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HANS-JOACHIM KUNZEb and MIRKO STUBIČARc
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Spectroscopic investigations were made on plasma clouds created by 20 ns, 3 J
ruby laser pulses impinging perpendicularly onto targets of boron carbide, carbon
and boron. The irradiance on the targets was about 132 GW cm−2. Time-resolved
spectra of plasmas in the region of wavelength from 16 to 32 nm were observed at
a distance of 1 mm from the targets. The maximum electron temperatures were
about 60 eV in the case of carbon and boron targets, and about 45 eV in the case
of boron-carbide target. Laser evaporation from carbon occurred directly from the
solid state (sublimation), and in the case of a boron and boron-carbide melting was
observed as an intermediate state.

PACS numbers: 52.50.Jm, 61.80.Ba UDC 533.9

Keywords: Laser-produced plasmas from boron, carbon and boron-carbide (B4C) targets,

spectral analysis, light-microscopic surface observation

1. Introduction
Boron carbide (B4C) is an interesting ceramic because of its useful properties:

it is a hard, lightweight material used in the nuclear and aerospace industries (abra-
sive flow control, grit blast and sandblast nozzles, armour, neutron absorbers, etc.).
After diamond, cubical boron nitride and boron oxide, boron carbide is the hard-
est known material at room temperature [1]. Most of studies were made about
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its characteristics as a deposition material (thin films). This work is oriented to-
wards a basic study: plasma behaviour and a comparison with plasmas of its pure
constituents – pure boron and pure carbon plasmas produced under the same con-
ditions, as well as the microscopic observations of the surfaces. Laser-produced
plasmas from boron-carbide targets have previously been studied (see Refs. [2] and
[3]). Similar, but more extensive investigations have been done with boron-nitride
plasmas (see, e.g., Ref. [4]).

2. Experimental set-up
Plasmas were produced by a ruby laser (KORAD K1 laser and K1500 amplifier)

with a pulse energy of 3 J and pulse duration up to 20 ns. The laser beam was
focused perpendicularly onto the flat surfaces of the targets placed in a vacuum
chamber (10−5 mbar). Each laser pulse impinged always onto a position place on
the target surface. The plasma clouds were observed side-on with a VUV flat-field
grazing incidence spectrograph, equipped with a flat gateable microchannel plate
(MCP) and a CCD camera [5].

Experimental set-up and equipment are shown on Fig. 1. Cross-section of
the laser beam on the target was 2.0 × 10−3 cm2. The laser fluence was about
1.5 kJ cm−2 and the irradiance about 132 GWcm−2.

Technical properties of targets are shown in Table 1.

Fig. 1. Experimental set up [6].
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TABLE 1. Technical properties of targets (Refs. [1,7]).

Boron
Glassy carbon
(Sigradur G)

Carbon

Boron carbide
(hot-pressed)

B4C

Density 2.34 – 2.37 g cm−3 1.42 g cm−3 2.45 g cm−3

Porosity 0% 0% 0%

Melting point 2180 ◦C 3000 ◦C 2450 ◦C
Boiling point
(normal pressure) 3700 ◦C (4827 ◦C) 3000 ◦C

3. Spectral analysis
Time-resolved spectra of the plasma radiation were observed with a time reso-

lution (∆τ) of about 10 ns, with variable time delay after the pulse, in the spectral
region 16 to 32 nm, with an instrumental resolution (FWHM) of about 0.1 nm. The
plasmas were observed at (1.0 ± 0.2) mm distance from the target surface. Same
observations were done quite near the surface, at about 0.5 mm.

Figure 2 presents an example of a spectrum recorded at the time of maximum
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Fig. 2. Example of spectrum emitted by a B4C plasma.
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TABLE 2. Spectral lines λth Refs. [8,9].

No. λth (Å) Atom (ion) Transition

1 5 × 33.737 CVI 1s – 2p (Lα)

2 3 × 60.3144 B IV 1s2 – 1s2p

3
182.097 CVI 2s - 3p

182.230 CVI 2p – 3d (Hα)

4 4 × 48.586 B V 1s – 2p (Lα)

5 6 × 34.973 C V 1s2 – 1s3p

6 4 × 52.682 B IV 1s2 – 1s3p

7 222.79 C IV 1s22s – 1s25p

8 238.23 C IV 1s22p – 1s27d

9 4 × 60.3144 B IV 1s2 – 1s2p

5 × 48.586 B V 1s – 2p (Lα)
10 244.91 C IV 1s22s – 1s24p

7 × 34.973 C V 1s2 – 1s3p

11 248.71 C V 1s2p – 1s3d

12 259.52 C IV 1s22p – 1s25d

13 262.60 C IV 1s22p – 1s25s

14 283.60 C IV 1s2s2p – 1s2s3d

15 289.20 C IV 1s22p – 1s24d

16 6 × 48.586 B V 1s – 2p (Lα)

