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Naturally invariant measure of chaotic attractors and the conditionally invariant measure
of embedded chaotic repellers

Hrvoje Buljan and Vladimir Paar
Department of Physics, Faculty of Science, University of Zagreb, PP 332, 10000 Zagreb, Croatia
(Received 13 October 2001; published 27 February 2002

We study local and global correlations between the naturally invariant measure of a chaotic one-dimensional
mapf and the conditionally invariant measure of the transiently chaotic fnapThe two maps differ only
within a narrow intervaH, while the two measures significantly differ within the imad&@d), wherel is
smaller than some critical numbkr. We point out two different types of correlations. Typically, the critical
numberl, is small. They? value, which characterizes the global discrepancy between the two measures,
typically obeys a power-law dependence on the widtbf the intervalH, with the exponent identical to the
information dimension. IH is centered on an image of the critical point, thgimcreases indefinitely with the
decrease ot, and they? value obeys a modulated power-law dependence.on

DOI: 10.1103/PhysRevE.65.036218 PACS nunider05.45.Ac, 05.45.Vx

[. INTRODUCTION Let H=(&—€/2,6+ €/2) be an interval on the attractor
such thatuy(H)>0. The regiorH will be referred to as the

A picture of the asymptotic behavior of a permanentlyhole. Due to ergodicity, a trajectory started from a random
chaotic dissipative dynamical system is given by a strangénitial condition will eventually enter the holel [2]. How-
attractor[1-3]. A more detailed description of the system ever, there is a set of points dhyielding trajectories that
involves the naturally invariant measure-7]. The naturally  never enter this region. This set of points is a chaotic repeller
invariant measure provides information on the frequency ofcall it R) embedded within the attractér[18—20. Chaotic
visits by typical trajectories to any given region on the at-repellers embedded within chaotic attractors arise in the con-
tractor. text of communicating with chad48-20Q.

A picture of a transiently chaotic system is given by an  Since chaotic repellers are typically associated with tran-
invariant nonattracting chaotic set, called the chaotic repellesient chaos, we may ask: Is there a transiently chaotic map to
[8—-13. A trajectory starting close to the repeller exhibits which the embedded repell& corresponds? The repell&r
erratic motion practically indistinguishable from the motion governs the dynamics of the transiently chaotic map with a
on the chaotic attractor for a long time. After the chaotichole[14-27,
transient period, the trajectory escapes to sdmassibly
nonchaoti¢ attractor [8—13. Some regions of the phase f(x), xel\H
space containing the repeller are more likely to be visited by fr(x)= outside ofl, xeH. @
long lived chaotic transients than others. This likelihood is
described in terms of the conditionally invariant measureHere, uc denotes thee measure corresponding to the map
also referred to as the measurg8-10,14-17. fy, and the embedded chaotic repeler

The conditionally invariant measure was invented and in- In many physical or numerical experiments, the phase
terpreted by Pianigiani and Yorke in Réfl4]. A rigorous  space is covered with cells from a fine grid, and probability
mathematical analysis of the measures can be found in measures are visualized and analyzed by using such grids
Refs.[14-17. Their existence and uniqueness has been e4§1-3,7,8,23 Imagine that we cover the intervawith bins
tablished for a broad class of systefdg—17. Thec mea- B from a grid of unit sizesg=<e. In this paper, the correlation
sure(call it w¢) is not invariant under the systems dynamics,between the naturally and the conditionally invariant mea-
say a transiently chaotic mdp, . Instead, its image undér, sure is analyzed by using such a grid. Local correlations are

is proportional to itself: described in terms of the relative local difference
f,1(B))=exp — B), 1 B)— un(B
pc(fy(B)) P —a)puc(B) 1) 5,(B)=|'uC( )= mn( )| 3)
mn(B)

whereB denotes a set in the phase space, whetiedsnotes
the escape rate of chaotic transients from the repe8@. A quantitative description of the global discrepancy between
Equation(1) can be utilized for the calculation of the escapethe two measures is characterized in terms oftheralue
rate from the strange sef8,9]. ,

Let us define the problem studied in this paper. We con- [mc(B)—un(B)]
sider unimodal maps on the interv&(x): |—ICR, with a X (5’6'68):§ un(B) :é |5:(B)&(B)],
smooth quadratic maximum assumed at a critical prjnt (4
We assume thdtis chaotic, with a chaotic attractédy, and a
naturally invariant measurgy . The information dimension whered(B)= uc(B)— un(B) [24]. The outline of the manu-
of the attractorA is D;=1. script and the main results are as follows.
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In Sec. Il, we present numerical analysis demonstrating 107 . . . .
that in most of the bins that cover the attractén(B)=0. § —
Significant differences between the two measures occur 102 L i
within the firstl. images of the holéH, wherel. denotes 8
some critical number. In other word§g,(B) is significantly 5{ 10° | i
larger than zero foBC f'(H), 0<I<I,. These differences
will be referred to as the gross differences between the two . - . - .
measures. Since the number of bins that cover the Ifirst 10
images of the hole is- €/ eg, the resolution with which the »
gross differences are observed is given in terms of the ratio ~ 10 ¢ 3
n=¢€eleg=1, also referred to as the grid-refinement param- % 5
eter. The fine differences between the two measures may 107 ¢ E
occur at the iterates of the critical point.

