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Quasiparticle random phase approximation based on the relativistic Hartree-Bogoliubov model
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The relativistic quasiparticle random phase approximatR@RPA is formulated in the canonical single-
nucleon basis of the relativistic Hartree-Bogoliub@HB) model. For the interaction in the particle-hole
channel effective Lagrangians with nonlinear meson self-interactions are used, and pairing correlations are
described by the pairing part of the finite-range Gogny interaction. The RQRPA configuration space includes
the Dirac sea of negative-energy states. Both in the particle-hole and particle-particle channels, the same
interactions are used in the RHB calculation of the ground state and in the matrix equations of the RQRPA. The
RHB+RQRPA approach is tested in the example of multipole excitations of neutron-rich oxygen isotopes. The
RQRPA is applied in the analysis of the evolution of the low-lying isovector dipole strength in Sn isotopes and
N =282 isotones.
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[. INTRODUCTION coordinate state representation has also been used as a basis
for the continuum linear response thed®;3]. In Ref. [4],

The multipole response of unstable nuclei far from thethe HFB energy functional has been used to derive the con-
line of B stability presents a very active field of research,tinuum QRPA response function in coordinate space. The
both experimental and theoretical. These nuclei are chara¢dFB based continuum QRPA calculations have been per-
terized by unique structure properties: the weak binding oformed for the low-lying excited states and giant resonances,
the outermost nucleons and the effects of the coupling beas well as for the3 decay rates in neutron-rich nuclei.
tween bound states and the particle continuum. On the In this work we formulate the relativistic QRPA in the
neutron-rich side, in particular, the modification of the effec-canonical single-nucleon basis of the relativistic Hartree-
tive nuclear potential leads to the formation of nuclei with Bogoliubov(RHB) model. The RHB model is based on the
very diffuse neutron densities, to the occurrence of the neurelativistic mean-field theory and on the Hartree-Fock-
tron skin and halo structures. These phenomena will alsBogoliubov framework. It has been very successfully applied
affect the multipole response of unstable nuclei, in particularin the description of a variety of nuclear structure phenom-
the electric dipole and quadrupole excitations, and newena, not only in nuclei along the valley @ stability, but
modes of excitations might arise in nuclei near the drip linealso in exotic nuclei with extreme isospin values and close to

A guantitative description of ground states and propertieshe particle drip lines. Another relativistic model, the relativ-
of excited states in nuclei characterized by the closeness ddtic random phase approximatiORRPA), has been recently
the Fermi surface to the particle continuum necessitates employed in quantitative analyses of collective excitations in
unified description of mean-field and pairing correlations, asnuclei. Two points are essential for the successful application
for example, in the framework of the Hartree-Fock- of the RRPA in the description of dynamical properties of
Bogoliubov (HFB) theory. In order to describe transitions to finite nuclei: (i) the use of effective Lagrangians with non-
low-lying excited states in weakly bound nuclei, in particu- linear self-interaction terms, andi) the fully consistent
lar, the two-quasiparticle configuration space must includereatment of the Dirac sea of negative-energy states.
states with both nucleons in the discrete bound levels, states The RRPA with nonlinear meson interaction terms, and
with one nucleon in a bound level and one nucleon in thewith a configuration space that includes the Dirac sea of
continuum, and also states with both nucleons in the connegative-energy state, has been very successfully employed
tinuum. This cannot be accomplished in the framework ofin studies of nuclear compressional modBs-7], of multi-
the BCS approximation, since the BCS scheme does not prgole giant resonances and of low-lying collective states in
vide a correct description of the scattering of nucleonic pairspherical nuclej8], of the evolution of the low-lying isovec-
from bound states to the positive-energy particle continuumtor dipole response in nuclei with a large neutron excess
Collective low-lying excited states in weakly bound nuclei[9,10], and of toroidal dipole resonancgkl].
are best described by the quasiparticle random phase ap- In Sec. I, we present the formalism and formulate the
proximation (QRPA) based on the HFB framework. The matrix equations of the relativistic QRP&RQRPA in the
HFB based QRPA has been investigated in a number of rezanonical basis of the RHB framework for spherical even-
cent theoretical studies. In Ref1], a fully self-consistent even nuclei. In Sec. lll, the RHBRQRPA approach is tested
QRPA has been formulated in the HFB canonical singlein the example of the isoscalar monopole, isovector dipole,
particle basis. The Hartree-Fock-Bogoliubov formalism inand isoscalar quadrupole respons&, and the results are
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compared with recent nonrelativistic QRPA calculations of R . 1-73
the multipole response of neutron-rich oxygen isotopes. In['v=0,, T'4L=g,¥", Ti=g,7y*, Ti=e Y,
Sec. IV, the RQRPA framework is applied in the analysis of 6)

the evolution of the low-lying isovector dipole strength in Sn
isotopes andN =82 isotones. The results are compared withwith the coupling constantg,, g,,, g,. ande. This simple
recent experimental data. Section V contains the summarnynear model, however, does not provide a quantitative de-

and the conclusions. scription of complex nuclear systems. An effective density
dependence has been introdu¢éd] by replacing the qua-
Il. THE RELATIVISTIC QUASIPARTICLE RANDOM dratic o potential %mf,az with a quartic potentialUu (o)
PHASE APPROXIMATION = (1/2)m? 02+ (g,/3) >+ (g3/4)o*. This potential includes

In this section the matrix equations of the RORPA arethe nonlinears self-interactions with two additional param-
formulated in the canonical basis of the RHB framework foretersgz_andg3. It has been showq t_hat one can de_scrlbe the
. . properties of nuclear matter and finite nuclei with high accu-
spherical even-even nuclei. : ; . .
racy using density dependent coupling constaptép), in-
o _ _ stead of nonlineawr self-interaction16].
A. The relativistic mean-field Lagrangian From the model Lagrangian density, the classical varia-
and the equations of motion tion principle leads to the equations of motion. The time-
The nuclear matter equation of state and detailed propedlependent Dirac equation for the nucleon reads
ties of finite nuclei have been very successfully described by
relativistic mean-fieldRMF) models[12—-14. In this frame-

work_ the nuclleus IS d(_es:cr}bed as a system of Dirac nucleonﬁ one neglects retardation effects for the meson fields, a
that interact in a relativistic covariant manner by meson ex-

) . ; self-consistent solution is obtained when the time-dependent
change. In particular, the isoscalar scatameson, the isos- , .
) mean-field potentials
calar vectorom meson, and the isovector vectpr meson
build the minimal set of meson fields that is necessary for a
guantitative description of bulk and single-particle nuclear
properties. The model is defined by the Lagrangian density

[y*(id,+V,)+m+S]y=0. @)

S(r,t)=g,0(r 1),

; . o . (1—7y)
L= Lyt Lot Line. @ VuODT0eun ¥ DAL T
()
Ly denotes the Lagrangian of the free nucleon,
- are calculated at each step in time from the solution of the
Ln=(iy*d,—m)ip, 2) stationary Klein-Gordon equations
wherem is the bare nucleon mass agddenotes the Dirac —Apnt+tU' ()= i(Esz,b}, 9
spinor.L,, is the Lagrangian of the free meson fields and the
electromagnetic field, where the upper sign holds for vector fields and the lower

sign for the scalar field. The indew denotes mesons and the
photon, i.e.,c;bm:o,w“,ﬁ”,A“. This approximation is justi-

fied by the large meson masses. The corresponding meson-
exchange forces are of short range and therefore retardation

