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Short-wavelength cutoff effects in the ac fluctuation conductivity of superconductors
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The short-wavelength cutoff has been introduced in the calculation of the ac fluctuation conductivity of
superconductors. It is shown that a finite cutoff leads to a breakdown of the scaling property in frequency and
temperature. Also, it increases the phasef the complex conductivity (tap=0,/0;) beyondw/4 atT,.

Detailed expressions containing all essential parameters are derived for three-dimensional isotropic and aniso-
tropic fluctuation conductivity. In the two-dimensional case we obtain individual expressions for the fluctuation
conductivity for each term in the sum over discrete wave vectors perpendicular to the film plane. A comparison
of the theory to the experimental microwave fluctuation conductivity is provided.
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[. INTRODUCTION duced excitations of the short-wavelength fluctuatibhi.
has been further shown that the detailed temperature depen-
Fluctuations of the order parameter near the critical temdence of the fluctuation conductivity was not universal, but
peratureT; are much larger in high-, superconductors than sample dependent. In this respect, the GL approach has prac-
in classical low-temperature superconductors. One of the regical advantages since the cutoff parameter can be readily
sons lies in the higher thermal energyT. which provides adjusted in fitting the experimental data. Siktal*® could
the excitations and the other in the very short coherencéit very well the data on a number of single crystals in the
lengths which occur in higfi cuprate superconductors. Gaussian region frori.+1 K to T.+ 25 K.
With these properties, the region of critical fluctuations was \when critical fluctuations are studied, it becomes essen-
estimated from the Ginzburg criterion to be of the order of ltja| to know accurately the value df,. However, the deter-
K or more, aroundr;, which renders the critical region ac- mination of T, from dc resistivity measurements brings
cessible to experimental |nvest|g§1_t|dn§arther_ aboveTc,  ahout some uncertainties. One should avoid the use of unjus-
one expects to observe the transition from critical to NONINyijapie definitions ofT, such as, e.g(j) zero-resistance tem-
ﬁeractmg Gau55|a_n fluctuations Wh'(.:h are éhe IOWes’t'orde;'.’)erature,(ii) midpoint of the transition(iii) maximum of the
uctuation corrections to the mean-field theory. . derivativedp/dT, (iv) intersection of the tangent to the tran-
The layered structure of high; superconductors requires _... . .
sition curve with the temperature axis, etc. The correct value

some theoretical sophistication. One could treat these superic the critical temperatur n be determined 1 additional
conductors with various models from three-dimensiqB8a) of the crifical temperature can be dete edasana ona

anisotropic to coupled layer Lawrence-Doniach models OEitting parameter in the analysis of the fl_uctuation conductiv-
purely two-dimensiona(2D) ones. Due to the temperature !ty. USl_JaIIy one assumes that a well-defined power law hqlds
variation of the coherence lengths, one could even expect 8 & given narrow temperature range and then determines
dimensional crossover in some systems. The fluctuation coroth Te and the critical exponent from the selected
ductivity is altered by dimensionality in various models soSegment®****However, the experimental data usually show
that a detailed comparison of model calculations and experi@n @lmost continuous change of slope so that the uncertainty
mental data could address the dimensionality problem. in the determination of ; is an unsolved problem. Besides, '
For the reasons stated above, the fluctuation conductivitj€ €ffects of the cutoff have been neglected in the analysis
in high-T, superconductors was studied experimentally byOf data qlqse td .. Even though the values of the flpctuatlon
many authors® Most of them used dc resistivity qonductlwty neafT. are not much aﬁ‘ected_ by the introduc-
measurements:>%-1The reports were controversial in their tion of the cutoff, the slopes can be considerably chariged,
conclusions about the dimensionality of the system and th@&nd the analysis may become uncertain.
critical exponents. It has been shown that, in a wide tempera- A number of microwave studies have been reported show-
ture range abovd ., the fluctuation conductivity did not Nd clear signs of fluctuations in both the real and imaginary
follow any of the single-exponent power laws predicted byParts of the ac Cond‘iCt'V'@’-’ ~The real parto, of the
scaling and mean-field theorigslhe data in the Gaussian complex conductivity §= o, —io5) has a sharp peak &,
regime could be fitted by an expression derived within thewhich is not observed in, e.g., Nb as representative of low-
Ginzburg-LandauGL) theory with a short-wavelength cut- temperature classical superconductSrghe salient feature
off in the fluctuation spectrum. Recently, Sileaal'® have  of the ac case is that the fluctuation conductivity does not
proved that the GL approach with an appropriate choice ofliverge atT, because a finite frequency provides a limit to
cutoff parameter yields a result which is identical to that ofthe observation of the critical slowing down neBy. The
the microscopic Aslamazov-LarkiAL) approach with re- determination ofT. from the peak ino, is a reasonable
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choice® It is also important to note that; and o, have Il. EFFECTS OF THE SHORT-WAVELENGTH CUTOFF
individually different temperature and frequency depen-

stringent when two curves have to be fitted with the same Sty rrent due to the fluctuations of the order parameter. The

of parameters. _ o resulting expression for the real part of the conductivity is
The expressions for the ac fluctuation conductivity in the

Gaussian regime have been deduced within the time-

dependent Ginzburg-Landa@DGL) theory of Schmidt® o [26h)? 1 2 ima T2
Using general physical arguments, Fisher, Fisher, and¥iuse 17\ "Tm kT % ko1 ) 1+ (wmn/2)?’
provided a formulation for the scaling of the complex ac
conductivity as

@

where the current is assumed to be in hdirection. i is
the Fourier component of the order parameter, amd
= 1o/(1+ £%k?) is the relaxation time of thkth component.

