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We show that the microscopic black hole entropy formula based on Virasoro algebra can be derived
from the usual properties of stationary Killing horizons alone and the absence of singularities of
curvature invariants on them. In such a way some usual additional assumptions are shown to be fulfilled.
In addition, for all quantities power expansion near the horizon and thus explicit insight of the limiting
procedure is given. More important the near horizon conformal symmetry proposed by Carlip together
with its consequences on microscopic entropy is given a clear geometric origin.
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I. INTRODUCTION

One of the promising efforts to understand the micro-
scopic origin of black hole entropy is due to the
Solodukhin [1] and Carlip [2–5] approach which both
try to exploit conformal symmetry and corresponding
Virasoro algebra. In particular, Carlip in the case of
Einstein gravity assumes a certain class of boundary
conditions near the horizon which enable one to identify
a subalgebra of algebra of diffeomorphisms which turns
out to be Virasoro algebra. Calculations of central charge
then enabled Carlip to calculate entropy via the Cardy
formula. The refinements and open questions of this
method have been discussed in various references [5–9].
These results have been subsequently generalized to
Gauss-Bonnet gravity and for higher curvature
Lagrangians [10–12]. This is the clear indication that
these properties are properties of horizons and depend
only on diffeomorphism invariance of gravity but not
much of a particular form of interaction.

However, there have been several open questions in this
method which have to be answered. For instance it is
important to construct examples where the boundary
conditions imposed by Carlip or their consequences are
indeed realized. Also the derivation required additional
assumptions. This refers, in particular, to the assumptions
on behavior of the so-called ‘‘spatial derivatives’’ (as-
sumed in Appendix A of Ref. [5]). In the subsequent
generalizations [11,12] to higher order interactions this
was even more important.

Also, from the conceptual point of view it would be
desirable to add more understanding of the origin of the
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obtained properties. In fact one suggestion for its physical
interpretation is given in the framework of induced grav-
ity [13]. The other proposal is that these properties have
geometrical origin. Indeed, recently in [14] it was shown
that the existence of the stationary Killing horizon to-
gether with the absence of curvature singularities on the
horizon implies very restricted geometry near the hori-
zon and also leads to conformal properties of Einstein
tensor. It was also suggested that these properties could be
the realization of Carlip boundary conditions.

In this paper we assume the existence of such a sta-
tionary black hole horizon. We want to show that the
boundary conditions proposed in [5] are then indeed
realized. In addition we want to show that properties of
stationary horizons enable one to calculate the necessary
quantities for central charge and entropy. It will be pos-
sible to do the explicit calculation to leading order but
also to next orders which vanish when we perform inte-
gration over the horizon. In such a way the conformal
symmetry and Virasoro algebra have indeed geometrical
interpretation in the sense that they are a consequence of
the horizon properties, as suggested in [14].
II. BOUNDARY PROPERTIES AT
KILLING HORIZONS

Axially symmetric black holes have two Killing vec-
tors, e.g.,

ta �
�
@
@t

�
a
; �a �

�
@
@�

�
a
; (1)

with corresponding coordinates t and �. The other two
coordinates n, z can be chosen so that in the equal time
hypersurface one chooses the Gauss normal coordinate n
(n � 0 on the horizon) and the remaining coordinate z so
that the metric has the form
43-1  2004 The American Physical Society
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ds2 � �N�n; z�2dt2 � g���n; z��d��!�n; z�dt�2

�dn2 � gzz�n; z�dz2: (2)

The horizon is defined with

N�n; z� � 0: (3)

Now, well-known theorems imply

� � lim
n!0

@nN � const> 0; (4)

on the horizon (for nonextremal black holes), also

�H � �lim
n!0

g�t
g��

� lim
n!0

! � constant on horizon; (5)

and the property that the horizon is extrinsically flat with
the consequence

lim
n!0

@g��
@n

� 0 on the horizon: (6)

The absence of curvature singularities on the horizon
implies [14] that metric coefficients have the following
Taylor expansions:

