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Many-hole interactions and the average lifetimes of chaotic transients that precede
controlled periodic motion

Hrvoje Buljan and Vladimir Paar
Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
(Received 15 December 2000; published 15 May 2001

We considem small regiongreferred to as the holgsn a chaotic attractor and study the average lifetime
it takes for a randomly initiated trajectory to land in their union. The holes are thoughtropaessible escape
routes for the trajectory. The escape route through one of the holes may be considerably reduced by other
holes, depending on their positions. This effect, referred to as shadowing, can significantly prolong the average
lifetime. The main result of this paper is the construction and analysimerical and theoreticabf the
many-hole interactions. They are interpreted as the amount of shadowing between the holes. The “effective
range” of these interactions is associated with the largest Lyapunov exponent. The shadowing effect is shown
to be very large when the holes are locatechgoints of an unstable periodic orbit. Considerable attention is
paid to this case since it is of interest to the field of controlling chaos.

DOI: 10.1103/PhysReVE.63.066205 PACS nunier05.45.Gg, 05.45.Ac

. INTRODUCTION H,=H; (&) be anm-dimensional ball of radiug centered
at a point . The probability that a trajectory, originating
The average lifetime of chaotic transients is an importanfrom a point chosen at randofusing a uniform probability
physical quantity in the field of controlling chaps—9]. Let  distribution, does not land within the union af holes
us briefly disclose this relation. Chaotic attractors are densely
populated by unstable periodic orbit$0,11. In order to Hiz..n=H{UHU---UH, 1)
improve the system performance, we may desire that a par- . , : .
ticular unstable periodic orbit becomes stable, i.e., attractinéiurlng the firstt time steps is
[1-6,13. Suppose that we monitor a randomly initiated tra- _ YO N
jectory on a chaotic attractor. Due to ergodicity, the trajec- X7z ), for =1, @

tory once in a while lands very close to the desired periodiGyhere {7 denotes the average lifetime it takes for a tra-
orbit [1,6,10,11. When it happens, the trajectory approxi- jectory to land (for the first time within the setHi,.. .,
mately follows the periodic orbit for a few cycles. Thus, [1,6,13,21.

during a brief time interval the behavior of the trajectory  Given a mapO, the lifetime 72 . is a function of the

resembles periodic motion. As time increases, the trajector¥jze (¢) and the positions of the holes:}. In accordance
moves away from the unstable periodic orbit due to its rewith Refs.[1,6,8,13,2], the lifetime obeys a typical power-
pelling properties. In Refd.1-6] it has been demonstrated |aw dependence om [#AY ,~€e 7] In the present work
that the trajectory can be forced to closely follow the un-we analyze the functional dependence of the average lifetime

stable periodic orbit for a long time interval by applying only AW ="(g & ... &) on the positions of the holes.
small, time-dependent perturbations in a system parametegor a special case when

Since these perturbations are small, they are efficient only

once the trajectory lands sufficiently close to the desired pe- O(&)=&.4, i=1,...n, 3
riodic orbit[1—6]. Therefore, the controlled periodic motion ) )
is preceded in time by a chaotic transient. (én+1=4&1), i.e.,, when the holes are centered on the points of

The theoretical analysis of this work mainly draws uponan unstable periodic orbit of prime perioy the lifetime
the connection between the average lifetime and the condiy.., corresponds to average lifetimes of chaotic transients
tionally invariant measure, also referred to as ¢thmeasure that precede controlled periodic motiph—6].
[13—20. The c measures appear in connection with tran- Suppose that a trajectory, at the time stefands within
siently chaotic dynamical systerfis3—15. A rigorous math-  the setH,. .., for the first time. The trajectory has landed in
ematical analysis of these measures can be found in Refgist one of the holes, sdy;. We may think ofn holes asn
[17-20, where the existence and uniqueness ofdimea-  possible landing grounds or escape routes for the chaotic
sures has been established for a broad class of systems. trajectory. At the time step—I| (I1=1), the trajectory was
The problem studied in this paper encompasses the prolgertainly within the seD*'(HJ-). Every preimage oH; can
lem of average lifetimes preceding controlled periodic mo-be thought of as the accesstfy. If another hole, say;,
tion. Suppose that a chaotic attractoh) presents the intersects withO~'(H i), then H; can be accessed only
asymptotic behavior of a one-dimensioED) noninvertible throughO"(Hj)\Hi [see Fig. 1a)]. For some positions of
or 2D invertible mapO: D—D, DCR™ me{1,2. the holesH; andH;, H; can considerably reduce the acces-
Imaginen small regiondH;CD, i=1,2,...n, referredto sibility to the holeH;. When this happens, we say that the
as the holes, that are located on the attraétdret the hole  holeH; “casts a shadow’{22] on the holeH; [Fig. 1(@)]. If
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It will be demonstrated that for some random choice of
the positionsg;, it is most likely that there will be no shad-
oHy owing, i.e., the many-hole interactions ate0. We will

‘. show that this is a consequence of a very small “effective
- L . | .
I/ range” of the many-hole interactions. The “effective range”

of the many-hole interactions will be associated with the
H positive Lyapunov exponent of the mdap. Furthermore,
magnitudes of the peaks in the Iifetimég),__n will be ana-
lyzed by studying the corresponding peaks in the many-hole
interactions.

The paper is organized as follows. In Sec. Il we associate
the n-hole lifetime 7{% . with the conditionally invariant
measure. In Sec. Il we study the two-hole lifetimg’ and
introduce the concept of the pairwise interaction between the
holes. In Sec. IV we study the three-hole lifetimig and
introduce the concept of the residual interaction between the
holes. In Sec. V we introduce the residuahole interaction
A and generalize the results. In particular, for the case
when the hole positions satisfy E@), we show that the
contribution of then-hole residual interaction within the de-
composition of the escape rater(ig?,,,n decreases exponen-
tially fast with the increase af. The characteristic exponent

FIG. 1. (8 H; is accessible only through its preimages, e.g.,is shown to be approximately equal to the positive Lyapunov
O7'(H;). SinceO™'(H;)NH;#0, H; is actually accessible only exponent of the mag.
throughO~'(H))\H; (colored black We say that the holki; casts The one-hole lifetime, say*)(£;), was phenomenologi-

a shadow on the holel; . The shadow oH; is shaded with diag-  cally studied for the logistic map in Refi23,24. A theoret-

onal lines.(b) Three holes are centered on a periodic orbit of periodjcg| explanation of these results was reported in e,

three. The shadowing effect is extremely large since every holg here it was demonstrated that wheh encompasses a

shadows the next one. point on a short periodic orbit{*)(£,) significantly deviates
from the inverse of the naturally invariant measupey)

H; is shadowed by other hal, the escape route vid; is  contained withinH;, wyn(H;) 2. The significance of this

significantly suppressed and the lifetime is prolonged. deviation was described in terms of the ratio

We will demonstrate that, as a consequence of the Shaq'“)(fl)/MN(Hl)_l, which was found to be a function of the
owing effect,7{9 , exhibits sharp peaks for some positions ynstable eigenvalue of the shortest periodic orbit visiting
of the holes. The magnitude of a particular peak corresponds |n Sec. VI we generalize the main result from Réf] to
to the total amount of shadowing between the holes. For thﬁ}e n-hole case. If a gi\/en region on a chaotic attractor is
special case when the holes are centered on the points of gisited more frequently by typical trajectories, i.e., if a given
unstable periodic orb[tEq. (3)], the total amount of shadow- region contains a larger amount of naturally invariant mea-
ing is extremely large. Every hole shadows the next éhe. sure, the average lifetime it takes for an orbit to land in that

shadowsH,, H, shadowsH3, and so on[see Fig. 1)].  region will be smaller. Hencgyy(H1,...,) ~* can be used as

