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Many-hole interactions and the average lifetimes of chaotic transients that precede
controlled periodic motion

Hrvoje Buljan and Vladimir Paar
Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

~Received 15 December 2000; published 15 May 2001!

We considern small regions~referred to as the holes! on a chaotic attractor and study the average lifetime
it takes for a randomly initiated trajectory to land in their union. The holes are thought of asn possible escape
routes for the trajectory. The escape route through one of the holes may be considerably reduced by other
holes, depending on their positions. This effect, referred to as shadowing, can significantly prolong the average
lifetime. The main result of this paper is the construction and analysis~numerical and theoretical! of the
many-hole interactions. They are interpreted as the amount of shadowing between the holes. The ‘‘effective
range’’ of these interactions is associated with the largest Lyapunov exponent. The shadowing effect is shown
to be very large when the holes are located onn points of an unstable periodic orbit. Considerable attention is
paid to this case since it is of interest to the field of controlling chaos.

DOI: 10.1103/PhysRevE.63.066205 PACS number~s!: 05.45.Gg, 05.45.Ac
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I. INTRODUCTION

The average lifetime of chaotic transients is an import
physical quantity in the field of controlling chaos@1–9#. Let
us briefly disclose this relation. Chaotic attractors are den
populated by unstable periodic orbits@10,11#. In order to
improve the system performance, we may desire that a
ticular unstable periodic orbit becomes stable, i.e., attrac
@1–6,12#. Suppose that we monitor a randomly initiated tr
jectory on a chaotic attractor. Due to ergodicity, the traj
tory once in a while lands very close to the desired perio
orbit @1,6,10,11#. When it happens, the trajectory approx
mately follows the periodic orbit for a few cycles. Thu
during a brief time interval the behavior of the trajecto
resembles periodic motion. As time increases, the trajec
moves away from the unstable periodic orbit due to its
pelling properties. In Refs.@1–6# it has been demonstrate
that the trajectory can be forced to closely follow the u
stable periodic orbit for a long time interval by applying on
small, time-dependent perturbations in a system param
Since these perturbations are small, they are efficient o
once the trajectory lands sufficiently close to the desired
riodic orbit @1–6#. Therefore, the controlled periodic motio
is preceded in time by a chaotic transient.

The theoretical analysis of this work mainly draws up
the connection between the average lifetime and the co
tionally invariant measure, also referred to as thec measure
@13–20#. The c measures appear in connection with tra
siently chaotic dynamical systems@13–15#. A rigorous math-
ematical analysis of these measures can be found in R
@17–20#, where the existence and uniqueness of thec mea-
sures has been established for a broad class of systems

The problem studied in this paper encompasses the p
lem of average lifetimes preceding controlled periodic m
tion. Suppose that a chaotic attractor~A! presents the
asymptotic behavior of a one-dimensional~1D! noninvertible
or 2D invertible mapO: D→D, D#Rm, mP$1,2%.
Imaginen small regionsHi,D, i 51,2, . . . ,n, referred to
as the holes, that are located on the attractorA. Let the hole
1063-651X/2001/63~6!/066205~13!/$20.00 63 0662
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Hi[Hi ,e(ji) be anm-dimensional ball of radiuse centered
at a pointji . The probability that a trajectory, originatin
from a point chosen at random~using a uniform probability
distribution!, does not land within the union ofn holes

H12•••n5H1øH2ø•••øHn ~1!

during the firstt time steps is

;exp~2t/t12•••n
(n) !, for t@1, ~2!

wheret12•••n
(n) denotes the average lifetime it takes for a tr

jectory to land ~for the first time! within the setH12•••n
@1,6,13,21#.

Given a mapO, the lifetime t12•••n
(n) is a function of the

size (e) and the positions of the holes (ji). In accordance
with Refs.@1,6,8,13,21#, the lifetime obeys a typical power
law dependence one @t12•••n

(n) ;e2g#. In the present work
we analyze the functional dependence of the average lifet
t12•••n

(n) [t (n)(j1 ,j2 , . . . ,jn) on the positions of the holes
For a special case when

O~ji !5ji 11 , i 51, . . . ,n, ~3!

(jn11[j1), i.e., when the holes are centered on the points
an unstable periodic orbit of prime periodn, the lifetime
t12•••n

(n) corresponds to average lifetimes of chaotic transie
that precede controlled periodic motion@1–6#.

Suppose that a trajectory, at the time stept, lands within
the setH12•••n for the first time. The trajectory has landed
just one of the holes, sayH j . We may think ofn holes asn
possible landing grounds or escape routes for the cha
trajectory. At the time stept2 l ( l>1), the trajectory was
certainly within the setO2 l(H j ). Every preimage ofH j can
be thought of as the access toH j . If another hole, sayHi ,
intersects withO2 l(H j ), then H j can be accessed onl
throughO2 l(H j )\Hi @see Fig. 1~a!#. For some positions of
the holesHi andH j , Hi can considerably reduce the acce
sibility to the holeH j . When this happens, we say that th
holeHi ‘‘casts a shadow’’@22# on the holeH j @Fig. 1~a!#. If
©2001 The American Physical Society05-1
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HRVOJE BULJAN AND VLADIMIR PAAR PHYSICAL REVIEW E 63 066205
H j is shadowed by other hole~s!, the escape route viaH j is
significantly suppressed and the lifetime is prolonged.

We will demonstrate that, as a consequence of the sh
owing effect,t12•••n

(n) exhibits sharp peaks for some positio
of the holes. The magnitude of a particular peak correspo
to the total amount of shadowing between the holes. For
special case when the holes are centered on the points
unstable periodic orbit@Eq. ~3!#, the total amount of shadow
ing is extremely large. Every hole shadows the next one.H1
shadowsH2 , H2 shadowsH3, and so on@see Fig. 1~b!#.
Hence, in the case of interest for controlling chaos, the
erage lifetimet12•••n

(n) exhibits one of its most pronounce
peaks.

The inverse of the average lifetime is identical to the
cape rate, the quantity standardly used for the characte
tion of transiently chaotic systems@13–15#. In order
to investigate the functional dependencet12•••n

(n)

[t (n)(j1 ,j2 , . . . ,jn), we will decompose the escape ra
1/t12•••n

(n) as a sum of the one-hole escape rates( i 51
n 1/t i

(1) ,
plus the interference terms that will be referred to as
many-hole interactions. We will demonstrate that the mag
tude of the many-hole interactions reflects the amount
shadowing between the holes. The functional depende
t (n)(j1 ,j2 , . . . ,jn) can be analyzed by investigating th
functional dependence of the many-hole interactions on
positions of the holes. The main result of this paper is
construction, numerical, and theoretical analysis of
many-hole interactions.

FIG. 1. ~a! H j is accessible only through its preimages, e.
O2 l(H j ). SinceO2 l(H j )ùHi5” 0”, H j is actually accessible only
throughO2 l(H j )\Hi ~colored black!. We say that the holeHi casts
a shadow on the holeH j . The shadow ofHi is shaded with diag-
onal lines.~b! Three holes are centered on a periodic orbit of per
three. The shadowing effect is extremely large since every h
shadows the next one.
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It will be demonstrated that for some random choice
the positionsji , it is most likely that there will be no shad
owing, i.e., the many-hole interactions are.0. We will
show that this is a consequence of a very small ‘‘effect
range’’ of the many-hole interactions. The ‘‘effective range
of the many-hole interactions will be associated with t
positive Lyapunov exponent of the mapO. Furthermore,
magnitudes of the peaks in the lifetimet12•••n

(n) will be ana-
lyzed by studying the corresponding peaks in the many-h
interactions.