In Sec. Il we discuss the way in which the fine differ-
ences emerge in the histogram representif@®) with the
increase of the grid-refinement parameterWe will show
that the fine differences appear as sharp, isolated spikes in FIG. 1. () The first image of a uniform probability measure
the &,(B) histogram. under the mag represented by a histograiti) The content of the

In Sec. IV, we present the main results of this manuscripthaturally invariant measure within a b8 against the position of
The gross differences are studied analytically. We will dem-he binx. The size of the bins igg=5>10"*.
onstrate the existence of two types of gross differences be-
tween the two measures. by [1—ud(H)]~ 1. This procedure asserts thatl *1)(1)

(1) If & is a typical point on the attractor, then the critical =1 v T=0. In the limit T— o, the measurg.{ converges

. . .- C
numberl, is small, and independent @f<1. The critical g the conditionally invariant measure. of the mapf,,,

numberl is determined by the rate at which the images of,,p;je [1_M(CT)(H)]71 converges to the constant exp(e

the hole get stretched under the systems dynamics. The maganotes the escape rate from the repdfiesee Eq(1) and
nitude of the global discrepancy between the two measures ﬁefs.[S 9,14-17).

correlated with the visiting frequency by typical trajectories Figures 1 and 2 illustrate the action of the original nfiap
to the hole, x>~ un(H). As a consequence, the’ value
obeys a power-law dependence on the size of the hole,
Xg,?(e)fv €P1. (The parameterg and  are written as indices
since they are held constant.

(2) When the point¢ is not typical, a different type of
correlation may occur. I£ lies on an image of the critical
pointx., then the magnitude of is primarily determined by
the size of the hole. The critical number increases approxi-
mately logarithmically with the decrease ef i.e., I.(¢€)
~ In(1/€). Consequently, the/? value obeys a modulated
power-law dependence an Xé,,(e)~ In(1/€) x| where
D#N(g) denotes the pointwise dimension gf; at &.

In Sec. V we present the main conclusions of this paper.

0 02 04 06 038 1

II. NUMERICAL COMPARISON OF py AND p¢

Let us recall the definition of the naturally and the condi-

tionally invariant measures corresponding to the original @h 4 8
map f, and the modified ma,,, respectively. Imagine a w l [ 5
smooth initial probability measure.(?) on the interval "_
I, w9(1)=1. The evolution ofu{?) under the mapleads to 0 |
the measures.(”,u(?, ... u{’, ..., andfinally to the 0 0.5 !
naturally invariant measure of the mafy lim___ u{’ X
=y, wn(1)=1[1-5]. FIG. 2. (a) The image of a u_niform probability measure under
The evolution ofu(®) under the mag, leads to the mea- the mapfy .re.prese.med by a hlstogrgrfb) The content of thee
@ 2 ) . . measure within a biB against the position of the bix (c) &,(B)
suresug’, ue’, .. ue’, - ... Consider the action of the

@ M against the position of the bin. The positions of the first five images
map fy on the measurg:’, T=0. The content ofuc of H are indicated by arrows. The parameters corresponding to the
within the holeH [x{”(H)] is mapped outside of the inter- figures are as follows: Fd@) and(b) £=0.4, =20, ande=0.01.

val |. Imagine that we multiply the resulting measutf "> For (c) £=0.4, 5= 20, ande=0.002.

036218-2
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and of the modified map,,, respectively, on a uniform ini- 107

tial probability measurg:(?). For all illustrations we utilize

the logistic mapf (x) =rx(1—x), at the parameter value _ 10° | E
=3.8. Parameter§ and e defining the modified mdp) are e{)

written in captions. Figures(d) and Za) display the first = 10" | w 1
images of the uniform measupe® under the maps$ and

fy, respectively. Figures(ih) and 2b) display the naturally 10° . ' . .

and the conditionally invariant measure, respectively. Fi-
nally, Fig. 2c) displays the relative local differencé (B)
against the position of the biB.

We observe the following.