Hence, in the case of interest for controlling chaos, the avgn estimate forr{Y .. However, we will demonstrate that

erage lifetime7{} , exhibits one of its most pronounced when the holes are located on an unstable periodic FEbit

peaks. (3)], due to the extremely large shadowing effect, the esti-
The inverse of the average lifetime is identical to the eSmateun(Hyp..,) t is significantly smaller than-(lg?,_n. It

cape rate, the quantity standardly used for the characterizggi|| pe demonstrated thaf(lg)...n/MN(le...n)_l is a func-

tion of transiently chaotic system$l3-15. In (%der tion of the unstable eigenvalue of the unstable periodic orbit.
to investigate the functional dependencery . |,

=7"(g,&, ... &), we will decompose the escape rate

(n) . (1)
Uris . ., as a sum of the one-hole escape ratgs, 1/, Il. THE AVERAGE LIFETIMES AND THE
plus the interference terms that will be referred to as the CONDITIONALLY INVARIANT MEASURES

many-hole interactions. We will demonstrate that the magni-

tude of the many-hole interactions reflects the amount of The concept of shadowingFig. 1) pictorially explains
shadowing between the holes. The functional dependencggnificant prolongations of the Iifetimﬁﬁg),._n that occur for
“"(&,&, ... ,&) can be analyzed by investigating the some positions of the holes. However, a more sophisticated
functional dependence of the many-hole interactions on th&eatment of the problem requires the concept of the condi-
positions of the holes. The main result of this paper is thdionally invariant measurgl3-20.

construction, numerical, and theoretical analysis of the The ¢ measure is closely associated with an auxiliary
many-hole interactions. modified mag7,18,19,23,24
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O(¢), &eD\Hp ,, time T(”“,)m+_1 and the measurg{hY L. Let P.CD
outside o8, & eH 4 denote amm-dimensional ball of radiug (the same radius as

’ 12:--no the holé within the phase space. For the theoretical treat-
whereB denotes the basin of attraction Af Let x, e B be a ment of the problem it is important to find the dependence of
point chosen at randorfusing a uniform probability distri- (n+1)
bution). A trajectory of the original ma® originating from 012 .nn+1(Po)= '“012 nn+1(Pe) 1““012 n(Po) (8)
Xo remains on the chaotic attractor forever. A trajectory of . . ,
the modified magO;,..., originating from the same initial on the position of the s.eF?.E on the attractor. The indices in
condition is exactly the same as for the original n@pbut 912 --nn+1 denote the indices of the sehy, .., and of the

only until it lands within the seH .. . After that moment 2dded holeH,.,. " .
this trajectory escapes through the regtom, ..., i.e., it is At first, we must introduce one definition. Consider two

no longer considered. Therefore, the modified rogp . ,is ~ SUPSets of the phase spageP’CD. Suppose that we iter-
transiently chaotic. The average lifetime of chaotic transient&t€ the seP by using the modified ma@,, ., Then, con-

Opp..n(€)=

created by the ma@®;,. .., is equal o} ., which we S|der the images Of the s€t Of,. 4(P), O ~n(P),

have defined above. Similar maps with a forbidden gap reQ1z...n(P), - Let

gion arise in the context of communicating with ch4as] (n)

and in calculation of the topological entrog®6,27. A (PP €)

broad class of maps with holes and related conditionally in-

variant measures have been studied in Réfg—20. be the smallest positive integdr for which the section
In the following an operational definition of temeasure Oz ..n(P)NP’ #0. Given a mapO, this integer depends on

is given. The chaotic attractor is covered with celtsll the setsHip ..y, P, andP’.

them CCD) from a very fine grid. Suppose that we uni- The quantity &81,...,n+1(P) [EQ. (8)] depends
formly distribute a large number of pointdl) in the phase on 1I'=1{) (H,.;,P) [in what follows, I
spaceD. The points are iterated by the modified n@p,..., =12  (Hn.1.P.)]. There are two possibilitiesi) If I’
for a large number of time stepd). Let us observe the >I., where |, denotes some critical value, then
surviving points, i.e., the points that have not visited the se6y, ., ,+1(P.)=0. (i) If I'<I., then &5, n+1(Pe) is
H1,. .., during the firstT—1 time steps. In the limitN smaller than zero. It can be shown that

—oo, T—oo, the fraction of surviving points in a given cell

C converges to the measurgcall it M@gz,__n] contained 812 n n+1(Pe)__MC12 n(o12 A(PONH.. 1)
within that cell, u{, (C) [13-15,17-2D Thus, for a ' ,
given mapO, the conditionally invariant measug?), ., is ~—e M, (10

defined by the setl;,. .., i.e., by the positions and the size _
of the holes. The upper and lower indicesp indicate the i.€., the difference between the two measures decreases ex-

number of holes and their positions, respectively. ponentially fast with the increase bf (see the Appendix
In accordance with Refd.13,14,17—2Q the ¢ measure The critical value,l;, is a small positive integer that is
wl, . satisfies the following relation: determined by the positive Lyapunov exponent of the i@ap

(denoted\,). In Ref.[7] we have definedl. as the smallest
u8 (C)=expUr)  udd, (01 (C)), (5)  positive integer for whicte™*1'e<0.1. For the maps that we
utilize, 1.~4. A theoretical explanation of the statements
where above can be deduced from REf] (see the Appendix
. . As an illustration of thec measures, Fig.(a) displays
O15...n(C)=0"(C)\Hya. ... ©  u,.,and w85 for the tent map with four and five holes.
) ) ) The positions of the first four holes are takenéas-0.338,
If the setH ,...,, is small enough, i.e., i€<1, Eq.(5) can be £,=0.331, £,=0.411, and¢,=0.220. The position of the

used to obtain added hole ists=0.676. The cells are chosen to be of the
same size as the holes. Therefore, every €etlan be re-
1 (n H 7 garded as a sét,. Figure Zb) shows the difference between
(m =uciz . .n(Hiz..n). (7 (5) @
1. these two measuresdizs,dC) = pEload C) — a4 C).

As we can seegdi,3, 4 C) is significantly smaller than zero

Therefore, the Iifetimer(lg)_,,n is approximately equal to the only if I(l‘§)34(H5,C)<IC, i.e., in those cells that overlap with
inverse of thec measurenl), . contained within the set one of a few successive images of the added ke (For
Hi,..n. In the following sections, the measure will be the tent mapl.~4.)
utilized as a tool for the theoretical description of the ob- Note that 2c8;,...0+1(C)=0 because the measures
served phenomena. From that perspective, (Bgis of key — x), . and x5 ., are normalized. Since for'<I,
importance for the theoretical analysis. the quantity 615...nn+1(P.) is significantly smaller than

The measurc;u(c"l)z,,,n is associated with the séty,.. .. zero, for the positions of the setP, where |’
If we add one more holéd,,, tothe seHy, . ,, weobtain >, [J12..nn+1(P)=0], 12 . .nn+1(Po) is actually
the setHq,. . .pns1=H12...nUH, 41, Which defines the life- slightly larger than zergsee Fig.(2)].
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FIG. 2. (a) The ¢ measures for the tent map with holes. The

width of the holes is 2=1/256. The unit interval is divided into
256 cells(C) of equal size. The content of tleemeasures within a
given cell C is drawn against the position of the cel)( The
measurenita, (1&has) corresponding to fourfive) holes is
drawn with a solid(dotted line. (b) The difference d;,344C)
against the position of the cell. The position of the added higlés

indicated with the vertical line. The positions of the first five images

of Hg are indicated with arrows.