The paper is organized as follows. In Sec. II we assoc
the n-hole lifetime t12•••n

(n) with the conditionally invariant
measure. In Sec. III we study the two-hole lifetimet12

(2) and
introduce the concept of the pairwise interaction between
holes. In Sec. IV we study the three-hole lifetimet123

(3) and
introduce the concept of the residual interaction between
holes. In Sec. V we introduce the residualn-hole interaction
D12•••n

(n) and generalize the results. In particular, for the ca
when the hole positions satisfy Eq.~3!, we show that the
contribution of then-hole residual interaction within the de
composition of the escape rate 1/t12•••n

(n) decreases exponen
tially fast with the increase ofn. The characteristic exponen
is shown to be approximately equal to the positive Lyapun
exponent of the mapO.

The one-hole lifetime, sayt (1)(j1), was phenomenologi-
cally studied for the logistic map in Refs.@23,24#. A theoret-
ical explanation of these results was reported in Ref.@7#,
where it was demonstrated that whenH1 encompasses a
point on a short periodic orbit,t (1)(j1) significantly deviates
from the inverse of the naturally invariant measure (mN)
contained withinH1 , mN(H1)21. The significance of this
deviation was described in terms of the rat
t (1)(j1)/mN(H1)21, which was found to be a function of th
unstable eigenvalue of the shortest periodic orbit visitingH1.

In Sec. VI we generalize the main result from Ref.@7# to
the n-hole case. If a given region on a chaotic attractor
visited more frequently by typical trajectories, i.e., if a give
region contains a larger amount of naturally invariant m
sure, the average lifetime it takes for an orbit to land in th
region will be smaller. Hence,mN(H12•••n)21 can be used as
an estimate fort12•••n

(n) . However, we will demonstrate tha
when the holes are located on an unstable periodic orbit@Eq.
~3!#, due to the extremely large shadowing effect, the e
matemN(H12•••n)21 is significantly smaller thant12•••n

(n) . It
will be demonstrated thatt12•••n

(n) /mN(H12•••n)21 is a func-
tion of the unstable eigenvalue of the unstable periodic or

II. THE AVERAGE LIFETIMES AND THE
CONDITIONALLY INVARIANT MEASURES

The concept of shadowing~Fig. 1! pictorially explains
significant prolongations of the lifetimet12•••n

(n) that occur for
some positions of the holes. However, a more sophistica
treatment of the problem requires the concept of the con
tionally invariant measure@13–20#.

The c measure is closely associated with an auxilia
modified map@7,18,19,23,24#
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MANY-HOLE INTERACTIONS AND THE AVERAGE . . . PHYSICAL REVIEW E 63 066205
O12•••n~j8!5H O~j8!, j8PD\H12•••n ,

outside ofB, j8PH12•••n ,
~4!

whereB denotes the basin of attraction ofA. Let x0PB be a
point chosen at random~using a uniform probability distri-
bution!. A trajectory of the original mapO originating from
x0 remains on the chaotic attractor forever. A trajectory
the modified mapO12•••n originating from the same initia
condition is exactly the same as for the original mapO, but
only until it lands within the setH12•••n . After that moment
this trajectory escapes through the regionH12•••n , i.e., it is
no longer considered. Therefore, the modified mapO12•••n is
transiently chaotic. The average lifetime of chaotic transie
created by the mapO12•••n is equal tot12•••n

(n) , which we
have defined above. Similar maps with a forbidden gap
gion arise in the context of communicating with chaos@25#
and in calculation of the topological entropy@26,27#. A
broad class of maps with holes and related conditionally
variant measures have been studied in Refs.@17–20#.

In the following an operational definition of thec measure
is given. The chaotic attractor is covered with cells~call
them C,D) from a very fine grid. Suppose that we un
formly distribute a large number of points~N! in the phase
spaceD. The points are iterated by the modified mapO12•••n
for a large number of time steps (T). Let us observe the
surviving points, i.e., the points that have not visited the
H12•••n during the first T21 time steps. In the limitN
→`, T→`, the fraction of surviving points in a given ce
C converges to thec measure@call it mC12•••n

(n) # contained
within that cell, mC12•••n

(n) (C) @13–15,17–20#. Thus, for a
given mapO, the conditionally invariant measuremC12•••n

(n) is
defined by the setH12•••n , i.e., by the positions and the siz
of the holes. The upper and lower indices inmC indicate the
number of holes and their positions, respectively.

In accordance with Refs.@13,14,17–20#, the c measure
mC12•••n

(n) satisfies the following relation:

mC12•••n
(n) ~C!5exp~1/t12•••n

(n) !mC12•••n
(n)

„O12•••n
21 ~C!…, ~5!

where

O12•••n
21 ~C![O21~C!\H12•••n . ~6!

If the setH12•••n is small enough, i.e., ife!1, Eq.~5! can be
used to obtain

1

t12•••n
(n)

.mC12•••n
(n) ~H12•••n!. ~7!

Therefore, the lifetimet12•••n
(n) is approximately equal to the

inverse of thec measuremC12•••n
(n) contained within the se

H12•••n . In the following sections, thec measure will be
utilized as a tool for the theoretical description of the o
served phenomena. From that perspective, Eq.~7! is of key
importance for the theoretical analysis.

The measuremC12•••n
(n) is associated with the setH12•••n .

If we add one more hole,Hn11, to the setH12•••n , we obtain
the setH12•••nn11[H12•••nøHn11, which defines the life-
06620
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time t12•••nn11
(n11) and the measuremC12•••nn11

(n11) . Let Pe,D
denote anm-dimensional ball of radiuse ~the same radius a
the hole! within the phase space. For the theoretical tre
ment of the problem it is important to find the dependence

d12•••n,n11~Pe![mC12•••nn11
(n11) ~Pe!2mC12•••n

(n) ~Pe! ~8!

on the position of the setPe on the attractor. The indices in
d12•••n,n11 denote the indices of the setH12•••n and of the
added holeHn11.

At first, we must introduce one definition. Consider tw
subsets of the phase space,P,P8,D. Suppose that we iter
ate the setP by using the modified mapO12•••n . Then, con-
sider the images of the setP: O12•••n

1 (P), O12•••n
2 (P), . . . ,

O12•••n
l (P), . . . . Let

l 12•••n
(n) ~P,P8! ~9!

be the smallest positive integerl for which the section
O12•••n

l (P)ùP85” 0”. Given a mapO, this integer depends on
the setsH12•••n , P, andP8.

The quantity d12•••n,n11(Pe) @Eq. ~8!# depends
on l 8[ l 12•••n

(n) (Hn11 ,Pe) @in what follows, l 8
[ l 12•••n

(n) (Hn11 ,Pe)#. There are two possibilities:~i! If l 8
. l c , where l c denotes some critical value, the
d12•••n,n11(Pe).0. ~ii ! If l 8< l c , then d12•••n,n11(Pe) is
smaller than zero. It can be shown that

d12•••n,n11~Pe!.2mC12•••n
(n)

„O12•••n
2 l 8 ~Pe!ùHn11…

;2e2l1l 8, ~10!

i.e., the difference between the two measures decrease
ponentially fast with the increase ofl 8 ~see the Appendix!.

The critical value,l c , is a small positive integer that i
determined by the positive Lyapunov exponent of the mapO
~denotedl1). In Ref. @7# we have definedl c as the smallest
positive integer for whiche2l1l c,0.1. For the maps that we
utilize, l c;4. A theoretical explanation of the statemen
above can be deduced from Ref.@7# ~see the Appendix!.

As an illustration of thec measures, Fig. 2~a! displays
mC1234

(4) andmC12345
(5) for the tent map with four and five holes

The positions of the first four holes are taken asj150.338,
j250.331, j350.411, andj450.220. The position of the
added hole isj550.676. The cells are chosen to be of t
same size as the holes. Therefore, every cellC can be re-
garded as a setPe . Figure 2~b! shows the difference betwee
these two measures,d1234,5(C)5mC12345

(5) (C)2mC1234
(4) (C).

