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Violation of the string hypothesis and the HeisenbergXXZ spin chain

Amon Ilakovac,* Marko Kolanović,† Silvio Pallua,‡ and Predrag Prester§

Department of Theoretical Physics, University of Zagreb, Bijenicˇka c.32, P.O. Box 162, 10001 Zagreb, Croatia
~Received 21 January 1999!

In this paper we count the numbers of real and complex solutions to Bethe constraints in the two-particle
sector of theXXZ model. We find the exact number of exceptions to the string conjecture and total number of
solutions that is required for completeness.@S0163-1829~99!10733-1#
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I. INTRODUCTION

Integrable spin chains have proven to be useful in stu
ing various theoretical ideas in field theory and statisti
physics. In the continuum limit, one can relate spin chains
the massive Thirring model, the sine-Gordon theory,
Liouville theory and others.1,2 Faddeev and Korchensky3

suggested their possible relevance for QCD. A connectio
matrix models was also suggested.4 A very successful
method in solving spin chains and in general integrable m
els both on a lattice and in the continuum is the Be
ansatz.5,6 Despite the fact that a lot is known about th
method there is still one set of open questions concerning
so-called string conjecture.7,8

The Bethe ansatz method leads to a set of transcend
equations~called Bethe constraints! for momenta of quasi-
particles. In the usual search for solutions of these equat
a simplifying assumption is made, the already mention
string conjecture. This conjecture, which we shall afterwa
formulate more precisely, classifies the complex solutio
for momenta of quasiparticles. It is well known that there a
exceptions to the string conjecture near the antiferromagn
ground state.9–11 Recently, exceptions have been found12,13

already in the two-particle sector of theXXX spin chain.
Similar results have been found for the Hubbard model.14 In
the case of theXXX spin chain, the number of missing so
lutions ~compared to the string-conjecture prediction! was
found to beAN, whereN is the number of degrees of free
dom. A certain class of real solutions not allowed by t
string conjecture was observed by Ju¨ttner and Do¨rfel15 in the
XXZ chain. However, a systematic investigation of comp
solutions and thus of exceptions to the string conjectur
missing.

There are several reasons why it would be desirable
understand the limits of validity of the string conjecture
equivalently to have a clear understanding of nature
number of real and complex solutions for momenta of q
siparticles. One reason is that it was used in literature a
tool to obtain various results. One example, for instance
the completeness proofs of Bethe states.5,14,16–20Another ex-
ample is the investigations that use a lattice regularizatio
field theoretical models.21 In such cases the results at orde
that are lower thanN may depend on modifications of even
single root as these authors stress. As is well known,
string conjecture was also used by Bergknoff and Thack22

in deriving breather states of the massive Thirring mod
This was recently criticized on the basis of numerical ana
PRB 600163-1829/99/60~10!/7271~7!/$15.00
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sis of Bethe equations. A recent numerical calculation, in
pendent of Bethe ansatz and based on the lat
regularization,23 led to the usual bound-state spectrum of t
massive Thirring model, thus suggesting that the ques
raised by previously mentioned authors could be related
understanding of the string conjecture and its violations. T
result is based on the assumption of equivalence of s
Gordon and the massive Thirring model. Another calculat
for the massive Thirring model itself is in progress.24

In this paper we shall classify all solutions~both complex
and real! in the two-particle sector of theXXZ model. That
will allow us to find the number of exceptions to the strin
conjecture for a given coupling constant and a given num
of lattice sitesN. We shall, in particular, find that the numbe
of exceptions to the string conjecture in thermodynami
limit is finite, except for the value of the coupling constant
which it coincides with theXXX model and what is consis
tent with previously found result.12,13

We shall consider theXXZ spin chain defined with the
following Hamiltonian:

H52
1

2 (
n51

N

~sn
xsn11

x 1sn
ysn11

y 1Dsn
zsn11

z !, sW N11[sW 1 .

~1.1!

This Hamiltonian acts inN2 dimensional Hilbert space
H5( ^ C2)N. In the Bethe ansatz method one introduces
basis statesun1•••nM& with M spins down, where the num
bers n1 , . . . ,nM denote the lattice positions of the dow
spins. With u0& we denote the state with all spins up.
general element of the above-defined Hilbert space, and
in particular the eigenstates of the Hamiltonian, can then
written in the sector withM spins down as

ucM&5 (
1<n1<n2<•••<nM<N

cM~n1•••nM !un1•••nM&.

~1.2!