In order to make the exposition clear, let us retrospec

briefly on the notation. Given a map, the choice oh holes
defines the the lifetime{? ., the auxiliary mapOy,. . .,,
and thec measureu"), . For a givenn, we can choose

some smaller number of holes and define these quantities.
For example, suppose that there are eight holes. We cany) = —1

choose three holes, say;, Hs, and H; that deflnef(ﬁ%,

Oss7, and u&);. As a similar exampleg,; {P.) denotes
2

3
M(c1)57 Mci7-

Furthermore, it is convenient to define

|P~>P’ (11)
as the smallest positive integérfor which the section
O'(P)NP’#0. In simple words, the sé®? maps to the set
P’ in lp_p iterates. Given a map, |p_p: depends on
the set? andP’. From the definition$11) and(9) it can be
easily seen thatp_p <I{) . (P,P’). Thus, if I,
>|C1 then512..inyn+1(Pe)20.

l*)PE

IIl. THE TWO-HOLE LIFETIME AND THE
PAIRWISE INTERACTION

In this section we study the lifeti , Which is defined

PHYSICAL REVIEW E 63 066205
The comparison of the measurgs?, ., and 850 .,
from the previous section leads us to |nvest|gate the substi-
tutions  p2, (Hl)ﬁﬂg:ll)(Hl)zl/T(ll) and  u@(H,)
—uH(H ) 1/751 . These substitutions lead to the follow-
ing decomposition of the lifetime

1 1 1
-
7.(12) ( ) 7.(2 )

\q——/ 72
71

2
+A).

—

(13

The quantityA (%), also referred to as the pairwise interaction
between the holekl; andH,, is defined by Eq(13). From
Egs.(8), (12), and(13) it follows that

AR =uBh(H ) - pd)(H,)

. -
~v

8y o(H )
(C‘Zl)Z(HZ) M(l)(Hz) .
“ ~ -4 (14)
8,1(H7)

The functional dependence?(£,,&,) is numerically and
theoretically studied by investigating the functional depen-
denciesrV)(&) andAP)(&,,&,).

Let us consider results of a numerical experiment that is

erformed by using the tent map. The héle is located at
he fixed positiong;=0.314 - -, on the attractoA=[0,1].
The position of the second hol€,, is moved across the
attractor. The quantities{?), z;, andA{2 are calculated.
The size of both holes is constants20.005.

Figures 3a), 3(b), and 3c) display the average lifetime

712, 711, andA{? as functions of the position of the mov-
ing holeH,, respectively. We observe the following) For

most of the positions of the moving holé,, 29=n;t,
andA{29=0. (i) The quantity; * and hence{% are, on the
average, approximately equal joy(Hip) % 77! exhibits

peak values only at the positions of short periodic orbits.
Consequently, at these positions the lifetimg) obtains
peak values as well. These peaks are labeled with asterisks in
Figs. 3a) and 3b). (iii) When the moving holél, overlaps
with one of a few successive imaggsevious preimageof

the nonmoving holeH,, then A(z) obtains negative peak
values. Consequently{2) exhibits a peak and becomes sig-
nificantly larger thannl‘l. These peaks are labeled with in-
teger numbers. Positive (negative integers denote
i, —hy, (“lh,—hy) [see quantity(11)]. For example, the
peak labeled with 1 1) is located at the position of the
first image(preimage of the nonmoving holéH;. (iv) The
magnitude of the peaks labeled Wh;h “H, (=1 HyH, ) de-

as the average lifetime it takes for a randomly started trajecereases rapidly with the mcreaselof_ﬂ » (lHymy)-

tory to land in the sel;UH, [see Eq(2)]. The lifetime {2
can be written in terms of the measurdsee Eq(7)],

1 (2)
(2) IU“CJ.Z(H )+lu’ Z(HZ)' (12)

Let us explain these observatlons
(i) Since the hole$i; andH, are very small, for most of
the positions of the moving holeHp), the integerdy, .y,

andIHl_>H2 will be larger than the critical valug,. When
lh,~n,>lcandly .y >Ic, thend; (H;)=0 and
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5 j J / Iu,—n, (In,—n,>1c) for the tent(circles and the Heon map(dia-
: 0 ||‘ M monds. The size of the holes aree20.001 ande=0.001 for the
tent and the Fieon map, respectively.

0 02 04 06 08 1

& >|., i.e., the holeH, maps to the holeH; in just a few

iterates. From Eg910) and (14) it follows that
FIG. 3. Structure of the lifetime for the two-hole casa). The 4910 (14)

average lifetimer{2), (b) the approximation;* (solid line) and @) () H,H I
un(H1) " (dotted ling, and (c) the pairwise interaction (2 in A== nci(0; " TTHH) NHy)~—e Mhy,
dependence of the position of the moving hblg The position of (15

the nonmoving holéH is indicated with the dashed vertical line. . o 2)
i.e., the magnitude of the peak exhibited hyzz decreases

5,(H,)=0, respectivelysee quantity®) and Eq.(14)]. exponentially fast with the increase dﬁle' Conse-
This is equivalent tor2= 7 * andA@=0. quently, the peaks in3’ labeled with negative(positive

(i) Since 7, is constructed solely from the one hole life- integers decrease very rapidly with the increase of
times, 79(&,) and 7¥Y(&,), the graph in Fig. ®) can be  H,—H, (IH,—h,)-
explained by using results from Ré¢f], Whe_re it has be_en Note that the approximatiom(cll)(oi'”2*”1(H1)ﬂH2)
demonstrated that for most of the positiogs there is . -\ln, .1, assumes that the local stretching rates are ap-

1 —_ -1 H
7_'( (&)= pn(H) " We CO”F'“dﬁ that for most combina- ,qyimately equal to the average stretching rate, described
tl?zr;s of & and &, the quantityz, andﬁ?ence the l";etjq‘e by the positive Lyapunov exponefgee the Appendix For
i are applroxmately equal fqun(H1) "+ un(H2) 7" 17" that reason, there may be some deviations from the exact
=pn(Hi2) " This conclusion is consistent with the previ- exponential decrease. Furthermore, the slope of thg%h

ous reportg1,5,6,8,21. S vsly. . line can be larger or smaller than) ;, depending
For the tent map, the naturally invariant measure con- 21

tained within a given interval on the attractor is equal to thegﬂeizﬁinpofglgg of the holes, i.e., depending on the local
length of that interval, Thereforeuy(Hz) = un(Hy)=2€ Fi ureg4 dis.la A9 vs | for the tent and the
=0.005. This leads te=100 iterates as the average value of |, 9 PlaySaiz Ha—H;
72 (see Fig. 3 Henon map(see Ref[28] a=1.4, b=0.3). We see that
12When the holeH; encompasses a short periodic orbit thethe points are better correlated for the tent map than for the
I 1 4 . . .

lifetime ~(1(&) is considerably longer thapy(H;) =t [7]. Henon map. The aforementioned app,rOX|matﬁEn|.A(15)] is
Consequently, whehl, sweeps over a short periodic orbit, a exactly valid for the ten_t map]O’ (x)| =2=e"s, V.X
peak is observed in bothl_l and 7(122) e€[0,1]. The slopes of the lines are0.77 and— 0.6, while

e ; . the “theoretical” values for the Lyapunov exponent are

(iii) From results of the previous sectigguantity (8)] NN _
and Eq.(14) it follows that when at least one of the integers ;In 25%'693; ) anctiiv)\ll—o.42 [10] for the tent and the
15°(H1,Hp) or11(H5,Hy) is smaller tharl, thenal) is eg?quatiiﬁilg)s(?;? beei)r/ﬁerpreted in the following manner
conadera(t;l)l)y smaller than zero. In((l))ur numerical experlmenﬁ we associate the “distance” between the holes with the
|H1~>H2:|2 (Hl,Hz) andIHzﬁlell (HZYH].)' Therefore,

i N integersly ., andly, 4, then we can say that the pair-
wheneverIH.l_,Hz OrlHF_“l ;S smaller than the Cr.ItIC2a| value ise interactionA(2) decreases exponentially fast with the
l¢, a peak is observed ia{? and consequently in{?). increase of “distance.” The exponential decrease is, on the

(iv) In order to explain the magnitudes of these peaksgyerage, determined by the positive Lyapunov expongnt
suppose that at least one of the inteders.p, orly, .1, IS of the map O. Therefore,\; determines the “effective
smaller thanl .. Let us assume thd{prlslC andIHPH2 range” of the pairwise interaction. If the map is more cha-
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otic, the “range” of the interaction is smaller, and for most
of the positions of the hole&{2=0.

