P ;

artificial energy cutoff has to be included. The density de_therehD IS the single-nucleon Dirac Hamiltonian antis
pendence of interactions in the pairing channel influences th

)

'Yectors denote the quasiparticle wave functions, Bpére

_expen_mental ewd_ence that pairing is a surface effe_cfc, anq b e quasiparticle energies. The Dirac Hamiltonian contains
including a density-dependent component the pairing fiel : : .
he mean-field potentials of the isoscalar scalaneson, the

can be made surface peaked. . X
In going away from the valley of-stable nuclei, the isoscalar vectow meson, and the isovector vecfemeson,
' as well as the electrostatic potential. The RHB equations

main pr_oblem of m_Jclear structure m(_)de_ls becomes_ the “fave to be solved self-consistently, with potentials deter-
trapolation of effective forces to nuclei with extreme isospin

i mined in the mean-field approximation from solutions of

. O ; . %lein-Gordon equations. The equation for the sigma meson

Gogny force in the pairing channel to light neutron-rich nu- ; ! . .

clei. However, many of these nuclei are still not accessible incontalns the nonllnea_r self-mteractlon_term$14]. Because

. of charge conservation, only the third-component of the

experiments and therefore many of our results could not b|esovector rho meson contributes. The source terms for the

compared with empirical data. In order to make predictionsKI in-Gordon tions ar | 'I ted in tie rOxi-

for medium-heavy nuclei at the neutron drip line, we have to €ih->ordon equations are caicuiate seaappro

test available effective interactions in detailed calculations ofmation. The pairing field\ in Eq. (2) is defined as

the properties of neutron-rich nuclei for which a comparison 1

with experimental data is possible. In the present article we N = / /

consider two sets of isotopes: Ni (20<50) and Sn (50 Aap(r.r)=7 Cz:g Vaped rI') ked(F.1"), (©)

<N=82). Such an analysis will test the predictions of effec-

tive forces in both theph and pp channels over two major Where a,b,c,d denote quantum numbers that specify the

neutron shells. In addition to the effects of the pairing inter-single-nucleon stated/,,.((r,r') are matrix elements of a

action, we are particularly interested in the behavior of thegeneral two-body pairing interaction, and the pairing tensor

spin-orbit term of the effective potential as a function of theis defined as

neutron number. For light neutron-rich nuclei, in REf1]

we have shown that the magnitude of the spin-orbit potential " * /

is considerably reduced at the drip line, resulting in much Kea(a1") E%O YeM)Va(r")- @

smaller energy splittings between spin-orbit partners. For the

Ne isotopes this reduction was found to be around 40%The eigensolutions of Eq2) form a set of orthogonal and

Since it seems that at present only relativistic models includ@ormalized single-quasiparticle states. The corresponding ei-

the correct isospin dependence of the spin-orbit term in thgenvalues are the single-quasiparticle energies. The self-

mean-field potential, it would be important to study in consistent iteration procedure is performed in the basis of

medium-heavy nuclei the predicted spacings of singlequasiparticle states. The resulting quasiparticle eigenspec-

neutron levels close to the Fermi surface. trum is then transformed into the canonical basis of single-
The details of the RHB model are given in Ref$0,12.  particle states, in which the RHB ground state takes the BCS

A short outline of essential features follows. The groundform. The transformation determines the energies and occu-

state of a nucleugb) is described as vacuum with respect to pation probabilities of the canonical states.

independent quasiparticle operators, which are defined by a The self-consistent solution of the Dirac-Hartree-

unitary Bogoliubov transformation of the single-nucleon cre-Bogoliubov integro-differential eigenvalue equations and

ation and annihilation operators. The generalized singleKlein-Gordon equations for the meson fields determines the

nucleon Hamiltonian contains two average potentials: théuclear ground state. In Reff9—12] we have used finite

element methods in the coordinate space discretization of the

N coupled system of equations. In order to correctly describe

rangeph correlations and a pairing field which sums up  structure phenomena in exotic nuclei with extreme isospin

the pp correlations. The expectation value of the nucleanalues, such as, for example, regions of neutron halos with