N�n; z� � �n�
1

3!
�2�z�n3 �O�n4�;

g���n; z� � gH���z� �
1

2
g2���z�n

2 �O�n3�;

gzz�n; z� � gHzz�z� �
1

2
g2zz�z�n2 �O�n3�;

!�n; z� � �H �
1

2
!2�z�n

2 �O�n3�:

(7)

The Killing horizon has a Killing null vector

�a � ta ��H�a: (8)

On the horizon (�2 � 0), this vector satisfies the well-
known relation

ra�2 � �2��a: (9)

For �2 � 0, the left-hand side of (9) defines vector �a

ra�2 � �2��a: (10)

In the following we shall use the basis

�a; �a; �a; za: (11)

Explicitly

�a �

0
BB@

1
�H

0
0

1
CCA; �a �

0
BB@
0
1
0
0

1
CCA; (12)

�a �

0
BB@

0
0

�n�O�n3�
O�n4�

1
CCA; za �

0
BB@
0
0
0
1

1
CCA:
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The leading terms of the nonvanishing products of the
basis vectors are

� � � � ��2n2 �O�n4�;

� �� � �1
2gH���z�!2�z�n

2 �O�n3�;

� �� � gH���z� �O�n2�;

� � � � �2n2 �O�n4�;

� � z � O�n4�;

z � z � gHzz�z� �O�n2�;

(13)

and all other products are zero

� � � � � � z � � � � � � � z � 0: (14)

Now we can, following Carlip, consider diffeomor-
phisms generated by the following vector fields:

�a � T�a � R�a: (15)

In principle diffeomorphisms could change the position
of

�2 � 0: (16)

One requires therefore the condition that surface varia-
tions keep this surface fixed or

��2 � 0; (17)

and even a stronger condition

��2

�2
� 0: (18)

Straightforward calculation shows

��2 � �a�b�gab � �a�b�ra�b �rb�a�

� 2R�br��b � 2�r�T��2: (19)

Because of the exact relation [[5], Eq. A.4]

�br��b � ���2; (20)

it follows that

��2 � �2�R�2 � 2�r�T��
2: (21)

Thus requirement (17) will be satisfied automatically on
the horizon, and the stronger requirement (18) will be
fulfilled if

R � �
1

�
�2

�2 r�T: (22)

Selecting one parameter group of diffeomorphisms one
can calculate the commutator of two vector fields and
provided we impose the additional condition on the dif-
feomorphism defining functions

�araT � 0 at horizon; (23)

one obtains the closed algebra
-2
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f�1; �2g
a � �T1r�T2 � T2r�T1��

a

�
1

�
�2

�2 r��T1r�T2 � T2r�T1��
a: (24)

As pointed out in [5], this is isomorphic to DiffS1 or
DiffR. An additional natural requirement on fluctuations
and thus on diffeomorphisms is made as usual

�
Z
@C

�̂

�
~��

�
j�j

�
�
� 0; (25)
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where ~�2 � �a2=�2, and aa � �brb�
a is the accelera-

tion of an orbit of �a. As explained elsewhere it provides
us with orthogonality relations for one parameter group
of diffeomorphisms.

We are now in a position to calculate the near horizon
expansion for fluctuations �gab using decompositions (7).
The leading terms and next to leading order are
�gab � 2��a�b�


 �T

�3n2
�

�
3!2

2gH�� �T

4�5
�

4�2
�T

3�4 �
!2@� _T

2�3

�
�O�n�

�
� �a�b



�2 _T

�2n2
�

�
�7!2

2gH�� _T

2�4 �
14�2

_T

3�3

�
�O�n�

�

�2��a�b�


�
�!2

_T

2�2 �
@�T

gH��

�
�

2!3
_T

�2 n�O�n2�
�
� 2��a�b�


�
!2

�T

2�3 �
@� _T

gH���

�
�
!3

�T

�3 n�O�n2�
�

��a�b


�!2
2gH�� _T

2�4 �
!2@�T

�2

�
�O�n�

�
��a�b


�
�
g2H�� _T

g2H��
�
!2

2
_T

2�2

�
n2 �O�n3�

�

�zazb



�
g2Hzz _T

g2Hzz
n2 �O�n3�

�
� terms of order ^ 3; (26)
where the expansion of the metric up to the n4 terms
was used [!3 is defined as !�n;z��
�H�

1
2!2�z�n

2�!3n
3����].