()= 2708, (wé?), (1) The relaxation time for th&=0 mode is given by
where¢ is the correlation lengthg is the dynamical critical _wh [&(T))\* 3
exponent, D is the dimensionality of the system, and 7-(’_SkBTC & )

"S:(wgz) are some complex scaling functions above and be-
low T, . This form of fluctuation conductivity was claimed to wherez is the dynamic critical exponent. An alternative ap-
hold in both the Gaussian and critical regimes. Dof$égs  proach is to calculate the response of the system to an exter-
deduced the scaling functions in the Gaussian regime abovwal field through the expectation value of the current operator
T. and verified the previous results of SchnfiiMore re-  averaged with respect to the nof$e®
cently, Wickham and Dorséy have shown that even in the ~ Equation (2) is obtained from the time-dependent
critical regime, where the quartic term in the GL free energyGinzburg-Landau theory and represents the equivalent of the
plays a role, the scaling functions preserve the same form aslamazov-Larkin fluctuation conductivity obtained from
in the Gaussian regime. microscopic calculations. In the following, we present the
The above-mentioned theoretical expressions of the atesults which take account of the short-wavelength cutoff in
fluctuation conductivity did not take into account the slow this contribution to the ac fluctuation conductivity. The other
variation approximation which is required for the validity of contributions such as Maki-Thoms¢MT) and one-electron
the Ginzburg-Landau theofylt was noted a long time ago density of states(DOS) renormalizatiod’*? cannot be
that the summation over the fluctuation modes had to b&eated within the time-dependent Ginzburg-Landau theory
truncated at a wave vector which corresponded roughly tdut require microscopic calculations. It has been shown
the inverse of the intrinsic coherence lengh?* The im-  that the MT anomalous contribution in high- supercon-
proved treatment with a short-wavelegth cutoff was appliedductors is almost temperature independent while the DOS
in fluctuation diamagnetisA?, and dc paraconductivity far contribution is strongly temperature dependent and contains
aboveT,.?® This approach was also applied in dc fluctuationa number of parameters which have to be determined
conductivity of highT.. superconductors where one encoun-through a complex fitting procedure in an experimental data
ters a large anisotrogy>*® Introduction of the short- analysis® Since the three terms in the fluctuation conductiv-
wavelength cutoff was found to be essential in fitting theity are additive, it is important to have the Aslamazov-Larkin
theoretical expressions to the experimental data. In view oferm corrected for the short-wavelength cutoff which then
the great potential of the microwave method describedllows us to fit the MT and DOS contributions properly from
above, we find motivation to elaborate in this paper the imthe rest of the total experimental fluctuation conductivity.
proved theory of ac fluctuation conductivity including the  The sum in Eq(2) can be evaluated by integration con-
short-wavelength cutoff. We find that the resulting expres-sidering the appropriate dimensionality. In this section we
sions can be written in the form of Eql). However, the discuss the simplest case of an isotropic 3D superconductor.
cutoff introduces a breakdown of the scaling property in thelntegration ink space needs a cutoff since the order param-
variablew&?. Also, we find that the phas¢ of the complex  eter cannot vary appreciably over distances which are shorter
conductivity (tanp=o,/0,) evaluated afl, departs from than some minimum wavelength. The cutoff kn can be
the valuen/4 when a cutoff is introduced. Values ¢flarger ~ expressed ak“*= A/ &y, whereA is a dimensionless cutoff
than 7r/4 were observed experimentaflygut were attributed ~parameter. ObviouslyA — would imply no cutoff in the
to an unusually large dynamic critical exponent. Also, devia-integration, whereas foA~1 one obtains the usually as-
tion of the scaling in the variable £ was observed already sumed cutoff at ¥,. In the 3D isotropic case, the same
at 2 K aboveT,” but no analysis was made considering thecutoff applies also td, andk, so that for the 3D integration
short-wavelength cutoff in the fluctuation spectrum. Thein k space one has to set the cutoff limit for the modulus
present theory is developed for different dimensionalitiesk™®*=\/3A/&,. With the change of variable(T)=k&(T)
which facilitates comparison with experimental data. one obtains
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o320, T,A)=

o320, T,A)=

¢? <§(T)>Z‘1 ¢? (§<T>)H

67hiéo\ &o 67hiéo\ &o
Q q* Q Qq*
Xj 2 2 2\2 dq’ XJ 2\2 2 2\2 dq
0 (1+g9)[Q2°+(1+0°)7] 0 (1+g)TQ°+(1+9%)7]
4) (10
where Finally, the complex fluctuation conductivity can be written
in the form
Q(T, A)=Keuié(T) = JEA(@> (5) e (&))"
! cu ~ . .
g 3D,iso ,T,A — ( ) SSD,ISO ,T,A
is the temperature-dependent cutoff limitdrspace an .
P P arep H183P19( 4, T AY]. (1)
o= 20T ho (§(T))Z (6)  The prefactor is equal to the dc result with no cutoff effect as
’ 2 16kgTc| &o in Eq. (7). The functionsS; , are given by the expressions
is a dimensionless variable which depends on frequency and
temperature as independent experimental variables. SiDviSO(w,T,A)z [Pi(pi +2)L+2P (P2 -2)A
For the dc case4=0) and no cutoff \ —«), one finds 3m0?
from Eq. (4) +16arctanQ)], (12)
- e (&M
3D,iso
03¢ " AT,A—ow)= ( , 7 . 1
e’ ) 32héy\ & @ SgD"S"(w,T,A):m 2P_(P2+2)A—P,(P?-2)L
T
which reduces to the well-known Aslamazov-Larkin re<ult
provided that relaxational dynamics is assumee 2) and Q
£(T)/ &, is taken only in the Gaussian limit as\id. How- — 240 arctaniQ) +8€) 1402 (13
ever, with a finite cutoff parametet one obtains
where we used the following shorthand notation:
3D,iso TA)= 62 (g(T))z_l
ods” (M) =15 55| 72, P.=\2V/02+1+1, (14)
(%QZ"‘]-) 2+ 0%24+(0—-P_)?
x| arctanQ) —Q————|.  (® | 2FQ-PT) (15
(1+Q9 2+Q%+(Q+P_)?
This result has been obtained by Hopférgeret al* except 20+P 20-P
that they used only the Gaussian limit/& for the reduced A=arctar€—_ +arctar6 _‘) (16)
correlation lengthé(T)/&,. Their analysis has shown that the + Py

cutoff plays no role exactly af. sinceQ— regardless of |t can pe easily verified that thg, , functions given by Eq.

A. However, at any temperature abolgone gets a finit& (12) and Eq.(13) have proper limits. In the dc limit (@

and the value of the conductivity is lowered with respect 10_,0), one finds thass,—0, andS; leads to the dc result of
the result given by Eq(7). Their conclusion was that the £q (8). One can also verify that the ac results obtained pre-
Gaussian fluctuations with no cutoff yield an overest|mateq,ious|y by Schmidt® and Dorse$? can be recovered from

fluctuation conductivity. _ our Eq.(12) and Eq.(13) in the limit A—o, i.e., when no
In this paper we are primarily interested in the ac casegioff is made.