Hamiltonian,(®| I:||<I>>, is a function of the Hermitian den- very diffuse neutron densities, the RHB equations have to be

sity matrix p and the antisymmetric pairing tenser The  solved in coordinate space. However, for the spherical

variation of the energy functional with respect goand k  nuclear systems that we consider in the present article this is

self-consistent mean field which encloses all the long-
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not necessary3]. As was done in Ref[7], the Dirac- 25

Hartree-Bogoliubov equations and the equations for the me-

son fields are solved by expanding the nucleon spibg(s) 20 Ni

andV,(r), and the meson fields in a basis of spherical har- S5t

monic oscillators foN= 20 oscillator shell§2]. For oddA ﬁ

isotopes we also include the blocking procedur® for neu- 10T / R ]

tron levels. 6 | M ]
1. GROUND STATES OF Ni AND Sn ISOTOPES 0 " "

The details of the calculated ground-state properties of Ni 0| @%@ -——ORHB
(28<N=50) and Sn (5&N=82) isotopes will depend on _ e,
the choice of the effective mean-field Lagrangian in e s
channel, as well as on the effective pairing interaction. Sev- 220
eral parameter sets of the mean-field Lagrangian have been
derived that provide a satisfactory description of nuclear " RHB/NL3 SSeemg |
properties along th@-stability line. In particular, NL115],

NL3 [16], and NL-SH[17]. The effective forces NL1 and 05 = - %
NL-SH have been used in many analyses to calculate the A

properties of nuclear matter and of finite nuclei, and have
become standard parametrizations for relativistic mean-field FIG. 1. One- and two-neutron separation energies for Ni iso-
calculations. The effective interaction NL1 was also used irfopes calculated in the RHB model and compared with experimen-
the RHB+Gogny calculations of Ref7]. More recently the tgl (solid cirlcles) and extrapolate¢squaresdata from the compila-
parameter set NL3 has been derivEts] by fitting the  tion of Audi and Wapstra19].

ground-state properties of a large number of spherical nuclei.

Properties calculated with the NL3 effective interaction aremajor neutron shell, but it also reproduces the transitions
found to be in very good agreement with experimental datdetween major shells. The results are excellent for the region
for nuclei at and away from the line ¢8 stability. In Ref. ~ beyond the shell closure Bt=82 in Sn. The agreement with
[18] it has been shown that constrained RMF calculationgxperimental data is somewhat worse for neutrons in the
with the NL3 effective force reproduce the excitation ener-1f, orbital in Ni isotopes (24 N=28), although the gen-
gies of superdeformed minima relative to the ground state ieral trend is reproduced. However, fir=Z nuclei we ex-
19449 and 1%Pb. In the same work the NL3 interaction was pect that additional correlations should be taken into account
also used for calculations of binding energies and deformain order to get better agreement with experimental data. In
tion parameters of rare-earth nuclei. We have used the NLParticular, proton-neutron pairing could influence the masses
parameter set in our study of light neutron-rich nuclei inin this region. Proton-neutron residual short-range correla-
Refs.[9-11]. For Ni and Sn the objective is to study how tions are not included in our model. The total binding ener-
well the NL3 effective force describes systems with verygies for Ni and Sn isotopes are compared with experimental
different numbers of neutrons, without going to nuclei with values in Fig. 3. Except for the region aroufitNi and for
extreme isospin values. Only if it were shown that the iso-
spin dependence of NL3 is correct could this interaction be 20
used to make reliable predictions about medium-heavy drip-
line nuclei. This could be especially important for Ni, since 15|
there is hope that drip-line isotopes might become accessibl.. W
in experiments. Pairing 'be|ng e.sse.ntlally a nonrela‘gwshc ef—é 10l \ A Ie\ R,U

fect, we use the Gogny interaction in the channel with the o 8y ¥ 81 ¥ ‘/ﬂ\,ﬁ\ ARae
parameter set D183]. Results obtained with this effective sl LR vy w
force might also indicate the path one should take in deriving ‘X%
a fully relativistic theory of pairing, consistent with the mod-

ern mean-field Lagrangians.