Ln==0 Uﬁﬂa—lmzaz— -0 Q‘“’+lm2w ot
m 2 y2 2 oa 4 mv 2 (Ol 72

1. . 1 .. 1
— TR, RET Zmp ph— S F, FRY, 3) effects can be negl_ectgd. .
4+ 2 Pk 4~ In practical applications to nuclear matter and finite nu-
clei, the relativistic models are used in the-seaapproxi-
with the corresponding masses,, m,, m,, andQ,,, mation: the Dirac sea of states with negative energies does
|:§M, F,, are field tensors, not contribute to the densities and currents. For a nucleus
with A nucleons
Q,,=0,0,—d,0,, A
- - YUty = 2, (1, OT (1,0, 10
Ry 0ups— dvp, 7 (W)= 2, (1O i (1) (10
Fuo=0,A,—d,A,. where the summation is performed only over the occupied

orbits in the Fermi sea of positive energy states. The set of
The model Lagrangian density contains also the interactiomoupled equationé7) and(9) define the RMF model. In the
terms stationary case they reduce to a nonlinear eigenvalue prob-
o o o o lem, and in the time-dependent case they describe the non-
Line=— YT yoy— YT o, y— yT#p,y— yT4A,4p. (5)  linear propagation of the Dirac spinors in tirfi7].
The mean-field approximation represents the lowest order
The vertices read of the quantum field theory: the meson field operators are
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replaced by their expectation values. TAenucleons, de- . A R R

scribed by a Slater determinatb) of single-particle p(r,r’,t)zz [ i (r, ) i (r' 1), (12
spinors, move independently in the classical meson fields. =1

The couplings of the meson fields to the nucleon are adjusted ] ] )
to reproduce the properties of nuclear matter and finite nuthe total energy can be written as a functional of the density
clei. Thee meson approximates a large attractive scalar fieldnatrix p and the meson fields

that is produced by very complicated microscopic processes,

such as uncorrelated and correlated pion exchange.«lhe - . -
meson describes the short range repulsion between the nucle- ErmeLp: ém]=Trl(a-p+Bm)p]+ f
ons, and thep meson carries the isospin quantum number.

The latter is required by the large empirical asymmetry po-

tential in finite nuclear systems. The basic ingredient of the +U(¢dm)
microscopic nuclear force is the pion. In relativistic mean-

field mOdelS, it does not contribute on the Hartree level be’rhe trace Operation involves a sum over the Dirac indices

cause of parity conservation. The pion field has been inand an integral in coordinate space. The indeis used as a
cluded in the relativistic Hartree-Fock model. HOWeVer, thegeneric notation for all mesons and the photon_ From the

resulting equations of motion are rather complicated and thig|assical time-dependent variational principle
model has been rarely used. Many effects that go beyond the
mean-field level are apparently neglected in the RMF model.
dl
t

1
E(V¢m)2

Er+Tl (T ndmpl. (13

to “
dt{(®[id|®)—E[p,pnl}=0 (14

1

Among them are the Fock terms, the vacuum polarization
effects and the short range Brueckner-type correlations. The
experimental data to which the meson-nucleon couplings are . . i
adjusted, however, contain all these effects and much mord&he equations of motiofi7) and (9) are obtained. The equa-
It follows that these effects are not completely neglected. offon of motion for the density matrix reads

the contrary, they are taken into account in an effective way. o R

The concept behind the RMF model is therefore equivalent idip=[h(p,dm),p]. (15
to that of the density functional theory, which is widely used

in solid state physics, molecular physics, chemistry and als§ g single-particle Hamiltoniah is the functional derivative

in nonrelativistic nuclear physics. The RMF model repre-qf the energy with respect to the single-particle density ma-
sents the covariant form of this method. trix p

B. Covariant density functional theory SE

The equations of motion of the relativistic mean-field hzg_f,' (16

model can also be derived starting from a density functional.

From the energy-momentum tensor one writes the total en- N ) o
ergy of the nuclear system, C. Pairing correlations and the relativistic

Hartree-Bogoliubov theory

A
o w hoAn]— o B ' The inclusion of pairing correlations is essential for a
Ermrl .1, 0, 0%, ¥, AT 21 f Yi (e pt Bl quantitative description of open-shell nuclei. In Rgf8], a
fully microscopic derivation of the relativistic Hartree-
n Bogoliubov theory has been developed. Using the Gorkov
factorization technique, it has been shown that the pairing
interaction results from the one-meson exchanged, and
_ lf [(ﬁw)2+ m? w?)] dr p mesong In practice, however, it turns out that the pairing
2 @ correlations calculated in this way, with coupling constants
1 taken from the standard parameter sets of the RMF model,
_ = V)24 m202)1d3 are too strong. The repulsion produced by the exchange of
[(Vp)=+m p9)]d°r . . >
2 vector mesons at short distances results in a pairing gap at

d3r

15 2
E(VU’) +U(o)

1 the Fermi surface that is by a factor 3 too large. However, as
_ _J (ﬁA)2d3r+f [gups0 has been argued in many applications of the Hartree-Fock-
2 Bogoliubov theory, there is no real reason to use the same
) - - effective forces in both the particle-hole and particle-particle
+00) @ +9,) up" channels.
+ejC#A“]d3r. (11) Pairing correlqtions can be easily inclut_jed in the frame-
work of the density functional theory, by using a generalized
Slater determinanjtd) of the Hartree-Bogoliubov type. The
By using the definition of the relativistic single-nucleon den-ground state of a nucley$) is represented as the vacuum
sity matrix with respect to independent quasiparticle operators
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1

o =2 Ui Ve, (17 Aap(Fr)=5 2 VEBd 1M ieed 1), (27)

where Uy, V) are the Hartree-Bogoliubov coefficients. \yhere a,b,c,d denote quantum numbers that specify the
They determine the Hermitian single-particle density matrlxDiraC indices of the spinors, andggcd(F,F') are the matrix

;3=V* VT (18) elements of a general two-body pairing interaction.
' The stationary limit of Eq(23) describes the ground state
and the antisymmetric pairing tensor of an open-shell nucleug20,21]. It is determined by the
solutions of the Hartree-Bogoliubov equations
k=V*UT. (19 i i A A
hp—m—A\ A U(r) Uy(r)

The energy functional depends not only on the density ma- ~ . - | =Ey ..
trix p and the meson fieldg,,, but in addition also on the -4 —hp+m+N/ 1 Vi(r) Vi(r)

pairing tensor. It has the form

The chemical potential is determined by the particle num-

ber subsidiary condition in order that the expectation value

of the particle number operator in the ground state equals the

number of nucleons. The column vectors denote the quasi-

particle wave functions, ané, are the quasiparticle ener-

1 gies. The dimension of the RHB matrix equation is two times

Epair[,}]: = ,}*Vpp,}]_ (21 the dimension of the corresponding Dirac equation. For each

4 eigenvector U,,V,) with positive quasiparticle energl,

>0, there exists an eigenvectdr){ ,U}) with quasiparticle

nergy— E, . Since the baryon quasiparticle operators satisfy

El[p, &, bml=Ermel o, ]+ Epairl k1, (20)

where Eguelp, #] is the RMF functional defined in Eq.
(13). The pairing energ)Epair[fc] is given by

VPP is a general two-body pairing interaction. Finally, the
total energy can be written as a functional of the generalize

density matrix 19] ermion comr_nutat?on relations, the levdtg and_— Ey can-
not be occupied simultaneously. For the solution that corre-
p K sponds to a ground state of a nucleus with even particle
R= o 1_p*), (22 number, one usually chooses the eigenvectors with positive

eigenvalue, .
The RHB equations are solved self-consistently, with po-

which obeys the equation of motion : ! . . o
4 g tentials determined in the mean-field approximation from so-

i9,R=[H(R),R]. (23) lutions of static Klein-Gordon equations
The generalized Hamiltonial is a functional derivative of [—A+m2]o(r)=—g,ps(r) —Go0(r) —g3a(r),
the energy with respect to the generalized density (29)
hp—m—X A - -
_ O _[Mo7n ) @ [—A+m2]e(N)=g,p,(r), (30
oR —A*  —hp+m+a
[—A+m71p3(r)=g,pa(r), (3D