(i) The content ofu(®) within the holeH [x(®(H)] is
mapped outside of the interviek[0,1] by the modified map
f,,. Hence, the measurgsy) and u{’ significantly differ 0 0.5 1
within the imagef!(H). The evolution ofu) propagates
these differences at successive images of the hblesee FIG. 3. (a) The histogram representing tlremeasure defined
Figs. 2b) and Zc)]. From Fig. 2c) we see that the measure by the parametersé=0.1805, e=0.001, =20, and eg=¢€/7
displayed in Fig. £b) significantly differs from the naturally =5x10°. The ¢ measure has only two spikes, &x.) and at
invariant measure only within a few successive images of thé*(x.) =&. (b) 5,(B) against the position of the bin. An inspection
hole H. of the differences shows that the gross differences appear within the

(ii) Sincef has a smooth maximum &, at the image of fi£4st |c~8-9 images ofH. The fine differences at*¥(x.) and
the critical pointf(x.), both u(") and ) have a spike. The (%) are indicated by arrows.
spike is labeled by the lette® in Figs. Xa) and Za). The N o, .
evolution of the measurqs&l) and,u(cl) propagates the spike of the critical pointf (x.), k">k¢_ 1. These differences
at the iterates of the critical poifisee Figs. (b) and 2b)]. are referred to as the fine differences between the two mea-

From a number of similar numerical experiments thatsures.
have been performed it follows thaték 1, the relative local
diﬁerenceﬁr(B)zO in most of the bind. The ngOS-S differ.- lll. FINE DIFFERENCES BETWEEN iy AND B¢
ences between the two measures are found within thd first
images of the hole, whetg denotes some critical number. In ~ To what extent will the fine differences be resolved de-
other words, iBC f'(H), wherel <I., thens,(B) is signifi-  Pends on the grid-refinement parametgrand the integer
cantly larger than zerfsee Fig. &)]. In most casegbut not ~ Kx_.n- In order to demonstrate this, suppose thats not
necessarilyl is a small number. eventually periodic. Although the naturally invariant measure

To see the meaning of the grid-refinement parameter has infinite number of spikes, only a finite number of them
consider the number of bins that cover ik image of the will be seen on a histogram representjng (see Ref[3] or
hole f'(H), I<I.. For e<1, the length intervalf'(H) is  Ref.[1], p. 54. To be more specific, the histogram resolves
approximately A'(¢)e, where A'(§)=[df'(x)/dX|x_¢.  only spikes at the iteratef&’ (x.), k' <k., wherek, denotes
Therefore,f'(H) is covered with approximatelh'(£)e/es some critical value. With the decrease of the size of the bins
=A'(é)n bins B. Thus, for larger values of, the gross ¢, i.e., with the increase of the grid-refinement parameter
differences between the two measures are resolved Wwittharameters and e are kept constaptthe critical valuek,
higher resolution. It follows that by keeping the grid- increases indefinitelj1,3]. Thec measure has spikes only at
refinement parametey= €/ eg fixed, the differences between iteratesfk/(xc), k/<kxc~>H' Therefore, in order to re-

the two measurege.g., they? value can be studied as a . . .
function of the size of the hole with effectively constant solve the fine differences on a_grld,has to be large enough
50 thatk,> kaHH- Now, consider the bins that cover the

resolution. In most calculations presented here, we find i

5,.(B)

05 | N E

sufficient to use the valug=20. iteratesfk/(xc), kxc_,H<k’skc. Since uy has spikes at
Let ky_.n=0 denote the number of iterates it takes forthese points, angic does not,uy(B)> uc(B), and &,(B)

the critical pointx, to be mapped to the hold. In other =1.

words, if x.eH, kXCHHzo; if x.&H, then for O<k’ As an illustration of the fine differences between the two

measures, Fig. (B) displays ,(B) corresponding to the
measure in Fig. &). Sincekxcﬁsz is small, the condition
has onlyk, ., spikes that are located at the iteratégx.), k°>kXWH. Whlc.h 'S required for the observat.u')n of fine dif

, c . . ] ferences is satisfied already fgr=20. The critical number
K'=12,... Ky n- As an illustration, thec measure dis- o the images of the holel where uc grossly differs from
played in Fig. 8a) has only two spikes sinck, .n=2. 4 is approximatelyl,=8—-9. However, within some bir
Therefore, it is possible that themeasure, unlike the natu- that are not located at the firkt images of the hole we see
rally invariant measure, does not have spikes at the iteratesignificant d,(B) values. These bins cover the spikes at the

<Kyt F(x) & H, andf—(x;) e H. The measurguy
has a spike at every iterate xaf under the map, whereasuc

036218-3
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0.18 - - - - positions of the spikes. Since the spikeswof are located
2 only at the first, . iterates ofx., D, (f¥'(xc))=1/2, for
XO , c C

k :1,2, P kXC_)H .

