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We review the pion-photon transition form factor calculated in the Schwinger-
Dyson approach and an impulse approximation. We present results for it far above
the scales presently accessible for measurement, up to 36 GeV2, and demonstrate
agreement with the analytically inferred asymptotic behaviour, for which we also
provide a new derivation. We discuss how measurements at Jefferson Lab can pro-
vide information on how quarks are dynamically dressed.
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1. Introduction and survey

A modern version of the constituent quark model with many attractive features
is one of remarkable achievements of the Schwinger-Dyson (SD) approach (reviewed
in Refs. 1 and 2) to the physics of quarks and hadrons. It is well-known that most
quark–antiquark bound state approaches have grave problems when they are faced
with the electromagnetic processes dominated by Abelian axial anomaly. (See Ref.
3 for a brief review and more references.) However, these problems are resolved
in the SD approach thanks to its good chiral properties. In the chiral limit, the
axial-anomaly result for π0(p) → γ(k)γ(k′) transition amplitude

Tπ0(0, 0) =
1

4π2fπ

(1)

is reproduced analytically and exactly in this approach [4,5]. The amplitude in Eq.

(1) is the limit when both photons are real (k2 = k′2 = 0), of the general amplitude

Tπ0(k2, k′2).
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At first, π0 → γγ(⋆) processes and other applications were studied in the ap-
proach with physically motivated Ansätze (e.g., Refs. 5 and 6), instead of the
solutions of SD equations (SDE) with specified dynamics. However, the exact eval-
uation of Abelian axial anomaly in the closed form (1) occurs also in the variant
where one actually solves SDE for the quark propagators and, in a consistent ap-
proximation and with the same model interaction, Bethe-Salpeter (BS) equations
(BSE) for quark-antiquark bound states. This is the consistently coupled SD-BS
approach, of which Ref. 7 and references therein provide an elaborated example.

Since the anomaly is independent of hadronic structure, it is essential to note
that the relation (1) is successfully reproduced in the SD approach irrespective of
what concrete Ansatz for the quark propagator

S(q) = [A(q2)q/ − B(q2)]−1 , (2)

is used, or what concrete consistently coupled SD-BS solutions are employed for
the dressed quark propagator (2) and the pion qq̄ bound-state BS vertex Γπ0 .

The successful treatment of the Abelian axial anomaly is possible in the SD ap-
proach because this approach incorporates the dynamical chiral symmetry breaking
(DχSB) into the bound states consistently, so that the pion, although constructed
as a qq̄ bound state, appears as a Goldstone boson in the chiral limit. With that, the
bound-state descriptions of mesons are reconciled with chiral requirements stem-
ming both from QCD as underlying fundamental theory, and from phenomenology.
The scenario is essentially of the Nambu–Jona-Lasinio (NJL) type, but without its
low cutoff. Consequently, the quark-antiquark bound state mesons can finally pro-
vide adequate descriptions of the processes where the axial anomaly is important
(e.g., see Refs. 4, 5, 6, 8, 9, 10 and 3), such as the two-photon processes of light
pseudoscalars, of which the π0 → γγ decay is the cleanest example of an anomalous
electromagnetic decay.

Having gotten in hands the fully satisfactory result (1) for the π0 → γγ, the
next thing to explore was its one-off-shell-photon extension Tπ0(k2, 0) in the SD
approach. Frank et al. [6] studied it using Ansätze for dressed quark propagators
(2), and then Ref. 9 did it in the consistently coupled SD-BS approach, utilizing
the solutions of Ref. 7. However, both papers called for additional studies in two
respects. First, both had employed the soft and chiral limit for the pion; i.e., the
BS vertex was approximated by its leading, O(p0) piece:

Γπ0(q, p) ≈ Γπ0(q, 0) = γ5 λ3 B(q2)

fπ

. (3)

(λ3 is the third Gell-Mann matrix of flavour SU(3).) In addition, Refs. 6 and 9
could compare their results just with then only available data by CELLO [11], at

Q2 <∼ 2.5 GeV2.

Lately, however, the interest in the form factor Tπ0(−Q2, 0) for the transition
γ⋆(k)γ(k′) → π0(p) (where k2 = −Q2 /=0 is the momentum-squared of the spacelike
off-shell photon γ⋆), has again been growing for both experimental (the new CLEO
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data [12] and plans for new TJNAF measurements [13]) and theoretical reasons –
e.g., see Ref. 14.

At large values of Q2, the γ⋆γ → π0 transition form factor should be adequately
given by perturbative QCD (pQCD) - e.g., see Refs. 15, 16 and 17. Nevertheless,
it is still not quite certain which Q2 is sufficiently large. For example, according
to Refs. 18, just pQCD may still be not quite sufficient even at the highest of the

presently accessible momenta, Q2 <∼ 10 GeV2. The pQCD approaches start having
problems as Q2 decreases more and more into the nonperturbative domain. Also,
see Sec. IV of the recent Ref. 17 for clarifications how such approaches [16] fail to
reproduce the anomaly-induced value (1) at Q2 = 0.

