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The relativistic mean-field effective interaction with density-dependent meson-nucleon couplings DD-ME1
is tested in the calculation of deformed nuclei. Ground-state properties of six isotopic chainss60øZø70d in
the region of rare-earth nuclei are calculated by using the relativistic Hartree-Bogoliubov(RHB) model with
the DD-ME1 mean-field interaction, and with the Gogny D1S force for the pairing interaction. Results of fully
self-consistent RHB calculations for the total binding energies, charge isotope shifts, and quadrupole deforma-
tion parameters are compared with the available empirical data.
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Relativistic mean-field(RMF) models have been very
successfully employed in analyses of a variety of nuclear
structure phenomena, not only in nuclei along the valley ofb
stability, but also in exotic nuclei with extreme isospin values
and close to the particle drip lines. The relativistic Hartree-
Bogoliubov(RHB) model[1], based on the relativistic mean-
field theory and on the Hartree-Fock-Bogoliubov framework,
provides a unified description of mean-field and pairing cor-
relations, which is particularly important for the structure of
very weakly bound nuclei close to the particle drip lines. An
interesting alternative to the highly successful RMF models
with nonlinear meson self-interaction terms is an effective
hadron field theory with medium dependent meson-nucleon
vertices. Such an approach retains the basic structure of the
relativistic mean-field framework, but can be more directly
related to the underlying microscopic description of nuclear
interactions. In particular, the density-dependent relativistic
hadron field model[2] has been successfully applied in the
calculation of nuclear matter and ground-state properties of
spherical nuclei[3], and extended to hypernuclei[4], neutron
star matter[5], and asymmetric nuclear matter and exotic
nuclei [6]. In Ref. [7] we have extended the relativistic
Hartree-Bogoliubov model to include density-dependent
meson-nucleon couplings. The effective Lagrangian is char-
acterized by a phenomenological density dependence of the
s, v, and r meson-nucleon vertex functions, adjusted to
properties of nuclear matter and finite nuclei. The DD-ME1
effective interaction has been introduced and tested in the
analysis of the equations of state for symmetric and asym-
metric nuclear matter, and of ground-state properties of the
Sn and Pb isotopic chains. It has been shown that, when
compared to results obtained with standard nonlinear relativ-
istic mean-field effective forces, the DD-ME1 interaction
provides an improved description of asymmetric nuclear
matter and of ground-state properties ofNÞZ nuclei. In Ref.

[8] we have also shown that the relativistic random phase
approximation with the DD-ME1 effective interaction repro-
duces the experimental excitation energies of multipole giant
resonances in spherical nuclei.

Relativistic density-dependent effective mean-field inter-
actions have never before been used in the calculation of
deformed nuclei. Of course, the structure of deformed nuclei
presents an important test for every effective interaction.
Ground-state properties, in particular, are sensitive to the
isovector channel of effective interaction, to the spin-orbit
term of the effective single-nucleon potentials, and to the
effective mass. For example, in Ref.[9] the standard NL3
nonlinear meson-exchange interaction[10] has been em-
ployed in a detailed RMF analysis of ground-state properties
of 1315 even-even nuclei(10øZø98), and it has been
shown that this interaction produces very good results for
deformed nuclei.

In this Brief Report we test the DD-ME1 effective inter-
action in the region of rare-earth nuclei. We compare predic-
tions of the RHB model for the total binding energies, charge
isotope shifts, and ground-state quadrupole deformations of
six even-Z isotopic chainss60øZø70d, with available em-
pirical data. The DD-ME1 effective interaction is used in the
particle-holesp-hd channel, and pairing correlations are de-
scribed by the pairing part of the finite range Gogny D1S
interaction [11]. The RHB equations are solved self-
consistently, with potentials determined in the mean-field ap-
proximation from solutions of Klein-Gordon equations for
the meson fields. The Dirac-Hartree-Bogoliubov equations
and the Klein-Gordon equations are solved by expanding the
nucleon spinors and the meson fields in terms of eigenfunc-
tions of a deformed axially symmetric oscillator potential
[12]. The number of oscillator shells in the expansion is 12
for nucleon fields and 20 for meson fields[13].

The predictions of the RHB model for the total binding
energies of the Nd, Sm, Gd, Dy, Er, and Yb isotopes are
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shown in Fig. 1, in comparison with the experimental data
[14]. We notice a very good agreement over the entire region
of rare-earth nuclei. The maximum deviation of the calcu-
lated binding energies is below 0.1% for all isotopes, except
142Nd, 144Sm, 146Gd, 148Dy, and 150Er. For these nuclei the
deviation from experimental binding energies is 0.2%.

In Fig. 2 we compare the theoretical values for the charge
isotope shifts with the data from Ref.[15]. The charge den-
sity is obtained by folding the calculated point-proton den-
sity distribution with the Gaussian proton-charge distribu-
tion. For the latter a rms radius of 0.8 fm is used, and the
resulting ground-state charge radius reads

rc = Îrp
2 + 0.64 fm, s1d

where rp is the radius of the point-proton density distribu-
tion. The isotope shifts are calculated with respect to a ref-
erence nucleus in each isotopic chain

drch
2 = rch

2 − rch
2 srefd. s2d

The reference nucleus is theN=82 isotope, except for the
chains Dy and Yb, for which the reference nuclei are
156Dy and 168Yb, respectively. The calculated charge radii
reproduce in detail the empirical isotope shifts. A slight
deviation from the empirical trend is observed only for
heavier Dy nuclei. However, even for164Dy the deviation
of the theoretical charge radius from the empirical value is
only 0.3%.

The ground-state quadrupole and hexadecupole deforma-
tion parametersb2 and b4 are calculated according to the
prescription of Ref.[17]. The theoretical values of the quad-
rupole deformation parameters are displayed in Fig. 3, in
comparison with the empirical data from Ref.[16]. We no-
tice that the RHB results reproduce not only the global trend
of the data, but also the saturation of quadrupole deformation
for heavier isotopes.

In conclusion, we have applied the RHB model with the
density-dependent meson-nucleon couplings to the analysis
of ground-state properties of six isotopic chainss60øZ
ø70d in the region of rare-earth nuclei. The DD-ME1 effec-
tive interaction has been used in the p-h channel, and pairing
correlations have been described by the pairing part of the
finite range Gogny D1S interaction. An excellent agreement
has been obtained in comparison with empirical data on total
binding energies, charge isotope shifts, and quadrupole de-
formation parameters. These results show that relativistic
mean-field interactions with explicit density dependence of
the meson-nucleon couplings, and in particular the DD-ME1
effective interaction, provide an accurate description of the
structure of deformed nuclei.

This work has been supported in part by the Bundesmin-
isterium für Bildung und Forschung under Project No. 06
TM 193 and by the Gesellschaft für Schwerionenforschung
(GSI) Darmstadt.

FIG. 1. The binding energies of Nd, Sm, Gd, Dy, Er, and Yb
isotopes, calculated in the RHB model with the DD-ME1 interac-
tion, are compared with experimental data[14].

FIG. 2. Charge isotope shifts of Nd, Sm, Gd, Dy, Er, and Yb
isotopes. The results of the RHB calculation with the DD-ME1
effective interaction, and with the Gogny D1S interaction in the
pairing channel, are compared with empirical data[15].

FIG. 3. Comparison between the DD-ME1 predictions for the
ground-state quadrupole deformation parameters of the Nd, Sm,
Gd, Dy, Er, and Yb isotopes, and empirical data[16].
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