It contains two average potentials: the self-consistent mean
field hp , which encloses all the long range particle-hgib)

correlations, and the pairing field, which includes the
particle-particle(pp) correlations. The single-particle poten-

tial ﬁD results from the variation of the energy functional
with respect to the Hermitian density matpx

—AA%(r)=ep,(r) (32)

for the o meson, thew meson, theﬁ meson and the photon
field, respectively. Because of charge conservation, only the
third component of the isovectprmeson contributes. In the
ground-state solution for an even-even nucleus there are no
ﬁDZ—M (25) currents(tim% reversal invariangeand the spatial compo-

op nentsw, p3, A of the vector fields vanish. In nuclei with an

o ] . ] o odd number of protons or neutrons time reversal symmetry is
and the pairing field is obtained from the variation of thebroken, and the resulting spatial components of the meson

energy functional with respect to the pairing tensor fields play an essential role in the description of magnetic
moments and of moments of inertia in rotating nuclei. The
A= 5_[5 (26) equation for the isoscalar scalarmeson field contains non-
Sk linear terms. The inclusion of nonlinear meson self-
interaction terms in meson-exchange RMF models is abso-
The pairing field is an integral operator with the kernel lutely necessary for a quantitative description of ground-state
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properties of spherical and deformed nu¢ted]. The source The generalized Hamiltonial{ can now be expressed as
terms in EQs.(29-(32) are sums of bilinear products of a functional of the generalized densi® only. In the linear
baryon amplitudes, approximation the generalized density matrix is expanded,
- - > R=Ro+ SR(1), 40
ps()=3 VDYV, 33 o+ SR(Y) 40

ey

>

o

whereR, is the stationary ground-state generalized density.
SinceR(t) is a projector at all times, in linear order

pu(r)= 2 VKNVT), (349
R05R+ 5RR0= 572 (41)
pa(r)=>, VI(F) maVi(T), (35)  In the quasiparticle basis the matricRg and Ho="H(Ro)
k>0 are diagonal,
- - 1-73 - 00 E 0
r=>, Vir Vi (), 36 - _| "
Penll) Py k(1) > Vi) (36) Ro (O L and H, (O _En). (42)

where 2., is a shorthand notation for the no-sea approxi-grom gq.(41) it follows that the matrixsR has the form
mation. The self-consistent solution of the Dirac-Hartree-

Bogoliubov integrodifferential equations and Klein-Gordon 0 SR
equations for the meson fields determines the ground state of 672:( . ) (43
a nucleus. In the present implementation of the RHB model —oR* 0
the coupled system of equations is solved by expanding the _ . .
nucleon spinor&) (1) andV,(r), and the meson fields in the 1€ linearized equation of motioi23) reduces to
spherical harmonic oscillator bagig2]. .y

i, R=[Hq,0R]+| == 6R,Ro|- (44)
D. The relativistic quasiparticle random phase approximation oR

In this section, we will derive the RQRPA from the time-
dependent RHB model in the limit of small amplitude oscil-
lations. The generalized density matfi and the fieldsp,,
=o,w", p* A* have been considered as independent vari- SR()=2, SRMel“ttH.c., (45
ables related only by the equations of motion. One can use g
the Klein-Gordon equations to eliminate the meson degrees . ,
of freedom, but this is only possible in the small amplitudetn® RQRPA equation is obtained:
limit. The time-dependent meson field can be written as

A B XY
bn= i+ S, (37) (_B* _ A*)(YV

Assuming an oscillatory solution

ol
=0y - (46)

whereg{) is the meson field that corresponds to the stationyq | </ <’

) o the RQRPA matrix elements read
ary ground state, andd¢,, is a small variation of the meson

field around the stationary state solution. In the linear ap- S2E
proximation the corresponding Klein-Gordon equation reads Aven = (Ex+Er) Sy + and

*

R ORyy/
[—A+U" (6 ]8¢m(1)==gmbpm(r),  (38)
. . N 5°E

whereSp(r) are the various densities and curresse Eq. B =— ot (47)
(10)]. If there are no nonlinear meson self-interaction terms, ORy OR},

U"(¢9)=m?. The propagatoG(r,r’) can be obtained o o
analytically and it has the Yukawa form. In the case of non-'f the two-body Hamiltonian is density independent the ma-
linear meson self-interaction term’(¢(?) depends on the [iCeSA andB have the simple formp24]

field ¢!, and an analytical solution is no longer possible.

The propagaton(F,F’) has to be calculated numerically
(for details see Ref[23]). In both cases we find a linear A
relation betweerS¢,, and Sp,, B 11'= —{(P|[er a ,[H, ) 1] D). (48

Akkr’”,=<(I>|[akrak,[|:|,a|+a|+,]]|¢>,

R , > s, -, Using the representation of the Hamiltonian in the quasipar-
5¢m(f)=ing A% Gu(r,1") Spim(r). B9 icle %asis P e
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. u o 1 - - Taking into account the rotational invariance of the
HZEo*‘E H o ax ak’+Z 2 Hion @y a0 apra nuclear system, the quasiparticle pairs can be coupled to
kk’ k11’ good angular momentum and the matrix equations of the
RQRPA read
40
+kk2”/ (Hkk,”,a;a;a;arﬁ-H.C.)
AJ BJ XV’JM 1 0 XV,JM
+ 2 (H3l, oy ol ap+H.C), (49 ( ) >=wv< )( , ) (51
St Kk’ 1l k k% B*‘] A* Y JM 0 -1 Y JM
we find For each RQRPA energy,, X”, andY” denote the corre-
sponding forward- and backward-going two-quasiparticle
o1 1 11 1 22 amplitudes, respectively. The coupled RQRPA matrices in
At =Hii bt = Higy diar = Higr dior + Higy S+ Higey o the canonical basis read
Bkk’||':4H‘k‘g’|l' . (50)
A =HED s —HEDs RO s +HED s,
In the quasiparticle representation the maktiX is diagonal,
i.e., Hit=E,dy . The matricedH?? andH*° are rather com- N 1(§+ £ e e VP
plicated expressions containing the two-boghh- and 2 KK SANT D S SANT S T ke N
pp-matrix elements and the coefficieriisandV (for details phJ
see Ref[24]). e Vinr e (52
In the more general case of a density-dependent Hamil-
tonian the same expressions can be used, but one has to take LJ =}(§+ NN )VppJ F iy
into account the rearrangement terms originating from the KNS RSk SN Sk SANTT e AN TS KaTA
variation of the interaction with respect to the dengity i =iy +J,Phd
(=D TITIVEER (53
E. The relativistic QRPA in the canonical basis H!! denotes the one-quasiparticle terms