Before integrating Eq(4) with Q+0, we find the corre- The effects of the cutoff are not trivial in the ac case. It is
sponding expression for the imaginary pagt We can apply  egsential to examine those effects in detail as they have a
Kramers-Kronig relations to each of the Fourier componentg;irong bearing on the analysis of the experimental data. The
in Eq. (2) gnd carry out the summation. This is equivalent topref(.ictor in Eq(11) depends only on temperature while the

a calculation of the kernd(; for o, from the kernelC; used  ¢ytoff parameten is found only in thesS functions. There-

in Eq. (4), namely, fore, the effects of the cutoff can be studied through $he
functions alone. We can look at the temperature and fre-
quency dependences of these functions with and without the
cutoff. Figure 1a) shows a set 08, curves as functions of
&(M)I €, for three different frequencies. Far aboVe the
With the kernellC,(Q2), the imaginary part of the fluctuation relaxation timer, is so short thaiwry<1 for any of the
conductivity can be calculated for any cutoff parameter chosen frequencies. Therefore the response of the system is

20 (% Ky(Q)

Ka)=" ]

dQ’. 9
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FIG. 1. S; curves for the 3D isotropic case calculated from Eq.  FIG. 2. S, curves for the 3D isotropic case calculated from Eq.
(12) for a finite cutoff parameter =0.5 (solid lineg and for A (13) for the same parameters as in Fig. 1. The effects of a finite
= (dashed lings The variable i(T)/&; in (a) andQ in (b). The  cutoff are small and can be seen only on logarithmic scales used in
curves are labeled by the frequeney2= used in the calculations. the insets.

like in the dc case. With no cutoffs; saturates to unity set of curves as in Fig.(&), but plotted versu$). The three
[dashed lines in Fig.(®)]. This limit is required in order that dashed curves from Fig(d) coalesce into one dashed curve
o4 from Eq.(11) becomes equal tog.(A—=) in Eq.(7). If  in Fig. 1(b), thus showing the scaling property in the absence
a cutoff with a finite A is included, S, decays at higher of a cutoff. However, the solid lines representing the func-
temperaturegsolid lines in Fig. 18)]. The reduction of5; is  tions S; with a finite cutoff parameteA do not scale with
more pronounced at smaller values&@Tr) since the integra-  the variableQ). The reason is that the functiafy then de-

tion in q space is terminated at a lower valul®  pends also o, which itself is not a function of). Namely,

= J3A&(T)/&. At higher temperatures the conductivity  the cutoff inq space depends on the properties of the sample
at any frequency behaves asymptoticallygg given by EQ.  and on the temperature, but not on the frequency used in the
(8). experiment. Hence, the cutoff brings about a breakdown of

At temperaﬁurgs closer t@. the relaxation timero in-  he scaling property in frequency and temperature. The effect
creases ag(T)” with increasing correlation length according i ore pronounced at temperatures farther abvehere
to Eq.(3) which is usually termed the critical slowing down. the cutoff is stronger

Whenwro=~1 for a given frequencys, is sharply reduced The properties of the functio&, are shown in Fig. 2 for

ﬁ]n(é Va(ri'f)hﬁsc;r;]tzfmlwe'ﬁ;& ﬁr\:}{ggth:t ?_Ivej?':% pr:fa(égr the same set of three measurement frequencies as in Fig. 1.
4 y ! c y app When plotted versug(T)/&,, the functionS, exhibits a

from Fig. 1(@) that a cutoff has no effect whemn, is ap- . L th it where th dina f
proached, but we show later that an important feature siifn@ximum at the point where the corrésponding unc@n
shows the characteristic crossover dueat@y,~1 as dis-

persists ino. X
Obviously, at lower operating frequencies one needs t§USsed above. Wheili; is approachedsS, tends to zero.
approachT, closer so that the critical slowing down could When S, is multiplied with the diverging prefactor in Eg.
reach the conditiom o~ 1. One can see from Fig(d) that (11), one finds a finiter, at T.. Far aboveTl ., the function
for frequencies below 1 GHz one would have to appro‘bé:h 82 VaniSheS, regardleSS of the cutoff. This is consistent with
closer than 1 mK in order to probe the critical slowing downthe behavior ofS;. Namely, at high enough temperaturss,
in fluctuations. The higher the frequency, the farther aboveicquires asymptotically the dc value, as seen in Fig. 1. Ob-
T, is the temperature where the crossower,~1 occurs. Vviously, the imaginary part of the conductivity must vanish
This feature expresses the scaling property of the conductiwhen the dc-like limit is approached. The decrease of the
ity in frequency and temperature variables. However, thdunction S, at higher temperatures is very rapid so that the
scaling property holds strictly only in the absence of theeffects of the cutoff are unnoticeable on the linear scale.
cutoff. Namely, if one sets\ —, the functionS; depends Only with the logarithmic scale used in the inset to Fifp)2
only on the scaling variabl@. Figure Xb) shows the same does one observe that the cutoff effects are present also in
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(@)

3.0
2.5-5 FyrlF - (b)
0.2 2.0-5
1.5-E F;mse
0.1 103\ =
0.08 - 0.5
006 Y/ ™
06 .o o
0 5 10 15
0.04 7
5D, FIG. 4. (a) The ratioS,/S, (equal too, /0 4) for the 3D isotro-
) ] ) pic case at temperatures approaching With no cutoff (dashed
FIG. 3. (a) Asymptotic behavior of the functionS, andS, of jineg) the ratio tends to unity for all frequencies. With a finite cutoff

the 3D .isotropic case calculateq with the chaww@7 =100 GHz in (A=0.5) the ratio equals unity at a temperature slightly abbye
the limit T—T.. The dashed lines are th# , curves calculated  gependent on the frequency. In the lifiit> T, the ratio saturates to
with no cutoff (A=), and the solid lines include a finite cutoff 4 frequency-dependent value larger than uritiy.The ratioS, /S,

(A=0.5). (b) Enlarged section which shows the crossingspand g F,» given by Eq.(22). The variableW is defined by Eq(20).
S, (¢p=ml4; see textat a temperature slightly abovg . The two '

dashed lines are indistinguishable in this temperature range. ture. Exactly aff, o, is higher thans; since a finite cutoff