On the other hand, the treatment of the axial anomaly is a strong point of
the SD approach, as pointed out above. What must then be explored in the cou-
pled SD-BS approach is if the large Q2 behaviour is satisfactory. In particular,
the comparison with the new CLEO data [12] – at Q2 up to 8 GeV2 – must
be made. Whether the large Q2 behaviour is satisfactorily close to the data and
to the predictions of pQCD is a tricky question for a constituent quark model.
Namely, the calculation of the transition form factor carried out in the simple con-
stituent quark model (with the constant light–quark mass parameter mu), leads
to Tπ0(−Q2, 0) ∝ (m2

u/Q2) ln2(Q2/m2
u) as Q2 → ∞, which overshoots both the

CLEO data and pQCD predictions considerably [14]. This is because of the addi-
tional ln2(Q2)-dependence on top of the large Q2 behaviour

Tπ0(−Q2, 0) = J fπ

Q2
(J → const as Q2 → ∞), (4)

favoured by pQCD and other QCD-based theoretical predictions such as Refs. 15,
16, 17, 18, 19 and 21 and references therein. Publication of the CLEO data [12]
made it clear that the large-Q2 behaviour (4) is also favoured experimentally [12].

Fortunately, the constituent quark model provided by the SD approach, in which
B(q2)/A(q2) plays the role of the dynamically generated q2-dependent mass, has
turned out not to suffer from that shortcoming. Namely, we have shown in Ref. 21
that the above asymptotic behaviour (4) is in this approach obtained in the model-
independent way.

In this paper, we provide yet another way to obtain the asymptotic Q2 → ∞
behaviour found in Ref. 21. Predictions for Tπ0(−Q2, 0) for finite values of Q2

can be obtained by picking a definite model for interactions between quarks and
obtaining corresponding solutions of the SDE and BSE. In this paper, just as we did
in Ref. 21, we use the model of Ref. 7. However, here we give the results over much
wider range of Q2 - see Fig. 1 and the discussion thereof. Comparison with the data
reveals in what way more precise measurements at intermediate momenta, feasible
at TJNAF, can both give insights in the hadronic structure and provide guidance
how to improve presently existing models in the SD-BS approach. In addition, the
coupled SD-BS variant of the SD approach (such as that in Ref. 7) can readily be
extended and applied beyond the soft and chiral limits [given by Eq. (3)] for the
bound-state vertex - e.g., see Refs. 9, 22, 10 and 3. We did this when calculating
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Tπ0(−Q2, 0) in Ref. 21, but here we locate and point out the main reason for the
difference between the full calculation of the transition form factor and the one
using the the soft and chiral limit approximation (3) for the pion BS vertex.
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Fig. 1. Our results for Q2Tπ0(−Q2, 0) are presented from Q2 = 0 up to Q2 = 36
GeV2. The data presently exist only for Q2 < 10 GeV2. CELLO data points
are circles and those of CLEO are triangles. The dash-dotted line represents our
Q2Tπ0(−Q2, 0) evaluated in the chiral and soft limit approximation (3) and only
with the BC qqγ vertices. Our results without that approximation are depicted
by the solid line for the case of the BC vertex, and by the dashed line for the
case of the mCP vertex. This latter one gets lower beyond Q2 ≈ 2.5 GeV2 and
does not yet saturate, but at higher Q2 ultimately must approach asymptotically
Q2Tπ0(−Q2, 0) → 4fπ/3 for higher Q2. This limit is also denoted by the dashed line,
but the straight one. The Brodsky-Lepage interpolation formula [15] is the dotted
curve approaching the (also dotted) straight line denoting the pQCD limiting value
2fπ. The line of empty squares denotes basically the pQCD prediction (but with
fixed Nf = 5) of Ref. 31.

2. Dressed quarks and BS-vertices need dressed qqγ

vertices

In the coupled SD-BS approach, the BSE for the pion bound-state qq̄ vertex
Γπ0(q, p) employs the dressed quark propagator (2) obtained by solving its SDE.
Solving the SDE and BSE in a consistent approximation is crucial (e.g., see Refs.
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23, 24, 7, 25 and 22) for obtaining qq̄ bound states which are, in the case of light
pseudoscalar mesons, simultaneously also the (pseudo-)Goldstone bosons of DχSB.

Following Jain and Munczek [23,24,7], we adopt the ladder-type approxi-
mation sometimes called the improved [26] or generalized [5] ladder approxima-
tion (employing bare quark–gluon–quark vertices but dressed propagators). For
the gluon propagator we use an effective, (partially) modeled one in Landau-
gauge [23,24,7], given by G(−l2)(gµν − lµlν/l2) . (This Ansatz is often called
the “Abelian approximation” [22].) The effective propagator function G is the
sum of the perturbative contribution GUV and the nonperturbative contribution
GIR: G(Q2) = GUV (Q2) + GIR(Q2) , (Q2 = −l2) . The perturbative part
GUV = (16π/3)αs(Q

2)/Q2 is well-known from perturbative QCD, so it is not mod-
eled [23,24,7,9,10,3]. As in Refs. 9, 10 and 3, we follow Refs. 23, 24 and 7 and
employ the two–loop asymptotic expression for αs(Q

2). For the modeled, IR part

of the gluon propagator, we adopt from Ref. 7 GIR(Q2) = (16π2/3) aQ2e−µQ2

,
with their parameters a = (0.387GeV)−4 and µ = (0.510GeV)−2. For details of
how we solve SDE and BSE, we refer to Refs. 9, 10 and 3. To high accuracy, we
reproduce Jain and Munczek’s [7] solutions of SDE for the dressed propagators
S(q), i.e., the functions A(q2) and B(q2), as well as the BS solutions for the four
functions comprising the pion bound-state vertex Γπ0 .