As we can see,d1234,5(C) is significantly smaller than zero
only if l 1234

(4) (H5 ,C)< l c , i.e., in those cells that overlap wit
one of a few successive images of the added holeH5. ~For
the tent map,l c;4.!

Note that (Cd12•••n,n11(C)50 because the measure
mC12•••n

(n) and mC12•••nn11
(n11) are normalized. Since forl 8< l c

the quantity d12•••n,n11(Pe) is significantly smaller than
zero, for the positions of the setPe where l 8
. l c @d12•••n,n11(Pe).0#, d12•••n,n11(Pe) is actually
slightly larger than zero@see Fig.~2!#.
5-3
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In order to make the exposition clear, let us retrosp
briefly on the notation. Given a mapO, the choice ofn holes
defines the the lifetimet12•••n

(n) , the auxiliary mapO12•••n ,
and thec measuremC12•••n

(n) . For a givenn, we can choose
some smaller number of holes and define these quanti
For example, suppose that there are eight holes. We
choose three holes, sayH1 , H5, and H7 that definet157

(3) ,
O157, and mC157

(3) . As a similar example,d17,5(Pe) denotes
mC157

(3) 2mC17
(2) .

Furthermore, it is convenient to define

l P→P8 ~11!

as the smallest positive integerl for which the section
Ol(P)ùP85” 0”. In simple words, the setP maps to the se
P8 in l P→P8 iterates. Given a mapO, l P→P8 depends on
the setsP andP8. From the definitions~11! and~9! it can be
easily seen thatl P→P8< l 12•••n

(n) (P,P8). Thus, if l Hn11→Pe

. l c , thend12•••n,n11(Pe).0.

III. THE TWO-HOLE LIFETIME AND THE
PAIRWISE INTERACTION

In this section we study the lifetimet12
(2) , which is defined

as the average lifetime it takes for a randomly started tra
tory to land in the setH1øH2 @see Eq.~2!#. The lifetimet12

(2)

can be written in terms of thec measure@see Eq.~7!#,

1

t12
(2)

5mC12
(2) ~H1!1mC12

(2) ~H2!. ~12!

FIG. 2. ~a! The c measures for the tent map with holes. T
width of the holes is 2e51/256. The unit interval is divided into
256 cells~C! of equal size. The content of thec measures within a
given cell C is drawn against the position of the cell (x). The
measuremC1234

(4) (mC12345
(5) ) corresponding to four~five! holes is

drawn with a solid~dotted! line. ~b! The differenced1234,5(C)
against the position of the cell. The position of the added holeH5 is
indicated with the vertical line. The positions of the first five imag
of H5 are indicated with arrows.
06620
t

s.
an

c-

The comparison of the measuresmC12•••n
(n) and mC12•••nn11

(n11)

from the previous section leads us to investigate the sub
tutions mC12

(2) (H1)→mC1
(1)(H1).1/t1

(1) and mC12
(2) (H2)

→mC2
(1)(H2).1/t2

(1) . These substitutions lead to the follow
ing decomposition of the lifetime

~13!

The quantityD12
(2) , also referred to as the pairwise interactio

between the holesH1 andH2, is defined by Eq.~13!. From
Eqs.~8!, ~12!, and~13! it follows that

~14!

The functional dependencet (2)(j1 ,j2) is numerically and
theoretically studied by investigating the functional depe
denciest (1)(ji) andD (2)(j1 ,j2).

Let us consider results of a numerical experiment tha
performed by using the tent map. The holeH1 is located at
the fixed position,j150.314•••, on the attractorA5@0,1#.
The position of the second hole,j2, is moved across the
attractor. The quantitiest12

(2) , h1, and D12
(2) are calculated.

The size of both holes is constant, 2e50.005.
Figures 3~a!, 3~b!, and 3~c! display the average lifetime

t12
(2) , h1

21 , andD12
(2) as functions of the position of the mov

ing holeH2, respectively. We observe the following.~i! For
most of the positions of the moving holeH2 , t12

(2).h1
21 ,

andD12
(2).0. ~ii ! The quantityh1

21 and hencet12
(2) are, on the

average, approximately equal tomN(H12)
21. h1

21 exhibits
peak values only at the positions of short periodic orb
Consequently, at these positions the lifetimet12

(2) obtains
peak values as well. These peaks are labeled with asteris
Figs. 3~a! and 3~b!. ~iii ! When the moving holeH2 overlaps
with one of a few successive images~previous preimages! of
the nonmoving holeH1, then D12

(2) obtains negative peak
values. Consequently,t12

(2) exhibits a peak and becomes si
nificantly larger thanh1

21 . These peaks are labeled with in
teger numbers. Positive ~negative! integers denote
l H1→H2

(2 l H2→H1
) @see quantity~11!#. For example, the

peak labeled with 1 (21) is located at the position of th
first image~preimage! of the nonmoving holeH1. ~iv! The
magnitude of the peaks labeled withl H1→H2

(2 l H2→H1
) de-

creases rapidly with the increase ofl H1→H2
( l H2→H1

).
Let us explain these observations.
~i! Since the holesH1 andH2 are very small, for most of

the positions of the moving hole (H2), the integersl H2→H1

and l H1→H2
will be larger than the critical valuel c . When

l H2→H1
. l c and l H1→H2

. l c , thend1,2(H1).0 and
5-4
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d2,1(H2).0, respectively@see quantity~8! and Eq. ~14!#.
This is equivalent tot12

(2).h1
21 andD12

(2).0.
~ii ! Sinceh1 is constructed solely from the one hole life

times, t (1)(j1) and t (1)(j2), the graph in Fig. 3~b! can be
explained by using results from Ref.@7#, where it has been
demonstrated that for most of the positionsji , there is
t (1)(ji).mN(Hi)

21. We conclude that for most combina
tions of j1 andj2, the quantityh1

21 and hence the lifetime
t12

(2) are approximately equal to@mN(H1)211mN(H2)21#21

5mN(H12)
21. This conclusion is consistent with the prev

ous reports@1,5,6,8,21#.
For the tent map, the naturally invariant measure c

tained within a given interval on the attractor is equal to
length of that interval. Therefore,mN(H2)5mN(H1)52e
50.005. This leads to'100 iterates as the average value
t12

(2) ~see Fig. 3!.
When the holeHi encompasses a short periodic orbit, t

lifetime t (1)(ji) is considerably longer thanmN(Hi)
21 @7#.

Consequently, whenH2 sweeps over a short periodic orbit,
peak is observed in bothh1

21 andt12
(2) .

~iii ! From results of the previous section@quantity ~8!#
and Eq.~14! it follows that when at least one of the intege
l 2
(1)(H1 ,H2) or l 1

(1)(H2 ,H1) is smaller thanl c , thenD12
(2) is

considerably smaller than zero. In our numerical experim
l H1→H2

5 l 2
(1)(H1 ,H2) and l H2→H1

5 l 1
(1)(H2 ,H1). Therefore,

wheneverl H1→H2
or l H2→H1

is smaller than the critical value

l c , a peak is observed inD12
(2) and consequently int12

(2) .
~iv! In order to explain the magnitudes of these pea

suppose that at least one of the integersl H1→H2
or l H2→H1

is

smaller thanl c . Let us assume thatl H2→H1
< l c and l H1→H2

FIG. 3. Structure of the lifetime for the two-hole case.~a! The
average lifetimet12

(2) , ~b! the approximationh21 ~solid line! and
mN(H12)

21 ~dotted line!, and ~c! the pairwise interactionD12
(2) in

dependence of the position of the moving holeH2. The position of
the nonmoving holeH1 is indicated with the dashed vertical line
06620
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.lc , i.e., the holeH2 maps to the holeH1 in just a few
iterates. From Eqs.~10! and ~14! it follows that

D12
(2).2mC1

(1)
„O

1

2 l H2→H1~H1!ùH2…;2e2l1l H2→H1,
~15!

i.e., the magnitude of the peak exhibited byD12
(2) decreases

exponentially fast with the increase ofl H2→H1
. Conse-

quently, the peaks int12
(2) labeled with negative~positive!

integers decrease very rapidly with the increase
l H2→H1

( l H1→H2
).