S,, though by a very small amount. Figuréop shows the —Parameter reduces,, but has no effect owr. _
scaling property ofS, with no cutoff and its breakdown The ot_)servatlon that the cutc_>ff b_rlngs_ abogtareductlon of
when the cutoff is included. o at T is worth further investigation since it can be mea-
We have noted above that bofly and S, tend to zero Sured experimentally. Figure(a@) shows the ratioS,/S;
whenT, is approached. Also, the effect of the cutoff is seen(€dual too,/01) at temperatures approachifig. With no
to be small in that limit. Yet these functions are multiplied by cutoff [dashed lines in Fig. @], this ratio reaches unity
the diverging prefactor in Eq11) and then may yield finite regardles_s of_ the frequency used. A finite cutoff parameter
o, ando,. A careful analysis is needed in order to find the[A=0.5 in Fig. 48)] makes the ratio equal to unity at a
phases of the complex conductivity ¢ = arctang,/oy)] at ~ €mperature slightly abov&;, and in the limit of T the
T.. For a 3D isotropic superconductor, Doréeyias pre- ratio saturate_s at some hlgher value. The sgturatlon level is
dicted ¢= /4, i.e.,o1= 0, at T,. His result was obtained S€€n to be higher when a higher frequency is used.
with no cutoff and it remains to be seen if this property is ©One can find analytical expansions of tieunctions in
preserved even when a finite cutoff is made. Figuta 3 the limit of T¢ (Q—). The leading terms are
showssS; and S, as functions ofé(T)/ &, for 100 GHz fre-

quency. The effects of cutoff 08, are noticeable only far D iso 42 1 1

aboveT,. Closer toT., the curves forS, calculated with S391W, 0 —o0)~ 3, |C6735D o (17)
and without the cutoff are indistinguishable. In contrast, a

finite cutoff reduces the values 6f even in the limit ofT. where we used the notation

As a result, the final cutoff parametdryields a crossing of

the curves foiS; andS, at some temperature slightly above C=arctarfl+ \EW)—arctarql— 2wy, (18)
T.. Itis better seen on an enlarged scale in Fi$).3This is

a surprising result which has bearing on the experimental )

observations. Due to the cutoff, the conditish=3S, (¢ _ n<l+\/§W+W (19
=/4) is reached at a temperature slightly abdye Since 1—2w+WwW?)’

both S; andS, are multiplied with the same prefactor in Eq.
(11), one finds that the crossing of(T) ando,(T) does not The parametew depends on the frequeneayand the cutoff
occur at the peak of,(T), but at a slightly higher tempera- parameterA :
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[16 ke T, 3D.is0 _1( 1 )
W=3A — > (20) Fi5 (W)—W C+5D|. (22)

Both functions tend to zero in the limit of, ((Q—~), but
their ratio is finite and depends on the param#&terFigure  As explained above, from the ratio of the experimental val-
4(b) shows the plot ofS,/S; at T as a function ofW. One  ueso,(T.)/o1(T.) at T, one can determine the parameter
can observe that for a given cutoff paramefer the ratio W, and the values off; , can then be calculated from Eq.
S,18; at T, increases at higher frequencigswer W). The  (22). The remaining unknown paramet&y can be obtained
limits at T, in Fig. 4a) represent only three selected pointsusing Eg.(21) and either of the experimental values of
on the curve forS,/S; in Fig. 4(b). o1(Te) or ox(Te).

In a given experiment, the ratio, /o, at T. can be di- It is also interesting to look at the plots & (W) in Fig.
rectly determined from the experimental data so that the cord(b). One can observe tha, saturates to unity already at
responding value of the paramet&tcan be found uniquely small values ofV=2. On the other handF; is smaller than
from the curve 0fS,/S; in Fig. 4b), and the cutoff param- unity at any finite value of, in conformity with the ratio
eterA is obtained using Eq20). We should note thak isa  (F,/F;)=(S,/S;) atT.. At this point it is useful to find the
temperature-independent parameter. It can be determined lexpected range of values &% encountered in the experi-
the above procedure from the experimental dafB.atbutit  ments. For microwave frequencies in the range 1-100 GHz,
controls the cutoff at all temperatures. with A=0.5, andT.=100 K, one finds thawV is in the

One may observe from EqL7) that in the limit of T, the  range 9-90. According to Fig.(d), F,~1 in this range.
leading terms in the expansions of thdunctions behave as This means that the cutoff makes no effect®n and only
(&(T)/&,) %2 Taking into account the prefactor in EQLl) ~ S; is reduced, in conformity with the calculated curves
one finds thatr; ando, can have finite nonzero valuestat  shown in Fig. 3.
only if z=2, i.e., for the purely relaxational dynamics. We
have assumed this case in all the figures of this section.

From the experimental data @ one can determine also I1l. ANISOTROPY
the parameteg,. Using Eqg.(11) and theS functions in Eq.
(17), one obtains finite conductivities &t :

Most highT; superconductors are anisotropic, some of
them even having a high value of the anisotropy parameter

5 v=¢&oan! éoc - Therefore, for practical purposes one needs
€ /E KgTe adequate expressions for the ac fluctuation conductivity. The
T ho

3D iso
(0, Te,A)= 6ﬁ§0 W), (@) real part of the fluctuation conductivity in theb plane is
obtained using the Kubo formalism as in the isotropic case.
where One obtains
2 2
3D,aniso__ 2eh KT, S ks 70/2 03
ab® K (LK E2 HKEED[ Q2+ (1+K2, 2, + K282 ]

Taking k>2(= kgb/Z and substituting the variableg,= k.,éap andg.=k.£., one can evaluate the sum in E83) by integration
in the q,p, plane and along thg, axis:

. e2 &M\ 2L Qb U3
0_3D,an|so w,T,A ,A ): ( ) J J d y (24)
e R Qo(1+02)+gH[ Q2+ (142, +92)?] sl

where we allowed a cutoffQ,u(T)= V2A .,éan(T)/ é0ap in the qu, plane and a possibly different cutof®.(T)
= A &:(T)/ &y along theg, axis. The dimensionless paramefkiis the same as given by E@). We use the notatio&(T)/ &,
for both £,5(T)/ §oap and §c(T)/ Eqc -

We may briefly examine the dc cas@ €0). With no cutoff one obtains

e2

Uglg’amso(TlAab,C_)oo) = 32ﬁ goc

z—-1
o) -

€o

which reduces to the Aslamazov-Larkin result for 2 (relaxational dynamigsand&(T)/ &, taken in the Gaussian limit. Note
that the fluctuation conductivity in theb plane depends o0&, . Finite cutoff parameters reduce the fluctuation conductivity
when the temperature is increased abdye

174515-6
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2 T Q4Q
3D aniso, A A =e—(&> - =
(T, Aap, Ac) 16mhéoc | &o arctanQc) 2(1+ Q3 (1+Q%,+Q7)
2+3Q2, Qc
2(1+Q§b)3/2arctar< 1+Q521b)l (26)

This expression has not been reported in the previous literature. Analysis of a dc fluctuation conductivity is difficult because
of the number of unknown parameters.