The π0γ⋆γ transition tensor (Tµν

π0 ) and scalar (Tπ0) amplitudes, related by

Tµν

π0 (k, k′) = εαβµνkαk′

βTπ0(k2, k′2) , (5)

are found in the present paper as in Refs. 9, 10 and 3. That is, the pseudoscalar-
vector-vector (PVV) triangle graph is calculated by employing the framework ad-
vocated by (for example) Refs. 4, 5, 6, 27 and 8 in the context of electromagnetic
interactions of BS bound states, and often called the generalized impulse approxi-
mation (GIA) - e.g., by Refs. 6 and 27. To evaluate the triangle graph, we therefore
use the dressed quark propagator S(q) and the pseudoscalar (P = π0, η8, η0, ηc...)
meson BS bound–state vertex ΓP (q, p). (See Fig. 1 in Ref. 21, for example.) Equiva-
lently, we can work with the BS-amplitude χP (q, p) ≡ S(q+p/2)ΓP (q, p)S(q−p/2).
This is in fact what we do, following Ref. 7.

The third ingredient crucial for GIA’s ability to reproduce the correct Abelian
anomaly result (1), is employing in the triangle graph appropriately dressed electro-
magnetic vector vertices Γµ(q′, q), which satisfy the vector Ward–Takahashi identity
(WTI) (q′− q)µΓµ(q′, q) = S−1(q′)−S−1(q) . Namely, assuming that photons cou-
ple to quarks through the bare vertex γµ would be inconsistent with our quark
propagator S(q), which, dynamically dressed through its SD-equation, contains
the momentum-dependent functions A(q2) and B(q2). The bare vertex γµ obvi-
ously violates the vector WTI, implying the non-conservation of the electromag-
netic vector current and charge. Solving the pertinent SD equation for the dressed
quark–photon–quark (qqγ) vertex Γµ is still an unsolved problem, and using the
realistic Ansätze for Γµ is presently the only practical way to satisfy the WTI.
Following Refs. 6, 27, 5 and 8 (for example), we can choose the Ball–Chiu (BC)
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[28] vertex; i.e., Γµ = Γµ
BC ,

Γµ
BC(q′, q) = A+(q′2, q2)

γµ

2
+

(q′ + q)µ

(q′2 − q2)
{A−(q′2, q2)

(q/′ + q/)

2
− B−(q′2, q2)} , (6)

where H±(q′2, q2) ≡ [H(q′2) ± H(q2)], for H = A or B. This particular solution
of the vector WTI reduces to the bare vertex in the free-field limit as must be in
perturbation theory, has the same transformation properties under Lorentz trans-
formations and charge conjugation as the bare vertex, and has no kinematic singu-
larities. It does not introduce any new parameters as it is completely determined
by the dressed quark propagator S(q).

Another WTI-preserving choice for Γµ can be a vertex of the Curtis–Pennington
(CP) type, i.e., Γµ ≡ Γµ

BC + ∆Γµ where the the transverse addition ∆Γµ is of the
type [29]

∆Γµ(q′, q) =
γµ(q′2 − q2) − (q′ + q)µ(q/′ − q/)

2d(q′, q)
A−(q′2, q2) . (7)

Two especially suitable Ansätze for the dynamical function d(q′, q), ensuring mul-
tiplicative renormalizability of fermion SDE beyond the ladder approximation in
QED4, are

d±(q′, q) =
1

q′2 + q2

{
(q′2 ± q2)2 +

[
B2(q′2)

A2(q′2)
+

B2(q2)

A2(q2)

]2
}

. (8)

The original CP Ansatz Γµ ≡ Γµ
CP employed d(q′, q) = d−(q′, q) [29]. We will

use it in analytic calculations of T (−Q2, 0), which are possible for Q2 = 0 and
Q2 → ∞. However, in the numerical calculations, which are necessary for finite
values of Q2 /=0, we prefer to restrict ourselves (besides the minimal BC vertex) to
the modified CP (mCP) vertex, Γµ

mCP , resulting from the choice d = d+ in Eq.
(7). Namely, as pointed out in Ref. 21, the numerical calculation of T (−Q2, 0)
employing Γµ

mCP vertices is free from certain numerical difficulties arising, in this
application, from the CP denominator function d−(q′, q).

In contrast to the BC one, the mCP vertex is also consistent with multiplicative
renormalizability, like the original CP vertex. In the present context, the important
qualitative difference between the BC-vertex on one side, and the CP vertex as well
as the modified, mCP vertex on the other side, will be that Γµ

BC(q′, q) → γµ when
both q′2, q2 → ±∞, whereas Γµ

CP (q′, q) → γµ and Γµ
mCP (q′, q) → γµ as soon as one

of the squared momenta tends to infinity. This turned out [21] to lead to the same
coefficient of the Q2 → ∞ behaviour (4) for the CP vertices and mCP vertices,
namely J = 4/3, but a larger one for the BC-vertices.

