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ABSTRACT

The Sloan Digital Sky Survey (SDSS) has validated and made publicly available its First Data Release.
This consists of 2099 deg2 of five-band (u, g, r, i, z) imaging data, 186,240 spectra of galaxies, quasars, stars
and calibrating blank sky patches selected over 1360 deg2 of this area, and tables of measured parameters
from these data. The imaging data go to a depth of r � 22.6 and are photometrically and astrometrically cali-
brated to 2% rms and 100 mas rms per coordinate, respectively. The spectra cover the range 3800–9200 Å,
with a resolution of 1800–2100. This paper describes the characteristics of the data with emphasis on
improvements since the release of commissioning data (the SDSS Early Data Release) and serves as a pointer
to extensive published and on-line documentation of the survey.

Key words: atlases — catalogs — surveys

1. INTRODUCTION

The Sloan Digital Sky Survey (SDSS) is a photometric
and spectroscopic survey, using a dedicated 2.5 m telescope
at Apache Point Observatory in New Mexico, of many
thousands of square degrees of high Galactic latitude sky.
The scientific goals that define the scope of the project (York
et al. 2000) relate to large-scale structure seen in the distribu-
tion of galaxies and quasars. In addition to addressing these
issues, the survey data products are proving valuable for
many other astronomical problems, from asteroids to
Galactic structure, from rare types of white dwarf stars to
the highest-redshift quasars. The validated data are being
released at approximately annual intervals. Each release
includes sufficient information to allow statistical analysis,
e.g., measures of data quality and the completeness of the
source lists. The first SDSS Data Release (DR1) amounts to
about 20% of the total SDSS survey goal.

In summer 2001 the SDSS released the results of observa-
tions obtained during the commissioning phase of the
SDSS; this Early Data Release (EDR) is described by
Stoughton et al. (2002), which contains extensive informa-
tion on the SDSS data and data processing software.50 The
purpose of the present paper is to formally mark the first
SDSS data release and to provide a quick guide to the
contents of the Web site. The sky coverage of the imaging
and spectroscopic components of the DR1 are shown in
Figure 1.

2. PUBLISHED DOCUMENTATION

A number of papers have been published that provide
important technical background relevant, but not limited,
to DR1. In this section we review these publications.

A technical summary of the project is given by York et al.
(2000). This is an introduction to extensive on-line discus-
sion of the hardware (the Project Book).51 The imaging
camera is described byGunn et al. (1998).

The Early Data Release is described by Stoughton et al.
(2002), which includes an extensive discussion of the data
outputs and software. More details of the photometric pipe-
line may be found in Lupton et al. (2001).

Strauss et al. (2002) give the target selection procedures
for the main galaxy sample of the SDSS. This paper pro-
vides the basis by which one can construct a statistically
complete sample of galaxies with spectra. Eisenstein et al.
(2001) describe the procedure for targeting a magnitude-
and color-selected sample of luminous red galaxies (LRGs)
at redshifts up to z = 0.55. The redshift histograms of
the objects from these two samples in the DR1 are given in
Figure 2.

Richards et al. (2002) present the algorithm that is cur-
rently being used to target quasars from SDSS photometry,
although the DR1 sample (like the EDR sample) uses a
more heterogeneous set of algorithms since the DR1 data
predate the implementation of this specific algorithm; see
Schneider et al. (2003) for more details and a formal catalog

49 Department of Astronomy, Ohio State University, Columbus, OH 43210.

48 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85741Garching, Germany.

47 Department of Physics, Drexel University, Philadelphia, PA 19104.

46 Department of Physics and Astronomy, University ofWyoming, Laramie,WY 82071.

45 Institute for Astronomy, 2680WoodlawnRoad, Honolulu, HI 96822.

44 Department of Physics, University of Zagreb, Bijenička cesta 32, HR-10000 Zagreb, Croatia.

43 Department of Astronomy andAstrophysics, 525Davey Laboratory, Pennsylvania State University, University Park, PA 16802.