The ac fluctuation conductivity can be obtained from the integral in(E4). for the real part while the imaginary part is
obtained by a procedure analogous to that of the isotropic case described in the preceding section:

. €2 [&T)\ 7! [Qu a3,
3D,aniso ,T,A ,A _ ( ) f f d ) 2
2 e T A A T Qe (1+02,+02)2[ Q2+ (1+02,+02)?] sl 20

The full expression can again be written in the form

eZ

32ﬁ§0<:

&(T)

3D anISO(w T Aab A )
o

)Z1[8?Dva”i3°<w,T,Aab,Ac>+iSSD'a”i”(w,T,Aab,Ac)]. (29)
The S functions for the 3D anisotropic case are found to be
S3PAM w0, T, Agp,Ac) = : [2Qu(3+ QL1+ P_(PE+2)L,— T (T3 +2-Q3p)L3+ 2P, (P2 —2)A;
— 2T, (T2 =2+ Q3 A~ 811+ Q32— QA Ag+ 16A,+ 120Q:As], (29

1
83PN T, A gp,Ag)= 3.02 4Q.(3+ Q3 As+2P_(P2+2)A,—2T (T2 +2-Q2)A,
7T

—P,L(P2=2)L,+T (T2 -2+Q? )L3+1292+—Q§bA3—24QA4—6QQ Ly (30)

where we used the shorthand notationsFar as in Eq.(14) 2Q.+T_ 2Q.—T_
and the following: A2=arctar6T +arctar€T), (36)
— V2 1+Q2)+ 0%+ (1+Q2), (3D o
A= arctar( \/—;2) , (37)
<1+Q§>2[92+(1+Q§b+Q§>2]) . 1+ Qe
1= 2 2121 )2 2y27 /"
1+0Q5,+ Q%+ (1+
( Qab Qc) [ ( Qc) ] A4:arctach), (38)
2+ Qi+ (Qc—P_)?
L,= = D (33 1+Q2,+Q? 1+Q2
2+ Qe+ (QctPo) As=arcta) ——q—— | —arctan — (39
_ 2(1+Qab)+Qc+(Qc T_)? 34 The effects of the cutoff are similar as those described at
37 2(1+Qab)+Q§+(QC+T )2 length in the preceding section for the simpler case of 3D

isotropic superconductors. In this section we discuss only the
modifications in the limitT— T, where the relevant param-
+arctar€ M) (35)  eters can be determined. Thdunctions can be expanded in
P the limit of T, ((0—x), and the leading terms are

2Q.+P_
P

A= arctar{
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SiD,aniSO(Wab ’WC 'QHW)

4\2 1
~ Cy1—U | V1+Wg,— 2W§b)cz

37

3 1 1
Wc3+fwabc4 D+ -U_

V1+Wg,

\E 2
e )D + L wip,| = (40)
2 ab 2 2\/5 c“3 \/ﬁ,
S5 A Wap, We 1—0)
442 1
wg\ij Cl_U, \/l+ng+ 2W§b)C2
! —W3Cy+ Ca+ 5D
3 ~ b4 1
TR J e
1u J1+w? lW2 D 3 W.D
2 + ab 2 ab 2 2\/5 c“3 \/ﬁ’
(41
where we used the following shorthand notation:
U.= \/ V1+Wih W2, (42)
C,=arctail+2W,) —arctail— V2W,), (43

u_+ﬁwc) ’Qu_—ﬁwc)
—— | —arcta Ui s

C,= arctar( U,

+

Cz=arctarfW?,+W?) —arctarfW?),

C t We
,=arcta W,

| 1+ \2W, +W?
=Nl —————
Y- V2w w2

(\/1+ WA+ 2w U +W2)
VI+WE —2W,U_ +W?2
o <w4[1+(w 2o+ W2)2]
TN W2 w2z we) )

The cutoff parameters appear in

/16 KT,

\/>Aab ho '
116 kgT

We=Ac T ﬁwc'

(44)

(49)

(46)

(47

(48)

(49

(50

(51)
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il
[

LI B B B B B
10 12 14 16 18 20

Wab

FIG. 5. (8 The ratioF,/F, for 3D anisotropic case as a func-
tion of W,, andW, [cf. Eq. (52)]. (b) Selection of curves for fixed
ratios of 7, /F; indicated by numbers. The dashed line marks the
condition A ;p=A¢ (W,p=2W,).

We note that in the anisotropic case, théunctions behave
also as 1{/Q whenT—T,. As already discussed in the pre-
vious section, this implies that finite nonzemg(T.) and
05(T,.) can be obtained only faz=2 (relaxational model
Since the available experimental data in anisotropic High-
superconductofs® show finite nonzerer;(T,) ando,(T,),
we can adopkz=2 in the remainder of this section.

In analogy to the 3D isotropic case described in the pre-
ceding section, one may define the functions

<N(©)
442

so that the conductivities &t, are given by

e [2 kgT,
6hiége V7 ho
><.7: 3D, anlso(Wab Wc)

(53

The ratio of experimental values,/ oy at T, does not define
uniquely the cutoff parameters,, and A.. It puts, how-
ever, a constraint on their choice. Figur@5shows the plot

F 352N Wap We) = —=532 2" Wapp W, Q —0),

(52

3D,aniso,

1,2 ( TC!Aab'AC)
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of F,/F; given by Eq.(52) as a function of two variables
W,, and W, . It is evident that a fixed value of,/F; de-
fines a simple curve of possible choices w¥,,W,). Fig-

ure 5b) shows a selection of such curves fof,/F;
=1.05, 1.1, 1.15, and 1.2. The dashed line marks the condi-
tion Agp=A, (Wy,=+2W,). Experimentally, one has to
probe the possible choices foM,, W;) and look at the fits

of the theoretical curves to the experimental datd =afT ...

The parametel,. in Eqg. (28) can be obtained once the
choice for W,,, W,) is made.