The Bethe method consists in searching for Hamilton
eigenstates in the form

cM~n1•••nM !5(
P

expH i S (
j 51

M

kPj
nj

1
1

2 (
1< j < l<M

fP j ,PlD J , ~1.3!
7271 ©1999 The American Physical Society
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7272 PRB 60ILAKOVAC, KOLANOVIĆ , PALLUA, AND PRESTER
where the sum runs over elements of the permutation gr
SM . The momentaki , i 51, . . . ,M and phase shiftsf j ,i
have to be determined from the eigenvalue equation and
riodicity requirement on functionscM(n1•••nM). The well-
known procedure gives following expressions for phase s
f j ,i , energyE, and momentumP in terms of pseudomo
mentaki , i 51, . . . ,M

f j ,i52 arctan
D sin@~kj2ki !/2#

cos@~kj1ki !/2#2D cos@~kj2ki !/2#
,

~1.4!

E52
ND

2
12(

i 51

M

~D2coski !, ~1.5!

P5(
i 51

M

ki . ~1.6!

The periodicity requirement leads to the following co
straints for the momenta of quasiparticles:

Nki1(
j 51

M

f i , j52pl i , i 51, . . . ,M . ~1.7!

The M Bethe numbersl i , i 51, . . . ,M are half integers~in-
tegers! for M even ~odd!. Thus for M even, we can chose
l iP2(N21)/2, . . . ,(N21)/2% for N even and l iP
2N/2, . . . ,N/221% for N odd. Sometimes it is useful to in
troduce a transformation from pseudomomentaki , i
51, . . . ,M to rapidity variablesxi , i 51, . . . ,M with the fol-
lowing relation:

cot
ki

2
5cot

u

2
tanh

uxi

2
, D5cosu. ~1.8!

In this parametrization Bethe constraints read

H sinh
u

2
~xk1 i !

sinh
u

2
~xk2 i !

J N

52)
l 51

M H sinh
u

2
~xk2xl12i !

sinh
u

2
~xk2xl22i !

J ,

k51, . . . ,M . ~1.9!

The string-conjecture states that solutions of these equa
form string configurations with rapidities that are formin
strings of lengthn. Rapidities in string have common re
parts and equidistant imaginary parts. More precisely
string of order~length! n and parity1 or 2 is a set ofn
rapidities

xa,1
n,k 5xa

n1~n1122k!i 1O@exp~2dN!#S mod
2p

u D ,

~1.10!

xa,2
n,k 5xa

n1~n1122k!i 1
ip

u
1O@exp~2dN!#S mod

2p

u D ,

~1.11!

where d>0, k51, . . . ,n and xa
n is real. Insertion of these

assumed forms in Eq.~1.9! gives equations for real parts o
strings, which are similar to Eq.~1.7! with one common
p

e-

ft

ns

a

Bethe number~integer! I for each string. In addition, a par
of the string conjecture was that no two strings of the sa
length can have same integersI. These assumptions togeth
with inequalities derived in Ref. 7 for numbersI allow one to
count the number of string solutions of equations~1.9!. In
this paper we shall not use equations that are a consequ
of string conjecture. However, for future comparison w
mention that in the sectorM52 the following number of
solutions for strings of length 2 can be obtained:

NS52F 1

2p
~N24!~p22u!G11, ~1.12!

where@x# denotes integer part ofx.

II. TWO-PARTICLE SECTOR AND COMPLEX
SOLUTIONS

We want now to analyze Bethe equations without assu
ing the string conjecture. For simplicity we shall treat t
two-particle sector. In this sector Bethe constraints~1.7! read

Nk11f1,252pl1 , ~2.1!

Nk22f1,252pl2 . ~2.2!

Here we want, in particular, to look for complex solution
Due to the reality of energy and momentum,k1 andk2 have
to be complex conjugates of each other

k15kr1 ik i , ~2.3!

k25kr2 ik i . ~2.4!

We can expresskr andki by taking the sum and difference o
Eqs.~2.1! and ~2.2!

kr5
p

N
~l11l2!, ~2.5!

iNki5p~l12l2!22 arctan
D sin~ ik i !

coskr2D cos~ ik i !
.

~2.6!

Further straightforward manipulation allows us to introdu
a simple equation forki in terms ofkr . So the final set of
equations that we shall consider is Eq.~2.5! for kr and the
equations forki ,

sinhFki S N

2
21D G

sinhS ki

N

2 D 5
coskr

cosu
, l11l2 odd, ~2.7!

coshFki S N

2
21D G

coshS ki

N

2 D 5
coskr

cosu
, l11l2 even. ~2.8!