——————————————— e TS0 00—

o IV. GROSS DIFFERENCES BETWEEN py AND pc
0176 | o ]

4 gg(n)

In this section, for some fixed value of the parameters
and », and for sufficiently small size of the hoke we esti-
mate analytically, and calculate numerically the relative local
differenced, (B), and they? value. This provides an analyti-
cal description of the gross differences between the two mea-
sures.

10 At first, we qualitatively discuss the transition from tbe
n measure to the naturally invariant measure that occurs when

FIG. 4. Thex2.(») value against). The position of the hole is € is reduced to zero. From the definition of the embedded
£=0.95=f(x.), whereas the size of the hoke=0.01. repellerR it follows that RC A. As e decreases to zero, the

embedded repelleR gradually becomes identical to the at-
points fk’(xc)' k'=10, ...14.K' >kaHH: 2 These fine (ractorA, the measure.c becomes gradually identical to the

hile Eq.(1) t f int
differences typically appear as sharp, isolated spikes in {rineasurQuN, while Eq. (1) transforms into

histogram representing, (B). (B)= upn(fFH(B)). (6)

In Fig. 2(c) the fine differences are not resolved. Since Fn Fn
ky, .+ corresponding to Fig.(®) is large &y . =4150), the  Thus, if € is sufficiently small, themuc(B)= uy(B) in most
condition k.>k, .y can be satisfied only for extremely of the binsB [compare Figs. (b) and Zb)].
large value of the grid-refinement parameterFor that rea- In order to make the exposition clear, two definitions are
son, we are in this case unable to numerically calculate antptroduced. Consider a subset of the phase spacd,. Let

draw the histogram representigg(B), which would resolve  'H-p delnote the smallest positive integiefor which the
the fine differences. sectionf'(H)NP# . Let the quantitys(P) denote the dif-

Let us consider behavior of the global discrepancy beférence between the two measures within the Bset(P)
tween the two measureée( n) in dependence of the grid- = pc(P) — un(P). ) . _
refinement ¢ and e are held fixedl With the increase of, The relative local dlffgrence V\_/lthln a particular bhde-
the grid resolvezs more fine differences between the two meafbephdesggéhfenulmber CI); I:)er:jag?tsoltptzlfseesry;o(ré??nlh':;]t: frgfn?

i i i v LealhoB- r

b Wb 101 e . o E) and e v
suggests that in the limig— oo, thexéé(n) value converges
to some limiting value(g(g,e). This result can be explained
as follows. In the limityp— <, the sum in Eq(4) is substi-
tuted by the integral, and the measuyes and uc by the
naturally and the conditionally invariant density, respec- _ e ~ly_p
tively. Therefore, given the maf) the quantityy2(¢,e) is An(B)=pn(FHB(B) N H)F (T (B). ®
determined by the position qnd the s_ize of.the hole. Equation (7) follows from the approximatiore'H—8/7=1

The aqaly§|s of 'the fo!lowmg sect!on gtlllzgs the .concept+|H_’B/Tzln The largest integety, .5 associated with
of the pplhthse dimension. The pomtvx{lse dimension of 3some bilts) scales a$,_gs~ In(Lle) for e<1 [25], whereas
probability measure. at the pointx is defined ag1,23] the lifetime = scales asr~ e Puy@ [1,12,25. Hence, the

In w(B(x)) approximatione'—8/7=1 is valid for every birB as long as
'LIL—, (55  €<1. By subtracting Eqs(7) and(8) we obtain
n €

0.172 -
10

L
5

3 4 10

10

8

10

pe(B)=puc(f " =8(B)), @

and

D,(x)= lim
eg—0
’ 8(B)=— un(f'-8(B)H)+ 8(f~'H-5(B)\H), (9)
whereB(x) = (X— eg/2X+ €g/2). Let us compare the point-
wise dimension ofuy and uc at some point on the attractor and
A. The pointwise dimension gfy at almost every poink . _
e A (with respect to the naturally invariant measuis 5(B)z|_'“’\'(f Hoe(B)NH)+ o(f HQB(B)\H)L
DMN(X)=D1=1. The pointwise dimension ofcy differs ' un(B)
from D, only at the positions of the spikes. Since the maxi-

mum k(,)f the mapf at th/e critical point _is_quadratic, The functional dependence of(B) [and consequently
D, (f(xc))=1/2, wherek’=1,2, ... [1]. Similarly, the 5 (B)]onl, g is investigated by studying the two terms on
pointwise dimension ofuc is 1 everywhere, except at the the right-hand side of Eq9). In the following subsections

(10

036218-4
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we report two types of gross differences between the two 0.4 - -

measures, i.e., we present two types of dependencg¢Byf
only_g.

