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XXZ spin chain in a transverse field as a regularization of the sine-Gordon model

Silvio Pallua and Predrag Prester
Department of Theoretical Physics, University of Zagreb, Bijemic.32, P.O.B. 162, 10001 Zagreb, Croatia
(Received 19 October 1998; published 12 May 1999

We consider here th&XZ spin chain perturbed by the operatseft (“in a transverse field’) which is a lattice
regularization of the sine-Gordon model. This can be shown using conformal perturbation theory. We calculate
the mass ratios of particles which lie in a discrete part of the spectrum and obtain results in accord with the
DHN formula and in disagreement with recent calculations in the literature based on the numerical Bethe
ansatz and infinite momentum frame methods. We also analyze the short distance behavior of thekB/states
or conformal limi). Our result for conformal dimension of the second breather state is different from that
conjectured by Klassen and MelZént. J. Mod. Phys. A8, 4131(1993] and is consistent with this paper for
other statesS0556-282(99)04110-7

PACS numbgs): 11.10.Kk, 11.15.Tk, 11.25.Hf, 75.10.Jm

[. INTRODUCTION each other and there are no bound states, like i E#).]. In
[10], using the infinite momentum frame technique and

The sine-GordoiSG) and massive ThirringMT) models  working only in qq sector of the Fock spacéeglecting

in two dimensions belong to a group of the most studied, ;5 and higher fermion componentsuthors obtained the
guantum field theoriesQFT’s) and are certainly the best d?nigg of the(gnly) breather: poneny

understood nontrivial massive field theories. A large number

of different techniques have been successfully tested on these M = 2m cosa, (1.2
models and they led us to a number of interesting results,
including the famous duality relation between thgtw-3]. where the parameter<Oa< /2 is obtained by solving the

Regarding a mass spectrum, we can classify all methodgllowing equation:
into basically three groupsia) the semiclassical Dashen-

Hasslacher-Neve(DHN) method[4], (b) factorized scatter- tana g g
ing theory[5], and (c) methods based on the Bethe ansatz, =—|1+ (1— 4—)
which can be further subdivided into continuJ®,7] and T a7 cosa 7
discrete one$8,9] (some lattice regularizations were uged 2

The results of all these methods were the same; besides the ) ) , )
soliton and antisoliton(fermion and antifermion in MTM andgis the MTM coupling constant in Johnson’s normaliza-

are given by Yy
. nmwp? 8 go= 29
my=2msin————, n=12,...<—-1, 0 g’
2(87— B2) B 2=
(1.1 m

wheremiis the soliton mass an# is the coupling constant in Afterwards, in[11] the authors _reexamined an analysis of
the SG mode(SGM) [see Eq/(2.1)]. Because of Coleman’s [6], but contrary td6] they numerically solved Bethe ansatz
theorem of the equivalence between the SGM and the MTMEduations for a finite space extension and a finite number of
in the soliton numbetcharge zero sectotproved using per- quasiparticles, qnd aftt_er that made an extrapolation to infin-
turbative expansion in masshe same spectrum should be Ity- Their analysis confirmed results [O]; they found only
valid for the MTM. Using standard conventiofes in[1]), a one breather, with the mass in good agreement with Eq.
connection(“duality relation”) betweenB and the MTM (1.2).

: : : i In this paper we propose ourselves to calculate certain
coupling constan in the Schwinger normalizatignis : ) ! . !
givepn b?/ 9o ( g 9 properties of the SGM like mass ratios and scaling dimen-

sions of operators creating particle states. Using the confor-
mal perturbation theor}13,14] it can be shown that th&XzZ
1+ Yo_ 4_77 spin chain with an even number of sites and periodic bound-
™ B2 ary conditions in a transverse magnetic fiele® (perturba-
tion) is spin chain regularization of the SGldee Appendix
However, recently it has been claimgto—17 that the B in [14]). We numerically diagonalize the spin chain
mass spectrum of the MTM is different than Ed.1) and  Hamiltonian up to 16 sites and extrapolate results to the in-
that there is only one breather in the whole interggk-0  finite length continuum limit using the BST extrapolation

[for negative values ofy, fermion and antifermion repel algorithm[15,16. The same method was previously applied