We have checked that the Q2 = 0 case, i.e., the π0 → γγ amplitude (1), is
reproduced analytically employing the CP vertices and mCP vertices in the same
way as when the BC vertices were employed in earlier applications, e.g. in Refs. 5,
6, 9 and 10.
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In the case of π0, GIA yields (e.g., see Eq. (24) in Ref. 10) the amplitude
Tµν

π0 (k, k′):

Tµν

π0 (k, k′) = −Nc

1

3
√

2

∫
d4q

(2π)4
Tr{Γµ(q − p

2
, k + q − p

2
)S(k + q − p

2
)

×Γν(k + q − p

2
, q +

p

2
)χ(q, p)} + (k ↔ k′, µ ↔ ν). (9)

Here, χ is the BS amplitude of both uū and dd̄ pseudoscalar bound states: χ ≡
χuū = χdd̄ thanks to the isospin symmetry assumed here. This symmetry likewise
enables us to continue suppressing flavour labels also on the quark propagators
S and qqγ vertices Γµ. We follow the conventions of Ref. 10, including those for
the flavour factors and flavour matrices λa. Then, χπ0(q, p) ≡ χ(q, p)λ3/

√
2, so

that the prefactor 1/3
√

2 in Eq. (9) is just the flavour trace tr(Q2λ3/
√

2) where

Q = λ3/2 + λ8/2
√

3 = diag(+2/3,−1/3,−1/3) is the quark charge matrix.

3. Our results and comparison with others

Already in Ref. 9 (where only the BC vertex was employed), the transition
form factor Tπ0(−Q2, 0) was numerically evaluated (for 0 < Q2 < 2.8 GeV2 only)
employing - for the pion only - the soft and chiral limit (3).

In the subsequent work [21], we went beyond this approximation, using our
complete solution for the BS vertex Γπ0(q, p), viz. the BS amplitude χπ0(q, p),
given by the decomposition into 4 scalar functions multiplying independent spinor
structures. We calculated the transition form factor not only for the BC vertex,
but also the mCP vertex. The approximation we kept in Ref. 21 (and which we
still keep in the present paper), is discarding the second and higher derivatives in
the momentum expansions of the SD solutions A(q2) and B(q2) and BS solutions
χ(q, p). In Ref. 21, Tπ0(−Q2, 0) was evaluated up to Q2 ≈ 8 GeV2, which is roughly
the limit of the presently accessible transferred momenta. In this paper, we evaluate
the transition form factor up to 36 GeV2. We present curves for Q2Tπ0(−Q2, 0)
evaluated in various ways first in Fig. 1, depicting their evolution all the way to
36 GeV2. This squeezes the presently existing experimental points into the first
quarter of the scale; however, the issue of comparing and improving the agreement
with the data at the accessible momenta will be returned to later, and now we
want first to illustrate how various theoretical transition form factors at finite Q2

connect to the asymptotic behaviour.

In Fig. 1, the solid line is our prediction for Q2Tπ0(−Q2, 0) evaluated with the
BC vertex. It reaches the asymptotic behaviour faster than other curves. Already
after Q2 ≈ 4 GeV2, the tiny changes cannot be observed in the solid line, but only
in the corresponding numerical data, as the asymptotic value is approached from
below. For comparison, the dash-dotted line gives the results obtained (also with the
BC vertex) in the approximation (3) of soft and chiral limit as explained above. At
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klabučar and kekez: schwinger-dyson approach and generalized . . .

Q2 ≈ 4 GeV2, where the Q2Tπ0(−Q2, 0) from the full calculation already practically

reaches the asymptotic limit, the difference between it and Q2T soft

π0 (−Q2, 0) from

the approximation (3), is somewhat above 10%. This difference gets bigger as Q2

grows, and asymptotically it reaches some 22% of the limit value of Q2Tπ0(−Q2, 0).
However, this still means that the effect of the soft limit approximation on the
transition form factor is much less than on the charge form factor. Namely, Maris
and Roberts [30] pointed out that omitting the pseudovector components of the
pion lead even to the wrong asymptotic behaviour, as 1/Q4 instead of 1/Q2, in the
case of the charge form factor of the pion. In the present case of the transition form
factor, the correct 1/Q2 leading behaviour is nevertheless obtained not only for the
results of the full calculation, but also in the soft limit approximation (3). It is just
that the coefficient of 1/Q2 is underestimated with respect to the full calculation.

The dashed line was obtained in the same way as the solid line, but employing
the mCP vertex. Even at Q2 = 36 GeV2, the asymptotic behaviour is obviously
not yet reached in the case of the mCP vertex. However, later we will comment
on how Ref. 21 showed analytically that the behaviour given by Eq. (4) must be
reached at some point, although at much higher values of Q2 when the mCP vertex
is used.

How do our transition form factors agree with other theoretical approaches?
The vector–meson dominance (VMD) model and the QCD sum rule approach [18]
give the transition form factor which is some 10% below our “BC” Tπ0(−Q2, 0) for
the presently largest accessible values of Q2, i.e., around 8 GeV2. Therefore, in that
region, our BC-results are between the uppermost line in Fig. 1 (the dotted constant
line at 2fπ) denoting the asymptotic pQCD [15] version (J = 2) of Eq. (4), and
the results of VMD (e.g., see Ref. 14), the recent pQCD calculation by Ref. 31 as
well as the QCD sum rule results of Radyushkin and Ruskov [18]. Q2Tπ0(−Q2, 0)
of VMD and pQCD rise with Q2, albeit with different rates, while that from the
QCD sum rules of Ref. 18 starts almost imperceptibly falling after Q2 ≈ 7 GeV2.