When the positions of the holes are fixed, the pairwise
interaction A{2 obeys a power-law dependence erel.
This follows from the definition ofA{% in Eq. (13), and the
power-law dependence of the lifetimes en1,6,8,13,21
For “almost every” choice(with respect to the naturally
invariant measurg.) of the positions; on the attractor, the
lifetimes scale as{) ..~ e P1, whereD, denotes the infor- -
mation dimensioti1,6,8. Consequently {3~ €P1, i.e., A{D =
decreases with the decreaseeofTherefore, the size of the
holese can be thought of as the “charge” of the interaction.

The picture of a shadow as shown in Figa)l(shaded
with diagonal liney is suitable for 2D invertible maps, but
not for 1D noninvertible maps. However, since 7. 80

| c)
O~'(H;N0'(H;))=0""(H;)NH;, the holeH, will be more e
intensively shadowed by the hold; if the intersection 5” 70
O~'(H;)NH; is larger, i.e., if the acces® '(H;)\H; is . ‘At W PR WA

smaller. This statement is applicable for both 1D noninvert-
ible and 2D invertible maps. When the hdte significantly | d)
shadows the holeH,;, i.e., when the intersection
O 'M,~H;(H;)NH, is large, the pairwise interaction{?
will exhibit a peak[see Eq.(15)]. Thus, the pairwise inter-
action A{? can be interpreted as the amount of shadowing
between the holes. FYYYErYYYe
From Eq.(15) it follows that the pairwise interaction and 02 04 06 08 1
hence the lifetime exhibit a strong peak WhﬂrlLHf 1 and §3

In,~n,=1, i.e., when the hole positiorgs and£; lie on the FIG. 5. The first numerical experimerts) The average lifetime
points of an unstable periodic orbit of period two. For the 73, (b) the approximationy;*, (c) the approximation #,
tent map, whert;=0.4, £,=0.8, and 2=0.005, thenr{2  +7,) %, and(d) the residual three-hole interactioa3}, in de-
~193 andA(lZZ): —253 103, By comparing these values pendence on the position of the moving hbélg. The positions of
with 7.(122) and A(122) from Fig. 3, we see that this situation the nonmoving holesH; andH,, are indicated with the vertical
yields the most pronounced peak in both the lifetime and thd"€s-

pairwise interaction.

3)

T123

o

tively. Hence, the only quantity that requires further analysis
is the last term on the right-hand side of EG6), i.e., the
IV. THE THREE-HOLE LIFETIME AND THE RESIDUAL three-hole residual interaction.

THREE-HOLE INTERACTION The lifetime 7{3} is numerically studied by using the tent
map. We have performed two numerical experiments. In
Oboth of them, the first and the second hdtg, andH,, are
located at fixed positions on the attracf@;1]. The position
of the third holeH 5 is changed across the attractor. All quan-
tities from Eq.(16) are calculated. Parameters of the first
numerical experiment are: the width of the holeg 2
1 1 1 1 =0.005; and the positions of the nonmoving holés

In this section we study the lifetimel3}, defined as the
average lifetime it takes for a randomly started trajectory t
land in the setH;UH,UHj3. The functional dependence
8 (&,&,,&) is studied through the following decomposi-
tion:

== oD =0.314 -- and §2.= 0.247. The. posi_tion of the holel; is.
Tizz T1 T, T3 the same as in Fig. 3. From Fig(c3 it can be seen that in
— this first experiment, the pairwise interaction between the
7“ nonmoving holes is approximately zero, i.A{2=0. Pa-
+AD+AD+ARD+AR) rameters of the second numerical experiment are 2
; , (16 =0.005, ¢£,=0.314 - -, and £&,=0.157---. Note that only
7 7 the positioné, has changed. In the second numerical experi-

ment, the pairwise interaction between the nonmoving holes
The justification for this decomposition will be clear after theis large, i.e.,A{2 has a peak[In Fig. 3(c), this peak is
numerical and theoretical analysis. The quantif}} is re-  positioned at,=0.157 - -, and is labeled with-1.]
ferred to as the three-hole residual interaction. The functional The results of the two experiments are displayed in Fig. 5
dependenciesr)(&) and A& ,&), i#j, are well for the first, and in Fig. 6 for the second numerical experi-
known from Ref[7] and Sec. Il of this manuscript, respec- ment. The dependence of the lifetim§); on the position of
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FIG. 6. The second numerical experimefa: The average life-
time {3}, (b) the approximationy; *, (c) the approximation #,
+177,) %, and(d) A3} in dependence on the position of the moving
hole H;. The positions of the nonmoving holes are indicated with
the vertical lines.

the moving holeH is shown in Figs. &) and Ga) for the

first and second numerical experiment, respectively. We obln the sense that the pairwise interacti

PHYSICAL REVIEW E 63 066205

that the non-moving hole$; andH,, significantly interact
by the pairwise interactiorA(lzz). Therefore, for every posi-
tion of the moving holéH 5, there is a systematic error in the
approximations(®= ;.

However, when we include the pairwise interaction in the
description of7{3;, then we obtain a very good approxima-
tion. Figures &) and &c) display the quantity f,+ 7,) ~*
as a function of the moving ho[see Eq(16)]. This approxi-
mation for {3} includes the pairwise interactions. As we can
see, in both Figs. (6) and Gc¢) the quantity ¢+ 7,) *
describes the global behavior of the lifetim&}); together
with all of the peaks(Note that in Fig. &), (7,+ 7,) 'is
not shifted downwards as comparedAg} [Fig. 5a)].) The
functional dependence of the one-hole lifetimes and the pair-
wise interactions on the positions of the the holes is well
known from the preceding section and REf]. Therefore,
already at this point we understand almost all of the aspects
of the functional dependencé®(&,,&,,£;).

It can be noticed that in the second experiment, the mag-
nitude of the peaks is not well described by the approxima-
tion (7,+ 7,) L. In order to pictorially present this devia-
tion, in Figs. %d) and &d) we display A= 1/73:— (7,
+7,) "1 for the first and the second experiment, respec-
tively. In Fig. 5d), AZ%~0 for all of the positions of the
moving holeH ;. However, in Fig. &d), A3} exhibits a peak
for some positions of the moving hole. Inspection shows that
the positions of these peaks coincide with the positions of the
peaks exhibited by the pairwise interactioh and A% .
Thus, the residual three-hole interaction exhibits a peak
when all of the pairwise interactions{2’, A{2, andA$?,
are at their peak positions.

Let us explain the behavior af{3) theoretically. Imagine
that one of the holes, e.d¢H,,, is isolated from the other two,

awP=0 (I, 1,

serve similar patterns as in Fig(&. The global behavior of >I, ln,~n,>lc) and AZ=0 (Mhyorg>les Tugon,
the lifetime resembles the inverse of the naturally invariant.| y_ At this point, we are not interested in the strength of

measure contained within the seHj,3, i.e., 7%
~un(H129 "t [1,5,6,8,21 The fact thatr{3) is roughly a
constant is a consequence of the features of the tentseap

Sec. Il). At some positions of the moving hole we observe

peaks in the lifetime. The peaks appear due to the shadowing

effect. WhenH; sweeps over a short periodic orbit, thidg
““casts a shadow” on itself and we observe a peak. WHgn

“casts a shadow” on one of the nonmoving holes, or when

H; is shadowed by the nonmoving holes, then we also ob
serve a peak.