0556-2821/99/5d.2)/1250068)/$15.00 59 125006-1 ©1999 The American Physical Society
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to conformal unitary models perturbed by some relevant _ 1/m 21(m 2

(usually thermal operator[17—19. In this way we can ob- (Amn ,Am,n)=(§(§+nr) 'E(E_nr ) (2.4

tain estimates of mass ratios without further assumptions,

particularly those criticized if10—-12. so that its scaling dimension arftlorentz spin are
Results of our analysis are as follows. For a whole range

of the coupling constants we can cover<{B<+2) our _ m) 2 m?B% n’m

results agree with the DHN formuld.1) and disagree with dm,n:Am,nJFAm,n:(E +(nr)?= 7 —

Eq.(1.2), i.e., results 0f10,11]. Of course, we could not say B

anything about breathers higher than third because they lie in —

a continuum part of the spectrurmg>2m, for n=3). We Smn=Amn~Amn=mn.

should also say that precision in this method is far from thaﬁt is understood tha¥.. - are normalized so that

achieved by, e.g., Bethe ansatz methods, so we cannot claim mn

that the DHN formula is exact. — _ —28mn7—2Amn
Finally, as a byproduct, we studied the UV limit of par- (Vimn(2,2)Vinn(0.0)= .- G, -2 z '

ticle states. It agrees with that conjectured [i¥] for  Because o¥/] .=V_._,, we can define Hermitian combi-

(antjsoliton and first breather. However, for the secondnations ' '

breather we obtain the same scaling dimension as for the

first, contrary to[14].

II. THE SGM AS A MASSIVE PERTURBATION
OF THE GAUSSIAN MODEL i

The SGM is a (#1)-dimensional field theory of a pseu-

doscalar fieldp, defined classically by the Lagrangian: which will be useful later.

1 In [14] it is argued that an UV limit of the SGM is gen-
Lsc=75 0,97 ¢+1c0d Bg). (2.1  erated by

. . . . . Lb:{vm,n|m-nez}- (2.9
Here\ is a mass scal@vith mass dimension depending on a
regularization scheme 8 is a dimensionless coupling We suppose that Hilbert space of the f(gerturbed theory
(which does not renormaliyeand one identifies field con- is isomorphic to that of the unperturbed theory. From Eqgs.
figurations that differ by a period2/ 8 of the potentiakbe- (2.2 and(2.3) follows that a(properly normalizefperturb-
cause we want to have “ordinary” QFT with a unique ing operator in the SGM2.1) is
vacuumn). +)

In [14] it was shown that SGM can be viewed as a per- cogBe)=Vig (2.9
turbed conformal field theor§CFT) when the second term in
Eq.(2.D is tr ivi rturbation. We will now -
recé)éat %esret re;teeviﬁts rg:&?: o?&iitruaai[l;ses. © © .—,82/.477. From the condition of reIF)vancy 21‘ the perturba-

An unperturbed theory =0 (approached in UV limitis tion, i.e.,y>0, we obtain Coleman’s boun@-<8xr. ~Also,
the free massless compactified pseudoscalar @Rdwn as ~ from Egs. (2.5 and (2.6) we can see that SGM has(1)
Gaussian modgl It is conventional to usé=\/m¢, so that X Z,XZ, internal symmetry group. The(1) acts as a shift

the radius of compactification defined by equivalenc® ond, ie., Vy,,—e*V, ., while Z, andZ, are generated

which means that has mass dimensiog=2-d; =2

~®+27r is connected t@ with by RZ(@,@)%(—QD,&)) (i-e-avm,nﬁvfm,n) and~R:(<I>,EI3)
= —(®,—®) (i.e., Vi n— Vi _n), respectively.
r=—. (2.2 To conclude this section, consider the SGM defined on a
B cylinder with infinite time dimension and space extension

equal toL. There are three independent constants with which

Solution of the equation of motion in Euclidean space, o can express all quantities in the theggy,\ andL with