We shall distinguish solutions of Eq.~2.7! and call thems
solutions~strings! from those of Eq.~2.8!, which we shall
call c solutions~strings!. In fact, these equations will give
basis for a natural classification of solutions. Any solution
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the two-particle sector will depend only on the sum of Be
numbers and its parity. A choice of different Bethe numb

that gives the same sum@e.g., (32 ,2 1
2 ),( 1

2 , 1
2 )] corresponds to

taking different branches of the phase shift in Eqs.~2.1! and
~2.2!. As we shall see later, a number of solutions will
different in these two classes and exceptions to the st
conjecture will be due to the classs only. As the sum of
Bethe numbers can be taken between2N11 andN21 for
N even and between2N andN22 for N odd, we see thatkr
can take 2N21 different equidistant values between2p
and p. From Eqs.~2.7! and ~2.8! ~and Fig. 1!, we see that
admissible interval for coskr is

s strings: 0<coskr,DS 12
2

ND , ~2.9!

c strings: 0<coskr,D ~2.10!

for D>0 (0<u<p/2) and

s strings: DS 12
2

ND,coskr<0, ~2.11!

c strings: D,coskr<0 ~2.12!

for D<0 (p/2<u<p). The energy of complex solutions
according to Eq.~1.5!, will be given with

E54D24 coskr coshki . ~2.13!

Here, we measure the energy from the referent state with
spins up. Due to relations~2.8! and ~2.7! one can see tha
energy intervals for complex solutions are

0,E~c strings! <2D, ~2.14!

8D

N
,E~s strings! <2D. ~2.15!

Now the left side of both Eqs.~2.7! and ~2.8! are monoto-
nously decreasing functions so we shall have a solution foki
for anykr whose coskr is in the previously mentioned inter
val. For largeN we can approximate admissible interval fors
strings with that forc strings. In that case, complex solution
will exist if their real parts satisfy inequality 0<coskr<D.
As we have (2N21)/2p solutions per unitkr interval, we
conclude that

FIG. 1. Graphical description of the left-hand sides of Eqs.~2.7!
and ~2.8! for some values ofN.
e
s

g

all

1

2p
~2N21!~p22u! ~2.16!

solutions in form of strings can be obtained. This is cons
tent ~up to at most two solutions! with the string conjecture
and result~1.12!.

III. NUMBER OF BOUND STATES „COMPLEX
SOLUTIONS… AND VIOLATION OF THE STRING

HYPOTHESIS

We want to determine the number of bound states a
function of the coupling constantD and the number of sites
N. We shall first consider complex solutions for fixedN and
different D. In Fig. 2 the caseN540 is presented. For eac
~calculated! D real parts of possible complex solutions a
given. We see that in the region of negative coupling co
stant the complex solutions are present forp/2<ukr u<p and
in the region of positive coupling constant for 0<ukr u<p/2.
As kr tends top/2, ki increases and so the localization
two spins down increases@notice that the ratio of probability
amplitudes for finding spins down on lattice sitesn1 andn2
is proportional to exp2uki(n12n211)u]. As we decrease the
coupling constantuDu, bound states withukr u>uuu for D<0
and withukr u<uuu for D>0 disappear. These are states w
the smallest localization. The bound states with high loc
ization (ki high, kr'p/2) exist in almost all the region o
coupling constant and disappear near the free theory p
(D50). In Fig. 3 and 4 we present numerical analysis ofN
dependence of string solutions forDÞ1 andD51. In the
D51 case,c strings are allowed for all values of2p/2
<kr<p/2 and so their number rises linearly withN as pre-
dicted by Eq.~2.16! and the string conjecture. However, th
number ofs strings rises also linearly withN until the real
parts do not reach the region where 122/N<coskr /D<1

FIG. 2. Real parts of complex solutions for21<D<1 and the
number of sitesN540. Empty squares denote solutions of Eq.~2.7!
(s strings! and full circles denote solutions of Eq.~2.8! (c strings!.
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when suchs string is no longer a solution of Bethe equation
So the first two strings disappear forN522, next for 62, 121,
etc. Simultaneously with the disappearance ofs strings two
real solutions with the same~odd! sum of Bethe numbers
appear. An odd sum of Bethe numbers can be accomplis
by two equal Bethe numbers~which is found by numerica
calculation, which favors the choice of the principal bran
of the phase shift! and both properties~disappearance of th

FIG. 3. This figure shows dependence of the real part of co
plex solutions on numbers of sitesN for D50.95. It clearly illus-
trates transmutation of one complex solution in real solution~two
quasimomenta! for a given criticalN. These two real quasimoment
correspond to the same Bethe numbers and are obtained b
numerical iteration of Eqs.~2.1! and ~2.2!.