A. Typical correlations

If ¢is chosen at random, by using the naturally invariant

measure, then the orbit originating froénis typical in the
sense that DMN(f"(g))lezl,VI’BO. Consequently,
D, (f"(£)=D;=1, VI'=0 (see Sec. .

Consider the bins for whichly_g=I (I>0). Since
DMN(§)=1, for sufficiently smalle, the first term on the

right-hand side of Eq. (99 can be written as
pn(F(B)NH)~eg/A'(£), where A'(&)=|f' () F' (f1(€))
(17 1(&)|=d ' (x)/dX|x- . Due to the chaoticity of

the map, the quantith'(£) increases very rapidly with the

increase ofl. In fact, since¢ is a typical point, for large
enough| the quantity A'(¢)~e, where A denotes the

PHYSICAL REVIEW E 65 036218
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FIG. 5. The relative local differenc& (B) againste. The binsB
are located at successive images of the hBle:f>(H) (square}
BCf3(H) (diamond$, and BC f4(H) (triangles. The position of
the hoIe§=O.40[DﬂN(§)=1], and the grid-refinement parameter
7n=20 are kept constant.

Lyapunov exponent of the map. Thus, if the map is more
chaotic, the quantityzy(f ~'(B)NH) should decrease more not overlap the first, images of the holél, i.e., most likely

rapidly with the increase df

Consider the second term on the right-hand side of Eq

(9). Let us observe the séf;'(B) and the value o8(f'(B))
in dependence df fg'(B) is a union of small disjoint inter-

vals that map their measure ®in | iterates. Due to the
chaoticity of the mag, the number of these intervals grows

exponentially fast with the increase lpfand they are distrib-
uted all over the attractor. Thus, the s‘@'(B) becomes

more democratic with the increase bfn a sense that the
quantityé(fg'(B)) reflects the global agreement between the
two measures. If the map is more chaotic, the number of
disjoint intervals thaf,]'(B) is made of grows at a faster rate
with the increase dff[20]. Thus, depending on the chaoticity

of the map, the quantity(f;'(B)) will be approximately
equal to zero already for small valueslof

From this discussion of the two terms on the right-hand
side of Eq.(9), we conclude thaty(B) [and consequently

IHHfgl(B)>IC. In fact, if the first 2. images of the hole do
hot overlap, i.e., iff'1{(H)Nf'2(H)=@ for |,1,<2l. (I,
#1,), it can be shown thatHHf;l(B)>IC, and consequently
5(f,]'(B)):0. Since¢ is a typical point, it is not eventually
periodic, and the conditiorf'®(H)Nf'2(H)=& for I,l,
=<2l (I#1,) can be satisfied just by makingto be suffi-
ciently small. Therefore, in the typical case, the relative local
difference is approximately

pun(f(B)NH)
un(B)

We have already seen that the quanjity(f ~'(B)NH) de-
creases approximately exponentially fast with the increase of
I, un(F7'(B)NH)~1/A'(£). Therefore, the relative local
difference decreases rapidly with the increasé dhe criti-

5,(B)= (12

cal numbel . is determined by how rapidl'(¢) increases
with the increase df, i.e.,|; depends on the rate at which the

5,(B)] can be significantly different from zero only for small images of the hole get stretched by the dynamics of the map

values ofl. In other words, the critical valuk, is typically
small[see Fig. 2)].

f. Since, un(f ~'(B)NH)~ un(B) ~ €P1, both 6,(B) andl,
are independent of.

Let us make an estimate of the relative local difference As an illustration, Fig. 5 displays, (B) as a function of

6,(B). Generally, the depth of theh well §(B) is described
by the following formula:

8(B)=—pun(fF'(B)NH)— un(f'1(f'(B)NH)
— (26 B NH) - -

(+1,+ ..

— (e (e FB)NH), (1D

Where Ille*}f;%B), IZEIHHf;(lJrIl)(B), - 1|n+l

=ly_ ¢ 0+t + g . The integem is chosen such thdt
H

+li+ - Hg=Ile, while T+1+---+I,+1,>1., e,

s(f, (1t Hntlnid(B))~0. From this it follows thatn

<l., i.e., the number of terms in EqL1) is small.

Since the hole is narrowe1), and since the critical

numberl . is small, it is most likely that the séﬂ'(B) does

for the bins located at thieh image of the holéd. Note that
in this typical case, foe<1, §,(B) is Practically indepen-
dent of the position of the bin withif'(H),I<I.. This is
consistent with Eq(12).