99®(2,2)=0, is mass dimensiondz=0, d,=2—d; ;=2— 8% (4m) andd,

1 =—1. Itis useful to define the dimensionless scaling param-
(2,2)=5($+ ). eter .,
| _ . pEALS=ALZ A, @7
The Gaussian model is a CFT with central chacgel and
an operator algebra generated by the primary fislgls, and use3, u and\ as a set of independent parameters. Now,
_ . from ordinary dimensional analysis follows that any quantity
Vi o= e/ (Mne@a+iznrd@s), (2.3 Xin the theory, with mass dimensiay, can be written as
where®=(¢— $)/2. Conformal dimensions of ,, , are X=\I/hg, (B, 1) =\X/C=Fmg (B 1) (2.9

125006-2
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wheregy is the scaling function connected X0 We see that TABLE I. Scaling dimensions of particle states in SGM as con-
all dimensionless quantities depend only @rand w.. Espe-  jectured in[14].
cially, we have, for masses of particles,

State Operator Scaling dimension
_p2 ﬂ,fl
mi(B, e, \) =NCTFD TG (B, ). (2.9

] ) o ] ) soliton Vo1 T

Now, there are two interesting limits. The first one is the ' Jia
infinite length limit,L— <, which is equal tqu—« [see Eq. "
(2.7]. We are interested here in mass ratios: antisoliton Vo 1 =
B

. mi+l(31/~l’1)\) . Gi+l(ﬁwu“) >
WA= M B ™G (B pth breather VI o

ar

The second interesting limit is the UV limit given ky
—0 (u—0). Basic assumption of conformal perturbation _ _ _ _
theory is that the perturbed QFT should approach CFwhereo, are Pauli matricesN is an even integer;-1<A

smoothly in the UV limit. It means that if we write ER.8) <1 (we use the usual parametrizatidr= — cosy,0<y<m),
in the form is a spin chain regularization of the SGM. The argument has

two steps; first, one must show that unperturbed theories are
X=Xcpr(B,L) +NX/Nhy(B, 1), (2.10  equivalent, i.e., that Eq3.1) with h=0 is a spin chain regu-
. _ . larization of L, CFT (2.5, and, second, that in the unper-
where Xcer is the value forX in thg /cdonformal point X turbed theory i=0) perturbation operatoo” is a lattice
=0), then a Taylor expansion fqu™x"“ hy(B,u) around  reqularization ot\/ﬁ}(x).

=0 will have finite radius of convergence atig(3,0) For a first step one must take=0 in Eq. (3.1), i.e., to
=0. Specifically, for the mass gaps we have the well-known.gnsider periodicXXZ spin chain
formula

N

2T _ X X y y z 7
(M) cer="-d1, Hxxz nzl(Uno'n+l+0'n0'n+l+AUna'n+l)y

whered; is the scaling dimension of the operator which cre- ONL1=01, (3.2

ates that state from the vacuum. Now from E@s9), (2.10

and(2.7) follows Hyxz commutes withS?=1/25N_, o%. We denote eigenval-
om ues of §* by Q. Q is integer(half-odd integer when N is

mi(B, e, \) = Tdi+)\1/d”Hi(ﬂ,M) even (odd and —N/2<Q=N/2. Hyxz is also translation-

invariant where translations by one site are generated by

=NV 27d YO+ Hi (B, )]

N-1
1. .
T= 5(on: +1 3.3
=)\(z_ﬁ2/4”)71[277diM_(2_52/4”)71+Hi(,B,,u)]. nl;[1 2(0'n One1t1) 3.3

(2.1 and we define the(latticel momentum operator byT

) ) ) =exp(—iP). From Eq.(3.3) follows thatTN=1, so eigenval-
Now, what are scaling dimensions of zero-momentum oneyesp, of the lattice momentun® are given by

particle states in SGM, i.e., of soliton, antisoliton and breath-

ers? In Table | we show values conjecturedid]. In Sec. V 20
we will show that we obtain a different result for the second Pr=—k, k=0,1,...N-1. (3.9
breather. N

Obviously, P, are defined mod 2.
Now, in[20,2]] it has been shown that energy-momentum
It was proposedAppendix B in[14]) that theXXZ spin  spectrum of the periodiXXZ chain in charge sectd® has
chain with periodic boundary conditions in a transverse magthe following asymptotic form for largé\:
netic field defined by the Hamiltonian