In Figs. §b) and Gb) we display the quantityy; * [see
Eq. (16)] for the first and second numerical experiment, re-
spectively. The approximation(®)= 7;1_1 does not include

shadowing between different holes. In other words, it is ap-

plicable only when the pairwise interactioﬂéjz) are insig-
nificant. As we can see, the approximaticarli1 is able to
reproduce the global behavior @ 35)3 plus the peaks on the
short periodic orbits(This behavior ofnl‘l can be explained
by using results from Ref7], see Sec. ll). Note that in the
second experiment, the approximatiq@l is shifted down-
wards as compared td3. The cause of that lies in the fact

(3)

the pairwise interaction{2 . The average lifetime{3}

be written in terms of th& measure

can

(3)
Ci2

3
7'(12)3

= u&(H) + & (Ho) + uy(H3)
1

—+
2
Uty

M£231)23(H1) +pciadHa) + M£231)23(H3)

1

4D

(17

The approximationsul®,o(Hz) = uiy(Ha) = uEJ(H,) fol-

low from IH3_,HZ>IC and IHl_,H2>IC, respectively. Simi-

larly, the approximation:&),4(H1) = u{2s(H,) follows from

I, >le, and ulhyHa)=puiy(H;) follows  from

l,—n,>lc. SinceA))=0 andAfy=0, from Eqgs.(16) and
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(17) we obtainA{2k=0. In the first experiment, for every yields the most pronounced peak in both the lifetime and the
position of the moving holéd;, one of the holes is always three-hole residual interaction. These other cases can be
isolated in the aforementioned sense. Therefore, the consitheoretically treated by using the same strategy as in Eq.
erations abovgEq. (17)] theoretically explain the absence of (18).
the three-hole residual interaction in the first experiment We have seen that the presence of the third hole can pre-
[Fig. 5(d)]. vent shadowing between the other two holes. For this reason,
Imagine the following situation, the holé$;, andH4 sig- ~ we have two alternative approaches to describing the lifetime
nificantly interact by the pairwise interactioh{y). To be  7i2s. (i) When the third hole is introduced, we can redefine
more specific, assume thiaf, . <Ic andly__y >lc. As-  the pairwise interactions in order to writerf}) as a sum of
sume that we position the hot¢, “in between" the holes One hole escape rates(®,1/7{"), plus the new, redefined
Hs; and H;, in the sense thato'HﬁHz(gs):gZ, pairwise interactions. These new pairwise interactions would
OM-Hi(&E)=¢&1, lun =l -n.+ly .p.. Evidently, have to depend on the positions of all holes involvéd.
ST S The second approach is to simply write the total amount of
shadowing as a sum of the old pairwise interactiaefined
by Eq.(13)] plus the residual three-hole interaction. We have
chosen the latter approach. From ELj7) it follows thatA {3}

AY and A2 are significant as well. For simplicity, we as-
sume thatHl_,H2>IC and| H2_>H3>IC. This kind of situation
creates peaks shown in Figids. From Eqs.(7) and (16) it

follows that can exhibit a peak value only if all of the three holes are
AQ~ S35.1(Ha) — 83.1(Ha)+ 3 1(Hp) — 85 1(Ha) mutually involved in the shadowing interactions.
+ 0124 H1) —614Hy). (18 V. GENERALIZATION
The first two terms in Eq(18) are ~0 becaUSdHlaHS In the preceding two sections, we have investigated the

lifetimes 7? and 7. An inductive approach leads to the

>|.. Sincely _y.>1., the third and the fourth term are L
¢ Hi—Hp™ e study of then-hole lifetime 7™ for n=4. Suppose that we

~0. The fifth term depends d3(H3,H,), while the sixth

N ! ', = SYM have studied the lifetimes™®), 7®), ..., 7(""Y and the
term depends ot} (g"sle)- SinceH is “in the middle corresponding residual many-hole interactiong, (),
of Hy and Hy, 135(Hs,H)>ly 1y, and most likely A®) A(M=1) respectively. In this section we will study

1$9(Hs,Hi)>1.. This leads tas;, {H;)=0. Sincel,; .,  the following decomposition:
>le and 19(Hg,Hy) =1y <l;, the sixth term is

n
515(H)=A'%. Thus, for this particular situation of the po- v D (19)
o i . (n) Mk
sitions of the holes, the magnitude of the residual three-hole Tid..n k=1

interaction isA (3=—A2.
Let us explain this result in simple words. The approxi-where

mation 7{3%= 7, * is applicable only when there is no shad- ]
owing between different holes. If some shadowing exists, 1

- . : m=2 (20
7, ~ IS an underestimate because shadowing prolongs the = Ti(l)
lifetime. The total amount of shadowing is given by the dif- !
ference 1#3%— 7,. It seems reasonable that the total amount, 4
of shadowing can be represented by the sum over all pair-

wise interactions, i.e., H3y— 7,=A%+AZ+ AT . How- n—k+1l n—k+2 n
ever, the pairwise interaction between two holes, as defined 7= > > .- > A®. . k=2
by Eqg. (13), does not depend on the position of the third =1 =it =il

hole. Thus, wr|1e|1|-|2 is “in betweeln” the holedH; andH 4, (2D
Le., when Oty =&, OMru(8)=&, lny-n, Equations(13) and (16) are special cases of E(L9) for n
=lny—n, T IH,~n,<lc, then the holeH, preventsHs from  —5 andn=3, respectively. From Eq21) it follows that the
casting a shadow on the hol¢; (as an eclipse For that  kth contribution to the lifetime, is the sum of {) re-
reason AP+ A3 +A% is larger than the total amount of sidual k-hole interactiong A®]. Equations(19), (20), and
shadowing by approximatelyA?, ie., AZ=-A%. (21 define the residuai-hole interactionA () .
(Since the peaks in the pairwise interactions are negative, the The escape rate 71(15?_.“ is in the first approximation
peaks in the residual three-hole interactions are positive. given by the one-hole escape rateg(lfg[ =71 [see Eq.
The residual three-hole interactia3} can exhibit a peak  (20)]. This approximation is applicable only when there is no
for some other arrangement of the hole positions. For eXshadowing. The total amount of shadowing 3§_,7,.
ample, when the holes are on a periodic orbit of period 3 werom Egs.(19) and (21) it follows that the total amount of
also observe a peak in{3;. For the tent map, whed;  shadowing has complicated structure. By assuming that we
=217, £,= 417, £&3=6/7, and 2=0.005, thenr3y=127 and  know the behavior oA for k<n, the most interesting
A3)~1.86x10"2. By comparing these values witt};and  term in decompositiori19) is the residuah-hole interaction
A from Figs. 5a), 6(a), and Gd), we see that this situation A{} .
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From the behavior oA 3 we conjecture thaA{) . ob- 11—
tains a peak value only if afi holes are mutually involved in
the shadowing interactions. The most obvious physical real- 0.1k .
ization for this to occur is when the position§, i ]
=1,2,...n, coincide with the points of an unstable peri- 0.01 | g) ]
odic orbit of periodn [see Eq.(3)]. In this case that is of
particular interest to the field of controlling chaos, every hole 0.001 L , . . !
strongly shadows the next one, i.él; shadowsH,, H, ) 1 . . . .
shadowsH 4, etc.[see Fig. 1)].
This specific arrangement can be theoretically treated by
utilizing the c measure. We have analytically derived the 2 0.1 ¢ 3
contribution of A{J = within decomposition(19), i.e., s .
|A . /7D 17! as a function ofh for n=2, 3, and 4. = 001 p) 3
From these derivations a conjecture follows that
0.001 e
(n) 1 : | I I I
A% ol een
o
0.01 F ¢) E
The approximation that leads to E@2) is a bit rough. Let
Apnstj» 1=1,2,...0n denotelO’(gi)| for 1D maps. For 2D 0001 Lo v o v 0L
maps, letA s denote the magnitude of the eigenvalue of 2 4 6 8 10
DO(§) that corresponds to the unstable directiani§ a 2D n

map. DO(&) denotes the Jacobian matrix of partial deriva-
tives calculated ag . The approximation is\ yns;j=€XpAy,
i=12,...n.