Note that the approximationmC1
(1)
„O

1

2 l H2→H1(H1)ùH2…

;e2l1l H2→H1 assumes that the local stretching rates are
proximately equal to the average stretching rate, descri
by the positive Lyapunov exponent~see the Appendix!. For
that reason, there may be some deviations from the e
exponential decrease. Furthermore, the slope of the lnuD12

(2)u
vs l H2→H1

line can be larger or smaller than2l1, depending
on the position of the holes, i.e., depending on the lo
stretching rates.

Figure 4 displaysuD12
(2)u vs l H2→H1

for the tent and the

Hénon map~see Ref.@28# a51.4, b50.3). We see that
the points are better correlated for the tent map than for
Hénon map. The aforementioned approximation@Eq. ~15!# is
exactly valid for the tent map:uO8(x)u525el1, ;x
P@0,1#. The slopes of the lines are20.77 and20.6, while
the ‘‘theoretical’’ values for the Lyapunov exponent arel1
5 ln 250.693••• and l150.42 @10# for the tent and the
Hénon map, respectively.

Equation~15! can be interpreted in the following manne
If we associate the ‘‘distance’’ between the holes with t
integersl H1→H2

and l H2→H1
, then we can say that the pai

wise interactionD12
(2) decreases exponentially fast with th

increase of ‘‘distance.’’ The exponential decrease is, on
average, determined by the positive Lyapunov exponentl1
of the map O. Therefore, l1 determines the ‘‘effective
range’’ of the pairwise interaction. If the map is more ch

FIG. 4. The magnitude of the pairwise interactionuD12
(2)u vs

l H2→H1
( l H1→H2

. l c) for the tent~circles! and the He´non map~dia-
monds!. The size of the holes are 2e50.001 ande50.001 for the
tent and the He´non map, respectively.
5-5
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HRVOJE BULJAN AND VLADIMIR PAAR PHYSICAL REVIEW E 63 066205
otic, the ‘‘range’’ of the interaction is smaller, and for mo
of the positions of the holesD12

(2).0.
When the positions of the holes are fixed, the pairw

interaction D12
(2) obeys a power-law dependence one!1.

This follows from the definition ofD12
(2) in Eq. ~13!, and the

power-law dependence of the lifetimes one @1,6,8,13,21#.
For ‘‘almost every’’ choice~with respect to the naturally
invariant measuremN) of the positionsji on the attractor, the
lifetimes scale ast12•••n

(n) ;e2D1, whereD1 denotes the infor-
mation dimension@1,6,8#. ConsequentlyD12

(2);eD1, i.e.,D12
(2)

decreases with the decrease ofe. Therefore, the size of the
holese can be thought of as the ‘‘charge’’ of the interactio

The picture of a shadow as shown in Fig. 1~a! ~shaded
with diagonal lines!, is suitable for 2D invertible maps, bu
not for 1D noninvertible maps. However, sinc
O2 l

„H jùOl(Hi)…5O2 l(H j )ùHi , the holeH j will be more
intensively shadowed by the holeHi if the intersection
O2 l(H j )ùHi is larger, i.e., if the accessO2 l(H j )\Hi is
smaller. This statement is applicable for both 1D noninve
ible and 2D invertible maps. When the holeH2 significantly
shadows the hole H1, i.e., when the intersection
O2 l H2→H1(H1)ùH2 is large, the pairwise interactionD12

(2)

will exhibit a peak@see Eq.~15!#. Thus, the pairwise inter
action D12

(2) can be interpreted as the amount of shadow
between the holes.

From Eq.~15! it follows that the pairwise interaction an
hence the lifetime exhibit a strong peak whenl H1→H2

51 and

l H2→H1
51, i.e., when the hole positionsj1 andj2 lie on the

points of an unstable periodic orbit of period two. For t
tent map, whenj150.4, j250.8, and 2e50.005, thent12

(2)

.193 andD12
(2).22.53 1023. By comparing these value

with t12
(2) and D12

(2) from Fig. 3, we see that this situatio
yields the most pronounced peak in both the lifetime and
pairwise interaction.

IV. THE THREE-HOLE LIFETIME AND THE RESIDUAL
THREE-HOLE INTERACTION

In this section we study the lifetimet123
(3) , defined as the

average lifetime it takes for a randomly started trajectory
land in the setH1øH2øH3. The functional dependenc
t (3)(j1 ,j2 ,j3) is studied through the following decompos
tion:

~16!

The justification for this decomposition will be clear after t
numerical and theoretical analysis. The quantityD123

(3) is re-
ferred to as the three-hole residual interaction. The functio
dependenciest (1)(ji) and D (2)(ji ,jj ), i 5” j , are well
known from Ref.@7# and Sec. III of this manuscript, respe
06620
e

t-

g
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al

tively. Hence, the only quantity that requires further analy
is the last term on the right-hand side of Eq.~16!, i.e., the
three-hole residual interaction.

The lifetimet123
(3) is numerically studied by using the ten

map. We have performed two numerical experiments.
both of them, the first and the second hole,H1 andH2, are
located at fixed positions on the attractor@0,1#. The position
of the third holeH3 is changed across the attractor. All qua
tities from Eq. ~16! are calculated. Parameters of the fir
numerical experiment are: the width of the holese
50.005; and the positions of the nonmoving holesj1
50.314••• and j250.247. The position of the holeH1 is
the same as in Fig. 3. From Fig. 3~c! it can be seen that in
this first experiment, the pairwise interaction between
nonmoving holes is approximately zero, i.e.,D12

(2).0. Pa-
rameters of the second numerical experiment aree
50.005, j150.314•••, and j250.157•••. Note that only
the positionj2 has changed. In the second numerical expe
ment, the pairwise interaction between the nonmoving ho
is large, i.e.,D12

(2) has a peak.@In Fig. 3~c!, this peak is
positioned atj250.157•••, and is labeled with21.#

The results of the two experiments are displayed in Fig
for the first, and in Fig. 6 for the second numerical expe
ment. The dependence of the lifetimet123

(3) on the position of

FIG. 5. The first numerical experiment:~a! The average lifetime
t123

(3) , ~b! the approximationh1
21 , ~c! the approximation (h1

1h2)21, and ~d! the residual three-hole interaction,D123
(3) , in de-

pendence on the position of the moving holeH3. The positions of
the nonmoving holes,H1 and H2, are indicated with the vertica
lines.
5-6
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MANY-HOLE INTERACTIONS AND THE AVERAGE . . . PHYSICAL REVIEW E 63 066205
the moving holeH3 is shown in Figs. 5~a! and 6~a! for the
first and second numerical experiment, respectively. We
serve similar patterns as in Fig. 3~a!. The global behavior of
the lifetime resembles the inverse of the naturally invari
measure contained within the setH123, i.e., t123

(3)

;mN(H123)
21 @1,5,6,8,21#. The fact thatt123

(3) is roughly a
constant is a consequence of the features of the tent map~see
Sec. III!. At some positions of the moving hole we obser
peaks in the lifetime. The peaks appear due to the shadow
effect. WhenH3 sweeps over a short periodic orbit, thenH3
‘‘casts a shadow’’ on itself and we observe a peak. WhenH3
‘‘casts a shadow’’ on one of the nonmoving holes, or wh
H3 is shadowed by the nonmoving holes, then we also
serve a peak.