Ill. SPIN CHAIN REGULARIZATION OF THE SGM

N E%&:N%+¥(ABYV+K&V—1£Z), (359
H=-— (ohon, toto), +Adiol, +hao)),
n=1
2 ——
| n n
- > = — —_ + .
ON+1=01, (3.2 Pow N(A T AQ) T TR, (3.50)

125006-3
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FIG. 1. Scaling functionss,(8,x) for the isolated gaps of
Hamiltonian(3.1) atA=—0.9 (or 82=5.38). A legend in upper left
figure applies to all figures in this article.
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FIG. 2. The same as Fig. 1 but now fa&k=-0.6 (or
B?=4.43).
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FIG. 3. The same as Fig. 1 but now fak=-0.1 (or
B?=3.34).

whereve Z, n,ne N, central charge=1, ko,,€{0,1}, and
conformal dimensiondg , andAg , are given by

2 RN
+n

2 1
+ —
n,2

Q
——Iv

SH
v 2r

2r

(3.6

—— 1
<A5,V,Ag,y>=(§

where the compactification radius is=[2(1—y/m)]" Y2

From Egs.(3.59, (3.5b, and (3.6) we can infer that the
continuum limit of Hyy, defined by

1
H3E=— lim —(Hyxz—Ne,), (3.7a
{new @
a—0
1
Po= lim —(P— k) (3.7b

N—o

a—0

(a is lattice constant and.=Na is kept fixed definesc
=1 CFT, and in fact containk,, of the Gaussian model as
we shall see. In Eq(3.7b « is an operator which project
states having “nonuniversal macroscopic momentum” equal
to 7 (seg[22]). We shall comment more on this at the end of
this section/ is a normalization factor anel, is (c-numbey
nonuniversal bulk energy density. Nonuniversal quantities
are subtracted in the QFT limit.

Let us see how one can obtain, and L; from
First, from Eq.(3.6) it is obvious that

cont
H XXZ*

(AOQ,V7K%,V)=(AQ,V7KQ,V)!

125006-4
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TABLE II. Estimates for the scaled gag,(8,>) as a function TABLE IV. The same as Table Il but now fak=—0.1 (8
of h at A=—0.9 (8%°=5.38). The numbers in brackets give the =3.34).
estimated uncertainty in the last given digit.

h éBl éS éA éBZ
h - ~ - -
Ces Gs Ga Ce2 0.8  3.79583®)  7.2114@8) 7.70362)  7.2615)
0.8 4.859215) 5.22741) 7.3582) 8.7066) 0.5  3.755483) 7.4831) 7.7152) 7.21(1)
0.5 4.94217) 5.3641) 7.251) 8.933) 03 3.737RW3) 7.631) 7.731) 7.161)
0.3 5.0126) 5.491) 7.1Q05) 9.2(1) 0.2  3.7281) 7.653) 7.71(4) 7.11(2)
0.2 5.042) 5.553) 6.91) 8.72)
N
— . . C= H o)
whereA, , andA, , are conformal dimension@.4) of the qoq 0

vertex operatoV, , in the Gaussian model. Comparing Eq.
(3.6) with Eq. (2.5), it is obvious thatQ must be an integer, and in fact is believed to be nonintegrable. That spin chain

so N must be even, and representation of a QFT has less symmetries is not some-
thing new[17].
y\ 172 con Now, what are the relations between dimensionful param-
Lplr=|2 1—;” SHZA y). (3.8 eters (,\,u) in the (continuum SGM and parameters

(N,h) in (lattice) (3.1)? From Egs(3.73 and(3.8) follows
So, in EQ.(3.9) is given the first half of equivalence be-

1 H
tween Eq.(3.1) and the SGM, that unperturbed CFT's are Hsgm(L)== lim —.
equivalent. Now one must show the second part, that opera- 4 e

tor o is the lattice counterpart o¥{J(x) (x=na) in the _
Gaussian model. If23] it was shown(in the leading orderin ~ So, if we denote byn, mass gaps in the spin chain, we have
the lattice constard) that