The large-Q2 leading power-law behaviour (4) was first derived from the par-
ton picture in the infinite momentum frame – e.g., see Ref. 15. In this and other
similar pQCD approaches, the precise value of the coefficient of the leading 1/Q2

term depends on the pion distribution amplitude ϕπ(x) which should contain the
necessary nonperturbative information about the probability that a partonic quark
carries the fraction x of the total longitudinal momentum. E.g., the well-known
example of a “broad” distribution ϕCZ

π (x) = fπ5
√

3x(1 − x)(1 − 2x)2 (proposed
by Chernyak and Zhitnitsky [19] motivated by sum-rule considerations) leads to
J = 10/3, but it is too large in the light of the latest data [12]. In contrast, the

asymptotic distribution ϕA
π (x) = fπ

√
3x(1 − x) (depicted by dotted line in Fig. 2

and favoured by Lepage and Brodsky [15]) yields J = 2, resulting in the constant
dotted line crossing the upper error bar of the presently highest-Q2 data point in
Fig. 1.

In the strict ln(Q2) → ∞ limit, every distribution amplitude must evolve into
the asymptotic one, ϕπ(x) → ϕA

π (x), if the effects of the pQCD evolution are taken
into account [15]. However, even at Q2-values larger than the presently accessible
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ones, other effects may still be more important than the effects of the pQCD evo-
lution. This is the reason why other approaches and other forms of ϕπ(x) should
be considered even when they do not incorporate the pQCD evolution. This is in
line with Radyushkin and Ruskov’s (Ref. 18 and references therein) pointing out
desirability of having direct calculations of Tπ0(−Q2, 0) without a priori assump-
tions about the pion distribution amplitude ϕπ. One can then consider the opposite
procedure from the one which is standard in pQCD: from such direct calculations
of Tπ0(−Q2, 0), one can draw conclusions about the distribution amplitude ϕπ.

The form

ϕπ(x) =
fπ

2
√

3

Γ(2ζ + 2)

[Γ(ζ + 1)]2
xζ (1 − x)ζ , ζ > 0 , (10)

is suitable for representing various distribution amplitudes because it is relatively
general [15]: ζ > 1 yields the distributions that are “peaked” or “narrowed” with
respect to the asymptotic one (ζ = 1), whereas ζ < 1 gives the “broadened”

x

φ(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. The pion distribution amplitudes (10) are depicted in the dimensionless
version φ(x) ≡ ϕπ(x)/fπ for the three values of ζ pertinent to the discussion in
this paper. ζ = 1 yields the asymptotic distribution amplitude (the dotted curve),
ζ = 1.5 pertains to the pion distribution amplitude depicted by the solid curve and
corresponds to the large-Q2 values of our Tπ0(−Q2, 0) evaluated with the BC qqγ
vertex. ζ = 2.5 corresponds to the transition form factors predicted by Refs. 31
and 18 for the largest Q2-values (Q2 ≈ 8 GeV2) at which Tπ0(−Q2, 0) has been
measured so far.
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distributions which, however, now seems to be ruled out for the same reason as
ϕCZ

π (x) quoted above, since J > 2 is ruled out empirically by CLEO [12]. Namely,
it is easy to see that Eq. (10) implies ζ = 2/(3J − 4).

In Fig. 2, we plot the distribution amplitudes of the form (10) for the three
cases that are the most interesting for the present discussion. As seen below, these
cases correspond to the ζ-values equal to 1 (dotted line), 1.5 (solid line), and 2.5
(dash-dotted line).
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Fig. 3. The comparison of our results for the pion transition form factor (times
Q2) with the CELLO (circles) and CLEO (triangles) data. Our results for
Q2Tπ0(−Q2, 0) are depicted by the solid line for the case of the BC vertex, and
by the dashed line for the case of the mCP vertex. This latter one gets lower be-
yond Q2 ≈ 2.5 GeV2 and does not yet saturate at the presently accessible momenta
although approaches asymptotically Q2Tπ0(−Q2, 0) → 4fπ/3 for much higher Q2.
(This limit is denoted by the dashed straight line.) The little crosses denote (for
both BC and mCP qqγ vertices) our Q2Tπ0(−Q2, 0) when we enforce A(q2) ≡ 1 by
hand.

At the highest presently accessible momenta, the asymptotic prediction (J =
2) is lowered by some 20% by the lowest order QCD radiative corrections [31],
amounting to J ≈ 1.6, which fits the CLEO data well. Of course, these QCD
corrections mean that Q2Tπ0(−Q2, 0) is not strictly constant, but according to
Ref. 31, it rises towards 2fπ so slowly that we can take it constant in practice. [Eqs.
(19) and (18) from Ref. 31 lead to the line of empty squares in Fig. 1, that is, to
Q2Tπ0(−Q2, 0) which grows just 4% from Q2 = 9 GeV2 to Q2 = 36 GeV2 when the
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number of relevant flavours is set to Nf = 5. The full calculation [31], which employs
the momentum-dependent Nf [32], seems to give even slower variation of Q2Tπ0

– see their Fig. 2.] Similarly slow variation results from the sum-rule approach
of Radyushkin and Ruskov [18], which yields the transition form factor which is,
on the interval from 3 to 8 GeV2, quite close to those of the pQCD approach of
Brodsky et al. [31]. The sum-rule [18] Q2Tπ0(−Q2, 0) starts actually falling after
Q2 ∼ 7 GeV2, but so slowly that Eq. (4) with the constant J ≈ 1.6 represents
it accurately at the presently accessible values of Q2. This, just like roughly the
same J associated to Ref. 31, corresponds to a rather narrow distribution (10) with
ζ ≈ 2.5, depicted by the dash-dotted line in Fig. 3.