In order to test conjectur@?2), within the attractors of the

FIG. 7.|AY) /[ 17 vsn. The contribution of the-hole
residual interaction, within decompositigh9), decreases exponen-
tially fast with the increase ofi. The holesH; are located om
. points of an wunstable periodic orbit of periodn.
tent map, generalized Baker mapee Ref.[6], p. 75, \, AW /[ ] for (a the tent map, 2=9.77. -- 104, (b) the

=0.35, )‘bzo'_A'O’ a=0.40, ,'8:,0'60)_' and the Heon Baker map,e=0.005, and(c) the Heon map,e=0.001. See text
map [28], we find some periodic orbits of prime period o, further details.

2,3,...,10, provided they exist. Then we centeholes on
the points of the unstable periodic orbit of periocnd cal-
culate  |AYY /[AY 7'  Figure 7 displays
|A 7Y 17t againstn. For the tent map, the Baker

h . h | f th . . . .
map, ~and the Heon map, the slope of the . o0 ml[ 7Y .17t decrease very rapidly with the in-

InjA{Y /[ 17! vsn graph obtained from the numeri- : ; )
cal data is—0.700, —0.60, and—0.49, respectively. The cr((la(;a\se ofk. In order to understand this b_ehawor, con§|der
T corresponding to a random choicelohole posi-

“theoretical” value of \ ; for these maps is In=20.693 - -, fqlgig i
0.636, and 0.4210], respectively. The points on the graphs

are far better correlated for the tent map than for the other

two maps. This is due to the fact that the approximation

above is exactly valid for the tent map, i.gQ’(x)| 1L
=exp(In 2),¥xe[0,1]. Equation(22) strongly underpins the
idea that\; determines the “effective range” of the shad-
owing interaction.

In addition to the numerical experiment presented above,
it is interesting to examine the total contribution of the re-
sidual k-hole interactions, i.e.z /[ 3. 1%, within the
sum in Eq.(19). We perform two numerical experiments by
using the tent map. In the first one, we randomly choose 100
arrangements of the hole position, (¢,, . .. ,&,). For ev-
ery random choice, the contributiong /[ 7{Y ]~ * are cal-
culated. Then we calculate the average value okthecon- FIG. 8. The contribution, /[ 7§, .]-* vs k for the holes lo-

tribution, i-e-:<7]k/[7'(1nz)-..n]_1>- In the second experiment, cated on an unstable periodic orlfilosed circles The average
we position ten holes at the points of an unstable periodigalue (7, /[ 1% vs k for 100 randomly chosen positions
orbit of period 10. Then we calculate theh contribution  (&,,&,,....£,) (open diamonds The r.m.s. deviation of
ﬂk/[T(ﬁ)...n]_l, for k=1,2,...,10. Figure 8 displays (/[ 171 (horizontal error bajs 2e=9.77---10"*.

(17D 7Y and 9 /[P 17t vs k for the first and
the second experiment, respectively.
From the first numerical experiment, we see that the con-

2

(n),

(m)
nT,<NT >
o

-1t

-2
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tions& , &, ..., &, . For some random choice of the hole periodn[see Eq(3)]. As we have already said, this situation

positions, it is highly unlikely that all of theseholes would 1S Of interest to the field of controlling chaos.
be mutually involved in the shadowing interactidiesy., that From Egs.(7) and(5) it follows that
they are on a periodic orbit of peridg. In other words, it is

- ® 1 s .
most likely thatA'l'z's""k 0. ) ) o) zz /‘L(Cn]?z...n(Hi)zz :U“E:n:zz...n(o RGN Y
Results of the second numerical experiment are stronglyriz..., =1 i=1
distinguished from results of the first numerical experiment. (24

We see that the contributiong, do not decrease rapidly at o . . .
all. The sign ofz, is positive(negative for odd (even val- ~ 1he measureuy is invariant, i.e., un(P)=un(O"(P)),
ues ofk. This follows from the definition of the many-hole WherePCD. From this, we can write

interactions. We have seen th&f?) obtains negative peaks n
[see Eq.(15)]. Study of Eq.(18) shows thatA(®) exhibits a _ 1.0 _
peak when the sum over pairwise interactions becomes an #n(Hiz o) izl (@ (Hi- )N H))

overestimate for the total amount of shadowing. Thus, since .

the pairwise interactions are negativ®) exhibits positive +un(O (Hir)\H} (25
peaks. This behavior is inductively reflected into thbole
residual interactions and consequently into the contribution

7k

In Egs. (24) and (25 H,,;=H;. This notation is kept
throughout this section.
In Ref.[7] we have compared themeasure correspond-

the lifetime {3, distinguish itself when the holes are lo- Ing to just one r_mle’“Cl' W'_th_ _the nature_llly Invariant mea
sure uy . Recalling the definition oP,, in Ref.[7] it has

cated on an unstable periodic orbit of perindi.e., in the ) o
case of interest to the field of controlling chaos. This is aP€€N shown that iy, _p >lc, then uci(Po)=un(Po).

consequence of strong shadowing. Otherwiseuc1(P,) is significantly smaller thapy(P,). In
simple words, a significant difference betweeg(P,) and
rci1(Pe) can occur only ifP, overlaps with one of a few
successive images 6f;: O(H,), O?(H,), ... ,0'¢«(H,).

Let us make a projection of that result to obtain the rela-

It is clear that if a certain region on a chaotic attractor istion between Eqs(24) and(25). Since the holes are located
visited more frequently by typical trajectories, the averageon ~ an  unstable  periodic ~ orbit, the  sets
lifetime it takes for an orbit to land in that region will be O(H;), O3(H,), ..., O'¢(H;), are ellipsoidal regions
smaller. Thereforeun(H1o...n) * [uny= the naturally in- centered at the point§ 1, &2 ..., &1, respectively.
variant measuremay be used as an estimate for the averagehese ellipsoidal regions are stretched along the unstable
lifetime {3, manifolds. The difference betweenu{), (P, and

Let us consider the lifetime{” corresponding to the situ- . (P,) can be considerable only #, overlaps with one of
ation that is displayed in Fig.(4). Although a trajectory these ellipsoidal regions. Since the s&S(H; )\H;, i
cannot landfor the first time¢ within the setH;; by landing  =1,2,...n, are stretched along the stable manifolds, and
within the shadowD'(H;)N H;, the estimate for the lifetime since they do not overlap with the aforementioned ellipsoidal
Ti(jz) given by,uN(Hij)‘1 includes the visitation frequency by regions, we approximately write
typical trajectories to the shadowed region.

We conclude that the estimate(H,...,) ! for the life- p&y . (O H(Hir ) \H)=pun (O (Hi11)\H)), (26)
time 7{ , does not include the shadowing effect. When the
holes are located at points of an unstable periodic orbit, Wherei=1,2,...n. [Equation(26) can be justified for 1D
then the shadowing is extremely large. Since shadowing prdnaps by similar argumenisThis leads us to the relation
longs the lifetime, the estimate given Iy (Hq,..,) "t can  between the lifetimer{y . and the visitation frequences
be significantly smaller than the average lifetimid . un(H), 1=12,...