Let us make an estimate of the’ value. Most of the
contributions to they? value come from the bins located
within the firstl; images of the holéd. Therefore,

|C
X2 (6= 2 16(B)a(B)|

I"=1 gt (H)

|C
=X &) 2 pn("(B)NH)
I"=1 Bcf! (H)

Ie

=un(H) 2 5,(17)~ €%,
I'=1

(13
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FIG. 6. Thex;,(¢) value against (closed circles The hole is FIG. 7. (8 The relative local differences,(B) for the bins

positioned at=0.4,D, ({=0.4)=1. The grid-refinement param- Bcf3(H) againste. The parameterg=f!(x.)=0.95 andy=20
eter = 20. The quantityu(H) againste is labeled by the letters are kept constantb) The appearance af,(B) for the binsB that
are within the intervalf'(£) — A'(&) e/2,f'(£)). The appearance is

In the first line of Eq.(13) we have assumed that the fitst ~ Shown forl <l oufe), lcoul(€) <I<lcin(e), andlcin(e)<I. The
images of the hole do not overlap. The second line followguantities 5(Bi,) and &,(Bo,) are marked by open circles and
from the fact that fore<1, the quantitys, (B) is practically ~ °PEn squares, respectively.
independent of the position of the bBwithin thel’th im- grouped around the poirit(¢)=f<*'(x.). The naturally in
age[see Figs. &) and §, i.e., 5,(B)=46,(l"), wheres,(l") . N o - -
denotes the average value of the relative local differencd@rant measure has a Sp'kef.éfl(XC)' The spike is usua_ll_y
- . |’ o oriented to the left or to the right of an image of the critical
within the imagef' (H). The third line in Eq.(li%) follows point. For example, the spike &(x.)=0.95 in Fig. 1b) is
from the approximation Sgcp/ymun(f™' (B)NH)  oriented to the left, whereas the spikefafx.)=0.1805 in
=un(H). This approximation is very accurate if the grid- Fig. 1(b) is oriented to the right. The spike can also have
refinement parametes is large enough. From Eq13) it  approximately symmetrical shape, e.g., whermmaps to the
follows that if uy(H) is larger, the global discrepancy be- unstable fixed point in two iteratgsee Fig. 8 in Ref[2]).
tween_the two measures will be larger as well. Furthermorewjithout losing any generality, we assume that the spike at
since §,(1") is independent of, the )(2,](6) value obeys a f¥*!(x,) is oriented to the left of *'(x,).
power-law dependence an [Note that the power-law fol- Consider the bins that are to the rightfd¢£). For suffi-

lows only from the conditiorDﬂN(f"(g))= D,=1, and the ciently smalle= 7eg, the two measures have the same scal-
fact thatl, is independent of. In other words, it is not M9 Pehavioruy(B)~eg~uc(B), and the analysis can be

necessary that the first 2images of the hole do not over- reduced to the one from the preceding subsection. I
lap] To study the correlation between the two measures within

. I .
Figure 6 displays a test of E¢L3) for the logistic map the bins to the left of (&), we must study the scaling of the

_ o . terms in Eqs(7) and(8) with ez . As the size of the hole
(r=3.8). We see that the visiting frequency by typical tra- ; o
jectories to the holepy(H), determines the magnitude of __ 7€B Is reduced, the selandf (B) NH get closer to the

the alobal di betw the tw Note thip of the spike atf'(¢) and &, respectively. Therefore,
e global discrepancy between the two measures. Note ,uN(B)~,uN(f"(B)ﬂH)~eé’2. If the spike of sy at the

o . I N . .

|n2th|s particular cgsél,:lér(! )=1 [see Flg..2c)], 1€ point f'(&) originates only from the spike at, then
X :/.LN(H)A. The points were fitted to the functlonal depen—MN(f;I(B))NeB_ Consequently, uc(f'(B))~eg, and
denceAge™. The fitted value of the exponem; is Ay ) (B)— ¢, Hence, no matter how lardes, for sufficiently
=1.027£0.008, which is in good agreement with prediction g4/ ¢ pn(B)~ €% e~ uc(B), ie., 6,(B)=1. In other
A1=D, (§)=1[see Eq(13)]. This shows that the approxi- \yords, we can find some critical value(l), such that for

mations leading to E¢(13) are good. e<e(), the quantitys,(B)>p,, wherep, denotes some
“threshold value” close to 1(e.g.,p;=0.90).