The leading large-Q2 behaviour as in Eq. (4), was obtained also by Manohar [20]
using the operator product expansion (OPE). According to his OPE calculation, the
coefficient in Eq. (4) giving the leading term is J = 4/3, which is below our large-
Q2 Tπ0(−Q2, 0) by ≈ 20% when we use the BC vertex, but exactly coincides with
the Q2 → ∞ limit obtained when we use the CP or the mCP vertex – see Ref. 21
and comments below. The coefficient J = 4/3 is the lowest one still consistent with
the form (10) because it corresponds to ζ = ∞. The pion distribution amplitude

(10) then becomes infinitely peaked delta function: ϕπ(x) = (fπ/2
√

3) δ(x − 1/2).

For Q2 > 4 GeV2, our “BC” Tπ0(−Q2, 0) also behaves in excellent approx-
imation as (4), with J ≈ 1.78. This would in the pQCD factorization approach
correspond to ϕπ(x) (10) with ζ ≈ 1.5. On the other hand, our “mCP” Tπ0(−Q2, 0)
falls off faster than 1/Q2 for even the largest of the Q2 values depicted in Fig. 2.
However, it does not fall off much faster, as our “mCP” Q2Tπ0(−Q2, 0) at Q2 = 18
GeV2 is only 6%, and at the huge Q2 = 36 GeV2 is only 10% smaller than at
Q2 = 9 GeV2 (roughly the highest presently accessible Q2). Moreover, Ref. 21
showed analytically that, generally, the 1/Q2-behaviour of Eq. (4) is at some point
reached in our approach, although Fig. 1 shows that for the mCP qqγ vertices this
can happen only at significantly higher Q2 than it happens for the BC qqγ vertices.

4. Discussion, comments and conclusions

The most important novelty in Ref. 21 is its result on the large-Q2 asymptotic
behaviour. Namely, it implies that the modern version of the constituent quark
model which is given by the coupled SD-BS approach, provides from Q2 = 0 to
Q2 → ∞ the description for γγ⋆ → π0 which is – independently of model de-
tails – consistent not only with the Abelian axial anomaly but also with the QCD
predictions (4) for the leading large-Q2 behaviour. In the SD-BS approach, fπ is
a quantity calculable through the straightforward application of the Mandelstam-
formalism expression

pµfπ = i
Nc√

2

∫
d4q

(2π)4
Tr[χ(q, p)γµγ5] . (11)

The model dependence is present in the (successfully reproduced [7,9,10,3]) value
of fπ, but the derivation [21] of the asymptotic forms (4) and (15) below, is model-

FIZIKA B 8 (1999) 2, 303–320 313
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independent. They do not depend on what are the bound-state solutions, just like
the chiral-limit axial-anomaly amplitude (1) doesn’t.

Of special importance is also that the derivation in Ref. 21 of the asymptotic
large-Q2 forms (4) and (15) below, applies to both Minkowski and Euclidean space.

Our result [21] on the asymptotic behaviour of Tπ0(−Q2, 0) subsequently re-
ceived further support from Roberts [33], who generalized its derivation by taking
into account renormalization explicitly. His derivation shows that the asymptotics
of Ref. 21 obtained using the CP or mCP vertex, namely J = 4/3, must be pre-
cisely reproduced for any qqγ vertex which is (like the CP or mCP ones) consistent
with multiplicative renormalizability.

It is interesting that the asymptotic behaviour for large negative k2 = −Q2

predicted [21] for the bare qqγ vertex and, e.g., the dressed CP and mCP ones, is
in exact agreement with the leading term predicted by Manohar using OPE [20].
In this paper, we shed some light on this connection by providing the following
alternative derivation of the asymptotic behaviour: consider TJµ

a (x)Jν
b (x), the T -

product of two quark vector currents Jµ
a (x) = ψ̄(x)γµ(λa/2)ψ(x), along the lines of

Ref. 34 (Ch. 18 on OPE), but evaluated between the pion state and the vacuum. We
substitute for the quark propagator its leading light cone [(x− y)2 → 0] behaviour

S(x − y) ≈ 2(x − y) · γ
(2π)2[(x − y)2 − iǫ]2

, (12)

and utilize γµγλγν = Sµλνσγσ − iεµλνσγσγ5 similarly as in the derivation of the
large Q2-behaviour in Ref. 21. The term which contains the symmetric tensor
Sµλνσ = gµλgνσ + gµσgλν + gµνgλσ, is readily seen not to contribute to the π0γγ⋆

vertex. On the other hand, in the term containing the antisymmetric Levi-Civita
tensor εµλνσ and γ5, one finds – in the lowest order of the (x − y)-expansion – the
pion-to-vacuum matrix element of the axial current,

〈0|ψ̄(0)γµγ5Q2ψ(0)|π3(p)〉 =
1

3
〈0|ψ̄(0)γµγ5

λ3

2
ψ(0)|π3(p)〉 =

1

3
i fπ pµ , (13)

defining the pion decay constant fπ. The coordinate-space integration is reduced
to ∫

d4x eik·x xλ

(x2 − iǫ)2
= 2π2 kλ

k2 + iǫ
. (14)

Putting all this together reveals that the lowest-order result in the (x−y)-expansion
is just Eq. (4) with J being precisely 4/3.

We thus in another way recover the result of OPE [20], of Ref. 21 for the cases
employing any vertex (e.g., CP or mCP) which tends to the bare one (γµ) as
soon as one of its legs is hard, and of subsequent generalization [33] thereof for
any qqγ vertices consistent with the multiplicative renormalization. However, this
asymptotic behaviour Q2Tπ0(−Q2, 0) = (4/3)fπ lies some 20% below the central
values of the largest-Q2 CLEO data, and is more than one standard deviation away
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from them. Nevertheless, Manohar [20] pointed out that his OPE approach also
indicates the existence of potentially large corrections to his leading term.