In Figs. 5~b! and 6~b! we display the quantityh1
21 @see

Eq. ~16!# for the first and second numerical experiment,
spectively. The approximationt (3).h1

21 does not include
shadowing between different holes. In other words, it is
plicable only when the pairwise interactionsD i j

(2) are insig-
nificant. As we can see, the approximationh1

21 is able to
reproduce the global behavior oft123

(3) plus the peaks on the
short periodic orbits.~This behavior ofh1

21 can be explained
by using results from Ref.@7#, see Sec. III.! Note that in the
second experiment, the approximationh1

21 is shifted down-
wards as compared tot123

(3) . The cause of that lies in the fac

FIG. 6. The second numerical experiment:~a! The average life-
time t123

(3) , ~b! the approximationh1
21 , ~c! the approximation (h1

1h2)21, and~d! D123
(3) in dependence on the position of the movin

hole H3. The positions of the nonmoving holes are indicated w
the vertical lines.
06620
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that the non-moving holes,H1 andH2, significantly interact
by the pairwise interactionD12

(2) . Therefore, for every posi-
tion of the moving holeH3, there is a systematic error in th
approximationt (3).h1

21.
However, when we include the pairwise interaction in t

description oft123
(3) , then we obtain a very good approxima

tion. Figures 5~c! and 6~c! display the quantity (h11h2)21

as a function of the moving hole@see Eq.~16!#. This approxi-
mation fort123

(3) includes the pairwise interactions. As we ca
see, in both Figs. 5~c! and 6~c! the quantity (h11h2)21

describes the global behavior of the lifetimet123
(3) together

with all of the peaks.„Note that in Fig. 6~c!, (h11h2)21 is
not shifted downwards as compared tot123

(3) @Fig. 5~a!#.… The
functional dependence of the one-hole lifetimes and the p
wise interactions on the positions of the the holes is w
known from the preceding section and Ref.@7#. Therefore,
already at this point we understand almost all of the asp
of the functional dependencet (3)(j1 ,j2 ,j3).

It can be noticed that in the second experiment, the m
nitude of the peaks is not well described by the approxim
tion (h11h2)21. In order to pictorially present this devia
tion, in Figs. 5~d! and 6~d! we displayD123

(3)51/t123
(3)2(h1

1h2)21 for the first and the second experiment, resp
tively. In Fig. 5~d!, D123

(3)'0 for all of the positions of the
moving holeH3. However, in Fig. 6~d!, D123

(3) exhibits a peak
for some positions of the moving hole. Inspection shows t
the positions of these peaks coincide with the positions of
peaks exhibited by the pairwise interactionsD13

(2) and D23
(2) .

Thus, the residual three-hole interaction exhibits a pe
when all of the pairwise interactionsD12

(2) , D13
(2) , andD23

(2) ,
are at their peak positions.

Let us explain the behavior ofD123
(3) theoretically. Imagine

that one of the holes, e.g.,H2, is isolated from the other two
in the sense that the pairwise interactionsD12

(2).0 (l H1→H2

. l c , l H2→H1
. l c) and D23

(2).0 (l H2→H3
. l c , l H3→H2

. l c). At this point, we are not interested in the strength
the pairwise interactionD13

(2) . The average lifetimet123
(3) can

be written in terms of thec measure

1

t123
(3)

.mC123
(3) ~H1!1mC123

(3) ~H2!1mC123
(3) ~H3!

.mC13
(2) ~H1!1mC2

(1)~H2!1mC13
(2) ~H3!

.
1

t13
(2)

1
1

t2
(1)

.
1

t1
(1)

1
1

t2
(1)

1
1

t3
(1)

1D13
(2) . ~17!

The approximationsmC123
(3) (H2).mC12

(2) (H2).mC2
(1)(H2) fol-

low from l H3→H2
. l c and l H1→H2

. l c , respectively. Simi-

larly, the approximationmC123
(3) (H1).mC13

(2) (H1) follows from
l H2→H1

. l c , and mC123
(3) (H3).mC13

(2) (H3) follows from

l H2→H3
. l c . SinceD12

(2).0 andD23
(2).0, from Eqs.~16! and
5-7
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HRVOJE BULJAN AND VLADIMIR PAAR PHYSICAL REVIEW E 63 066205
~17! we obtainD123
(3).0. In the first experiment, for ever

position of the moving holeH3, one of the holes is alway
isolated in the aforementioned sense. Therefore, the con
erations above@Eq. ~17!# theoretically explain the absence
the three-hole residual interaction in the first experim
@Fig. 5~d!#.

Imagine the following situation, the holesH1 andH3 sig-
nificantly interact by the pairwise interactionD13

(2) . To be
more specific, assume thatl H3→H1

< l c and l H1→H3
. l c . As-

sume that we position the holeH2 ‘‘in between’’ the holes
H3 and H1, in the sense that Ol H3→H2(j3)5j2 ,
Ol H2→H1(j2)5j1 , l H3→H1

5 l H3→H2
1 l H2→H1

. Evidently,

D23
(2) andD12

(2) are significant as well. For simplicity, we as
sume thatl H1→H2

. l c andl H2→H3
. l c . This kind of situation

creates peaks shown in Fig. 6~d!. From Eqs.~7! and ~16! it
follows that

D123
(3).d23,1~H3!2d3,1~H3!1d23,1~H2!2d2,1~H2!

1d12,3~H1!2d1,3~H1!. ~18!

The first two terms in Eq.~18! are '0 becausel H1→H3

. l c . Since l H1→H2
. l c , the third and the fourth term ar

'0. The fifth term depends onl 12
(2)(H3 ,H1), while the sixth

term depends onl 1
(1)(H3 ,H1). SinceH2 is ‘‘in the middle’’

of H3 and H1 , l 12
(2)(H3 ,H1). l H3→H1

, and most likely

l 12
(2)(H3 ,H1). l c . This leads tod12,3(H1).0. Sincel H1→H3

. l c and l 1
(1)(H3 ,H1)5 l H3→H1

< l c , the sixth term is

d1,3(H1).D13
(2) . Thus, for this particular situation of the po

sitions of the holes, the magnitude of the residual three-h
interaction isD123

(3).2D13
(2) .

Let us explain this result in simple words. The appro
mationt123

(3).h1
21 is applicable only when there is no sha

owing between different holes. If some shadowing exis
h1

21 is an underestimate because shadowing prolongs
lifetime. The total amount of shadowing is given by the d
ference 1/t123

(3)2h1. It seems reasonable that the total amo
of shadowing can be represented by the sum over all p
wise interactions, i.e., 1/t123

(3)2h1.D12
(2)1D13

(2)1D23
(2) . How-

ever, the pairwise interaction between two holes, as defi
by Eq. ~13!, does not depend on the position of the th
hole. Thus, whenH2 is ‘‘in between’’ the holesH3 andH1,
i.e., when Ol H3→H2(j3)5j2 , Ol H2→H1(j2)5j1 , l H3→H1

5 l H3→H2
1 l H2→H1

< l c , then the holeH2 preventsH3 from

casting a shadow on the holeH1 ~as an eclipse!. For that
reason,D12

(2)1D13
(2)1D23

(2) is larger than the total amount o
shadowing by approximatelyD13

(2) , i.e., D123
(3).2D13

(2) .
~Since the peaks in the pairwise interactions are negative
peaks in the residual three-hole interactions are positive!

The residual three-hole interactionD123
(3) can exhibit a peak

for some other arrangement of the hole positions. For
ample, when the holes are on a periodic orbit of period 3
also observe a peak inD123

(3) . For the tent map, whenj1

52/7, j254/7, j356/7, and 2e50.005, thent123
(3).127 and

D123
(3).1.8631023. By comparing these values witht123

(3) and
D123

(3) from Figs. 5~a!, 6~a!, and 6~d!, we see that this situation
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yields the most pronounced peak in both the lifetime and
three-hole residual interaction. These other cases can
theoretically treated by using the same strategy as in
~18!.