There are approximatelj'(£)e/2 bins that are within
N ) ) ) f'(H), and are to the left of'(£). As € is reduced,s,(B)

If the position of the holef lies on an atypical point, a corresponding to every one of these bins approaches the
completely different type of correlation between the twoygjyes,(B)=1. However, the relative local differend(B)
measures may occur. In this subsection, we consider the cagfthin the binsB that are closer to the tip of the spike will
when ¢ lies on an image of the critical poinf(x.)=¢, k  pecome larger than the “threshold valup! for smaller val-
=1.Thus,D, (§)=1/2#D;. We assume that=ky . ues ofe. As an illustration, Fig. #@) displays the dependence

Consider the bins for whichy_g=I (I>0). These bins of §,(B) on e for BCf3(H) (I=3). We see that the critical
are located at théth image of the holeH, i.e., they are value e, (|) corresponding to the outermost by, is

B. Correlations for £=fX(x,)
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1

0.1
)
5
a2
0.01 |
0.001 L L
0.00001 0.0001 0.001 0.01

€

FIG. 8. Thexén(e) value against (closed circles The hole is
positioned at the first image of the critical point, i.€5 f(Xc)
=0.95, DMN(§:0.95): 1/2. The grid-refinement parametgr= 20.
The quantityu(H) againste is labeled by the letters.

much smaller than the critical valug j,(1) corresponding to
bin B, that is adjacent to the tip of the spike, ,u(!)
<é€cin(l). In the Appendix, it is shown that the critical val-
ues €. in(l) and e ,u(I) decrease very rapidlyapproxi-
mately exponentially fagtwith the increase of.

PHYSICAL REVIEW E 65 036218

mations we made should hold better for smaller values of
(see Appendix Note thatuy(H) decreases at a faster rate
than x? with the decrease of. This is a consequence of the
fact thatl ;,(€) increases with the decrease ofsee Eq.
(19)].

If ¢is eventually periodic, than even for small valuespf
the images of the hole overlap. Let us evaluate)zlfag(e)
functional dependence for the case whi{E)=xg[f(&)
#¢&] is an unstable fixed point. In this case, the first
l.in(e)—1 images of the hole are subsets of the image
fleinld(H).  Therefore, x*=Zgci,(am)l 8 (B)S(B)]
~ e, Thus, even if the position of the holeis on an
image of the critical point, due to the images of the hole
overlap we recover a power-law dependence ofthealue
on €. We have checked this relation fay=f1(x.),f(&)
=f2(x.)=Xg, by using the logistic map(x)=4x(1—x).

When the position of the holé is away from the critical
pointXx., then fore<1, the firstl . images of the hole do not
start to fold. However, wheg=Xx., then for eache already
the first image of the hole is folded. Since the maximum is
quadratic, the length of the imagéqH) is ~ €2, i.e., the
gross differences are observed with the resolut'&@;xc
=¢€’/eg. It can be shown that local correlations are effec-
tively the same as for the case=f(x.). Furthermore, if

Inversely, the number of the successive images of the hok?]gfX =%/ ey is held constant, thg? value has the same
= c L

where the two measures significantly differ increasss-
proximately logarithmically with the decrease ok. Let

lc.out(€) [lcin(€)] denote the critical number of the images

of the hole, such that for<lI u(€) [I <Icin(€)], the rela-

tive local difference is larger than the threshold value, i.e.,

8:(Boud) >pi[ 6:(Bin)>p:, respectively. From the depen-
dence of the critical values; on |, it follows thatl ;,(€)
~2l¢ oul(€) ~N (&) ~tIn(L/e) [see Eqs(A4) and (A5) in the
Appendix|; the quantityA(£) denotes the Lyapunov expo-
nent for initial conditioné. Figure 7b) illustrates the depen-
dence ofs,(B) only g for the caset=f¥(x).

Let us make an estimate on tly@ dependence oe<1.
For e<1, the largest contribution to thg? value comes
from the firstl ;,(€) images of the hole. If is not eventu-
ally periodic, then the firstt, ;,(e) wells do not overlap, and
the x? value is approximately

Ic,in(f)

Xi (€)= .2 >

=1 Bcf!(H)

16:(B)&(B). (14)

For e<1, within most of the bins BCf''(H) (I’
<l¢in):» un(B)>uc(B). Therefore,5,.(B) is practically in-
dependent ok, while 5(B)~ uy(B) ~ e®u(9. Thus, they?-
value dependence efis

Xz (€)~lcin(€) €2~ In(1/e) PO, (15)

Figure 8 displays a test of E@l5) for the logistic map

functional dependence anas in the casé=f(x.).

V. CONCLUSION

In conclusion, we have investigated local and global cor-
relations between the naturally invariant measure of the one-
dimensional chaotic mafy and the conditionally invariant
measure of the transiently chaotic map with a higle The
two measures have been compared on a fine grid with ele-
ments of a unit sizeg.