Note that in practical applications of the above theory one
needs measurements where the microwave current flows
only in theab plane. Particularly suitable for this purpose are
the measurements in which the superconducting sample is
placed in the antinode of the microwave electric filg in
the cavity>*%®

IV. TWO-DIMENSIONAL FLUCTUATIONS

The superconducting transition does not occur in a strictly
2D system. However, if the sample is a very thin film so that
its thickness is much smaller than the correlation length, the
fluctuations will be restricted within the film thicknedsin
one direction and develop freely only in the plane of the film.
Using the formalism described in the preceding sections, we
find that the fluctuation conductivity is given by

o2P(w,T,A)

(f(ﬂ)
T 4hd\ &

1+Q2%+¢?
S2°(0,Q,90)==2 arctaré%
1+92 1+92
— 2 arctal a0 Q

PHYSICAL REVIEW B 67, 174515(2003

o (1+02)2 Q2%+ (1+Q%+q?)?]
AT @0t (1))

(58)

2(1 1+Q%+q?
20(0,Q,q0)= = —( +qr1)[arctar6—+Q G

|

<1+qn>2[92+<1+Q2+qn)21
(1+Q2+ a9 Q%+ (1+9?]

1+92
—arctan —

QZ
1+Q%+q?)

(59

The summation oveq, in Eqg. (56) has to be carried out
until the factornz(£é,/d) reaches some cutoff valua,
which is of the order of unity. If the film thickness is large

(d>¢p), one has to sum up to a highvalue. In such cases,

the summation is well approximated by an integration, and
one retrieves the 3D case of the preceding section. The 2D
character is better displayed when the film thickness is com-
parable to&,. Then, only a few terms have to be taken into
account. In the extreme casedf &;, only then=0 term is
found below the cutoff limit.

The zero-frequency limitQ) —0) yields

X, fQ @ dg, (54)
W Jo (1+0?+gd)[Q%+(1+ %+ gd)?] o

P(w,T,A)

:e_z(ﬂﬂ)z
£o

Q Qq®
f da, e [&T)\? Q*
& Jo (1+q2+q)2L0%+ (1+ P+ )] _ ( ) _
(55) 7ae(T:M) = 1673 fo ) @ (1+Q%+gdA1+?)
(60)

~ 2D ez g( ) 2D
o0 TN =1gg| g | 2 [ST(@.Qa)
0/ Gn The n=0 term yields the previous result of Hopfemeer
(56)  etal’and Gauzzet al®
In the limit of T, ({1 —<°) one obtains

(&) &m .
q“_””<F)< & ) G )=

and Q= 2A(&(T)/&,). The prefactor is the Aslamazov-

+i82°(Q,Q,q0)1,

where

— 2 2 arctaiiW?+ W?2)

n

Larkin result for the 2D case with no cutoff and the Gaussian oo WAL+ (W2 W2)?]

form 1/e replaced by the more general expression — 2 arctariWy) + W In W W W2

(&(T)/ &) (1 W) (WS W)
The S functions are given by (62)
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e’ kgT 140
2D _ B'c 2 2 2 ]
= + a
T =i T > | 2Waarctan W+ Wy 120 (a)
WA 1+ (W2 +W?)?] — 100
—2W2 arctarfW?) — In—- . - 1t g | %
(1+ W) (W2 +W3) ™ 80 !
5 !
(62 < 60 ‘
where we used the notation 8 \
© 40 i
[16 kg T, i
= — ] i
w \/EA 7 ho' (63 20 «
go 16 kBTC 0' T T T T T r r r I r T T T
W,=nm FIA e (64 20 40 60 80 100 120 140 160 180
T(K)
30
One may observe that far=0 the real part of the conduc- \.“ (b)
tivity is finite, but the imaginary part diverges. Itis due tothe  __ 25- \
logarithmic term in Eq(62). This is an unphysical result. It ‘TE o
may indicate that the=0 term is not physically acceptable = 20 L et N
or that the 2D model should not be applied exactiyf at © i g L
o 15 o L ..'.
: /o/ \\\ ..,...
V. COMPARISON WITH EXPERIMENT 10! * S
b O- .. L
The relevance of the theoretical expressions derived in the 51 2 .°‘-.~.
preceding sections can be demonstrated by comparison of 0 e ®
the calculated and experimentally measured ac fluctuation 78 31 84 a7 90
conductivity. As an example we present here an analysis of T (K)

the data in BjSr,CaCu;0;¢_ s (BSCCQ thin film. The ex-
perimental results of the complex conductivity measured at FIG. 6. (a) Experimental complex conductivity in
9.5 GHz are shown in Fig.(6). The main features are the Bi,Sr,CaCu;O;q_ 4 thin film at 9.5 GHz.(b) Enlarged section near
same as reported previously in single crystals of high- T..
superconductord® We have to note that in our measure-
ment the thin film was positioned in the center of an ellipticalat T,. The determination of,. from o,(T.) does not de-
microwave cavity resonating igTE;;; mode and oriented in  pend on the choice of the cutoff parameters so that its value
such a way that the electric field, was in theab plane. can be used in the subsequent data analysis. We have ob-
Thus the in-plane conductivity was measured and the applitained&y.=0.016 nm in B}Sr,CaCu;04¢_ s thin film. Once
cation of the theoretical expressions of the preceding sedhis parameter is determined, the fluctuation conductivity at
tions is appropriate. The normal-state conductivity(T) all temperatures abové; follows from Eq. (28). The real
was determined from the linear resistivity(T) above 160 and imaginary parts of the ac fluctuation conductivity have to
K. Other experimental details have been reportecbe mutually consistent. This can be exploited in the data
previously**=3"In this section, we are interested in the fluc- analysis. We insert the experimental valuesogfinto the
tuation conductivity neall . which is shown on an enlarged imaginary part of Eq.(28) and solve numerically for
scale in Fig. @). The real part of the conductivity has a &(T)/&,. Then we exploit these same values of the reduced
maximum when the coherence length diverges. Since theorrelation length in the real part of E®8). The calculated
critical temperature of a phase transition is characterized by, is shown by the dotted line in Fig.(&. The calculated
the divergence of the coherence length, we use the maximufine lies far from the experimental points. Note in particular
of o1 in Fig. 6(b) to determineT,=84.04 K. One can also that the calculatedr; meetso, at T, when no cutoff is
observe in Fig. @) that the imaginary part of the conduc- included(cf. Sec. I). Besides, the shape of the calculated
tivity crosses the real part at a temperature slightly abiqve  differs from that of the experimental one. We may conclude
This is a consistency test of the short-wavelength cutoff ashat with no cutoff on the fluctuation wave vector the theo-
discussed in Sec. Il. The experimental valuesphndo, at  retical expression does not describe properly the experimen-
T. can be used in the evaluation of the parameters whiclal fluctuation conductivity.
enter the theoretical expressions of the preceding sections. A finite cutoff on the fluctuation wave vector improves
Figure 7a) shows the experimental data abovgplotted  greatly the agreement of the theory and experiment. From
against the reduced temperatere In(T/T.). We can analyze Fig. 6(b) we can evaluate the ratio,(T.)/o1(T.)=1.28 at
this data first by the theoretical expressions which have nd .. This value yields a constraint on the choices\qf, and
cutoff on the fluctuation wave vector. It is straightforward to A as described in Sec. lll and Fig. 5. The actual choices are
evaluateé,. using Eq.(53) and the experimental value of, presented in the inset of Fig(l§. For a given choiceA .,
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FIG. 7. (a) Experimental datésymbolg of the complex conduc- FIG. 8. (a) Experimental daté&symbolg as in Fig. 7a) with the