We have seen that the presence of the third hole can
vent shadowing between the other two holes. For this rea
we have two alternative approaches to describing the lifet
t123

(3) . ~i! When the third hole is introduced, we can redefi
the pairwise interactions in order to write 1/t123

(3) as a sum of
one hole escape rates,( i 51

(3) 1/t i
(1) , plus the new, redefined

pairwise interactions. These new pairwise interactions wo
have to depend on the positions of all holes involved.~ii !
The second approach is to simply write the total amount
shadowing as a sum of the old pairwise interactions@defined
by Eq.~13!# plus the residual three-hole interaction. We ha
chosen the latter approach. From Eq.~17! it follows thatD123

(3)

can exhibit a peak value only if all of the three holes a
mutually involved in the shadowing interactions.

V. GENERALIZATION

In the preceding two sections, we have investigated
lifetimes t (2) and t (3). An inductive approach leads to th
study of then-hole lifetimet (n) for n>4. Suppose that we
have studied the lifetimest (4), t (5), . . . , t (n21), and the
corresponding residual many-hole interactions,D (4),
D (5), . . . , D (n21), respectively. In this section we will stud
the following decomposition:

1

t12•••n
(n)

5 (
k51

n

hk , ~19!

where

h15 (
i 151

n
1

t i 1
(1)

, ~20!

and

hk5 (
i 151

n2k11

(
i 25 i 111

n2k12

••• (
i k5 i k2111

n

D i 1i 2i 3••• i k
(k) , k>2.

~21!

Equations~13! and ~16! are special cases of Eq.~19! for n
52 andn53, respectively. From Eq.~21! it follows that the
kth contribution to the lifetime,hk , is the sum of (k

n) re-
sidual k-hole interactions@D (k)#. Equations~19!, ~20!, and
~21! define the residualn-hole interactionD12•••n

(n) .
The escape rate 1/t12•••n

(n) is in the first approximation
given by the one-hole escape rates 1/t12•••n

(n) .h1 @see Eq.
~20!#. This approximation is applicable only when there is
shadowing. The total amount of shadowing is(k52

n hk .
From Eqs.~19! and ~21! it follows that the total amount of
shadowing has complicated structure. By assuming that
know the behavior ofD (k) for k,n, the most interesting
term in decomposition~19! is the residualn-hole interaction
D12•••n

(n) .
5-8
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From the behavior ofD123
(3) we conjecture thatD12•••n

(n) ob-
tains a peak value only if alln holes are mutually involved in
the shadowing interactions. The most obvious physical r
ization for this to occur is when the positionsji , i
51,2, . . . ,n, coincide with the points of an unstable pe
odic orbit of periodn @see Eq.~3!#. In this case that is of
particular interest to the field of controlling chaos, every h
strongly shadows the next one, i.e.,H1 shadowsH2 , H2
shadowsH3, etc. @see Fig. 1~b!#.

This specific arrangement can be theoretically treated
utilizing the c measure. We have analytically derived t
contribution of D12•••n

(n) within decomposition ~19!, i.e.,
uD12•••n

(n) u/@t12•••n
(n) #21 as a function ofn for n52, 3, and 4.

From these derivations a conjecture follows that

uD12•••n
(n) u

@t12•••n
(n) #21

;e2l1(n21). ~22!

The approximation that leads to Eq.~22! is a bit rough. Let
Lunst,i , i 51,2, . . . ,n denoteuO8(j i)u for 1D maps. For 2D
maps, letLunst,i denote the magnitude of the eigenvalue
DO(ji) that corresponds to the unstable direction (O is a 2D
map!. DO(ji) denotes the Jacobian matrix of partial deriv
tives calculated atji . The approximation isLunst,i.expl1,
i 51,2, . . . ,n.

In order to test conjecture~22!, within the attractors of the
tent map, generalized Baker map~see Ref.@6#, p. 75, la
50.35, lb50.40, a50.40, b50.60), and the He´non
map @28#, we find some periodic orbits of prime perio
2,3, . . .,10, provided they exist. Then we centern holes on
the points of the unstable periodic orbit of periodn and cal-
culate uD12•••n

(n) u/@t12•••n
(n) #21. Figure 7 displays

uD12•••n
(n) u/@t12•••n

(n) #21 againstn. For the tent map, the Bake
map, and the He´non map, the slope of the
lnuD12•••n

(n) u/@t12•••n
(n) #21 vs n graph obtained from the numer

cal data is20.700, 20.60, and20.49, respectively. The
‘‘theoretical’’ value of l1 for these maps is ln 250.693•••,
0.636, and 0.42@10#, respectively. The points on the grap
are far better correlated for the tent map than for the ot
two maps. This is due to the fact that the approximat
above is exactly valid for the tent map, i.e.,uO8(x)u
5exp(ln 2),;xP@0,1#. Equation~22! strongly underpins the
idea thatl1 determines the ‘‘effective range’’ of the shad
owing interaction.

In addition to the numerical experiment presented abo
it is interesting to examine the total contribution of the r
sidual k-hole interactions, i.e.,hk /@t12•••n

(n) #21, within the
sum in Eq.~19!. We perform two numerical experiments b
using the tent map. In the first one, we randomly choose
arrangements of the hole positions (j1 ,j2 , . . . ,jn). For ev-
ery random choice, the contributionshk /@t12•••n

(n) #21 are cal-
culated. Then we calculate the average value of thekth con-
tribution, i.e., ^hk /@t12•••n

(n) #21&. In the second experimen
we position ten holes at the points of an unstable perio
orbit of period 10. Then we calculate thekth contribution
hk /@t12•••n

(n) #21, for k51,2, . . .,10. Figure 8 displays
06620
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^hk /@t12•••n
(n) #21& and hk /@t12•••n

(n) #21 vs k for the first and
the second experiment, respectively.

From the first numerical experiment, we see that the c
tributionshk /@t12•••n

(n) #21 decrease very rapidly with the in
crease ofk. In order to understand this behavior, consid
D i 1i 2i 3••• i k

(k) corresponding to a random choice ofk hole posi-

FIG. 7. uD12•••n
(n) u/@t12•••n

(n) #21 vs n. The contribution of then-hole
residual interaction, within decomposition~19!, decreases exponen
tially fast with the increase ofn. The holesHi are located onn
points of an unstable periodic orbit of periodn.
uD12•••n

(n) u/@t12•••n
(n) #21 for ~a! the tent map, 2e59.77•••1024, ~b! the

Baker map,e50.005, and~c! the Hénon map,e50.001. See text
for further details.

FIG. 8. The contributionhk /@t12•••n
(n) #21 vs k for the holes lo-

cated on an unstable periodic orbit~closed circles!. The average
value ^hk /@t12•••n

(n) #21& vs k for 100 randomly chosen position
(j1 ,j2 , . . . ,jn) ~open diamonds!. The r.m.s. deviation of
^hk /@t12•••n

(n) #21& ~horizontal error bars!. 2e59.77•••1024.
5-9
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tions ji 1
, ji 2

, . . . , ji k
. For some random choice of the ho

positions, it is highly unlikely that all of thesek holes would
be mutually involved in the shadowing interactions~e.g., that
they are on a periodic orbit of periodk). In other words, it is
most likely thatD i 1i 2i 3••• i k

(k) .0.

Results of the second numerical experiment are stron
distinguished from results of the first numerical experime
We see that the contributionshk do not decrease rapidly a
all. The sign ofhk is positive~negative! for odd ~even! val-
ues ofk. This follows from the definition of the many-hol
interactions. We have seen thatD (2) obtains negative peak
@see Eq.~15!#. Study of Eq.~18! shows thatD (3) exhibits a
peak when the sum over pairwise interactions becomes
overestimate for the total amount of shadowing. Thus, si
the pairwise interactions are negative,D (3) exhibits positive
peaks. This behavior is inductively reflected into thek-hole
residual interactions and consequently into the contributi
hk .

We conclude that both the residualn-hole interaction and
the lifetime t12•••n

(n) distinguish itself when the holes are lo
cated on an unstable periodic orbit of periodn, i.e., in the
case of interest to the field of controlling chaos. This is
consequence of strong shadowing.