FIG. 4. Same as Fig. 3, but forD51. We see that exceptiona
real solutions with the same Bethe numbers that appear at s
critical N persist for allN>Ncrit .
.

ed

complex solution and appearance of the real solution w
two same Bethe numbers! represent violations of the strin
conjecture. These results are consistent with the result
Refs. 12 and 13. ForDÞ1, however, we shall find a differen
result. From Fig. 3 we can see that again for certain value
N s strings will disappear and evolve in two close real m
menta for which we find identical Bethe numbers. The
exceptional real solutions will disappear again after someN,
when followed by the numerical iteration method. This is
contrast to theD51 case. In fact, when the solutions a
described by more natural classification@Eqs.~2.7! and~2.8!
for complex solutions and Eqs.~4.2! and ~4.3! for real solu-
tions#, one could follow their further development. Howeve
here we were interested specifically in the choice of eq
Bethe numbers when solving Eqs.~2.1! and ~2.2! directly.

We proceed now to give an analytical expression for
number of exceptions to the string conjecture. Due to
previous discussion we find that the exceptions arise o
due to the Eq.~2.7!, which has no solutions in the following
interval for the sum of Bethe numbers

S 12
2

ND<

cosFpN ~l11l2!G
D

<1, ~l11l2! odd.

~3.1!

Now consider inequality~3.1! first for D51. The maximal
kr for which s solutions would still not be possible can b
found by expanding cos@(p/N)(l11l2)# around zero. We find

~l11l2!2,S 2

p
AND 2

, ~3.2!

whereN is number of sites after which two complex sol
tions ~for 1kr and 2kr) disappear and become solution
with two real momenta andl15l2. For l11l2
51,3,5,7, . . . , we getN53,22,62,121, . . . . As previously
said, this is consistent with Refs. 12 and 13.

Now we turn to generalDÞ1. Considerkr
1 andkr

2 , which
are just on the edges of the interval~3.1!. They satisfy

2 sinS kr
11kr

2

2 D sinS kr
12kr

2

2 D 5
2D

N
. ~3.3!

From this relation the intervaldkr for which s strings are
missing is given with

dkr52 arcsin
D

N sinS arccosD1arccos@D~122/N!#

2 D .

~3.4!

The number ofs strings per unit interval ofkr is

1

2

2N21

2p
2. ~3.5!

Here (2N21)/2 is due the fact that we have to count t
number of odd values ofl11l2. As solutions come in pairs
~positive and negative total momenta! we need the last facto
of 2. Finally, the number of missing strings is an integer p
of
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n5
2N21

p
arcsin

D

N sinS arccosD1arccos@D~122/N!#

2 D .

~3.6!

The function~3.6! is shown in Fig. 5 for few values ofN. We
can see that the number of missing strings is finite forD
Þ1 and that there is no violation of the string hypothe
below some value of coupling constantD. These strings
would have energies~2.13! in the forbidden interval 0<E
<8D/N that is near the energy of the state with all spins

IV. NUMBER OF REAL SOLUTIONS AND
COMPLETENESS PROBLEM

In this section we shall search for real solutions of Be
equations. We start again from Eqs.~2.1! and ~2.2!. After
manipulating their difference and sum we obtain followi
equations fork5k11k2 andk12k2:

k

2
5

p

N
~l11l2!, ~4.1!

sinF ~k12k2!

2 S N

2
21D G

sinF ~k12k2!

2

N

2 G 5

cos
k

2

cosu
, l11l2 odd, ~4.2!

cosF ~k12k2!

2 S N

2
21D G

cosF ~k12k2!

2

N

2 G 5

cos
k

2

cosu
, l11l2 even. ~4.3!

From condition~4.1! we can find number of different mo
mentak. As was already mentioned, there are 2N21 differ-

FIG. 5. The number of missing strings is an integer part of r
numbern, which is given as a function of the coupling constantD
for three different values ofN.
s

.

e

ent values ofl11l2. But changingl11l2 by N is equiva-
lent with changing one quasimomentum by 2p that gives the
same solution. This reduces the number of possible va
l11l2 to N, e.g., l11l250,1,. . . ,N21. The left-hand
sides of Eqs.~4.2! and ~4.3! are periodic functions. Thus in
principle, for each ofN different fixed values of the right-
hand side one can count the number of solutions by coun
the number of intersections. For a given value of thel1
1l2 andD we can find following numberX of intersections
for N even

Ucos
k

2

D
U.1, X5S N

2 D ; Ucos
k

2

D
U,1, X5S N22

2 D ,

~4.4!