D ]

In Fi_gs. 1 ano_l 2 we display the one- and two-neutron 4, | G--ORHB

separation energies < E’:’ng'a'p_

S,(Z,N)=B,(Z,N)—B,(Z,N—1), (59 207

(/)5
Son(Z,N)=Bn(Z,N)=B(Z,N-2), (6) nr
n n n

for Ni (24<N=<50) and Sn (56N=<88) isotopes, respec- o L . . .
tively. The values that correspond to the self-consistent RHB 100 110 ;20 130 140
ground states are compared with experimental data and ex-
trapolated values from Ref19]. The theoretical values re- FIG. 2. Experimentalsolid circles and extrapolatedsquares

produce in detail the experimental separation energies. Thene- and two-neutron separation energies for Sn isofdscom-
model describes not only the empirical values within onepared with results of RHB calculations.
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FIG. 3. Differences between RHB model and experimental

binding energies for Ni and Sn isotopes. FIG. 5. Calculated neutron and proton rms radii for Ni isotopes
compared with experimental data.

100-10Z " the absolute differences between the calculated
and experimental masses are less than 2 MeV. For Ni th
model predicts weaker binding fdt<40. Compared to ex-
perimental values, the theoretical binding energies-aré : ; R
MeV larger for neutrons in the g, orbital (40<N<50). tron density profiles to the Fermi distribution

For Sn isotopes results of the model calculation in general 1

display stronger binding. The differences are somewhat 1+ex4 r- RO” )
larger for 19°-19% byt again for these nuclei we expect that @ ’

the masses might be strongly affected by proton-neutron re-

sidual short-range correlations. whereR, is the half-density radius. By adding more units of

In Fig. 4 we show the self-consistent ground-state neutroiisospin the value of the neutron surface thickness increases
densities for the Sn and Ni nuclei. The density profiles dis-and the surface becomes more diffuse. The increaseaim
play shell effects in the bulk and a gradual increase of neue is more uniform in Sn, and both parameters increase ap-
tron radii. In the inset of Fig. 4 we include the correspondingproximately 40% from'°Sn to *3%Sn. A somewhat smaller
values for the surface thickness and diffuseness parameténcrease in the surface thickness is observed for Ni isotopes.
The surface thicknedsis defined to be the change in radius The diffuseness parameter for Ni is essentially a step func-
required to reduce(r)/pg from 0.9 to 0.1 pg is the maxi-  tion: a~0.45 fm forN<40 anda~0.50 fm for neutrons in
the 1gq,, orbital. We will show that the observed changes in
surface properties result from the reduction of the spin-orbit
Sn | term in the effective single-nucleon potential.

In Figs. 5 and 6 we display the neutron and proton rms
radii for Ni and Sn isotopes, respectively. The calculated
Sn values are compared with experimental neutron radii from

1 Ref.[20] and with data for proton radii from Rdf21]. In the
lowest panels we also compare the differencesr,. We
find an excellent agreement between experimental data and

: values calculated with the NL3 effective force with the D1S
RHB/NL3 Gogny interaction in the pairing channel. The model predicts
o 7o ] a uniform increase of rms radii with the number of neutrons.
Ni-"Ni ] The neutron skim,—r, increases to approximately 0.4 fm at

the closed shellsl=50 for Ni andN=_82 for Sn.