The full RQRPA equations are rather complicated, be-

cause they require the evaluation of the matrix elements

Hﬁi,“, and Hﬁg,”, in the basis of the Hartree-Bogoliubov i.e., the canonical RHB basis does not diagonalize the Dirac

spinorsUk(F) ande(F). It is considerably simpler to solve single-nucleon mean-field Hamiltonidm, and the pairing
these equations in the canonical basis, in which the relativfield A. The occupation amplitudes, of the canonical states
istic Hartree-Bogoliubov wave functions can be expressed iyre eigenvalues of the density matri®®" and VPP are the
the form of BCS-like wave functions. In this case one needgarticle-hole and particle-particle residual interactions, re-
only the matrix elementvg:,K,)\ of the residuabh interac-  spectively. Their matrix elements are multiplied by the pair-
tion, and the matrix element\ségl‘j,w of the pairingpp in-  ing factorsé™ and ¢, defined below by the occupation am-
teraction, as well as certain combinations of the occupatio@”tUdes of the canonical states. The relativistic particle—hole
factorsu,, v,.. The numerical details are described in theinteractionVP" is defined by the same effective Lagrangian
Appendix. In the following we use the indices \, ' and  density as the mean-field Dirac single-nucleon Hamiltonian
\' to denote states in the canonical basis. We emphasize thlag . VP" includes the exchange of the isoscalar scalane-

the solution of the relativistic quasiparticle RPA equations inson, the isoscalar vectas meson, the isovector vecter

the canonical basis does not represent an approximation. Waeson, and the electromagnetic interaction. The two-body
obtain a full solution and the results do not depend on thisnatrix elements include contributions from the spatial com-
special choice of the basis. ponents of the vector fields,

Hi}\:(uKu}\_UKU)\)hK)\_(UKU}\+UKU)\)AK)\’ (54)

n..m,. for o, and the time components’, p°, A if J is even

for the space componends g, A if J is odd

Lenan = N My fora,and the time componenis’, p°, A if J is odd

for the space componenis g, A if J is even
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with the 7 coefficients defined by
8p3(r)=2 {(k[|Yoll& ) ()i (r)

nfk,=u,(v *ou, U, . .
+ (Y3l K )G g (NHX T+ (= 1)V )
and XU (—1)% U0, (57)
Eerr =Unlo 0,0 7 - wherex andx denote the quantum numbers of the large and
small components of the Dirac spinors, respectivé]yr)

The RQRPA configuration space includes the Dirac sea oandg,(r) are the corresponding large and small radial com-
negative-energy states. In addition to the configurations builponents.
from two-quasiparticle states of positive energy, the RQRPA
configuration space must also contain pair configurations . ILLUSTRATIVE CALCULATIONS
formed from the fully or partially occupied states of positive AND TESTS OF THE RQRPA
energy and the empty negative-energy states from the Dirac
sea. The inclusion of configurations built from occupied Nuclear properties calculated with the RHBQRPA
positive-energy states and empty negative-energy states mgodel will, of course, crucially depend on the choice of the
essential for current conservation and the decoupling of spieffective RMF Lagrangian in thph channel, as well as on
rious state$27]. In recent applications of the relativistic RPA the treatment of pairing correlations. The most successful
it has been shown that the fully consistent inclusion of theRMF effective interactions are purely phenomenological,
Dirac sea of negative-energy states in the RRPA configurawith parameters adjusted to reproduce the nuclear matter
tion space is essential for a quantitative comparison with th@quation of state and a set of global properties of spherical
experimental excitation energies of giant resonafbezg]. closed-shell nuclei. In most applications of the RHB model,

It should be emphasized that the present RQRPA model i) particular, we have used the NL3 effective interac{i28]
fully consistent: the same interactions, both in the particlefor the RMF effective Lagrangian. Properties calculated with
hole and particle-particle channels, are used in the RHENL3 indicate that this is probably the best nonlinear effective
equation(28) that determines the canonical quasiparticle bainteraction so far, both for nuclei at and away from the line
sis, and in the RQRPA equatigdl). In both channels the of 3 stability. In thepp channel of the RHB model we have
same strength parameters of the interactions are used in théed a phenomenological pairing interaction, the pairing part
RHB and RQRPA calculations. No additional adjustment ofof the Gogny force,
the parameters is needed in RQRPA calculations. This is an
essential feature of our calculations and it ensures that
RQRPA amplitudes do not contain spurious components as-
sociated with the mixing of the nucleon number in the RHB
ground statdfor 0" excitations, or with the center-of-mass —M;P7P7), (58)
translational motior{for 1~ excitations.

In the following section, we present results of illustrative with the set D1930] for the parameterg;, W;, B;, H;,
RQRPA calculations of the multipole response in sphericaBndM; (i=1,2). This force has been very carefully adjusted
nuclei. For the multipole operat@w the response function to the pairing properties of_ finite nuclei all over the periodic_
R(E) is defined as table_. !n particular, _the basic adyantage of the Gogny force is

the finite range, which automatically guarantees a proper cut-
off in momentum space. All RHBRQRPA calculations pre-
REN=S B(Jw,) 1 /2 (55) sented in this work have been performed with the NICBLS
’ P Y T (E-w,)2+(T12)2 combination of effective interactions.

In order to illustrate the RHBRQRPA approach and to
test the numerical implementation of the RQRPA equations,
in this section we calculate the isoscalar monopole, isovector
dipole, and isoscalar quadrupole response®4. Similar

_ 1,30, || A / calculations for the neutron-rich oxygen isotopes were re-
B(J,wy)—|KEK, {X e (xllQll ") cently performed by Matsuf2,3] in the framework of the
o R nonrelativistic continuum linear response theory based on the
+(— 1)'«"K’”YZ’,3,O(K’||QJ||K)} Hartree-Fock-Bogoliubov formalism in coordinate state rep-
resentation. The two theoretical frameworks differ, of course,
both in the physical contents, as well as in the numerical
implementation. The results can, nevertheless, be compared
In all the examples considered in Sec. lll, the discreteat least at the qualitative level. In the HFHB®RPA model of
strength distributions are folded by a Lorentzian of wifith Refs.[2,3], a Woods-Saxon parametrization is adopted for
=1 MeV. For the staté¢J,v), the RQRPA transition density the single-particle potential, and a Skyrme-type density-
reads dependent force is used for the residual interaction in the

VPP(1,2) = '212 e*[(f‘rf‘z)/uilz(wi +BP°—H,P"
i=1,

wherel is the width of the Lorentzian distribution, and

X (U o+ (—1) v, ue)|? (56)
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ground state, but not in the residual interaction of the
RQRPA. The solid ling(zero respongecorresponds to the
full RHB +RQRPA calculation, with the pairing interaction
included both in the RHB ground state, and in the RQRPA
residual interaction. The same result was also obtained in the
HFB+QRPA calculation for?*0 in Ref.[3]: the spurious
strength of the number operator appears when the pairing
interaction is included only in the stationary solution for the
ground state, i.e., when the dynamical QRPA pairing corre-
lations are neglected.

The isoscalar strength functions of the monopole operator
sf ,rZin 220, shown in the right panel of Fig. 1, correspond

|
|
|
|

1

I

1

i s
I

1

1

i

U

\

h
|
-
2\
R
B
h
\

to three different calculationga) the RMFH-RRPA calcula-
tion without pairing,(b) pairing correlations are included in
the RHB calculation of the ground state, but not in the
RQRPA residual interactiotno dynamical pairing and (c)