Ucos
k

2

D
U.12

2

N
, X5S N22

2 D ; Ucos
k

2

D
U,12

2

N
,

X5S N24

2 D , ~4.5!

for l11l2 even and odd, respectively. ForN odd

Ucos
k

2

D
U.1, X5S N21

2 D ; Ucos
k

2

D
U,1, X5S N23

2 D ,

~4.6!

Ucos
k

2

D
U.12

2

N
, X5S N23

2 D ; Ucos
k

2

D
U,12

2

N
,

X5S N23

2 D , ~4.7!

for l11l2 even and odd, respectively. When right-hand s
of Eqs.~4.3! and ~4.2! becomes smaller than 1 and 122/N,
respectively, corresponding the real solution~in fact a pair
with 6k) disappears and we get a pair of complex solutio
with positive and negative real parts. Now we can proceed
obtain the full number of solutions. ForN even we have
N/2 (N/2) possible values forl11l2 even~odd!. ForN odd
there are (N21)/2 @(N11)/2# possible values forl11l2
even~odd!. Together with the results from the previous se
tion on complex solutions one can count the total numbe
real and complex solutions. It is important to realize that
disappearance of pair of real solutions results in the form
tion of a two complex solution and vice versa. Let us cou
number of solutions in two extreme casesD→0 and D
>N/(N22). For D→0 there are no complex solutions an
the number of real solutions isNreal5N2/22N/25(2

N). For
D>N/(N22) the number of complex solutions isN
(coskr /D<122/N) and from Eqs.~4.4! and~4.6! number of
real solutions isNreal5N2/223N/25(2

N)2(1
N). Again total

number of solutions is (2
N). We conclude that we find (2

N)
solutions of Bethe Eqs.~2.1! and~2.2! for every value ofD.
We stress that this result is obtained without assuming st
conjecture, which is usually assumed in completeness pro

l
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In fact, as we discussed in this paper, string conjecture
exceptions. However, they do not affect completeness pr
because the disappearance of complex solution~bound state!
results in the appearance of real solution and vice versa
that the total number is unchanged.

As we have explained already, analysis was done for s
plicity reasons in the two-particle sector. Of course a syste
atic analysis for higher sectors may be desirable but i
much more complicated. However, we will mention som
preliminary results for theM53 sector. By numerical analy
sis we search for exceptions to string conjecture among
solutions with coinciding two or all Bethe numbers. They a
exhibited in Fig. 6 and Fig. 7 forD51 andD50.95. They
show similar regularities as theM52 case. In particular
with the appearance of real solutions violating string conj
ture in the two-particle sector in the three-particle sector s
exceptions arise in the form of perturbed pair of near m
menta ~of identical Bethe numbers inM52 sector! and a
third almost independent momenta with a distinct Be
number. For instance, Fig. 6 forD51 shows that the appea
ance of such solutions aroundN522 similar to the Fig. 4 for
M52 andD51. On Fig. 7 forD50.95 we see that suc
solutions are found in finite intervals ofN. This is again the

FIG. 6. All real solutions~triplets of quasimomenta! in the M
53 sector with at least two identical Bethe numbers are given
different numbers of sites andD51. They are obtained by the
numerical iteration of Bethe Eqs.~1.7!.
as
fs

so

-
-

is

al

-
h
-

e

same as in theM52 case~Fig. 3!. Finally this preliminary
investigation for largerM raises hope that a simple patter
for the exception to string conjecture could arise.

V. CONCLUSION

In this paper we count all complex and real solutions
Bethe equations in the two-particle sector. The complex
lutions are classified in two classes. For one of them (s class!
the sum of Bethe numbers is odd and for the other (c class!
it is even. We are able to count the number of solutions
each class for a given coupling constantD and the numberN
of lattice sites. In such a way we are able to check the
lidity of usual string conjecture. We find that there are e
ceptions to string conjecture and that they are entirely due
the s class of solutions. In particular, in the thermodynam
limit we show that number of these exceptions is finite f
DÞ1 contrary to theD51 case, where it was previously
known that it is infinite. Finally, we also show independent
of the string conjecture that the number of all solutions is (2

N)
and that is required for completeness. The usual proofs
completeness rely on string hypothesis. Some prelimin
numerical results have been presented also for the th
particle sector. These results suggest that a similar pat
observed in the two-particle sector persists also for larg
sectors.

r
FIG. 7. Same as Fig. 6, but forD50.95.
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