In Ref.[11] we have shown that in the framework of the
relativistic mean-field model the magnitude of the spin-orbit
term in the effective single-nucleon potential is greatly re-
duced for light neutron-rich nuclei. With the increase of the
number of neutrons the effective spin-orbit interaction be-
comes weaker and this results in a reduction of the energy

FIG. 4. Self-consistent RHB single-neutron density distributionssplittings for spin-orbit partners. The reduction in the surface
for Sn (50=N=82) and Ni (28<N=50) nuclei, calculated with region was found to be as large &10% for Ne isotopes at
the NL3 effective interaction. the drip line. The spin-orbit potential originates from the

al value of the neutron density; because of shell effects, we
could not use fop, the density in the center of the nuclgus
The diffuseness parameteris determined by fitting the neu-

p(r)=po

100

T
132

Sn

neutron density (fm™)

Ni

neutron density (fm®)

4
r {(fm)
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0.4 L . . . FIG. 7. Radial dependence of the spin-orbit term of the potential
50 80 70 80 in self-consistent solutions for the ground states of Ni<(28

N =<50) nuclei.

FIG. 6. Calculated and experimental neutron and proton rms
radii for Sn isotopes. In Fig. 9 we display the energy splittings of spin-orbit neu-
tron partners for Ni and Sn, respectively. The calculated
addition of two large fields: the field of the vector mesonsspacings are shown as a function of the neutron number. We
(short-range repulsigrand the scalar field of the sigma me- only include the spin-orbit doublets for which one of the
son(intermediate attractionin the first-order approximation partners is an intruder orbital in a major shell. These doublets
and assuming spherical symmetry, the spin-orbit term can bdisplay the largest energy splittings. We notice in Fig. 9 that

written as the spacing between spin-orbit partners decreases with neu-
tron number. The effect is stronger in Ni than in Sn, and
19 quantitatively the observed decrease is consistent with the
Vs.o.:F a—rV|s(f). (8) gradual weakening of the spin-orbit term shown in Figs. 7
and 8.
whereV, is the spin-orbit potentigl22], In order to illustrate the properties of the interaction in the

pp channel, in Figs. 10 and 11 we plot the average values of

m the neutron canonical pairing gaps,; as functions of ca-
Vis= i~ (V=9). (9)  nonical single-particle energies. The gaps are displayed for
ef canonical states that correspond to the self-consistent ground

7{'NH 12 i H
V andS denote the repulsive vector and the attractive scalaft@tes of "Ni and °Sn, respectivelyA,; are the diagonal
potentials, respectivelyn. is the effective mass, matrix elements of the pairing part of the RHB single-
nucleon Hamiltonian in the canonical basis. Although not

1 completely equivalent),; corresponds to the pairing gap in
Mef= M— E(V_S)' (20 BCS theory. A very detailed discussion of HFB equations in
the canonical basis can be found in Rfl. For 12%Sn (Fig.

Using the vector and scalar potentials from the NL3 self-
consistent ground-state solutions, we have computed from
Eqgs.(8)—(10) the spin-orbit terms for the Ni and Sn isotopes.
They are displayed in Figs. 7 and 8 as function of the radial 0
distance from the center of the nucleus. The magnitude of the
spin-orbit termV , decreases as we add more neutrons, i.e., «
more units of isospin. If we compar@Ni with "®Ni, in Fig.
7, the reduction is=35% in the surface region. This implies
a significant weakening of the spin-orbit interaction. The . -100 |
minimum of V¢, is also shifted outwards, and this reflects >
the larger spatial extension of the scalar and vector densities, T gy
which become very diffuse on the surface. The reduction of Sn — "6n
the spin-orbit term seems to be less pronounced in the Sn
isotopeg(Fig. 8), and this indicates that the weakening of the 200
spin-orbit interaction might be not that important in heavy
nuclei. The effect is reflected in the calculated spin-orbit
splittings of the neutron levels in the canonical basis, FIG. 8. Radial dependence of the spin-orbit term of the potential
in self-consistent solutions for the ground states of Sn<(NO
AEis=En 1 j=1-12— Enj j=1+12- (11)  <82) nuclei.