In Ref.[7] we have studied the average lifetime)(&,) )
corresponding to just one hole.g.,H,). It has been dem- _1
onstrated that the ratio*(&;)/un(H,) "t depends on the A izl an(O 7 (Hir)\H)
magnitude of the expanding eigenval(@ll it A,) of the 12

We conclude that both the residushole interaction and

VI. THE CORRELATION BETWEEN THE AVERAGE
LIFETIME AND THE VISITATION FREQUENCY

shortest periodic orbit within the hold; [7]: n un(O "X (H,41)NH,)
=2 un(H)|1-
=1 mn(Hi)
71 = H,) L 23 2
(&1) 1_A51,U~N( 1) (23) (27)
Equation(27) can be applied for holes of different shapes as
Here we generalize this result to thehole case. long as they are sufficiently small. (for 2D map$ we tailor

In this section we assume that the positions of the holeshe holes as rectangles with sides of lengéhparallel to the
(&) coincide with points of an unstable periodic orbit of stable and unstable manifold segments, and if we assume
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25 — y y T T VIl. CONCLUSION
a In conclusion, we have studied the average lifetime
ol . ™ - A, it takes for a randomly initiated trajectory to land
a - LI 7 S .
- within the set ofn holes,H4...,,, on the chaotic attractor of
T a) the mapO. We have demonstrated thf) . exhibits very
d 15 L . . . . sensitive dependence on the positions of the holes. For some
= 0g positions of the holes7{Y . exhibits sharp peaks. These
33 ' peaks originate from the shadowing effect. The amount of
g shadowing between the holes and hence the strength of the
o peaks in the lifetime has been quantitatively described in
2o v wvwwrsrt— 51 . .
terms of the many-hole interactions.
b) The construction and the analysis of the many-hole inter-
sl actions are the main result of this paper. We have demon-
T 2 4 6 8 10 strated that these interactions have very short “effective
n range.” The “effective range” of the many-hole interactions
_ o . has been associated with the positive Lyapunov exponent of
FIG. 9. Numerically evaluated ratiefy) /un(Hiz..n) > for o mapO.

(a) the Baker map(closed squargsand (b) the tent map(closed
circles in comparison to (1—/\51’")’1 (horizontal bars n holes
are centered on the points of an unstable periodic orbit of period
The size of the holes i€=0.005 and 2=0.000488- - for the
Baker and the tent map, respectively.

We have demonstrated that when the holes are located on
the points of an unstable periodic orbit of periog the
amount of shadowing is very large. Consequently, the aver-
age lifetime exhibits one of its most pronounced peak values,
and becomes considerably prolonged as compared to the in-

that th wrally i ant : ih al h verse of the naturally invariant measure contained within the
at the haturally Invariant measure 15 smooth along the u”éetle,_.n. The formula[Eg. (30)] that describes this dis-
stable direction$10], then we can write

crepancy has been derived and tested on some paradigmatic

maps.
O Y(Hi.)NH,
pan( ((l:)l) i) ~Ausi, 1=12,...n. (29
e APPENDIX
From Eqs.(27) and(28) we obtain In Ref. [7] the naturally invariant measureu() of the

map O has been theoretically compared with theneasure
n corresponding to just one ho{eay,ugll)). It has been dem-
= un(H)A—AGL,). (29)  onstrated that the ratiﬂg]?(.PE)//..LN(PE) depends on the in-
i=1 tegerIHl_,PE. Moreover, this ratio was shown to be consid-
erably smaller than 1 only for very small valueslgfﬁpe.
Equation(29) can be further simplified. LeA, denote the In this appendix we will extend this result to find the
magnitude of the unstable eigenvalue of the unstable perbehavior of the quantitys;,. .., n+1(P,) in dependence of
odic orbit, i.e., A,=II{_;A g - If we approximate that the integerl (1'})..An(Hn+1,Pe)- The size of the firsh holes,

i

Aunst,-zAﬁ’”, for i=1,2,...n, then Eq.(29 transforms H;, H,, ..., andH, is denoted withe<1 as in the rest of
into the manuscript. However, the added hblg, 4 is to be dis-
tinguished from other holes. Therefore, its size is denoted
1 with €, 1.
A = un(Hio )L (30) Imagine that we cover the chaotic attractor with cédiall
1-A, them CCD) from a very fine grid. For 102D) maps, we

choose cells to be intervalgsquares of length (area

Equation(30) is the generalization of Eq23) for the case  2€ (4¢€?), i.e., the cells are of the same size as the hilies
whenn holes are positioned on an unstable periodic orbit of (n';IOW we ?rfgll‘)e heuristically that ife<1, then
periodn. The utility value of Eq.(23) and consequently Eq. Hci2...n(C)=#c127.nn+1(C) In most of the cell<, i.e., the
(30) for applications has been discussed in Re&f. two measures appear globally identi¢sée Fig. 2 A set of

In Fig. 9 we display a test of Eq30) on the Baker and POINts on the attractor that never Visits t-he set
the tent map. As we can see, the derived fornjiiq. (30)]  Hiz...n (H12..nn+1) under the dynamics of the mapis an
is a good approximation. For some unstable periodic orbitsembedded chaotic repellgt8,19,29. Let us denote this set

the local stretching rates at different points of the unstablé’Vi'[th1 AR, (A D). It is evident  that
periodic orbit may be considerably different, i.e., the ap-A{5 . 1CAY . As e, decreases to zero the repeller
proximation A yne;=A X" may be not applicable. For these A{}"") ., gradually becomes identical to{} ..
unstgble_periodic orbits, it is better to use more robust ap- The measure,u(cnl)z,,n (M(C”1+2_1,>,nn+1) is concentrated
proximations such as Eq&7) or (29). along the wunstable directions from the repeller
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AR o (A D00) up to the setHi, .y (Hizonns1)  Opp.opney, it is clear that u@hY (O nsa(PO)
[13-15,17-2Q Thus, ase, ., decreases to zero, the mea- — 1o(01  wns1(P))=0. However, sinceuT5Y .1 and

sure #&5 e gradual(lny+kl))ecomes gg)entical o, .. ul, . appear globally identical, the quantity
= = . Y —y

(Finally, for €ns1=0, Aciz - ni1=pciz ) (Tn?erefore, 812 n+1(05. . s 1(P)= 15 101015 i1 (PL)

; on i 's sufficiently -small, then uciz..»(C) — 0, (05 ns1(PD))=0 already for relatively small

=pc1z.nn+1(C) In most of the cellsC. Since en1=€ 1S o1 (e.g., 5-6 for the tent map

1 . .
<1, us .o a”dﬂgﬁ ) nne1 appear globally identical. We support this statement by studying the set
However, we are interested in the comparison of the twg~ -1’ .n.1(P.) in dependence of [7]. For 2D maps, the

measures within the sd®, rather than globally. By using -

Egs.(5) and(8) we can write setOr, ni1(P.) is stretched exponentially fast with the
increase ofl’ along the stable manifolds. Thus, it crosses
1o nnsa(PO=€"""V 0D (05 nia(PO) many of the unstable manifolds that carry baif), , and
C I Y u5Y i For 1D mapsOi, . a1 4(P,) is made of dis-
—e 7 ucio. (O .n(P) joint intervals. The number of these intervals grows expo-
() Y nentially fast with the increase &f. Furthermore, they are
=~ wciz..n(Or2..n(P)NHp1 1) scattered all over the attractor. Thus, as a consequence of the

, .. 7|,
80, o: P.)), Al chaoticity of the mapO, the setOi,.. ,,.1(P.) becomes
1201012 .nnsa(Pe)) (A1) more democratic with the increase Idfin a sense that the

where we have abbreviatedl'=1{) . (H,:1,P),  quantity 8ip..nns1(O1s nnsa(Po) reflects the global

A=A and A" D=0 In this appendix, agreement between the two measures. In other words, insofar

we keep this notation. The second line in E41) results  as|’ is not Sma”1512~--n,n+l(OI2|-/--nn+1(Pe))20'

from the identity O (P)=(0r . (PJ)NHu:1) We must note that although the maPip..ni1 is
U0l ..4(P), and the approximationd/’f(n“)21 and (transiently chaotic, it is sometimes possible that the set
e =1, Sincel’~—Ine and M~ e P1, these approxi- 05 . .nns 2(P2) does not stretch exponentially fast along
mations are valid foe<1 [8,7]. D, denotes the information the stable manifolds. 1fO is a 1D map, it is possible
dimension of the attractor. that the number of preimages th@i,  ....(P.) is

