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We show that stable isotopes display a fractal pattern in the N,Z-

chart and abundance-weighted chart of isotopes with the fractal di-

mension df � 1.2. On this basis a scale invariant power law for ato-

mic and molecular weights can be introduced and applied to sys-

tematics of chemical elements and compounds.
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The concept of atomic weights (relative atomic masses) of chemical ele-

ments and molecular weights (relative molecular masses) of chemical com-

pounds is fundamental to chemistry and the problem to determine their val-

ues has captured attention of chemists for a long time.1,2

On the other hand, fractal ideas of Mandelbrot3 have been extended to

studies of various forms in nature on a wide range of length scales, from as-

tronomic to microscopic (such as clusters of galaxies,3 distribution of earth-

quakes,4 structure of coastlines and rivers,3,5,6 cracks in sedimentary rocks,7

protein surfaces,8 etc.). Fractal structures occur very often in nature, emerg-

ing as a result of evolution of complex interacting systems. A fractal struc-

ture can be linked to a certain power-law behavior of an appropriately se-

lected quantity. In some cases fractal properties are »hidden« and can only

be perceived if data are studied as function of time or mapped in some spe-
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cial way,9 as for example, for heartbeat time series,10,11 reactions in hetero-

geneous chemistry,12 chromatin texture in benign and malignant breast

cells,13 long-range correlations in nucleotide sequences,14 fractal structures

in the eye lens of verterbrates,15 basal metabolic rate in biological organ-

isms,16 etc.

In this letter we address the question whether the fractal concept can be

extended to the realm of atomic and molecular weights of chemical elements

and compounds. In addition to its fundamental scope, this question is inter-

esting also from an another point of view. Namely, it is well known that the

presence of fractality hints to some kind of scale invariant power law.15,16

Thus, if an evidence for fractality is found for atomic weights of chemical ele-

ments, an ensuing power law can provide a new mathematical expression

for atomic and molecular weights of the systematics of chemical elements

and compounds. In this connection we note that an extension of fractality to

general dynamics of the quantum systems has been recently discussed.17

As an indirect evidence for fractality associated with molecular weights

we might interpret also some recent experimental results on the effects of

molecular weight on the interactions between polyethylene oxide layers ad-

sorbed to glass surfaces.18 It was shown that the adsorbed layer thickness

scales roughly with the molecular weight through a power law. Having in

mind that a power law is associated with a fractality of the system, this re-

sult may provide a hint for an underlying fractality.

In our attempt to reveal a hidden fractality, which is relevant for the

systematic of atomic weights of chemical elements, let us start from the

N,Z-chart of isotopes (Figure 1).19,20 Chart of nuclides displays valley of nu-

clear stability. The solid squares represent the stable nuclei plotted as a
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Figure 1. N,Z-chart of stable isotopes. For description see the text.



function of the number of neutrons, N, and number of protons, Z. The num-

bers along the left-hand side, marking the horizontal rows, represent the

atomic number Z (the number of protons in each nucleus of that row). Each

horizontal row represents one chemical element; the filled spaces indicate

the known stable isotopes of that element. The numbers at the bottom of the

vertical columns represent the number of neutrons N in each nucleus of

that column. In this way the 283 stable nuclides are classified in the nu-

clear chart. Data are taken from Refs. 21 and 22.

Already a visual inspection of the geometrical pattern in the N,Z-chart

hints to the similarity with a developed coastal line of mainland and is-

lands, which is fractal.3,6 This observation is corroborated by a direct calcu-

lation of fractal dimension using the box counting method. The box counting

method has been successfully used in calculating fractal dimension of vari-

ous natural objects, with fractality restricted to a certain range.3,12

Here we calculate fractal dimension of the valley of stability in the

N,Z-chart of nuclides employing the box counting method for a »granular«

structure provided by the N,Z-sites (boxes) in the chart of nuclides. Usually

to determine fractal dimension of an object in nature, the photographs of the

object are digitized using a grid of pixels.3,23 The fractal dimension of digi-

tized pattern is then obtained using the box-counting method. A similar ap-

proach, but having a rather small number of pixels, is adopted in our study of

the chart of nuclides. We assign one pixel to each site in the chart of nuclides

corresponding to a stable nucleus. Then the box counting method is applied to

pixels, which correspond to the valley of stability. The chart is overlaid with a

grid of square boxes of size s = �Z = �N. The number of nonempty boxes Ni of

size si is plotted on the log-log diagram as a function of si (Figure 2.a). An ap-

proximate straight-line correlation is obtained in the interval from s = 2 to s =