RHB/NL3

)

(MeV/fm

s.0.

r (fm)
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FIG. 9. Energy splittings between spin-orbit partners for neutron . . .
levels in Ni and Sn isotopes, as functions of neutron number. the pairing gap is Con_SIderany S.ma}l’Ebu.t they decrease
more slowly for canonical states in the single-neutron con-

11) we essentially reproduce the results calculated in [R&f. tinuum. At the Fermi surface the average values are between

with the Gogny HFB-D1S model. The calculated pairing 1 an_d 1.5_Mey, somewhat smaller than i#fSn.

gaps are almost identical, although there is a difference in the Finally in Fig. 12 we compare the averages of the neutron
canonical single-neutron energies due to different effectiv@@iling 9aps for occupied canonical states,

forces used in th@h channel. While we employ the NL3

effective meson-exchange interaction in fhle channel, in En,jAn,juﬁ”
the calculation of Ref.4] the Gogny effective force has been (An)= :
used both in theoh and pp channel. The pairing gaps dis-
play a uniform decrease with single-neutron energies. This is
related to the volume character of the Gogny interaction ifwhere v, are the occupation probabilities. The quantities
the pairing channel. The values of thg; for thes,,, orbit-  (Ay) are plotted as functions of the neutron number for Ni
als are slightly larger, and the average value at the Fernind Sn isotopes. Solid lines correspond to even; and dashed
surface is around 1.5 MeV. It should be noted that for thdines to odd-neutron isotopegAy) provides an excellent
HFB+SkP calculations of Ref4] the values of the pairing quantitative measure of pairing correlations. The quasipara-
gaps are strongly peaked at the Fermi surface. In additiorolic functional dependence on the number of neutrons re-
we have calculated the average canonical pairing gaps fdlects the increase of pairing correlations toward the middle
"Ni (Fig. 10. As compared with'?°%Sn, theA,,;; display a  of a major shell. Both for Ni and Sn the values(dfy) are

very similar behavior for deep-hole stai@dthough for ,,, above 2 MeV in the middle of the corresponding shells. As
one would expect, the values for odd-neutron isotopes are

(12)
En|jUn|j

25 . ; somewhat lower. While in Sn the average pairing gaps do
« I 700 1: not provide any indication of additional shell effects, in Ni
LI | Ni .- .
=N A they very clearly indicate the shell subclosuréNat 40. It is
2or < - ! also interesting to note that pairing correlations are stronger
op A e in the subshell 28 N<40, than for neutrons in thedl,
15 oh | orbital.
> Id:i I v
<>f5/2
= NS P 3
i3 ng | > v
< 1.0 Agm 1<
972 | /\Q
;29/2 : o)
Vioe . s <2
05 »i | >
» | s
| RHB/NL3 =
00 . . I . I, 1
-60 -40 -20 0 20 40
€nj (MeV)

FIG. 10. Average values of the neutron canonical pairing gaps 0
as functions of canonical single-particle energies for states that cor
respond to the self-consistent ground staté®li. The NL3 param-
etrization has been used for the mean-field Lagrangian and the pa- FIG. 12. Average neutron pairing gapA,) for the Ni and Sn
rameter set D1S for the pairing interaction. isotopes, as functions of neutron number.
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In conclusion, in the present work we have performed acrease of the number of neutrons, as well as the resulting
detailed analysis of ground-state properties of Ni<<28  energy splittings between spin-orbit partners and modifica-
=<b50) and Sn (5&N=82) nuclei in the framework of rela- tions of surface properties. Pairing properties calculated with
tivistic Hartree-Bogoliubov theory. The NL3 parameter setthe finite range effective interaction in tipp channel have
has been used for the effective mean-field Lagrangian in theeen carefully analyzed. These results are particularly impor-
ph channel, and pairing correlations have been described bnt since one of the main objectives of RHB theory should
the finite range Gogny interaction D1S. In a comparison withpe 3 fully relativistic description of pairing correlations, con-
available experimental data, we have shown that the ML3  sjstent with modern mean-field Lagrangians.

Gogny D1S effective interaction provides an excellent de-

scription of binding energies, neutron separation energies,

and proton and neutron rms radii. The results indicate that ACKNOWLEDGMENTS
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