FIG. 1. The strength function for the neutron number operatorthe fully self-consistent RHBRQRPA calculation. Just as in
(left), and the isoscalar strength function for the monopole operatothe case of the number operator, by including pairing corre-
(right) in 220. The curves correspond to the RMRRPA calcula-  lations only in the RHB ground state a strong spurious re-
tion without pairing(dotted, with pairing correlations included in sponse is generated below 10 MeV. The Nambu-Goldstone
the RHB calculation of the ground state, but not in the RRPA re-mode is found at zero excitation ener@n this particular
sidual interaction(dashed, and to the fully self-consistent RHB calculation it was located below 0.2 Mgdnly when pairing
+RQRPA calculatior(solid). correlations are consistently included also in the residual
RQRPA interaction. When the result of the full RHB

ph channel of the QRPA. Since the calculation of the single-+tRQRPA is compared with the response calculated without
particle potential anghh interaction is not self-consistent, the pairing, one notices that, as expected, pairing correlations
interaction strength of the residual interaction is renormalhave relatively little influence on the response in the region
ized for each nucleus in such a way that the dipole respons@f giant resonances above 20 MeV. A more pronounced ef-
has a zero-energy mode corresponding to the SpurioJ@Ct is found at lower energies. The fragmentation of the
center-of-mass motion. For the pairing interaction, a densitysingle peak at~12.5 MeV reflects the broadening of the
dependent force is used both in the calculation of the HFB Fermi surface by the pairing correlations.
pairing field for the ground state, and in the linear response The isovector strength functionJ{=1") of the dipole
equation for the excitations. The calculation is consistent irPperator
the pp channel. The present RHERQRPA calculations are . N
fully self-consistent: the same combination of effective inter- OT=1= S Y Z Sy
actions, NL3 in theph channel and Gogny D1S in thep m UN4Z S PIM Nz
channel, are used both in the RHB calculation of the ground
state and as RQRPA residual interactions. The parameters fifr 220 is displayed in the left panel of Fig. 2. In this ex-
the RQRPA residual interactions have exactly the same vaample we also compare the results of the RMERPA cal-
ues as those used in the RHB calculation. culations without pairing, with pairing correlations included

In the analysis of Refd.2,3], Matsuo has illustrated the only in the RHB ground staténo dynamical pairing and
importance of a consistent treatment of pairing correlationsvith the fully self-consistent RHBRQRPA response. A
in the HFB+QRPA framework. The residual pairing interac- large configuration space enables the separation of the zero-
tion in the QRPA generates pronounced dynamical correlaenergy mode that corresponds to the spurious center-of-mass
tion effects on the responses through pair density fluctuamotion. In the present calculation féfO this mode is found
tions. Moreover, the energy weighted sum rules are onhat E=0.04 MeV.
satisfied if the pairing interaction is consistently included The isovector dipole response in neutron-rich oxygen iso-
both in the static HFB and in the dynamical linear responsetopes has recently attracted considerable interest because
We have verified that the results obtained in the HEERPA  these nuclei might be good candidates for a possible identi-
framework are also reproduced in the RHRQRPA calcu- fication of the low-lying collective soft modgygmy statg
lations. which corresponds to the oscillations of excess neutrons out

In the left panel of Fig. 1 we display the monopole of phase with the core composed of an equal number of
strength function of the neutron number operator?f®. protons and neutron81,32. The strength functions shown
There should be no response to the number operator sinceiit Fig. 2 illustrate the importance of including pairing corre-
is a conserved quantity, i.e., the Nambu-Goldstone mode aations in the calculation of the isovector dipole response.
sociated with the nucleon number conservation should havBairing is, of course, particularly important for the low-lying
zero excitation energy. The dashed cugwe dynamical pair- strength below 10 MeV. The inclusion of pairing correlations
ing) represents the strength function obtained when the paiin the full RHB+RQRPA calculation enhances the low-
ing interaction is included only in the RHB calculation of the energy dipole strength near the threshold. For the main peak

<vIN o>

I O B R B 0
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FIG. 2. The isovector strength function of the dipole operatorin  FIG. 3. The RHB-RQRPA isoscalar and isovector quadrupole
220 (left). The fully self-consistent RHBRQRPA responsésolid  strength distributions irf?0 (left pane). In the right panel the full
line) is compared with the RMFRRPA calculation without pairing RHB-+RQRPA isoscalar strength functidisolid) is compared to
(dotted ling, and with the RHB-RRPA calculation that includes the RMF-RRPA calculation without pairingdotted, and with the
pairing correlations only in the ground stdtiashed ling The pro-  response obtained when the pairing interaction is included only in
ton and neutron transition densities for the pealEat8.65 MeV  the RHB ground statédashegl
are shown in the right panel.

isoscalar and isovector quadrupolE"&2") strength distri-
in the low-energy region<£8.65 MeV), in the right panel of butions in ?20. The low-lyingJ™=2" state is calculated at
Fig. 2 we display the proton and neutron transition densitiesE=2.95 MeV, and this value should be compared with the
In contrast to the well known radial dependence of the isexperimental excitation energy of the first atate: 3.2 MeV
ovector giant dipole resonan¢®/GDR) transition densities [34]. The strong peak aE=22.3 MeV in the isoscalar
(proton and neutron densities oscillate with opposite phasestrength function corresponds to the isoscalar gitBitgiant
the amplitude of the isovector transition density is muchguadrupole resonance. The isovector response, on the other
larger than that of the isoscalar componettte proton and  nhang, is strongly fragmented over the large region of excita-
peutron tranS|tlon densmes fpr the main Iow-energy .peak a'on energies=18-38 MeV. The effect of pairing correla-
in phase in ';he nuclear Interior, there IS no contrlbutl_o_n fromtions on the isoscalar response is illustrated in the right panel
the protons in the surface region, the isoscalar transition deQ)-f Fig. 3, where again the full RHBRQRPA strength func-

sity dominates over the isovector one in the interior, and th(%ion is compared to the RMFRRPA calculation without
strong neutron transition density displays a long tail in the airing, and with the response obtained when the pairing

radial coordinate. A similar behavior has been predicted foP o .
the light neutron halo nuclefHe, MLi, and 1zBep in Ref. Interaction is included only in the RHB ground stdi®o

[33], where it has been shown that the long tails of the Wavéiynamlcal F’a'“”_g As one v_vould expect, the effgct of pair-
functions of the loosely bound neutrons are responsible fof?d correlations is not particularly pronounced in the giant
the different radial dependence of the transition densities thg€Snance region. The inclusion of pairing correlations, how-
correspond to the soft low-energy states as compared @Ver, has a relatively strong effect on the low-lying &tate.
those of the giant resonances. This is seen more clearly in the left panel of Fig. 4, where

The effect of pairing correlations on the isovector dipoleonly the low-energy portion of the isoscalar strength distri-
response in?20 is very similar to the one obtained in the butions in??0 is shown. With respect to the RRPA calcula-
HFB+QRPA framework(Fig. 8 of Ref.[3]). In the low- tion, the inclusion of the pairing interaction in the static so-
energy region below 10 MeV, however, the pairing interac-lution for the ground state increases the excitation energy of
tion used in the QRPA calculation produces a much strongethe lowest 2 state by~3 MeV. The fully self-consistent
enhancement of the dipole strength, as compared to the r&&HB-+RQRPA calculation lowers the excitation energy from
sults shown in Fig. 2. The reason probably lies in the choice=4.5 MeV toE=2.95 MeV. The inclusion of pairing corre-
of the pairing interaction. While we use the volume Gognylations increases the collectivity of the low-lying Ztate. A
pairing, in Ref.[3] a density-depender force was used in very similar result for the low-lying quadrupole state 3O
the pp channel. This interaction is surface peaked and therehas been obtained by Matsuo in the HFQRPA framework
fore produces a stronger effect on the low-energy dipolg¢3]. The proton and neutron transition densities for the 2
strength near the threshold. Nevertheless, we emphasize trgtate att =2.95 MeV are shown in the right panel of Fig. 4.
the RHB+RQRPA results for the low-lying dipole strength They display a characteristic radial dependence. Both transi-
distribution in 220 are in very good agreement with recent tion densities are, of course, peaked in the surface region, but
experimental dat@32]. the proton contribution is much smaller. The RHRQRPA