D=2 lim 3.1
m;( )_ZNITOZ' (3.12
a=L/N
wherex=na. The constant of proportionality in E¢8.9) is  Also, from Eq.(3.10 we have
in fact known[24,25 but we will not need it here. So, from ,
Eq. (3.9 we see that ho lim Aa® = lim a2~ #747, (3.13

a—0 a—0

oroahiov. (x)=af V. (X), (3.9

Xoe\/(T) -
onVig(X), x=na (3.19 where the factor of proportionality is finite. Of course, we

aveL=Na and\ fixed. We can see from Eq3.13 that
—0 becausel,>0. We can now express scaling parameter
A using lattice constants:

in the leading order. That finally completes the argumen

[14] that Hamiltonian(3.1) is a spin chain regularization of

the SGM where connection between coupling constants is
w=NL%o  fim hN%, (3.14

N—ce

NCI—
ﬁ: T: 2(77—‘)/). (3.1]) L|)\ finite
Constant of proportionality is not important for us because

Let us make a comment on internal symmetries of continuun{'®_are interested here only ih—c (u—c) and L
and lattice models. As we emphasized in the last section”© («—0) limits. If we define now
SGM possesseg, X Z,x U(1) symmetry and is integrable.
But spin chain(3.1) is only symmetric onZ, generated by
“charge conjugation operatorC:

ZLEhNd)\:hNZ*ﬁ2/4ﬂ':hN3/2+’y/2ﬂ' (3.15

TABLE V. Estimates for the mass gap ratiogA,h) as a func-
tion ofhatA=—1 (8?=27). We also added predictions obtained

P 2
TABLE Ill. The same as Table Il but now foh=-0.6 (B from Eq.(1.1) (DHN) and Eq.(1.2) (Fuijita et al).

=4.43).
= ~ = = h

h GBl GS GA GBZ

T, 0.8 0.5 0.3 0.2 DHN  Fujita
0.8  4.483541)  5.97271)  7.47711)  8.3054)
05  451008)  6.1991) 7.3866)  8.411) S 1 1 1 1 1 0877
03 45371 6.391) 7.293) 8.495) A 1.47037) 1.4194) 1.361)  1.322) 1  0.877
0.2  4.5485) 6.473) 7.167) 8.5613) B2 1.7622) 1.7667) 1.742)  1.625) 1.732

125006-5
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TABLE VI. The same as Table V but now fak=—0.9 (82
=5.38).

PHYSICAL REVIEW [»9 125006

TABLE VIII. The same as Table V but now fak=—0.4 (82
=3.96).

h h
Ta 0.8 0.5 0.3 0.2 DHN  Fujita T, 0.8 0.5 0.3 0.2 DHN Fujita
S 1.075773) 1.08622) 1.0953) 1.10%7) 1.205 1.018 S 1.5336%3) 1.597G@2) 1.6393) 1.6548) 1.724 1.367
A 151425 1.4673) 1.421) 1.3743) 1.205 1.018 A 1.79271) 1.7791) 1.76326) 1.741) 1.724 1.367
B2 1.7921) 1.8017) 1.843) 1.735 1.820 B2 1.88Q1) 1.8863) 1.8855 1.902) 1.914

from Eqgs.(2.9), (3.12, (3.14 and(3.15 we can see that

(3.19

where y is connected tg3 by Eq. (3.11). Strictly speaking,
scaling law(3.15 should be exactly valid only in the con-
tinuum limit N—o, a—0 andh—0 whereL=Na and X\

<haf*"=2 gre kept fixed. For finiteN, Eq. (3.15 is only

~ 824~ 1 ~
m;=hC@= A7 "G (y, 1),

L—o, i.e., u—» [see Eq.(3.14)] limit. In practice, it is
preferable to do the followinfl7—19: first takeN— oo with
h fixed and afterwords extrapolate to—0. A difference is
that in the latter case one dogs— beforeh—0. These
limits are performed using the BST extrapolation method
[15,16].