18. We note that this range of grid sizes is in accordance with the general re-

quirement that the finest grid size must be larger than the pixel size and that

the number of nonempty boxes has to be sizeable. The slope of this line gives

the fractal dimension df of the valley of stability:

df = 1.21 � 0.03 (1)

For comparison, we note that the fractal dimension of the Koch curve,24

which is considered as a prototype of geometrical fractal, is df = 1.26.

Plotting the �2-fit for the straight line

log N(si) = k log (1/si) (2)

fitted through the log-log plot for each value of the coefficient k in the in-

terval 1.0–1.4, the minimum of the �2 versus k graph is obtained at k � 1.2
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(Figure 2.b). This is just the fractal dimension df (1) associated with the val-

ley of stability.

Thus, the valley of stability in nuclear chart appears as a line-area hy-

brid, a fractal object over roughly a decade in the length scale. This is with-

in the range of fractality found for natural objects; the range of scaling prop-

erties for declared fractal objects in nature is centered around one order of

magnitude.25 Recently we have investigated the problem of fractal dimen-

sion of truncated fractals.29,30

In order to get some insight into the robustness of calculated fractal di-

mension, we have considered some modifications of the N,Z-chart of isoto-
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Figure 2. a) Log-log plot for the number of nonempty boxes vs. 1/si (si is the size of a

grid box) overlaying the abundance-weighted N,Z-chart of stable isotopes in Figure 1

(closed circles). The straight line is fitted through the points calculated for various

values of the box size si. b) �2-fit of the straight line (2) through the log-log plot in de-

pendence on the coefficient k. The pronounced minimum of the �2 versus k graph is

at k � 1.2, which is equal to the fractal dimension df associated with the valley of sta-

bility.



pes. In this sense, we modify the N,Z-chart of isotopes in such a way that

the surface of each black square in the chart of isotopes corresponding to an

isotope of chemical element with atomic number Z is proportional to the

natural abundance of that isotope (represented as fraction) in the chemical

element. We introduce the following rule: a surface of the black square in

the N,Z-chart corresponding to an isotope with atomic number Z and neu-

tron number N should be multiplied by a factor a p� � , where p denotes the

natural abundance of the isotope (N, Z) in the chemical element with atomic

number Z and k is a coefficient of proportionality. For example, a size of the

square corresponding to the isotope Ti-48 (with natural isotopic abundance

p = 0.737) at � = 2 is a = 2 0 737� . = 1.21 (in units of the surface of each black

square in the standard chart of isotopes). (At � = 2 each black square can

overlap at most with its immediate neighbors in the N,Z-chart.) The size of

a square corresponding to the isotope Ti-49 (natural abundance p = 0.054)

at � = 2 is a = 2 0 054� . = 0.33. Such modified N,Z-chart, which contains in-

formation on isotopic abundances already by its geometrical shape, will be

referred to as the abundance-weighted N,Z-chart of stable isotopes. Such

chart contains geometric information both on nucleon composition of isoto-

pes and on the natural isotopic abundance of chemical elements.

In Figure 3 the abundance-weighted N,Z-chart is displayed at � = 2. The

corresponding calculated fractal dimension is:

df = 1.19 � 0.02 (3)

The fractal dimension df remains at the values df � 1.2 when � is de-

creasing below 2. The variation of sizes of squares presenting isotopes has
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Figure 3. Abundance-weighted N,Z-chart of stable isotopes at � = 2. For description

see the text.



only a small influence on the calculated fractal dimension. If we take very

small �, for example � = 10–6, the log-log plot is the same as in Figure 2.a,

i.e., the one corresponding to the N,Z-chart with equal-size boxes, and there-

fore the fractal dimension has the same value. This coresponds to fractal di-

mension of a system of pixels. However, it should be noted that the smallest

box size included in the analysis of the box counting method should be

larger than the distance between the centers of the neighboring N,Z-sites,

which is a typical size of the pattern. The smallest box size in the calcula-

tion is si = 2. On the other hand, the upper limit on the box size is deter-

mined by the condition that Ni should be larger than ten. In order to have a

minimal number of nonempty boxes, in accordance with the box counting

method, the origin of the box grid is placed at the position (–0.5, –0.5). The

problem of multiple counting could appear if the position of the origin is pla-

ced at an integer value of coordinate, which appears at singular position.