42 Department of Physics, Rochester Institute of Technology, 85 LombMemorial Drive, Rochester, NY 14623-5603.

41 School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540.

51 Available at http://astro.princeton.edu/PBOOK/welcome.htm.

50 A similarly comprehensive description of the DR1 data and derived parameters may be found at http://www.sdss.org/dr1 (hereafter ‘‘ theWeb site ’’).
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of DR1 quasars. The redshift histogram of spectroscopi-
cally confirmed quasars in the DR1 is given in Figure 3.

These spectroscopic samples are assigned plates and
fibers using an algorithm described by Blanton et al. (2003).

Pier et al. (2003) describe the methods and algorithms
involved in the astrometric calibration of the survey, and
present a detailed analysis of the accuracy achieved.

The network of primary photometric standard stars is
described by Smith et al. (2002). The photometric system
itself is described by Fukugita et al. (1996), and the system
which monitors the site photometricity is described byHogg
et al. (2001).

The official (IAU designation) SDSS naming convention
for an object is SDSS JHHMMSS.ss � DDMMSS.s, where
the coordinates are truncated, not rounded. This format
should be used at least once for every object listed in a paper
using SDSS data.

3. CONTENTS OF DR1

The imaging portion of DR1 comprises 2099 deg2 of sky
imaged in five wavebands (u, g, r, i, z), containing photo-
metric parameters of 53 million unique objects. Within this
area, DR1 includes spectroscopic data (spectra and quanti-
ties derived therefrom) for photometrically defined samples
of quasars and galaxies, as well as incomplete samples of
stars. The spectroscopic data cover 1360 deg2.52

SDSS collects imaging data in strips which follow great
circles. Two interleaving strips together make up a stripe 2=5
wide; at the equator of the system of great circles, stripes are
separated by 2=5. A continuous scan of a piece of a strip on
a particular night is called a run; this is the natural unit of
imaging data. Data from 62 runs are included in DR1. The
DR1 footprint is defined by all nonrepeating survey-quality
runs within the a priori defined elliptical survey area (York
et al. 2000) obtained prior to 2001 July 1; in fact, 34 deg2 of
DR1 imaging data lie outside this ellipse. While the DR1
scans do not repeat a given area of sky, they do overlap to

Fig. 1.—Distribution on the sky of the imaging scans and spectroscopic
plates included in theDR1. This is an Aitoff projection in equatorial coordi-
nates. The total sky area covered by the imaging is 2099 deg2 and by the
spectroscopy is 1360 deg2.

Fig. 2.—Redshift histogram for objects spectroscopically classified as
galaxies in DR1. The curve labeled ‘‘Main Galaxies ’’ is the flux-limited
sample, containing 113,199 galaxies. The curve labeled ‘‘ LRGs ’’ is a color-
selected sample designed to contain intrinsically luminous, red galaxies,
containing 15,921 galaxies.

Fig. 3.—Redshift histogram for objects spectroscopically classified as
quasars in DR1 (and with luminosities MB < �22), including 16,847
objects. The catalog of bona fide quasars in DR1 is presented in Schneider
et al. (2003).

52 The details of the sky coverage can be found at http://www.sdss.org/
dr1/coverage.
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some extent, and the data in the overlaps are included in
DR1 as well.

Spectroscopy is undertaken with guided exposures of
overlapping tiles (‘‘ plates ’’), each 3� in diameter. For each
plate 640 spectroscopic fibers are available. DR1 consists of
291 plates, the centers of which lie within the boundaries
defined by the DR1 imaging footprint.

The surface density of spectroscopic targets per square
degree consists, on average, of roughly 90 galaxies in a flux-
limited sample, an additional 12 galaxies of a flux- and
color-limited sample of luminous red galaxies (LRGs), and
18 quasar candidates. Each plate is assigned 18 calibration
stars and 32 fibers on blank sky for sky subtraction. Finally,
extra fibers available in a given region of sky are assigned to
objects matching ROSAT (X-ray; Voges et al. 1999) and
FIRST (radio; Becker, White, & Helfand 1995) sources, as
well as unusual stars of various types. The spectroscopic tar-
geting of all of these samples is based on the photometric
quantities produced by the SDSS pipelines.

DR1 includes the footprint of the sky already released in
the EDR. All of the EDR data have been reprocessed with
the latest versions of the SDSS software. In some parts of
the sky, better data (both imaging and spectroscopy) have
been substituted for the older, commissioning data of the
EDR.