VI. THE CORRELATION BETWEEN THE AVERAGE
LIFETIME AND THE VISITATION FREQUENCY

It is clear that if a certain region on a chaotic attractor
visited more frequently by typical trajectories, the avera
lifetime it takes for an orbit to land in that region will b
smaller. Therefore,mN(H12•••n)21 @mN[ the naturally in-
variant measure# may be used as an estimate for the aver
lifetime t12•••n

(n) .
Let us consider the lifetimet i j

(2) corresponding to the situ
ation that is displayed in Fig. 1~a!. Although a trajectory
cannot land~for the first time! within the setHi j by landing
within the shadowOl(Hi)ùH j , the estimate for the lifetime
t i j

(2) given bymN(Hi j )
21 includes the visitation frequency b

typical trajectories to the shadowed region.
We conclude that the estimatemN(H12•••n)21 for the life-

time t12•••n
(n) does not include the shadowing effect. When t

holes are located atn points of an unstable periodic orbi
then the shadowing is extremely large. Since shadowing
longs the lifetime, the estimate given bymN(H12•••n)21 can
be significantly smaller than the average lifetimet12•••n

(n) .
In Ref. @7# we have studied the average lifetimet (1)(j1)

corresponding to just one hole~e.g.,H1). It has been dem-
onstrated that the ratiot (1)(j1)/mN(H1)21 depends on the
magnitude of the expanding eigenvalue~call it Lu) of the
shortest periodic orbit within the holeH1 @7#:

t (1)~j1!.
1

12Lu
21

mN~H1!21. ~23!

Here we generalize this result to then-hole case.
In this section we assume that the positions of the ho

(ji) coincide with points of an unstable periodic orbit
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periodn @see Eq.~3!#. As we have already said, this situatio
is of interest to the field of controlling chaos.

From Eqs.~7! and ~5! it follows that

1

t12•••n
(n)

.(
i 51

n

mC12•••n
(n) ~Hi !.(

i 51

n

mC12•••n
(n)

„O21~Hi 11!\Hi….

~24!

The measuremN is invariant, i.e.,mN(P)5mN„O
21(P)…,

whereP,D. From this, we can write

mN~H12•••n!5(
i 51

n

$mN„O
21~Hi 11!ùHi…

1mN„O
21~Hi 11!\Hi…%. ~25!

In Eqs. ~24! and ~25! Hn11[H1. This notation is kept
throughout this section.

In Ref. @7# we have compared thec measure correspond
ing to just one holemC1

(1) , with the naturally invariant mea
suremN . Recalling the definition ofPe , in Ref. @7# it has
been shown that ifl H1→Pe

. l c , then mC1(Pe).mN(Pe).

Otherwise,mC1(Pe) is significantly smaller thanmN(Pe). In
simple words, a significant difference betweenmN(Pe) and
mC1(Pe) can occur only ifPe overlaps with one of a few
successive images ofH1 : O1(H1), O2(H1), . . . ,Ol c(H1).

Let us make a projection of that result to obtain the re
tion between Eqs.~24! and ~25!. Since the holes are locate
on an unstable periodic orbit, the se
O1(Hi), O2(Hi), . . . , Ol c(Hi), are ellipsoidal regions
centered at the pointsji 11 , ji 12, . . . , ji 1 l c

, respectively.
These ellipsoidal regions are stretched along the unst
manifolds. The difference betweenmC12•••n

(n) (Pe) and
mN(Pe) can be considerable only ifPe overlaps with one of
these ellipsoidal regions. Since the setsO21(Hi 11)\Hi , i
51,2, . . . ,n, are stretched along the stable manifolds, a
since they do not overlap with the aforementioned ellipsoi
regions, we approximately write

mC12•••n
(n)

„O21~Hi 11!\Hi….mN„O
21~Hi 11!\Hi…, ~26!

where i 51,2, . . . ,n. @Equation~26! can be justified for 1D
maps by similar arguments.# This leads us to the relation
between the lifetimet12•••n

(n) and the visitation frequence
mN(Hi), i 51,2, . . . ,n:

1

t12 . . .n
(n)

.(
i 51

n

mN„O
21~Hi 11!\Hi…

5(
i 51

n

mN~Hi !S 12
mN„O

21~Hi 11!ùHi…

mN~Hi !
D .

~27!

Equation~27! can be applied for holes of different shapes
long as they are sufficiently small. If~for 2D maps! we tailor
the holes as rectangles with sides of length 2e parallel to the
stable and unstable manifold segments, and if we ass
5-10
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that the naturally invariant measure is smooth along the
stable directions@10#, then we can write

mN~O21~Hi 11!ùHi !

mN~Hi !
.Lunst,i , i 51,2, . . . ,n. ~28!

From Eqs.~27! and ~28! we obtain

1

t12•••n
(n)

.(
i 51

n

mN~Hi !~12Lunst,i
21 !. ~29!

Equation~29! can be further simplified. LetLu denote the
magnitude of the unstable eigenvalue of the unstable p
odic orbit, i.e., Lu5) i 51

n Lunst,i . If we approximate that
Lunst,i.Lu

1/n , for i 51,2, . . . ,n, then Eq. ~29! transforms
into

t12•••n
(n) .

1

12Lu
21/n

mN~H12•••n!21. ~30!

Equation~30! is the generalization of Eq.~23! for the case
whenn holes are positioned on an unstable periodic orbit
periodn. The utility value of Eq.~23! and consequently Eq
~30! for applications has been discussed in Ref.@7#.

In Fig. 9 we display a test of Eq.~30! on the Baker and
the tent map. As we can see, the derived formula@Eq. ~30!#
is a good approximation. For some unstable periodic orb
the local stretching rates at different points of the unsta
periodic orbit may be considerably different, i.e., the a
proximationLunst,i.Lu

1/n may be not applicable. For thes
unstable periodic orbits, it is better to use more robust
proximations such as Eqs.~27! or ~29!.

FIG. 9. Numerically evaluated ratiot12•••n
(n) /mN(H12•••n)21 for

~a! the Baker map~closed squares!, and ~b! the tent map~closed
circles! in comparison to (12Lu

21/n)21 ~horizontal bars!. n holes
are centered on the points of an unstable periodic orbit of perion.
The size of the holes ise50.005 and 2e50.000488••• for the
Baker and the tent map, respectively.
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VII. CONCLUSION

In conclusion, we have studied the average lifetim
t12•••n

(n) it takes for a randomly initiated trajectory to lan
within the set ofn holes,H12•••n , on the chaotic attractor o
the mapO. We have demonstrated thatt12•••n

(n) exhibits very
sensitive dependence on the positions of the holes. For s
positions of the holes,t12•••n

(n) exhibits sharp peaks. Thes
peaks originate from the shadowing effect. The amount
shadowing between the holes and hence the strength o
peaks in the lifetime has been quantitatively described
terms of the many-hole interactions.

The construction and the analysis of the many-hole in
actions are the main result of this paper. We have dem
strated that these interactions have very short ‘‘effect
range.’’ The ‘‘effective range’’ of the many-hole interaction
has been associated with the positive Lyapunov exponen
the mapO.

We have demonstrated that when the holes are locate
the points of an unstable periodic orbit of periodn, the
amount of shadowing is very large. Consequently, the av
age lifetime exhibits one of its most pronounced peak valu
and becomes considerably prolonged as compared to th
verse of the naturally invariant measure contained within
set H12•••n . The formula@Eq. ~30!# that describes this dis
crepancy has been derived and tested on some paradigm
maps.

APPENDIX

In Ref. @7# the naturally invariant measure (mN) of the
mapO has been theoretically compared with thec measure
corresponding to just one hole~saymC1

(1)). It has been dem-
onstrated that the ratiomC1

(1)(Pe)/mN(Pe) depends on the in-
teger l H1→Pe

. Moreover, this ratio was shown to be consi

erably smaller than 1 only for very small values ofl H1→Pe
.