Let us now return to the BC vertex, which has been the most commonly used
dressed qqγ vertex in the phenomenological SD-BS calculations so far. In conjunc-
tion with our SD-BS solutions, the usage of the BC vertex raises the asymptotic
coefficient J of Eq. (4) from 4/3 resulting from the usage of the bare, CP and mCP
vertices, to J ≈ 1.78. The reason for this enhancement is that the BC vertex does
not reduce to the bare vertex γµ if the large momenta flow through just one, and
not both, of its fermion legs. (Also note that the BC vertex is not consistent with
multiplicative renormalizability [35,29], so that the arguments of Ref. 33 are not
applicable to it.) It was shown in Ref. 21 that when the BC vertex is used in our
approach, the predicted asymptotic behaviour is

Tπ0(−Q2, 0) → 4

3

f̃π

Q2
(15)

where f̃π is given by the same expression (11) as fπ, except that the integrand is
modified by the factor [1 + A(q2)]2/4. In the special case of the solutions we use,
the slow and moderate variation of A(q2), as well as its shape (see Fig. 3 in Ref. 3)
permits the approximate factorization

f̃π ≈ fπ

[1 + A(0)]2

4
. (16)

This last approximation (a rather rough one) would imply J ≈ 1.69, i.e.,
Q2Tπ0(−Q2, 0) → 0.157 GeV. The more accurate Eq. (15) gives Q2Tπ0(−Q2, 0) →
0.168 GeV. This is practically indistinguishable from the asymptotics indicated
by our full numerical calculation of the transition form factor, which reached
Q2Tπ0(−Q2, 0) ≈ 0.165 GeV at the largest numerically studied Q2. It is of spe-
cial importance that analytically obtained large-Q2 asymptotics (15), the deriva-
tion of which is valid in both Minkowski and Euclidean space, makes this smooth
and accurate contact between our large-Q2 numerical results calculated with the
Euclidean solutions of the chosen model [7]. The excellent agreement between the
analytical and numerical results confirms the accuracy of our numerical methods
and procedures (employing the Euclidean bound-state solutions [7]) used in this
and earlier papers [9,10,3].

Another case of this agreement between the numerical results and the analyti-
cal considerations is provided by Q2Tπ0(−Q2, 0) found in the soft and chiral limit
approximation (3). Therefore, let us for a moment consider again this approxi-
mation, although we surpassed it already in Ref. 21. (As a bonus, we also gain
understanding of some subtle aspects in its previous applications.) In Fig. 1, the
results of the numerical calculation in that approximation, and with the BC vertex
(6), are depicted by the dash-dotted line, which practically reaches (from above)
the asymptotic behaviour, although not as fast as the results without that approx-
imation, depicted by the solid line. We now note that in the approximation (3),
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the asymptotic behaviour (15) should be realized with fπ and f̃π calculated in the

same approximation. We will denote them by fgPS
π and f̃gPS

π , where gPS is short
for “generalized Pagels-Stokar”. Namely, it turns out [23] that the soft limit ap-
proximation (3), when applied to fπ, is the same as the widely used Pagels-Stokar
approximation [36] except that they work with the restriction A(q2) ≡ 1 – unlike

the present approach. Since we find f̃gPS
π = 109.2 MeV, it appears that our dash-

dotted curve should approach Q2T soft

π0 (−Q2, 0) → (4/3)f̃gPS
π = 0.146 GeV. In fact,

at Q2 = 36 GeV2, Q2T soft

π0 (−Q2, 0) ≈ 0.136 GeV. To understand what forced the
dash-dotted curve below, let us remember that the factor 1/fπ appears in Eq. (3)
because in the chiral limit it turns out that the pion decay constant fπ is precisely
equal to the the normalization of the BS vertex Γπ(p, q) [37]. In Ref. 9, the transi-
tion form factor was thus found using in Eq. (3) our chiral-limit value of the pion
decay constant, fπ = f0

π = 89.8 MeV, and to make contact with that reference
we have evaluated in this paper the dash-dotted curve in the same way. However,
from what has just been explained, it follows that when we use not only the chiral,
but also the soft limit (3), the normalization of the BS vertex is given by the pion
decay constant calculated in the same approximation, fπ = fgPS

π , which in our
adopted model has the value of 80.8 MeV. The transition form factor of Ref. 9 was
thus suppressed by the factor fgPS

π /f0
π ; for the same reason, the dash-dotted line

in the present Fig. 1 approaches from above (4/3)f̃gPS
π (fgPS

π /f0
π) ≈ 0.131 GeV as

the limiting value, so everything tallies.

In the case of the BC vertex, the “soft” leg adjacent to the pion BS-amplitude
always contributes A(q2), which enhances the asymptotic value of Q2Tπ0(−Q2, 0).
This is not so for vertices such as the CP or mCP ones. Since they tend to the bare
vertex as soon as the high momentum flows through one of their legs, fπ does not

get replaced by f̃π, and the “bare” result, Eq. (4) with J = 4/3, continues to hold
for Q2 → ∞ when such vertices are used.