We numerically diagonalized HamiltonigB.1) for up to

approximate and we expect that scaling is worse for smallet® Sites using the Lanczos algorithm. But before doing nu-

N.

merics, one should maximally exploit symmetries. The

To keep our promise, we shall now comment on subtracHamiltonian (3.1) commutes with translation operatdr

tion of “nonuniversal momentum’r mentioned in the part
of the text following Eq.(3.7b, which does not sound very
natural (maybe “too statistical’). A more natural explana-
tion is based on the fact that SGM is equivalent to g1
when the number of lattice sitd$ is even Let us suppose
that the lattice is staggered, i.e., th@ continuum limit

termg real space translations are given by translations b

[given by Eq.(3.3)] and with charge conjugation operator

So, we can break Hamiltonia8.1) in blocks, each marked
with eigenvalues of the operatoPs=iInT andC which can

be Py=(27i/N)k mod 27 [see Eq.3.4)] andC= =1 (be-
causeC?=1). We are interested in mass ratios, so we only
need zero-momentum sector. But, because “true” space
)t/ranslations are generated BY (or because we must sub-

evennumber of sites, and translation by one site is somdract “nonuniversal macroscopic momenturs, if you like

internal state transformatidi26]. A consequence is that?
is the “real” lattice translation operator, sd2is the “real”
momentum which is also defined mod2But, now we must

multiply Eg. (3.5b by 2, so how can we obtain the same

conformal dimension& and A. An explanation is that the
continuum spatial extension of the system is nowaN/2,
so we must pulN/2 in place ofN in Eg. (3.53. In Eq.(3.5b

it just compensates factor 2, and in E§.59 we already
needed scaling factqr which should now be halved.

IV. MASS SPECTRUM

it more) zero-momentum sector is a union B&=0 and P
=7 sectors. So we must diagonalize four blocks which we
will denote by 0", 0~, = and=w".

We considered a number of values of couplind=<A
<1 [or 27=B>0, see Eq(3.11)]. Starting fromA=—1
the spectrum contains five clearly isolated states: vacuum
and second breather in"Qfirst breather in 0, soliton in7~
and antisoliton inr*. All other levels form “continuum,”
i.e., they “densely” fill the region between
~2X(mass of first breather) and sontg,,,. Soliton and
antisoliton energies are not degenerate which is a conse-

quence of breaking, symmetry on the spin chain. Exactly

Now we are ready to calculate particle mass ratios in theyt A= —1 we have[27] Mmg;=Ms<My<Mg,. As we in-

SGM L—o limit using connection with spin chaif3.1).

First we must numerically calculate mass gaps of spin chai

for finite N andh. Then we must make a continuum limit,
i.e., takeN—o keepingL=Na and . fixed [obviously a
—0 and from Eq.3.15 h—0]. Finally we should make a

TABLE VII. The same as Table V but now fak=—0.6 (82
=4.43).

r(]:reaseAanS, m, and mg, monotonically increasérelative
to mg;) wheremg and m, increase faster thamg, and at
A~—0.1 disappear into the “continuum”(i.e., mga

>2mg;), While mg, asymptotically approach Bg;. This

TABLE IX. The same as Table V but now fak=—0.1 (82
=3.34).

h h
Ta 0.8 0.5 0.3 0.2 DHN  Fujita T, 0.8 0.5 0.3 0.2 DHN Fujita
S 1.332143) 1.37452) 1.4063) 1.4237) 1.517 1.229 S 1.8998%2) 1.99263) 2.0424) 2.0529) 2.096 1.612
A 1.66742) 1.6381) 1.6058) 1.5742) 1.517 1.229 A 2.029498) 2.05437) 2.0683) 2.011) 2.096 1.612
B2 1.85239) 1.8653) 1.8741) 1.883) 1.888 B2 1.9131) 1.9203) 1.9164) 1.90417) 1.942
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il
Ic
i
] v 6 6 !
6 6
!;V zg‘v" o o
HBI v v HA cﬁfA.A HB] HA P .vl
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3 qé'v 3 3 ‘\’70 ve 3R 3
. # o
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# 3 = o
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FIG. 4. Reduced scaling functiorts,(8,x) at A=—0.9 (or FIG. 5. The same as Fig. 4 but now far=—0.6 (or B2
B?>=5.38). A legend is the same as in Fig. 1. =4.43).

was a crude picture visible already from row data beforetion for mass gaps of spin chain should have the form

extrapolationN—«~ andh—0, and it is expected from the

DHN formula (1.1). Observe that the exact degeneracy of = ~ L\ — rp2ml 3T+ ~ —2x/(3m+7y) 4 T ~

soliton and first breather massesAat — 1 is present in Eq. Ma(, ) =W CT D 227D+ Ha(y, )]

(1..