In the left panel of Fig. 3 we display the RHBRQRPA  results for the 2 excitations are in agreement with the non-
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FIG. 4. Low-energy portion of the isoscalar quadrupole strength 0.00
distribution in 220 (left). The neutron and proton transition densities 5 i
for the J™=2" state atE=2.95 MeV (right). -0.20
0 1 1 1
relativistic QRPA calculations of the quadrupole response in 151 1 o020
neutron-rich oxygen isotopg8,4,35,38. " W0
0.00 § ¢
IV. EVOLUTION OF THE LOW-LYING ISOVECTOR 5L 4 ,
DIPOLE STRENGTH IN Sn ISOTOPES -0.20
AND N=82 ISOTONES 00 0 20 30 0 7 46 5 10
The dipole response of very neutron-rich isotopes is char- E [MeV] r [fm]

acterized by the fragmentation of the strength distribution
and its spreading into the low-energy region, and by the mix- FIG. 5. RHB+RQRPA isovector dipole strength distributions in
ing of isoscalar and isovector modes. It appears that in mostécd, #‘Sm, #2\d, and *%Ce, calculated with the NL8D1S
relatively light nuclei the onset of dipole strength in the low- effective interaction. The corresponding proton and neutron transi-
energy region is due to nonresonant independent singlgion densities for the main peak in the low-energy region below 10
particle excitations of the loosely bound neutrons. The strucMeV are displayed in the panels on the right side.
ture of the low-lying dipole strength changes with mass. As
we have shown in the RRPA analysis of Rdf0], in heavier (IVGDR) at ~15 MeV, the evolution of the low-lying di-
nuclei low-lying dipole states appear that are characterize@lole strength with decreasing proton number is clearly ob-
by a more distributed structure of the RRPA amplitude.served below 10 MeV. The strength of the low-lying dipole
Among several peaks characterized by single-particle transresponse increases with the relative increase of the neutron
tions, a single collective dipole state is identified below 10contribution, i.e., with reducing the number of protons. For
MeV, and its amplitude represents a coherent superpositiothe main peaks in the low-energy region below 10 MeV, in
of many neutron particle-hole configurations. the panels on the right side of Figs. 5 and 6 we display the
Very recently experimental data have been reported on theorresponding neutron and proton transition densities. The
concentration of electric dipole strength below the neutrorradial dependence is very different from that of the transition
separation energy iN=82 semimagic nuclei. The distribu- densities of the IVGDR peak. For all eight nuclei the main
tion of the electric dipole strength it*®Ba, 1*%Ce, and peak below 10 MeV does not correspond to an isovector
144Sm displays a resonant structure between 5.5 MeV and 8xcitation, i.e., the proton and neutron transition densities
MeV, exhausting~=1% of the isovectoE1l energy weighted have the same sign. The relative contribution of the protons
sum rule (EWSR [37]. In '*%Ba negative parity quantum in the surface region decreases with reducing the proton
numbers have been assigned to 18 dipole excitations be&wumber. In particular, for the nuclei shown in Fig. $2Ba,
tween 5.5 MeV and 6.5 MeY38]. 136xe, 134Te, and3%Sn, there is practically no proton con-
In Figs. 5 and 6 we display the isovector dipole strengthtribution to the transition density beyond 6 fm. The dynamics
distributions in eightN=82 isotones, calculated in the RHB is that of a pygmy resonance: the neutron skin oscillates
+RQRPA framework with the NL3D1S combination of against the core. In Ref37] it was emphasized that the
effective interactions. The calculation is fully self-consistent,observed low-lying dipole states in thé=82 isotones are
with the Gogny finite-range pairing included both in the not just statisticalE1l excitations sitting on the tail of the
RHB ground state, and in the RQRPA residual interactionGDR, but represent a fundamental structure effect. In Fig. 7
The isovector dipole response is shown for eZenuclei  we show that this is also the case for the RHBQRPA
from %%Gd to the doubly magic®%Sn. In addition to the results. For the dipole strength distribution ¥fCe, shown
characteristic peak of the isovector giant dipole resonanci the left panel, in the right column we compare the neutron
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‘ different: the proton and neutron transition densities are in
0 1 o 0201 — B%ttgggs A phase in the nuclear interior, there is almost no contribution
Ba from the protons in the surface region, the isoscalar transi-
sl | 000 AN tion density dominates over the isovector one, and the peak
’ of the strong neutron transition density in the surface region
-0.20 is shifted toward larger radii.
0 ‘ ‘ — On a quantitative level, the present RHBQRPA calcu-
10k ] 020 lation does not compare too well with the experimental data
xe on the low-lying dipole strength in this =82 isotones. First,
3 . | 000 while the observed low-energy dipole states'iBa, “°Ce,
p= 5 o and **Sm are concentrated between 5.5 MeV and 8 MeV,
e £-020 the calculated pygmy states in these nuclei are above 8 MeV.
g O i 1 e ey This can be partly explained by the low effective nucleon
T 10l 1 020 mass of the NL3 mean-field interacti¢B9]. On the other
T hand, the excitation energies of the IVGDR are, as will be
0.00 shown below in the example of Sn isotopes, rather well re-
Sr T produced by the NL3 interaction. The fact that NL3 repro-
-0.20 duces the IVGDR, but not the centroid of the low-energy
0 { ; dipole strength, might indicate that the isovector channel of
0.20 this force needs a better parametrization. Second and more
101 L T important, the number of RQRPA peaks below 10 MeV, for
0.00 the operatorn(59), is much smaller than the number of ob-
5F 8 served dipole states in the low-energy reg[@8,37. The
-0.20 observed low-lyinggl strength consists of many states of
0 ‘ \ o different origin. This has been discussed in R&f]. In ad-
0 10 20 0 2 4 6 8 10 dition to the two-phonon and three-phonon states, and the
E [MeV] r [fm] soft pygmy state, in this energy region one could also expect

some compressional low-lying isoscalar dipole strefgi,
FIG. 6. Same as in Fig. 5, but for thé=82 isotones:1*®8a, = may be mixed with toroidal stat¢41,41], as well as thé&1
136xe, 134Te, and¥%n. strength generated by the breaking of the isospin symmetry
due to a clustering mechanig#?2]. A detailed investigation
and proton transition densities for the IVGDR peak at 14.31of the nature of all observed low-lying dipole statesNn
MeV, for the peak at 12.51 MeV, and for the main peak in the=82 nuclei is, of course, beyond the scope of the present
low-energy region at 8.22 MeV. The peak at 12.51 MeV, asanalysis, since our model space does not include mul-
well as other peaks in the interval 10—14 MeV, displays trantiphonon configurations.
sition densities very similar to those of the GDR peak, i.e., The Sn isotopes present another very interesting example
these states belong to the tail of the GDR. The dynamics off the evolution of the low-lying dipole strength with neutron
the low-energy mode at 8.22 MeV, on the other hand, is vernumber[43]. In Ref.[10] we have performed an analysis of
the isovector dipole response of neutron-rich Sn isotopes in
B ———— the relativistic RPA framework. The RMFRRPA calcula-
L ) {0y ETISLMY tion has shown that, among several dipole states in the low-
1 Ce {  000f—s energy region between 7 MeV and 9 MeV, and characterized
d by single-particle transitions, a single state is found with a
more distributed structure of the RRPA amplitude, exhaust-

020} —

o
o
T
|

3 | | 4 og0  perons  ESi2G1Mey | ing ~2% of the EWSR. The results of the fully self-
S | | & gl consistent RHB-RQRPA calculation, with the NLBD1S
Né | | & ol 1 combination of effective interactions, are shown in Figs. 8
© T o and 9: the isovector dipole strength functions of the Sn iso-
°r 7 " E=822Mev topes(left panel3, and the corresponding proton and neutron
I 1 o2r //\ 1 transition densities for the main peaks in the low-energy re-
r 1 o0 ’ gion (right panel$. With the increase of the number of neu-

r 1 oml J ] trons a relatively strong peak appears below 10 MeV, char-
T - T T acter@;ed by thg_ dynamics of the pygmy resona(m the
transition densitieds The low-energy pygmy peak is most
E[MeV] r[fm] .12
pronounced in?Sn. It does not become stronger by further
FIG. 7. The isovector dipole strength distribution#fCe (left ~ increasing the neutron number, and additional fragmentation
pane). The neutron and proton transition densities for the IVGDROF the low-lying strength is observed it*?Sn. For the Sn
peaks at 14.31 MeV, 12.51 MeV, and for the main peak in theisotopes we can compare the RHBRQRPA results with ex-
low-energy region at 8.22 MeVtight). perimental data on IVGDR. In the upper panel of Fig. 10 the
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FIG. 8. RHB+RQRPA isovector dipole strength distributions in FIG. 9. Same as in Fig. 8, but for the heavier Sn isotopes.
Sn isotopes, calculated with the NE®1S effective interaction.