17 296.92 C IV 1s22p – 1s24s

18 5 × 60.3144 B IV 1s2 – 1s2p

19 312.43 C IV 1s22s – 1s23p

of the B4C plasma emission. The time period between the maximum of laser irra-
diation and the time when the spectrum was recorded was ∆t = 40 ns.

The lines of the emission spectra were from the hydrogen-like and helium-like
ionization stages of boron (B V and B IV) in boron and boron-carbide plasmas.
The carbon emission lines in pure carbon and boron-carbide plasmas were in the
hydrogen-like, the helium-like and the lithium-like ionization stages (C VI, C V and
C IV). The significant lines in all of the analysed plasmas are presented in Table 2.

From the highly-ionized stages of atoms in plasmas, we can deduce electron
temperatures of close to 50 eV (1 eV corresponds to 11600 K) for all observed
plasmas. The temperatures were estimated assuming the upper levels of the lines
were in the partial local temperature equilibrium (PLTE) with the ground state of
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the next ionization stages and both ionization stages were in coronal equilibrium,
using the formula [10]

R =
i ′

i
=

ω′A′g′

wAg
exp

(
E′

∞ − E′ − E∞ + E

kT

)
GiS

g′iα
, (1)

where the relative intensities i and i ′ denote lines of two successive ionization stages.
In this way, we have two sets of parameters in which ω stands for the frequency,
A for the transition probability, g for the upper-level statistical weight, E for the
excitation energy, E∞ for the ionization energy of the lower ionization stage and
gi for the ground-state statistical weights of the next ionization stage (for example
C V and C VI). The ionization and recombination coefficients (S, α) are considered
as those for the “ion” (ionization of, for example, C V and recombination leading
into CV from C VI) [10].

From the relative intensity ratio of two spectral lines of successive ionization
stages, λC V = 24.87 nm, 1s2p 3P0 → 1s3d 3D, and λC IV = 28.92 nm, 1s22p 2P0 →
1s24d 2D, at 1 mm distance from the target surface, we estimated the following
electron temperatures: Te ≈ 60 eV in pure carbon plasma, and Te ≈ 45 eV in
boron-carbide plasma. In the first period of target ablation (the delay of about 4
ns) and in the last period (the delay of about 60 ns), the temperatures were lower.
Temperatures reached maximum at the time when the emission was maximal (at
about 30 ns). The obtained temperature in pure carbon plasma is in good agreement
with the earlier results of similar measurements [11].

The recorded spectra reveal that the excitation of boron ions in boron-carbide
plasmas is significantly stronger than the excitation of carbon ions (see Fig. 2). This
is due to molecular configuration of B4C as well as the different energies needed for
the excitation of boron and carbon atoms. Observed lines indicate that the electron
temperature is closer to 45 eV when B IV ions have the maximum concentration,
than to 60 eV when the concentration of C V ions is at maximum.

From the observed equal maximal intensities of the Lyman-alpha lines in pure
carbon and pure boron plasmas, we can deduce that the electron temperatures of
both plasmas are comparable, i.e. about 60 eV.

We could not see any significant difference of the excitation of boron ions in
boron-carbide and pure boron plasmas, but it was seen in the excitation of carbon
ions. The line intensities of carbon lines were much weaker in boron-carbide plasmas
than in carbon plasmas. An example is shown in Fig. 3.

Figure 4 shows a comparison of the time dependence of relative intensities of
several ionic lines (C V, 1s2p → 1s3d; C IV, 1s22s → 1s23p; B IV, 1s2 → 1s2p) in
boron-carbide plasmas. Ions of lower ionization stages, especially strong B IV, show
slower intensity decrease than ions of higher ionization stages due to the effective
recombination of the latter.

From the spectral analyses at two different distances from the target surface,
we estimated the velocity of plasma expansion from about 7 × 106 cm/s to about
10 × 106 cm/s in all measurements.
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Fig. 3. Comparison of carbon line intensities in pure carbon and in boron-carbide
plasmas.