In Figs. 1-3 we present numerical results for the scaledvhere we must now include proper normalization facfor

gaps(scaling functions of mass gapéa,ae{S,A,Bl,BZ}

at A=-0.9-0.6,—-0.1. This is of course a check of the

scaling relation(3.16). BST extrapolation®l— « (with fixed

h) of scaled gaps foh=0.8,0.5,0.3,0.2 are given in Tables 6 6 s 7

[I-IV. As expected convergence is better for higher o

To make an extrapolation— 0 one should obtain results H,, H, &

for smallerh, at leasth=0.1. From Figs. 1-3 one can see e w v 0 S &

that for that one should diagonalize the Hamiltonian with =~ ¢

N=26, which is too demanding even for the most powerful ;

machines today. i
%

Finally, (partially) extrapolated mass ratios

30 m €0 20 30 n 60 90

~ ) m, ) G,
ra(Ah)=Iim =—= lim =—, ae{SA,B2}
Ngx mBl Nf‘x B1 ve @

h fixed h fixed 6 - 6 | °o* A4

are given in Tables V—IX together with the predictions from .’ o
DHN formula (1.1) and Fujitaet al. formula (1.2). One can Hy o H, g
see that our results confirm DHN and reject Fugtaal. 3l » ald
L] &
& :

| A ;' i
Let us now turn our attention to the opposite UV limit of L Sa—s 20 % %%
our results for the spin chaif8.1). We saw in Sec. Il that it w

is obtained whenw()— 0. Using Egs(3.12) and(3.15 in FIG. 6. The same as Fig. 4 but now far=—0.1 (or 82
the continuum resul(2.11) we obtain that the scaling rela- =3.34).

V. UV (CONFORMAL ) LIMIT OF PARTICLE STATES

30 n 60 90
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TABLE X. Scaling dimensions of particle states in SGM as momentum particle states of SGM as conjectured li].

conjectured from our numerical results. But our numerical results clearly indicate that the first and
second breatheB2 andB2) have exactly the same scaling
State Operator Scaling dimension  dimensions. In Figs. 4—6 we show numeric results for re-
. duced scaling functions, where we used values from Table X
soliton Voi 1 =}(1— Z) for scaling dimensions.
' g 2w We can see in Figs. 4—6 that finite size effects are stron-

T ger for A closer to—1 (where they are in fact logarithmic
antisoliton Vo-1 —2:5(1— —) because of the appearance of marginal operatadsich is
B & expected fronj28].

2
1st breather Vi L :}(1_ Z)
4727 20w VI. CONCLUSION
B 1y . . .
2nd breather Vi P K In this paper we use th¥XZ spin chain in a transverse

field as a lattice regularization of the sine-Gordon model pro-
posed il 14]. This equivalence can be understood, e.g., from
conformal perturbation theory. One of our goals was to cal-
on h we can take it from unperturb€dXZ spin chain(3.2),  theory. This is now of interest because recent calculations
where it is well known based on numerical treatment of the Bethe anght¥ and
infinite momentum frame techniqyi&Q] are in disagreement
with previous approaches used in literatfise-7]. Our re-

Y sults are in agreement with the DHN formula contrary to

) o~ - previously mentioned papers. We stress that methods used in
Before we plot reduced scaling functiohig,(y,x) we must  this paper are independent of previous approaches to SGM
know scaling dimensionl, of the corresponding state. On (which were criticized if10—12). We also analyze the con-
the other hand, we can choodgand see if it gives the right - formal limit and find conformal dimensions of various states.
behavior ofH(y,u) whenu— 0 [which is the same as for We find that the conformal dimension of the second breather
H, mentioned below Eq2.10)]. state disagrees with the conjecture[liyl]. Our calculations

In Table | we have presented scaling dimensions of zerofor dimensions of other states agree with thos€lil.
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