The corresponding proton and neutron transition densities for th? : : 12
; . ) atiom /m reaches a maximurs0.06 for 124Sn,
main peak below the IVGDR are displayed in the panels on the LLOWE T 1,HIGH

ek and it slowly decreases t0.05 for 13%Sn.
right side.

experimental IVGDR excitation energi¢44] are shown in V. SUMMARY
comparison with the calculateBgpr. The energy of the

resonance is defined as the centroid energy In this work we have formulated the relativistic QRPA in

the canonical single-nucleon basis of the relativistic Hartree-
Bogoliubov (RHB) model. The RHB model presents the
=— (60 relativistic extension of the Hartree-Fock-Bogoliubov frame-
work, and it provides a unified description of the mean-field
and pairing correlations. A consistent and unified treatment
of the ph and pp channels is very important for weakly
bound nuclei far from stability. In the RHB framework the
me=>, B(J,w,)EX. (61)  9round state of a nucleus can be written either in the quasi-
v particle basis as a product of independent quasiparticle
states, or in the canonical basis as a highly correlated BCS
For k=1 this equation defines the EWSR. The calculatedstate. By definition, the canonical basis diagonalizes the den-
energies of the IVGDR are in excellent agreement with thesity matrix and it is always localized. It describes both the
experimental data, and the mass dependence of the excitatibound states and the positive-energy single-particle con-
energies is reproduced in detail. In the middle panel of Figtinuum. The QRPA model employed in this work is fully
10 we plot the calculated energies of the pygmy states. Iself-consistent. For the interaction in the particle-hole chan-
comparison with the IVGDR, the excitation energies of thenel effective Lagrangians with nonlinear meson self-
pygmy states decrease more steeply with the increasing masgeractions are used, and pairing correlations are described
number. The ratio of the energy weightag moments cal- by the pairing part of the finite-range Gogny interaction.
culated in the low E<10 MeV) and high E>10 MeV) Both in theph and pp channels, the same interactions are
energy regions, as function of the mass number, is plotted insed in the RHB equations that determine the canonical qua-
the lower panel of Fig. 10. The relative contribution of the siparticle basis, and in the matrix equations of the RQRPA.
low-energy region increases with the neutron excess. Th&his is very important, because the energy weighted sum

with the energy weighted moments for discrete spectra

034312-12



QUASIPARTICLE RANDOM PHASE APPROXIMATION . .. PHYSICAL REVIEW G7, 034312 (2003

16.5 . . . . . HFB framework. It has been shown that the RHRQRPA
160 | sn ] results are in agreement with recent experimental data and
= with the nonrelativistic QRPA calculations of the multipole
2 1551 M T response of neutron-rich oxygen isotopes.
WF 150 F >—O©E=10 MeV i The RHB+RQRPA has been employed in the analysis of
0E>I<P- . . . . the evolution of the low-lying isovector dipole strength in Sn
145 . - ' ' ' isotopes andN=282 isotones. The analysis is motivated by
95T 1 very recent data on the concentration of electric dipole
§ strength below the neutron separation energyNg 82
85T T semimagic nuclei. It has been shown that in neutron-rich
w nuclei a relatively strong peak appears in the dipole response
75 ; ; ; ; ; below 10 MeV, with a QRPA amplitude characterized by a
0.08 . coherent superposition of many neutron quasiparticle con-
z figurations. The dynamics of this state corresponds to that of
E 0.06 1 1  apygmy dipole resonance: the oscillation of the skin of ex-
= 004 | i cess neutrons against the core composed of an equal number
g of protons and neutrons. It should be emphasized that, even
0.02 > 116 20 124 28 22 though the IVGDR excitation energies calculated with the

A NL3 effective interaction are in excellent agreement with
experimental data on Sn isotopes, the pygmy peaks in the
FI(_S. 10. In the upper panel the experimen;al IVGDR excitation|ow_energy region do not compare too well with the data on
energies of the Sn isotopes are compared with the RRBRPA o |ying dipole strength ifN=82 isotones. The calculated
results calcule_lted with the NII3D1S effective |nter_act|on. The cal- eaks are~2 MeV higher than the experimental weighted
?#Zt\e/glﬁgserg;etshgf rtzte}mgygmy/i:ates areofsrt\ﬁgvrérl]r;:he wle?d:lete%an ean energies. This might indicate that there are problems
moments g in the Iow-ethgr\Aéy rlég%Hnylislo MeV)g:an ir?the with the isovector channel of the effective interaction and
) ; . with the effective mass. Namely, if the pygmy resonance is
region of giant resonance& {10 MeV), are plotted in the lower . . : .
panel. Q|rectly related to the_thpkness of_the neutron skin, the split-
ting between the excitation energies of the pygmy state and
rules are only satisfied if the pairing interaction is consis-IN€ IVGDR should be determined by the isovector channel of
tently included both in the static RHB and in the dynamicalthe effective force. A detailed quantitative analysis of the
RQRPA calculations. The two-quasiparticle configuration€mPpirical low-lying isovector dipole response of neutron-
space includes states with both nucleons in the discretdch N=82 nuclei in the RHB-RQRPA framework will be
bound levels, states with one nucleon in the bound levels anicluded in a forthcoming publication. _
one nucleon in the continuum, and also states with both Summarizing, the relativistic QRPA formulated in the ca-
nucleons in the continuum. The RQRPA configuration spac&onical basis of the RHB model represents a significant con-
includes the Dirac sea of negative-energy states. In additioibution to the theoretical tools that can be employed in the
to the configurations built from two-quasiparticle states ofdescription of the multipole response of unstable weakly
positive energy, the RQRPA configuration space contain§ound nuclei far from stability.
pair configurations formed from the fully or partially occu-
pied states of positive energy and the empty negative-energy
states from the Dirac sea. The inclusion of configurations ACKNOWLEDGMENTS

built from occupied positive-energy states and empty This work has been supported in part by the Bundesmin-
negative-energy states is essential for the decoupling of spisterium fir Bildung und Forschung under Project No. 06
rious states. TM 979, and by the Gesellschaftrf§chwerionenforschung

The RHB+RQRPA approach has been tested in the eX{gg)) parmstadt. T.N. acknowledges the support from the
ample of the isoscalar monopole, isovector dipole, and iSOsy exander von Humboldt-Stiftung.

calar quadrupole excitations ¢fO. The NL3 parametriza-
tion has been used for the RMF effective Lagrangian, and the