The data products in DR1 include the following:

1. Images.—The ‘‘ corrected frames ’’ (flat-fielded, sky-
subtracted, and calibrated subimages corrected for bad col-
umns, bleed trails, and cosmic rays, each 13<6 � 90) in five
bands, available in both FITS and JPEG format; a mask file
that records how each pixel was used in the imaging data-
processing pipelines; 4 � 4 binned images (i.e., with 1>6 pix-
els) of the corrected frames after detected objects have been
removed; and ‘‘ atlas images ’’ (cutouts from the corrected
frames of each detected object).
2. Image parameters.—The positions, fluxes, shapes,

and errors thereof for all detected objects in the images,
as well as information about how these objects were
spectroscopically targeted.
3. Spectra.—The flux- and wavelength-calibrated, sky-

subtracted spectra, with error and mask arrays, and the res-
olution of the spectra as a function of wavelength.
4. Spectroscopic parameters.—The redshift and spectral

classification of each object with a spectrum, as well as the
properties of detected emission lines and various further
spectral indices.
5. Other data products.—Astrometric and photometric

calibration files, the point spread function of the images,
GIF and postscript plots of spectra, and ‘‘ finding charts ’’
(cutouts of the survey image area according to specified
limits in right ascension and declination) in a number of
formats.

These DR1 data products are available at the Web site,
which includes detailed description of the data, and
documentation of the access tools.

4. CHANGES IN DR1 WITH RESPECT TO THE
EARLY DATA RELEASE

The description of the SDSS data, file structures, and
processing pipelines presented in Stoughton et al. (2002)
remains an essential point of departure for understanding
and using the data products in the First Data Release. How-

ever, there have been some significant changes in the data
processing since the EDR; we comment briefly here on some
of the more important ones.

1. The photometric equations have been reformulated to
be in the natural system of the 2.5 m telescope, making the
relation between measured counts and magnitude a simple
one. The mean colors of stars on the old and new systems
have been forced to be the same. The changes from previ-
ously published photometry due to this are subtle, typically
no more than few hundredths of a magnitude. To distin-
guish between photometric systems, the new one
(u, g, r, i, z) is unadorned, whereas the EDR system was
designated with asterisks (u*, g*, r*, i*, z*). The prime sys-
tem discussed by Fukugita et al. (1996; u0, g0, r0, i0, z0) now
refers only to the native system of the US Naval Observa-
tory Flagstaff Station 1 m telescope (see Smith et al. 2002),
and should not be used in referring to the data from the 2.5
m. As before, all magnitude zero points are approximately
(i.e., within 10%) on an AB system. The magnitude scale is
not exactly logarithmic, but uses an asinh scaling (Lupton,
Gunn, & Szalay 1999; see the Web site for further details).
Surface brightnesses, however, are reported on a linear flux
scale of ‘‘ maggies ’’; 1 maggie corresponds to the surface
brightness of a zeroth-magnitude object in 1 arcsec2. A sur-
face brightness of 20th mag in 1 arcsec2 is therefore 10�8

maggies.
2. In the EDR, scattered light produced systematic errors

in the derived flat field, and therefore in the photometry,
especially in the u band. The imaging flat fields have now
been corrected for this effect, reducing a major source of
systematic error.
3. The EDR version of the photometric pipelines had dif-

ficulty following rapid variations in the point-spread func-
tion. The DR1 code is more robust to this problem, and
has greatly reduced the effects of variable seeing on the
photometric measurements.
4. There is a small but measurable nonlinearity in the

response of the photometric CCDs, measuring several per-
cent at saturation. This effect has been corrected in the DR1
processing.
5. The EDR image deblender often shredded galaxies

with substructure into several individual objects, especially
for objects brighter than r � 15mag. This behavior has been
suppressed, and the vast majority of bright galaxies are now
treated properly by the deblender.
6. In addition to the object shape measures of the EDR,

the photometric pipeline now calculates so-called adaptive
moments (see Bernstein & Jarvis 2002) that are designed for
weak-lensing measurements of faint objects.
7. Cosmic rays are recognized as such by their sharp gra-

dients relative to the point-spread function. An enhanced
routine described in Fan et al. (2001) is now implemented as
part of the pipeline. This routine sets a flag, MAYBE_CR,
which is valuable for assessing the reality of objects detected
in only a single band.
8. In the EDR the exponential (Freeman 1970) and de