In this appendix we will extend this result to find th
behavior of the quantityd12•••n,n11(Pe) in dependence of
the integerl 12•••n

(n) (Hn11 ,Pe). The size of the firstn holes,
H1 , H2 , . . . , andHn is denoted withe!1 as in the rest of
the manuscript. However, the added holeHn11 is to be dis-
tinguished from other holes. Therefore, its size is deno
with en11.

Imagine that we cover the chaotic attractor with cells~call
them C,D) from a very fine grid. For 1D~2D! maps, we
choose cells to be intervals~squares! of length ~area!
2e (4e2), i.e., the cells are of the same size as the holesHi .

Now we argue heuristically that if e!1, then
mC12•••n

(n) (C).mC12•••nn11
(n11) (C) in most of the cellsC, i.e., the

two measures appear globally identical~see Fig. 2!. A set of
points on the attractor that never visits the s
H12•••n (H12•••nn11) under the dynamics of the mapO is an
embedded chaotic repeller@18,19,25#. Let us denote this se
with L12•••n

(n) (L12•••nn11
(n11) ). It is evident that

L12•••nn11
(n11) ,L12•••n

(n) . As en11 decreases to zero the repell
L12•••nn11

(n11) gradually becomes identical toL12•••n
(n) .

The measuremC12•••n
(n) (mC12•••nn11

(n11) ) is concentrated
along the unstable directions from the repel
5-11
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L12•••n
(n) (L12•••nn11

(n11) ) up to the setH12•••n (H12•••nn11)
@13–15,17–20#. Thus, asen11 decreases to zero, the me
sure mC12•••nn11

(n11) gradually becomes identical tomC12•••n
(n) .

~Finally, for en1150, mC12•••nn11
(n11) [mC12•••n

(n) .! Therefore,
if en11 is sufficiently small, then mC12•••n

(n) (C)
.mC12•••nn11

(n11) (C) in most of the cellsC. Since en11[e
!1, mC12•••n

(n) andmC12•••nn11
(n11) appear globally identical.

However, we are interested in the comparison of the t
measures within the setPe rather than globally. By using
Eqs.~5! and ~8! we can write

d12•••n,n11~Pe!5el 8/t(n11)
mC12•••nn11

(n11)
„O12•••nn11

2 l 8 ~Pe!…

2el 8/t(n)
mC12•••n

(n)
„O12•••n

2 l 8 ~Pe!…

.2mC12•••n
(n)

„O12•••n
2 l 8 ~Pe!ùHn11…

1d12•••n,n11„O12•••nn11
2 l 8 ~Pe!…, ~A1!

where we have abbreviated l 8[ l 12•••n
(n) (Hn11 ,Pe),

t (n)[t12•••n
(n) , and t (n11)[t12•••nn11

(n11) . In this appendix,
we keep this notation. The second line in Eq.~A1! results

from the identity O12•••n
2 l 8 (Pe)[„O12•••n

2 l 8 (Pe)ùHn11…

øO12•••nn11
2 l 8 (Pe), and the approximationsel 8/t(n11)

.1 and

el 8/t(n)
.1. Sincel 8;2 ln e and t (n);e2D1, these approxi-

mations are valid fore!1 @8,7#. D1 denotes the information
dimension of the attractor.

Let us consider the first term in Eq.~A1!. We argue that

mC12•••n
(n)

„O12•••n
2 l 8 (Pe)ùHn11… decreases exponentially fa

with the increase ofl 8. For 1D maps,O12•••n
2 l 8 (Pe)ùHn11 is

an interval of approximate width;2e exp(2l1l8). For 2D

maps, O12•••n
2 l 8 (Pe) is a narrow region which is stretche

along the stable direction and squeezed along the uns

one @8#. The intersectionO12•••n
2 l 8 (Pe)ùHn11 is roughly a

rectangle of length 2e and width 2e exp(2l1l8). l1 denotes
the positive Lyapunov exponent obtained for typical init
conditions on the attractor. If we assume that thec measure
is smooth along the unstable manifolds, then we can w

mC12•••n
(n)

„O12•••n
2 l 8 (Pe)ùHn11…;e2l1l 8. Thus, due to the

chaoticity of the mapO, the first term in Eq.~A1! decreases
exponentially fast with the increase ofl 8.

Let us study the value ofd12•••n,n11„O12•••nn11
2 l 8 (Pe)… in

dependence ofl 8. Let m0 denote the measure correspondi
to a large number (N@1) of randomly distributed points in
the phase space. Since we assume thatm0 converges to the
measure mC12•••nn11

(n11) after T@1 iterates of the map
tt

06620
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l
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O12•••nn11, it is clear that mC12•••nn11
(n11)

„O12•••nn11
2T (Pe)…

2m0„O12•••nn11
2T (Pe)….0. However, sincemC12•••nn11

(n11) and
mC12•••n

(n) appear globally identical, the quantit

d12•••n,n11„O12•••nn11
2 l 8 (Pe)…5mC12•••nn11

(n11)
„O12•••nn11

2 l 8 (Pe)…

2mC12•••n
(n)

„O12•••nn11
2 l 8 (Pe)….0 already for relatively small

values ofl 8 ~e.g., 526 for the tent map!.
We support this statement by studying the s

O12•••nn11
2 l 8 (Pe) in dependence ofl 8 @7#. For 2D maps, the

set O12•••nn11
2 l 8 (Pe) is stretched exponentially fast with th

increase ofl 8 along the stable manifolds. Thus, it cross
many of the unstable manifolds that carry bothmC12•••n

(n) and

mC12•••nn11
(n11) . For 1D maps,O12•••nn11

2 l 8 (Pe) is made of dis-
joint intervals. The number of these intervals grows exp
nentially fast with the increase ofl 8. Furthermore, they are
scattered all over the attractor. Thus, as a consequence o

chaoticity of the mapO, the setO12•••nn11
2 l 8 (Pe) becomes

more democratic with the increase ofl 8 in a sense that the

quantity d12•••n,n11„O12•••nn11
2 l 8 (Pe)… reflects the global

agreement between the two measures. In other words, ins

as l 8 is not small,d12•••n,n11„O12•••nn11
2 l 8 (Pe)….0.

We must note that although the mapO12•••nn11 is
~transiently! chaotic, it is sometimes possible that the s

O12•••nn11
2 l 8 (Pe) does not stretch exponentially fast alon

the stable manifolds. IfO is a 1D map, it is possible

that the number of preimages thatO12•••nn11
2 l 8 (Pe) is

made of does not grow exponentially fast. Th

occurs whenO12•••nn11
2 l 8 (Pe)[0” . ~This is very unlikely

since e!1.! In this case, the above argumen

concerning the set O12•••nn11
2 l 8 (Pe) do not apply.

However, in this casemC12•••n
(n)

„O12•••nn11
2 l 8 (Pe)…50 and

mC12•••nn11
(n11)

„O12•••nn11
2 l 8 (Pe)…50. In other words, in such a

case we immediately obtaind12•••n,n11„O12•••nn11
2 l 8 (Pe)…

50.
We conclude that forl 8 larger than some critical valuel c ,

the two terms from Eq.~A1! are'0. This is consistent with
the global agreement between the two measures~Fig. 2!. The
critical value l c depends on the chaoticity of the map (l1
.0). For example, the critical valuel c may be chosen as th
smallest integer for whiche2l1l c,0.1 @7#. The difference
between the two measures can be observed only at the
tions of a few successive iterates of the added holeHn11

~Fig. 2!. If we assume thatl 12•••n
(n)

„Hn11 ,O12•••nn11
2 l 8 (Pe)…

. l c , which is almost always valid sincee!1, Eq.~10! fol-
lows immediately.
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