Fig. 4. Time dependence of relative line intensities for boron and carbon in boron-
carbide plasma.
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4. Light microscopic observations

Target surfaces were observed by a metallurgical light-microscope (Leitz – Aris-
tomet). On the surface of carbon (sigradur) craters with sharp edges were observed
(Fig. 5). The central part of the craters was the result of the sublimation process of
carbon. Average radius of the craters is 1 mm. Also, periodical ripples are visible
closed to the edge of the crater. They are the result of a plastic deformations due
to a high pressure shock caused by the laser beam. The measured period of the
ripple structure is about 30 µm, what is much larger then the laser wavelength.

After the laser irradiation, rather uniform formations are visible on the boron
surface (Fig. 6) due to the melting, fast cooling and subsequent crystalliza-
tion. Average radius of these formations is 1 µm. The spheroids merge and
form open-cell formations because of the very high surface temperature. Inter-
action with the laser beam leaves the boron-carbide surface with cracks (due to
cooling) and small craters (diameter up to 10 µm). This surface is shown in
Fig. 7. The edges of the craters can be observed as the vortex formations, simple

Fig. 5 (left). C surface with craters irradiated by ruby laser (magnification 600×).

Fig. 6 (right). B surface irradiated by ruby laser (magnification 600×).

Fig. 7 (bottom). B4C surface irradiated by ruby laser (magnification 600×).
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ring-type that could be compared with analysis of tantalum surfaces irradiated with
the nanosecond laser pulses [12]. Plasma evaporations developed from these craters
by microexplosions.

5. Conclusions
The presented results lead us to the following conclusions:

(i) Emission spectra from B4C plasma plumes have been recorded. With a laser
irradiation of 132 GWcm−2, produced by a ruby laser, emission of C IV to
C VI lines as well as of B IV and BV lines in the spectral region 17 to 32
nm was observed. In previous similar measurements [13], made with lower
laser intensities of about 1.25 GWcm−2, only emission of B I, B II and C II
lines (in the visible region of spectrum) was observed. In both cases, the
relative intensity of carbon lines in B4C plasma was drastically weaker than
the intensity of boron lines.

(ii) When we irradiated a carbon target with the 132 GWcm−2 laser intensity
(ruby laser), spectral lines from C IV to C VI were observed. Similar investi-
gations had been performed earlier with the same ruby laser, but with a lower
laser intensity of about 1.4 GWcm−2 [14]. In that case, C IV carbon spectral
lines at the maximum stage of ionization were observed. Threshold for the
ionization of carbon atoms was achieved at sub-GWcm−2 laser intensities
[15].

In some previous investigations [16] made with sub-ps lasers, the intensity was
about 4×1015 W cm−2 and hydrogen-like boron plasmas (soft X-ray emission)
were observed, what we achieved in our work with a ns laser at a much lower
intensity of about 1.32× 1011 W cm−2. Recombination is the explanation for
the observed slower intensity decrease of lines from lower ionization stages
(Fig. 4).

(iii) We estimated that the electron temperature in the boron plasmas was com-
parable with the temperature in the carbon plasmas. In the B4C plasmas,
the electron temperature was approximately 45 eV and thus about 10 eV
lower than in the plasmas of the pure elements. The measurements are in
good agreement with previous observations [4]. The large error of the line
intensities (20%) reflects the long integration time (10 ns).

(iv) The ablation processes are different in carbon and in carbide compounds. We
find laser evaporation from carbon (sigradur) directly from the solid state.
Such behaviour was also observed in a previous experiment [17] which was
done with sigradur and a CO2 laser at a lower laser irradiation of about
5× 107 Wcm−2. However, in the case of boron and boron-carbide, melting is
observed as an intermediate state.
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ISTRAŽIVANJE PLAZME PROIZVEDENE LASEROM IZ BORA, UGLJIKA I
BOROVOG KARBIDA

Izveli smo spektroskopska istraživanja oblaka plazme koju smo proizveli rubidijskim
laserom pulsevima 20 ns i energije 3 J sa snopom usmjerenim okomito na mete
borovog karbida, ugljika i bora. Intenzitet snopa bio je oko 132 GW cm−2. Mjerili
smo vremenski razlučene spektre plazme u području valne duljine 16 do 32 nm
oko 1 mm nad metama. Maksimum elektronske temperature bio je oko 60 eV s
ugljikovim i borovim metama, a 45 eV s borovim karbidom. Lasersko uparivanje
iz ugljika dešava se izravno iz čvrstog stanja (sublimacija), dok smo opazili talenje
kao med–ustanje s metama bora i borovog karbida.
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