Let us consider the first term in E¢ALl). We argue that made of does not grow exponentially fast. This
M@fz...n(ol_zl./..n(Pe)ﬂHnﬂ) decreases exponentially fast occurs Whenol’z',’_,nnH(PE)E(i). (This is very unlikely
with the increase of . For 1D mapsOIZI-,-»n(Pe)anJrl is since e<1.) In this gase, the above arguments
an interval of approximate width-2e exp(—\41"). For 2D concerning the set Ol_zl...nn+1(Pe) do not apply.
maps, O[z',',,n(Pé) is a narrow region which is stretched However, in this caseu(cnl)z_“n(ol}'f,nnH(PE)):O and
along the stable direction alr)d squeezed along the unStab}-g(:r]lzl)<nn+l(OIZI<,»-nn+l(Pe)):O' In other words, in such a
one [8]. The mtersectlorDl_Z,,,n(Ps)ﬁHn+l is roughly a  c55e we immediately Obtairﬁlz---n,n+1(OIZI-,~-nn+1(Pe))
rectangle of length & and width 2 exp(—\4l"). A1 denotes  _q
the positive Lyapunov exponent obtained for typical initial  \ye conclude that for’ larger than some critical value,
pondltlons on the attractor. If we assume that ¢thmeasure _the two terms from Eq(A1) are~0. This is consistent with
is smooth aII,ong the unstable marjlfolds, then we can writgy,o global agreement between the two meas(Fs 2). The
& (05 (PINH,,)~e ™. Thus, due to the critical valuel, depends on the chaoticity of the ma,(
chaoticity of the mayD, the first term in Eq(Al) decreases >0). For example, the critical valug may be chosen as the
exponentially fast with the increase bf. smallest integer for whicke *1'c< 0.1 [7]. The difference

Let us study the value of;,. ., n+l(01*2'_’_.nn+1(|:>6)) in between the two measures can be observed only at the posi-
dependence df . Let u, denote the measure correspondingtions of a few successive iterates of the added fible,
to a large numberN%l) of randomly distributed points in  (Fig. 2. If we assume that{? . (Hn.1,0%5 1ne1(Po))
the phase space. Since we assume fhatonverges to the >, which is almost always valid since<1, Eq.(10) fol-

measure w151 ., after T>1 iterates of the map lows immediately.

[1] E. Oftt, C. Grebogi, and J. A. Yorke, Phys. Rev. Lé#t, 1196 66, 1123(1991).
(1990. [3] F. Romeiras, C. Grebogi, E. Ott, and W. P. Dayawansa,
[2] W. L. Ditto, S. N. Rauseo, and M. L. Spano, Phys. Rev. Lett. Physica D58, 165 (1992; D. Auerbach, C. Grebogi, E. Ott,
65, 3211(1990; J. Singer, Y-Z. Wang, and H. H. Baibid. and J. A. Yorke, Phys. Rev. Le@t9, 3479(1992; T. Shinbrot,

066205-12



MANY-HOLE INTERACTIONS AND THE AVERAGE . ..

C. Grebogi, E. Ott, and J. A. Yorke, Natufeondon 363
411(1993.

[4] U. Dressler and G. Nitsche, Phys. Rev. L&8, 1 (1992; P.
M. Alsing, A. Gavrielides, and V. Kovanis, Phys. Rev.58,
1968(1994).

[5] A. Duchaeau, N. P. Bradshaw, and H. Bersini, Int. J. Control

72, 727(1999.

[6] E. Ott, Chaos in Dynamical Systent€ambridge University
Press, Cambridge, England, 1993

[7] V. Paar and H. Buljan, Phys. Rev.@, 4869(2000.

[8] T. Shinbrot, E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev.

Lett. 65, 3215(1990.

[9] T. Shinbrot, W. Ditto, C. Grebogi, E. Ott, M. Spano, and J. A.

Yorke, Phys. Rev. Lett68, 2863(1992; T. Shinbrot, E. Ott,
C. Grebogi, and J. A. Yorke, Phys. Rev.4A, 4165(1992; E.

J. Kostelich, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. E

47, 305(1993.

[10] J. P. Eckmann and D. Ruelle, Rev. Mod. PHy&.617(1985.

[11] D. Auerbach, P. Cvitanovjdl. P. Eckmann, G. Gunaratne, and
I. Procaccia, Phys. Rev. Lef8, 2387(1987).

[12] B. R. Hunt and E. Ott, Phys. Rev. Le®6, 2254(1996; Phys.
Rev. E54, 328(1996.

[13] T. Td, in Directions in Chaosedited by Hao Bai-linWorld
Scientific, Singapore, 1990Vol. 3, p. 149

[14] T. Td, Phys. Rev. A36, 1502 (1987); P. Szefalusy and T.
Tél, ibid. 34, 2520 (1986; T. Td, Phys. Lett. A119, 65
(1986; H. Lustfeld and P. Sz#alusy, Phys. Rev. B3, 5882
(1996; A. Csorda, G. Gyogyi, P. Szefalusy, and T. Tk
Chaos3, 31 (1993.

[15] Mukeshwar Dhamala and Y-C. Lai, Phys. Rev.6H, 6176
(1999.

[16] P. Gaspard and J. R. Dorfman, Phys. Re\62=3525(1995.

[17] G. Pianigiani and J. A. Yorke, Trans. Am. Math. S@62, 351
(1979; G. Pianigiani, J. Math. Anal. AppB2, 75 (1981.

PHYSICAL REVIEW E 63 066205

[18] N. Chernov and R. Markarian, Bol. Soc. Bras. Ma2i8, 271
(1997); 28, 315 (1997; N. Chernov, R. Markarian, and S.
Troubetzkoy, Ergod. Th. Dynam. Sy%8, 1049 (1999; 20,
1007 (2000.

[19] P. Collet, S. Martinez, and B. Schmitt, Nonlinearity 1437
(1994; P. Collet, S. Martinez, and V. Maume-Deschamps,
ibid. 13, 1263(2000.

[20] A. Lopes and R. Markarian, SIAMSoc. Ind. Appl. Math. J.
Appl. Math. 56, 651 (1996.

[21] C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. L&f, 1284
(1986; C. Grebogi, E. Ott, F. Romeiras, and J. A. Yorke,
Phys. Rev. A36, 5365(1987.

[22] The term shadowing is used in many areas of physics. An
important issue in nonlinear dynamics is to see whether a cer-
tain systemor class of systemdas a shadowing property. In
chaotic systems, a numerical trajectory diverges exponentially
fast from the true trajectory. Shadowing property of a chaotic
system means that there exists a true trajectory with slightly
different initial condition that stays close or shadows the nu-
merical trajectory, e.g., see S. M. Hammel, J. A. Yorke, and C.
Grebogi, J. Complexity, 136 (1987. We use the term shad-
owing in connection with rather different phenomena.

[23] V. Paar and N. Pavin, Phys. Rev.55, 4112(1997.

[24] V. Paar and N. Pavin, Phys. Lett. 2385 139 (1997.

[25] E. Bollt, Y-C. Lai, and C. Grebogi, Phys. Rev. L€et9, 3787
(1997; J. Jacobs, E. Oftt, and B. R. Hunt, Phys. ReVbE
6577(1998; E. Bollt and Y-C. Lai,ibid. 58, 1724(1998; K.
Zyczkowski and E. M. Bollt, Physica 32, 392(1999; Y-C.

Lai, E. Bollt, and C. Grebogi, Phys. Lett. 255 75 (1999.

[26] P. Cvitanovi¢ G. H. Gunaratne, and |. Procaccia, Phys. Rev. A
38, 1503(1988.

[27] P. Grassberger and I. Proccacia, Phys. Re28/A42591(1983;

J. P. Eckmann and |. Proccacibid. 34, 659 (1986.

[28] M. Hénon, Commun. Math. Phy&0, 69 (1976.

066205-13