We have demonstrated that the gross differences between
the two measures appear within some critical number of the
images of the holdd. Two types of gross differences have
been reported. We have also demonstrated the existence of
fine differences between the two measures, which may occur
at the iterates of the critical point.

APPENDIX

In this appendix we study the ca8§x.)=¢, k=1. Con-
sider the binsB that overlapf'(H), and are to the left of
f'(£). By considering the scaling gy (B) and uc(B) with
€, in Sec. IV it is demonstrated that we can find some critical
value e(l), such that fore<e.(l), the quantitys,(B) be-
comes larger than some threshold vajyeclose to 1(e.g.,
p;=0.90). Let us evaluate the functional dependeagdé)
onl.

Consider the bin adjacent to the poff¢), i.e.,Bj,. The

(r=3.8). The points were fitted to the functional dependencentervalf ~'(B;,) N H is adjacent to the position of the haje

Ao In(1/€) €*1. As we can see, formuldb) is an excellent fit

for the y?(e) dependence. The fitted value of the exponentmately eg/A'(£).

A; is A;=0.46. The discrepancy from the predictéd

The length of the intervalf™'(B;,)NH is approxi-
Therefore, un(f~'(Biy) NH)=c4(&)
X[ eg/A'(£€)]Y2 Since¢ is held fixed,c,(£) can be regarded

= DMN(g) =0.5 value follows from the fact that the approxi- as constant.

036218-7
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The point¢ maps to the point'(£) in | iterates. Let us 8 . -
denote all other points that map f(¢) in | iterates by *
X1,X0, - xm, &#x;, j=1,2,... m. Since we assume that 61
the splke atf'(¢) originates only from the sp|ke a, then
DuN(x) 1,j=1,2,...m. The quantity uy(f ~'(Bj,)\H) =
can be apprOX|mater written a& ", pn(X;) ea/A' (X)), g ¢ o
where py denotes the naturally invariant density. Given a 0® o
map f, the pointsx; are determined uniquely by and I. 2t o * . .
Therefore, we can wrlté:m 1PN TAN (X)) = Co(£1). ..&;:}2' e
In the limit uy(f ™' (Bm)ﬂH)/,uN(B,n) p,=1, equation 0 o .09 ©. 0
» O 0 5 10 15 20
pn(Bin) = un(F(Bin) NH) + un(f 7 (Bin)\H) (A1) 1
can be approximately written as FIG. 9. The quantities,(¢&,1) (closed circles and 1£3(¢,1)

p (open diamondsagainstl. The position of the hole ig= fl(xc)
1

=C1(&)| ——

12
p; fc1() +co(él)eg. c,(£,1) and 1£3(£,1), respectively.

(A2)

€B
Al(€) A'(ﬁ)
Since relation(A4) is derived from Eg.(A3) for large
From Eq.(A2) we obtain a functional dependence &f;, enoughl, Eq. (A4) is approximately valid for small values
onl: of e.
Consider the outermost bi,,;. We can approximately
SN S write it (Bou) MH)=Cy(£) (12)— ¢4(£) (el2
fc,in(')”cz(g b 2En: (A3) g /A () Y2=c,(£)(el2)2 YA (&). By applying the
22 225 same strategy as in Eq#\1) and(A2), it can be shown that
wherel (&) denotes the Lyapunov exponent obtained for ini-
tial condition £. Since the points'(£) bounce around the 1 1
attractor with increasing I, the quantity c,(¢,1) lc.out(€)~ mln(—),
=Z}“:1pN(xj)/A'(xj) irregularly fluctuates around some av-
erage value with increasirig As an illustration, Fig. 9 dis-
plays c,(&,1) and 1£2 5(&,1) for the caset=f(x;). There- i.e., the critical numbel, o, €) is smaller thar j,(¢€). This
fore, since 1A'(¢) decreases exponentially fast with is consistent with Fig. (b). The increase of both, ;,(€) and
increasing, we conclude thak ,(1) decreases very rapidly t;,,(€) with the decrease of is approximately logarithmi-
(approximately exponentially fgswvith the increase of. cal. Unfortunately, relation6A4) and(A5) are derived for so
By taking the logarithm of Eq(A3), for sufficiently large  small values ofe, that we are unable to check them numeri-
[, we approximately write N(&)I>2Incy(&l), i.e., cally.
In(1/ecin) ~N(&)l. From this relation we obtain an expres-  For the bins that are located in betweign andB,,,, the
sion for the critical numbel, ;,(€), critical value e;(1) is €. oui(l)<ec(l)<ecin(l). Further-
more, the critical numbdr,(e) corresponding to these bins is

(A5)

b ()~ Lln<})_ ag)  eoul©=lc(€)<lcin(e). This is consistent with Figs.(@
: NE) e and 1b).
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