Of course, the usage of the mCP vertex instead of the bare γµ makes a con-
siderable difference for the finite Q2. Let us therefore now focus our attention to
Fig. 3, which shows Q2Tπ0(−Q2, 0) found in our approach for both the BC-case
(solid curve) and the mCP-case (dashed curve) for the interval of the transferred
momenta between the presently highest accessible Q2 and Q2 = 0.

At Q2 = 0, both BC and mCP vertices give the same amplitude (1) for π0 → γγ
in the chiral limit. With growing Q2, the BC and mCP curves in Fig. 3 must never-

theless ultimately separate because of the difference (4/3)(f̃π−fπ) of their large-Q2

limiting values. At the highest presently accessible momenta, Q2 ≈ 8 GeV2, they

differ by 9%, but as we go down in Q2, we see that already for Q2 <∼ 4 GeV2,
they practically coincide. This insensitivity on the choice of the WTI-preserving
qqγ-vertex is very indicative. Namely, the true solution for the Γµ(p, p′) vertex, the

one which we try to imitate by the BC and mCP vertex Ansätze, is – for Q2 <∼ 4
GeV2 – unlikely to give Q2Tπ0(−Q2, 0) significantly different from the BC and mCP
vertices, since at Q2 = 0 the transition amplitude must (in the chiral limit) again
be (1), and at larger Q2 the difference should not be larger than that resulting
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from the BC and mCP vertices, as they lead to so very different Q2Tπ0(−Q2, 0) as
Q2 → ∞. (One should also keep in mind that the multiplication by Q2 serves only
for exposing the asymptotics more clearly, and that the difference is even smaller
for Tπ0(−Q2, 0) proper, which must in every case decrease as 1/Q2.) The weak sen-
sitivity (at least for not too large Q2) on the WTI-preserving Ansatz for Γµ(p, p′)
means that high-precision measurements of Tπ0(−Q2, 0) will test unambiguously
(and possibly give a hint on how to improve) the SD and BS model solutions which
have so far been successful in fitting the low-energy hadron properties such as the
meson spectrum. For example, our model choice [7] obviously (for both BC and

mCP vertices) slightly overestimates Tπ0(−Q2, 0) in the region Q2 <∼ 4 GeV2.

We point out that out of various SDE and BSE solutions in the SD-BS approach,
once that fπ has been correctly reproduced by χ [see Eq. (11)], the transition form
factor is most sensitive on A(q2), or, more precisely, on its values at small and
intermediate momenta −q2, where A(q2) is still appreciably different from 1. Eqs.

(15)-(16) already explained how A(q2) drives Q2Tπ0(−Q2, 0) upwards through f̃π

for large Q2 in the case of the BC vertex.

To illustrate what happens at Q2 <∼ 8 GeV2 when the A(q2)-profile is decreased,
let us enforce by hand the extreme, artificial case A(q2) ≡ 1. (To avoid confusion,
we stress it is for illustrative purposes only, as we cannot have such a SD-solution
in the adopted approach of Refs. 23, 24 and 7.) This leads to the curve traced on
Fig. 3 by small crosses, pertaining to the usage of both BC and mCP vertices (as
well as the CP ones), since A(q2) ≡ 1 makes Γµ

mCP → Γµ
BC . This curve illustrates

how the heights of the curves depicting Q2Tπ0(−Q2, 0) depend on how much the
A(q2)-profile exceeds 1. Obviously, for both the solid curve and the dashed one, the
agreement with experiment would be improved by lowering them somewhat (at least

in the momentum region Q2 <∼ 4 GeV), which could be achieved by modifying the
model [7] and/or its parameters so that such a new solution for A(q2) is somewhat
lowered towards its asymptotic value A(q2 → ∞) → 1. (Of course, in order to be
significant, this must not be a specialized re-fitting aimed only at A(q2). Lowering
of A(q2) must be a result of a broad fit to many meson properties, comparable to
the original fit [7]. This, however, is beyond the scope of this paper.)

By the same token, high precision measurements of Tπ0(−Q2, 0) (such as those
planned at Jefferson Lab [13]) can be especially helpful in obtaining information on
A(q2) empirically. First note that Fig. 3 reveals that in the region around Q2 ≈ 4
GeV2 we are already in the regime where the dependence on the BS-amplitude
χ is lumped into fπ. Therefore, high-precision measurements of Tπ0(−Q2, 0) in
the region close to the asymptotic regime will give information on the integrated
strength of A(q2) although not on A(q2) itself. However, since it is known that
the form of that function must be a rather smooth transition (e.g., see Ref. 3)
from A(q2) > 1 for Q2 near 0, to A(q2) → 1 in the Q2-domain where QCD is
perturbative, such measurements [13] would give a useful hint even about A(q2)
itself – namely about what solutions for A(q2) one may have in sensible descriptions
of dynamically dressed quarks and their bound states.
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9) D. Kekez and D. Klabučar, Phys. Lett. B 387 (1996) 14;
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SCHWINGER-DYSONOV PRISTUP I POOPĆENA IMPULSNA
APROKSIMACIJA ZA π0γ⋆γ PRIJELAZ

Razmatramo faktor oblika prijelaza pion-foton u Schwinger-Dysonovom pristupu i
impulsnoj aproksimaciji. Izlažemo rezultate za mnogo veće energije od sada dos-
tupnih, do 36 GeV2, i pokazujemo slaganje s asimptotički izvedenim ponašanjem,
za koje takod–er dajemo nov izvod. Raspravljamo kako mjerenja u Jefferson Labu
mogu dati podatke o dinamičkom oblaganju kvarkova.
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