Vaucouleurs (1948) profile models for galaxy images were
fit only to the central 300 radius of each object. This proce-
dure tended to give misleading results for galaxies with large
angular extent. The DR1 version of the code does a much
more reasonable fit to large galaxies. However, an error was
found following the completion of DR1 processing, which
causes the model magnitudes to be systematically underesti-
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mated by 0.2 mag (i.e., the model magnitudes are too bright)
for galaxies brighter than 20th magnitude. Similarly, the
measured radii are systematically too large. This error is the
reason that the Web site at the time of publication of the
current paper makes reference to a ‘‘ beta ’’ version of the
reduction pipelines. This error will be corrected in future
SDSS data releases. Note that this error only affects model
magnitudes of galaxies; all other photometry is unaffected
by this error. In addition, model colors are essentially
unchanged.
9. The astrometric pipeline now uses centroids corrected

for asymmetries in the point-spread function, and includes a
better treatment of chromatic aberration.
10. The spectroscopic pipeline has much improved flat-

fielding, bias subtraction, and handling of bad columns and
pixels. Sky subtraction has been improved, especially in the
red, by allowing for the gradient in the sky brightness across
a spectroscopic plate. The spectrophotometric flux calibra-
tion is improved as well, as is the correction for absorption
lines from the Earth’s atmosphere.
11. There have been upgrades to the continuum and line-

fitting routines in the spectroscopic pipeline. More extensive
stellar templates have increased the accuracy of the classifi-
cation of unusual types of stars.
12. The galaxy spectral-classification eigentemplates for

DR1 are created from a much larger sample of spectra
(200,000) than were used for the EDR.

5. DATA QUALITY

5.1. Quality of Imaging Data

The imaging survey is undertaken in photometric condi-
tions (as determined by an all-sky 10 lm camera) with no
moon.We also impose a nominal limit on the effective width
of the point-spread function of 1>7 in the r filter. This width
is the full width at half maximum of the Gaussian with effec-
tive area equal to that of the actual point spread function
(PSF) at the center of each frame; it is therefore somewhat
larger than the actual full width at half maximum of the
PSF, due to the presence of extended low-amplitude wings
on the PSF. In the off-line processing, data are declared not
to be of survey quality if the width of the point-spread func-
tion exceeds this value for an interval longer than about 10
minutes, or if the point-spread function is seen to be rapidly
varying, in which case an attempt is made to scan that inter-
val again. The upper panel of Figure 4 shows the cumulative
distribution of the width of the point-spread function in
DR1 as determined on a frame-by-frame basis; only a very
small fraction of the data in DR1 exceeds the seeing thresh-
old. The five filters yield different distributions both because
of the dependence of seeing on wavelength, and because the
separate filters sample distinct regions of the focal plane.

The bottom panel of Figure 4 shows the distribution of
sky brightness values in DR1, averaging over each frame.
This value has been corrected for atmospheric extinction to
zero air mass, and therefore is biased to higher brightness,
by 0.65 mags in u, but only 0.08 mag in z. The sky bright-
ness, together with the instrumental throughput and the at-
mospheric extinction and air mass, allow one to compute
the expected signal-to-noise ratio for the image of an object
of known brightness and profile; the sensitivity curves for
the five bands are available on theWeb site.53

The photometric zero point is transferred from stars cali-
brated for this purpose using an auxiliary photometric tele-
scope, in 270 � 270 regions distributed approximately every
15� along each stripe. A number of tests allow us to quantify
the uniformity of the photometric zero points and the accu-
racy of the calibrations:

1. repeatability of photometry in regions of sky in
which runs overlap (see Ivezić et al. 2003);

2. constancy of the locus of stars in color-color space;
3. lack of structure in the stellar or galaxy distribution

on the sky correlated with run geometry, seeing, fore-
ground reddening, and sky brightness;

4. comparison of SDSS photometry with externally
calibrated standard star fields.