Otherwise, the results appear stable if the position of the origin is randomly

shifted.

We have also tested stability of our result with respect to the geometri-

cal shape associated with each isotope, by taking instead of square a circu-

lar area of the same surface. Such a change of the shape has no effect on the

calculated fractal dimension, confirming its robustness.

We have shown that the systematics of isotopes presented in the N,Z-

chart of isotopes appears as a line-area hybrid, a fractal object over a decade

in the »length« scale si.

Once the fractality associated with abundance weighted isotope chart was

established, we argue for the existence of scale invariant power law involving

atomic weights. We note that several convincing examples of relation be-

tween fractality and power law have been found for some objects in nature,

as for example, the fractal structure of organisms, acting as area-volume hy-

brids9,27 in relation to the power law dependence of basal metabolic rate on

the mass of mammals16 and the fractal dimension of a river network in rela-

tion to the power-law distribution of the drainage-basin area.5,26

As the main implication, we note that our finding of fractality in the

abundance-weighted N,Z-chart of isotopes is associated with the power law:27

Ar = �c Z
�c (4)

where

�c = 1.48 � 0.02 (5)

�c = 1.120 � 0.004 (6)
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This law describes well the dependence of atomic weights Ar of stable

chemical elements on atomic number Z. The value of the power law expo-

nent (6) is obtained by a fit to data on atomic weights. The power law expo-

nent (6) is close to the value of the fractal dimension (1).

Quite generally, the power law is associated with fractality and the power

law exponent � is a specific function of fractal dimension of the object df:

� = f (df) (7)

where the form of the function f follows from dynamics of the system. For

some systems the explicit form of this function was determined, as for ex-

ample in Ref. 5, while in most cases the values of � and df are independently

determined numerically. The closeness of the power law exponent of the

Ar(Z) dependence and the fractal dimension df found numerically reveals

that in this particular case the function f is close to unity, but this should be

considered as an accidental consequence of complex nuclear dynamics gov-

erning the structure of nuclei.

As to the physical meaning of the present result, its origin is related to

the role of fractal geometry in quantum physics and quark dynamics which

was recently studied in a general framework.17 The fractal geometry, which

shows up in particular observables, is generated by dynamics of the quan-

tum system, the first example of fractal geometry in quantum systems being

invoked in describing selfsimilarity of paths occurring in the Feynman path

integral method. The velocity-dependent interactions, which are important

in the theory of nuclear matter, lead to fractality and moreover the fractal

dimension appears for free fermion propagator, which is relevant for the ge-

ometry of quark propagation in quantum chromodynamics. This provides a

physical framework for the natural appearance of scale invariance at the le-

vel of bulk properties of atomic nuclei, and consequently of atomic weights.

Concluding, we note that the investigations of the power law related to

atomic weights leads to a pronounced regularity in extension of the power

law to molecular weights of chemical compounds in a wide range of chemical

systematics,28 as well as towards the superheavy chemical elements.29 In

this connection we also note that the problem of applicability of fractality to

truncated statistical fractals, which is at the core of present approach, has

been recently discussed by introducing models with truncated mathematical

fractals.30
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Fraktalnost N,Z-karte izotopa sa zastupljeno{}u izotopa
i sistematika atomskih te`ina kemijskih elemenata

Vladimir Paar, Nenad Pavin, Antun Rub~i} i Jasna Rub~i}

Pokazali smo da stabilni isotopi u standardnoj N,Z-karti i N,Z-karti s uklju~e-

njem izotopne zastupljenosti predstavljaju fraktalnu strukturu s fraktalnom dimen-

zijom df � 1,2. Na osnovi te fraktalnosti uvodi se ba`darno invarijantni zakon poten-

cija za atomske te`ine koji se mo`e primijeniti u sistematici kemijskih elemenata i

spojeva.
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