tivity from Fig. 6 aboveT, plotted vs the reduced temperature  calculated 2D curve as described in the tél). The superposition
=(InT/T,). Various lines are the conductivities calculated in the 3D of the calculated 2D and 3D curves.
cases as described in the tex) Enlarged view of the high-

temperature part of the same curves aganh The constraining . .
curve for the choices of the cutoff parametdrg, and A . resulting degrades the fit of the calculated, to the experimental

from the experimental ratio(T.)/ a4 (T.)=1.28 atT, is shown in  POINts. The dashed line in Fig(& is the calculatedr; using
the inset. the choice of equal cutoff parameters ,= A.=0.09) per-

mitted by the constraint in the inset of FigbJ. The fit to the
) o ) experimental points is seen to be much worse than that of the
A.) from this constraining line, one has to determine #3t  g4iqg line. For the sake of completeness, we show also the
using Eq.(53) and the experimental value of atT. Then,  regit for a choice of cutoff parameters on the other branch
the temperature dependence of the reduced correlation lengéh the constraining curve in the inset of Fig(bY. If one
&(T)/ & is evaluated numerically from the imaginary part of taxesA ,,=0.08, A.=0.71, the calculated is as shown by
Eq. (28) with the selected pairXa,, Ac) and the experi-  the dash-dotted line in Fig.(d. The fit is unsatisfactory.
mental values ofo,. The obtained values of(T)/é, are  Moreover, this choice has to be refuted on the grounds of a
finally used to calculater; from the real part of Eq(28).  physically unacceptable minimum wavelength of the fluctua-
The results vary with the possible choices of the palrgy, tions along thec axis. Also shown in Fig. (&) by the short-
A.) from inset of Fig. Tb). The best fit of the calculatedl; dotted line is the result obtained by the isotropic 3D expres-
to the experimental points is shown by the solid line in Fig.sion in Eq.(11). In this case the parametegg=0.016 nm
7(a). It is obtained with the choiceA,,=0.71, A;=0.05). and A=0.08 are obtained straightforwardly from E@1)
It is physically reasonable. With ,,, being of the order of and the experimental values of ando, at T;. The fit in
unity, the minimum wavelength of the superconducting fluc-Fig. 7(a) is obviously not good. It is also seen that the ex-
tuations in theab plane is given by #&,,,, which is much  pressions for the anisotropic 3D case always yield curves
larger than the atomic size and could be accepted as a mesghich are different from that of the isotropic 3D case. The
scopic quantity. In contrast, the value ofr2,. is below the  complexity of the anisotropic 3D expressions elaborated in
atomic size and, hence, could not be physically accepted fdBec. Ill is not futile. Indeed, we find that these expressions
the lower limit of the fluctuation wavelength along thexis.  must be used when analyzing an anisotropic superconductor.
Therefore one needs a value df<1 so that the minimum Figure 4b) shows an enlarged view of the high-temperature
wavelength of the superconducting fluctuations&g./A part where the same curves as in Fi¢g)7are better distin-
along thec axis becomes also an acceptable mesoscopiguished.
quantity. We have analyzed also the 2D expressions of Sec. IV.
We have tested also a number of other choices of th&igure 8a) shows again the same experimental data as in
cutoff parameters. By shifting the choice of the parameterig. 7(a), but fitted withn=0 term of the 2D expansion in
along the constraining curve in the inset of Figb)7 one  Eq. (56). The parameted has been chosen so as to optimize
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the fit to the experimental values of,. The resulting curve quency and temperature. It also has a small, but experimen-

in Fig. 8(@ was obtained witld=1.2 nm. The 2D results are tally very important effect orr;. Due to a finite cutoff pa-

not so sensitive to the fluctuation wave vector cutoff as thoseameterA, the value ofo; at T is lower than that ofr,. In

of the 3D case. The curves obtained with no cutoff ( the simpler 3D isotropic case, this observation can be used to

=) and with A=0.7 are practically indistinguishable in determineA directly from the experimental data &t. In

Fig. 8@a). One may conclude that closer 1o the BSCCO the 3D anisotropic case, one obtains a constraint on the

superconductor clearly does not behave as a 2D systemhoices of (\,, Ac).

However, at higher temperatures both 2D and 3D expres- A useful feature of ac fluctuation conductivity measure-

sions yield almost equally good fits to the experimental val-ments is thafl; can be determined directly from the experi-

ues, as seen in Fig.(®. Thus the dimensionality of the mental data. Moreover, the expressions derived in this paper

fluctuations at higher temperatures cannot be resolved froranable the determination @f; (3D isotropig or &, (3D

the ac fluctuation conductivity. anisotropi¢ from the experimental values; T;). Thus, we
Finally, we remark that the above analysis could explainestablish that the analysis of ac fluctuation conductivity re-

very well the experimental ac fluctuation conductivity abovequires no free fit parameters in the 3D isotropic case and

T in the BSCCO thin film using Aslamazov-Larkin-type only one (A4,, A¢) in the 3D anisotropic case.

expressions with wave vector cutoff as deduced in the pre- We have shown that the anisotropic 3D expressions with

ceding sections of this paper. The other contributions such asn appropriate cutoff of the fluctuation wave vector can ac-

Maki-Thomson and one electron density of states, mentionedount for the experimental fluctuation conductivity in a

in Sec. Il, are not necessary over most of the temperaturBSCCO thin film within a large temperature range ab®ye

range covered in the experiment. This is in accordance witThe 2D expression is less sensitive to the cutoff and was

the recent microscopic calculatirproving that these con- found to match the experimental data only at higher tempera-

tributions may cancel in the ultraclean case of nonlocal electures.