From these results, the photometric zero point varies across
the DR1 footprint by less than 0.02 mag rms in the r band,
0.02 mag rms in the colors g�r and r�i, and 0.03 mag rms in
the colors u�g and i�z.

We can similarly check the astrometric precision; repeat
scans confirm that our rms errors are rarely worse than
100 mas per coordinate; a more typical number is 60 mas.
See Pier et al. (2003) for an extensive discussion of the
astrometric accuracy.

The depth of the imaging data is a function of sky bright-
ness and seeing, but comparisons with deeper fields from the
COMBO-17 survey (Wolf et al. 2003) give 50% complete-
ness for stellar sources at (u, g, r, i, z) = (22.5, 23.2, 22.6,
21.9, 20.8) under typical conditions. Star-galaxy separation
is better than 90% reliable to r = 21.6.

Fig. 4.—Top: Cumulative distribution of values of the seeing in arcsec-
onds for all frames in DR1 in each of the five filters. Note that over 90% of
the survey data meet the nominal specification of seeing better than 1>7 in r.
Bottom: Cumulative distribution of the values of the sky brightness in units
of magnitudes per square arcsecond for all frames in DR1, as measured in
the five filters.

53 See http://www.sdss.org/dr1/instruments/imager.
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5.2. Quality of Spectroscopic Data

The spectroscopic survey is undertaken in observing con-
ditions that are not photometric, or with seeing worse than
1>7 FWHM, or with some moonlight. A spectroscopic
observation is declared to be of survey quality when the
mean square of the signal-to-noise ratio per pixel over the
spectrum is greater than 15 for objects with fiber magnitudes
of g = 20.2, r = 20.25, and i = 19.9; see the Web site for
more details. Figure 5 presents the distribution of the square
of the signal-to-noise ratio per pixel for the 291 plates in
DR1, for objects with a fiber magnitude r = 20.25. All the
plates clearly exceed the threshold of (S/N)2 = 15; note the
presence of several plates with signal-to-noise ratio exceed-
ing the minimum requirements by factors approaching 3, as
some plates were observed for substantially longer times.
The sky subtraction is sufficiently accurate that the noise is
close to the photon shot noise.

The FWHM of an unresolved emission line in the spectra
is typically 2.5 pixels (1 pixel � 65 km s�1). From repeat
observations of galaxies near the survey limit, the redshift
accuracy is known to be better than 30 km s�1; for bright
stars, the redshift accuracy may be better than 10 km s�1.

The redshifts and classifications have been checked and
updated by comparing results from two independent codes.
Roughly 1% of the spectra (other than the 32 sky spectra
per plate) are of low enough signal-to-noise ratio as to be
unclassifiable; of the remaining, the error rate is below half
a percent.

Data quality also depends on the precision and uniform-
ity with which classes of spectroscopic targets have been
selected and observed. The user should be aware that the
magnitude limit for the main galaxy sample has ranged from
17.5 to 17.77 in extinction-corrected Petrosian r magnitude
through the period covered by DR1. Similarly, the quasar
target selection algorithm described in Richards et al. (2002)
is a modification of that used in DR1; the newer version is
more complete in high-redshift quasars. See the DR1 Web
site and the papers cited in x 2 for more details.

As the name implies, DR1 is the first of a series of five
releases of what will eventually be the entire Sloan Digital
Sky Survey. DR1 consists of roughly 20% of the eventual
SDSS database. The second data release, DR2, is planned
for early 2004. DR2 will increase the total amount of data
by 50% with respect to DR1, and it will include a reprocess-
ing of DR1, which will fix the model magnitude bug
mentioned in x 4.

Funding for the creation and distribution of the SDSS
Archive has been provided by the Alfred P. Sloan Founda-
tion, the Participating Institutions, the National Aeronau-
tics and Space Administration, the National Science
Foundation, the Department of Energy, the Japanese Mon-
bukagakusho, and the Max Planck Society. The SDSSWeb
site is http://www.sdss.org.

The SDSS is managed by the Astrophysical Research
Consortium (ARC) for the Participating Institutions. The
Participating Institutions are the University of Chicago,
Fermilab, the Institute for Advanced Study, the Japan Par-
ticipation Group, the Johns Hopkins University, Los Ala-
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