Gogny D1S finite-range interaction has been employed in the APPENDIX: NUMERICAL DETAILS
pp channel. In the present numerical implementation the  §r THE SOLUTION OF THE RORPA EQUATIONS
RHB eigenvalue equations, the Klein-Gordon equations for IN THE CANONICAL BASIS

the meson fields, and the RQRPA matrix equations are

solved by expanding the nucleon spinors and the meson The relativistic quasiparticle RPA equations can be sim-
fields in a basis of eigenfunctions of a spherical harmoni@lified considerably by employing the canonical basis. Ac-
oscillator. The calculations have illustrated the importance otording to the theorem of Bloch and Mess[&5%], any RHB

a consistent treatment of pairing correlations in the RHBwave function can be expressed either in the quasiparticle
+RQRPA framework. The results have been compared witfpasis as a product of independent quasiparticle states, or in
calculations performed in the nonrelativistic continuumthe canonical basis as a highly correlated BCS state. For
QRPA based on the coordinate state representation of thgystems with an even number of particles we have
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« 210 - gF10° h 43 /) 60MeV 1
T " — 7107 {2 1ol i oMev ]
|—) denotes the nucleon vacuum, the opera@and a, g os[ - gF107 1z b \ — 270MeV ]
create nucleons in the canonical basis. The occupation probx \ 1 oof o 1
. LR T | - L \ \ \ \ ]
abllltles are glven by 0O 5 10 15 20 25 30 35 0 2 4 6 8 10
E [MeV] E [MeV]
1 s . —M—N\ T T T T 24— L S B s s
2 x 8 m g
vi==|1- . A2 @ 0 1 _ 5000 ]
21 V(e mm-N)PHAT "2 s w  ©9% “ :%zo?éd)ed’eoeee E
_ =l e .
e,.=(k|hp|k) andA .= (x|A|«) are the diagonal elements  uf" | Qo000 18 of ©0%0 1
) . . R U - 2 3
of the Dirac single-particle Hamiltonian and the pairing field or 000000 g =& % 1
in the canonical basis, respectively. In contrast to the BCS g o 0 20 1000 oo 1400 1600
framework, however, neither of these fields is diagonal in the Ecp (MeV] EcaMeV]

canonical basis. The basis itself is specified by the require- _ )
ment that it diagonalizes the single-nucleon density matrix lF'Gd- fll-é‘?‘lzf The RQIRPA ISfO\r/]eCtOI‘ dipole rissponseﬁo cal-
f)(F,F’)=Ek>OVk(F)VE(F’). The transformation to the ca- culated for different values of the parametgr(A3). (b) Neutron

. . N . . umber operator response /O computed for four values of the
nonical basis determines the energies and occupation pro

e ; utoff energy parametec,. (c) The position of the spurious™1
abilities of single-nucleon states that correspond to the selfs; i in220 and 12%n as a function of the®p cutoff energy pa-

consistent solution for the ground state of a nucleus. Since {ymetere,. . (d) The excitation energies of the ISGMR R0 and
diagonalizes the density matrix, the canonical basis is locali2og, 55 fupnctions of the cutoff energy parameger,. See text for
ized. It describes both the bound states and the positivetescription.

energy single-particle continuuf26].

Many of the eigenvaluesA2) of the density matrix are self-consistent solution for the ground state of a nucleus. An

identically zero. In particular, those at very high energies 'r?appropriate choice, of course, has to be made for the param-

the continuum, but also those that correspond to the levels 'Bterey. If it is too large, a linear combination of the eigen-
the Dirac sedno-sea approximatignBecause of this degen- dlv that di lized wil | b

eracy the levels in the canonical basis are not uniquely deStates ) and|x) that diagonalizei, will no longer be an
termined by the numerical diagonalization of the density ma€igenvector of the density matrix

trix ,B(F,F’). In addition to the well defined eigenstates It is important to illustrate how the RQRPA results depend

with nondegenerate eigenvalues:62<1, there is one set on the gﬁg'c? Of. the parameteg In Eq._(A3). For _the

of eigenstates with eigenvalues equal to 0 and another set 8 cleus bk F_|g. 118) we dlsple_ly the |_s§)vect97r dipole
eigenstates with eigenvalues equal to 1. Any linear combina2 rength distributions, C"ilgmated Wity= 10. -10°% For.

tion of eigenstates with eigenvalue(D) is again an eigen- any t_WO values oky>10"" the gorrespondlng strengtPGdls-
state with eigenvalue ). The diagonal pairing matrix ele- tr|but!ons show pronounced differences. Whegr 1(.) T
ments A, vanish in these degenerate subspaces. Th@e dipole response does not depend any longer on its precise

corresponding single-particle energies, however, are ar- numerical value, and the spurious Nambu-Goldstone 1

: : e mode is found at an excitation energy0.1 MeV.

ggrnai(r:)glat?;Si:nizhglstlcuar:.iq\avglr;llzjézﬁzﬁ'two subspaces the canj The RQRPA _matr_ix is diagonalized in the finite dimen-
We therefore introduce an additional requirement that th&°al two-quasiparticle (@p) vector space. There are two

canonical basis in each of these subspaces diagonalizes th@€S Of 21p states(1) those built fromgp states of positive

. . o n . L energy, and?2) those formed by one fully or partially occu-
single-particle Hamiltoniamh, . Ip practical applications one pied state of positive energy and one empty negative-energy
thus first diagonalizes the matrix This gives all the canoni-  state from the Dirac sea. The dimension of the RQRPA con-
cal basis states with Qv2<1, and in addition two sets figuration space is thus determined by two cutoff parameters:
of degenerate eigenstates with eigenvalues 0 and 1. Twe, is the maximum value of the sum of the diagonal matrix
eigenstateg x) and |\) are considered degenerate if the elements oH! (54) for the first type of 2jp states, andEc,
corresponding eigenvalues differ by less than a givens the maximum absolute value of the sum of the diagonal

parametere : matrix elements oH! (54) for 2qp states with one quasi-
> 2 particle in the Dirac sea. The choice of the two cutoff param-
[vi—vil<eq. (A3) etersEc, andEc, is restricted by the following conditions:
] ) o (a) there should be no response to the number operator, i.e.,
In the second step the single-particle Hamiltonfgnis di-  the Nambu-Goldstone ‘0mode associated with the nucleon

agonalized in the subspace of degenerate eigenvectors of (i@ mber conservation should have zero excitation enébyy,
density matrix with eigenvalues(@). These new vectors are the spurious excitation corresponding to the translation of the
also eigenvectors gf with eigenvalues Q1). This procedure nucleus decouples as a zero-energy excitation mode(cnd
uniquely determines the energieg and occupation prob- the response function does not depend on the precise numeri-
abilitieSUi of single-particle states, which correspond to thecal values ofEc, andEc,.

034312-14



QUASIPARTICLE RANDOM PHASE APPROXIMATION . .. PHYSICAL REVIEW (7, 034312 (2003

In Fig. 11(b) we show how the response to the neutronplotted as functions of the energy cutoff paramégy . Ec,
number operator foP?0 varies with the cut-off parameter is kept at 1700 MeV.
Ecp in the range 30-270 MeV. The choic&c, The choice of the cutoff parametEg., has a pronounced
=1700 MeV includes the entire negative-energy Dirac specLnfluence on the calculated isoscalar monopole response.

trum. The response is obviously reduced as the number ofliS 1S iIqusttrr]atec_j ir: Fig. 1(b||)' where Will;hqwzgoow tge
2qgp configurations increases. Already fég,= 90 MeV the energies of the giant monapole resona(@MR) in an

1205n depend on the value &c,. For E¢,<1150 MeV,
Nambu-Goldstone 0 mode converges te=0.1 MeV. only positive-energy @p states are included in the RQRPA

/Alarge configuration space is also necessary in order t@gjs and the excitation energies of the GMR peaks are sim-
bring the spurious 1 state at zero excitation energy. In Fig. ply too low. As E¢, is increased to include the negative-
11(c) we illustrate the convergence of the energy of the 1 energy states, the GMR excitation energies also increase and
spurious state irf?0O and *2°Sn. The excitation energies are saturate folEc,=1500 MeV.
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