trodynamics. However, they may play a role at high enough Note added After the present paper was submitted for

temperatures where the above-calculated curves depart fropublication, several papers dealing with the theory and ex-

the experimental data. Their analysis is beyond the scope gferiments on the ac fluctuation conductivity with a short-

the present paper. wavelength cutoff were submitted and appeared in the

literature3%40
VI. CONCLUSIONS

We have presented full analytical expressions for the ac
fluctuation conductivity in 3D isotropic, 3D anisotropic, and
2D superconductors. The effects of the short-wavelength cut- D.-N.P. and M.M. acknowledge support by the Deutsche
off in the fluctuation spectrum on the dc and ac conductivi-ForschungsgemeinschatDFG) Project No. Me362/14-2.
ties were discussed in detail. The short-wavelength cutofA.D. acknowledges support from the Croatian Ministry of
brings about a breakdown of the scaling property in fre-Science and DLR StiftungProject No. KRO-004-98

ACKNOWLEDGMENTS

*Present address: Philips Research Laboratories, Weisshausstrass®. H. Han, Yu. Eltsev, and ORapp, Phys. Rev. B7, 7510

2, D-52066, Aachen, Germany. Electronic address: (1998.

dragos.peligrad@philips.com 125 H. Han, Yu. Eltsev, and ORapp, Phys. Rev. B1, 11 776
Electronic address: m.mehring@physik.uni-stuttgart.de (2000.
*Electronic address: adulcic@phy.hr 13E. silva, S. Sarti, R. Fastampa, and M. Giura, Phys. Re64B
1C. J. Lobb, Phys. Rev. B6, 3930(1987). 144508(200)).

2W. J. Skocpol and M. Tinkham, Rep. Prog. Phy8 1049
(1975.
3M. Ausloos and Ch. Laurent, Phys. Rev.38, 611(1988.

14R. M. Costa, P. Pureur, M. GusmaS. Senoussi, and K. Behnia,
Phys. Rev. B64, 214513(200).
15, Reggiani, R. Vaglio, and A. A. Varlamov, Phys. Rev.43,

‘R. Hopfenganer, B. Hensel, and G. Saemann-Ischenko, Phys.

Rev. B44, 741(1991).
SA. Gauzzi and D. Pavuna, Phys. Rev5®, 15 420(1995.

9541 (19912).
16G. Nakielski, D. Gaolitz, Chr. Stodte, M. Welters, A. Kiraer, and
J. Katizler, Phys. Rev. BB5, 6077(1997.

6S. M. Anlage, J. Mao, J. C. Booth, D. H. Wu, and J. L. Peng,’D. Neri, E. Silva, S. Sarti, R. Marcon, M. Giura, R. Fastampa, and

Phys. Rev. B53, 2792(1996.

N. Saprvieri, Phys. Rev. B8, 14 581(1998.

7J. C. Booth, D. H. Wu, S. B. Qadri, E. F. Skelton, M. S. Osofsky, 183, R. Waldram, D. M. Broun, D. C. Morgan, R. Ormeno, and A.

A. Pigue and S. M. Anlage, Phys. Rev. Leit7, 4438(1996.
8J. Katzler and M. Kaufmann, Phys. Rev. 5, 13 734(1997.
°M. R. Cimberle, C. Ferdeghini, E. Giannini, D. Mayid. Putti,

A. Siri, F. Federici, and A. Varlamov, Phys. Rev.538, R14 745

(1997).
10R. M. Costa, P. Pureur, L. Ghivelder, J. A. Camaad I. Rasines,

Phys. Rev. B56, 10 836(1997.

Porch, Phys. Rev. B9, 1528(1999.

190. Klein, E. J. Nicol, K. Holczer, and G. Gner, Phys. Rev. B0,
6307 (1994).

204, Schmidt, Z. Phys216, 336 (1968.

21D, s. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev3®
130(199)).

22/, T. Dorsey, Phys. Rev. B3, 7575(1991).

174515-12



SHORT-WAVELENGTH CUTOFF EFFECTS IN THEca . . PHYSICAL REVIEW B 67, 174515(2003

2R. A. Wickham and A. T. Dorsey, Phys. Rev.@8, 6945 (2000. tivity: Conventional and Unconventional Superconducted-
24B. R. Patton, V. Ambegaokar, and J. W. Wilkins, Solid State Com- ited by K.-H.Bennemann and J. B. Ketters@pringer, Berlin,
mun. 7, 1287(1969. 2002.
25J. P. Gollub, M. R. Beasley, R. Callarotti, and M. Tinkham, Phys.33A. A. Varlamov, G. Balestrino, E. Milani, and D. V. Livanov, Adv.
Rev. B7, 3039(1973. Phys.48, 655(1999.
26\. L. Johnson, C. C. Tsuei, and P. Chaudhari, Phys. Rel7,B  **D.-N. Peligrad, B. Nebendahl, C. Kessler, M. Mehring, A. Bitilc
2884(1978. M. Pozk, and D. Paar, Phys. Rev.38, 11 652(1998.
2'M. Tinkham, Introduction to Superconductivity 2nd ed.  *°D.-N. Peligrad, B. Nebendahl, M. Mehring, A. Dide M. Pozk,
(McGraw-Hill, New York, 1995. and D. Paar, Phys. Rev. &, 224504(2001).
28D, Neri, R. Marcon, E. Silva, R. Fastampa, L. lacobucci, and S3°B. Nebendahkt al, Rev. Sci. Instrum72, 1876(2007).
Sarti, Int. J. Mod. Phys. B3, 1097(1999. %’D.-N. Peligrad, B. Nebendahl, M. Mehring, and A. Didlc
29D, Neri, R. Fastampa, M. Giura, R. Marcon, S. Sarti, and E. Silva, cond-mat/0209176unpublishel
J. Low Temp. Phys117, 1099(1999. 38D, V. Livanov, G. Savona, and A. A. Varlamov, Phys. Rev6B
30L. G. Aslamazov and A. A. Varlamov, J. Low Temp. Phys8, 8675(2000.
223(1980. 39E. Silva, Eur. Phys. J. B7, 497 (2002.
31F. Federici and A. A. Varlamov, Phys. Rev.35, 6070(1997. 40g, Silva  etal, cond-mat/0208342 (unpublishedgt

32A. 1. Larkin and A. A. Varlamov, inHandbook on Superconduc- cond-mat/0208348unpublishegl

174515-13