Taking into consideration Eqs. (13) we can ascribe to
basis vectors �, � order n1 and to �, z order n0. Then the
above expansion is the power series containing terms up
to order n2. The leading terms are

�gab � ��a�b � �a�b�
�T

��2 � �a�b
2 _T

�2 : (27)

Because of the fact that our manifold has boundaries it
is natural to look for central extensions of this algebra.
The necessary formalism of covariant phase space was
explained in [15–17] and exploited in [5,11,12]. For this
reason we shall mention here just the main equations and
refer details to the above mentioned references. For a
given Lagrangian 4-form L we write the variation

�L��� � E������ d���; ���: (28)

The 3-form � or symplectic potential is implicitly defined
in the above equation. To vector fields �a we associate
vector current 3-form

J ��� � ���;L��� � � �L; (29)

and corresponding Noether charge 2-form

J � dQ: (30)

It was shown in [15] that the Hamiltonian is a pure
surface term for all diffeomorphism invariant theories
and
�H��� �
Z
C
��J��� � d�� ����; �����; (31)

where C is a Cauchy surface.
The integrability condition requires that a 3-form B

exists with the property

�
Z
@C
� �B �

Z
@C
� ��: (32)

As explained elsewhere [5] one can, starting from the
Hamiltonian H��� corresponding to some diffeomor-
phism �a, write algebra of its surface terms J���

fJ��1�; J��2�g� � J�f�1; �2g� � K��1; �2�; (33)

with

J��� �
Z
@C

Q���; (34)

and the Dirac bracket

fJ��1�; J��2�g� �
Z
@C
f�2 ����;L�1�� � �1

����;L�2�� � �2 � ��1 �L�g: (35)

From Eq. (33) one can determine central charge
K��1; �2�. Now the symplectic current is [15]

�pef � 2#apef�E
abcdrd�gbc �rdE

abcd�gbc�; (36)

where

Eabcd �
@L

@Rabcd
: (37)
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This expression is valid for Lagrangians which do not
contain derivatives of Riemann tensors.

In this paper we are interested primarily in the Einstein
gravity case, but we shall include also the most general
Lagrangian with quadratic terms in the Riemann tensor
or

L �
1

16'
R� (R2 � )R��R�� � *R���+R���+: (38)

The integrals (34) and (35) are taken over
2-dimensional surface H which is the intersection of
the Killing horizon �2 � 0 with the Cauchy surface C.
The volume element is

#abcd � #̂cd,ab � � � � ; (39)

where only the first term contributes to the integral, and
binormal ,ab is

,ab � 2��bNc� �
2

j�j�
��a�b� � s�a�b�; (40)

and sa � �0; D1; 0; D2� is tangent to H . Na is future
directed null normal

Na � ka � (�a � sa; (41)

and

ka � ���a � �aj�j=��=�2: (42)

To find symplectic potential � and, in particular, to
perform integration in (35) we need also the quantities
rd�gbc. We calculated this quantity including the O�n2�
terms. Here we write the leading term

rd�gab � �2�d�a�b
�T

�4 � 2�d��a�b�

�
T
:::

��2�2 �
2� _T

�4

�
:

(43)

In fact the expression (35) can be written more explicitly
as

fJ��1�; J��2�g
� � �

Z
@C
#̂f2�X�12�

abcdE
abcd � ~X�12�

abcrdE
abcd�

��a2�
b
1,abLg: (44)

Here

X�12�
abcd � �p1,aprd�2gbc � �1 $ 2�; (45)

~X �12�
abc � �p1,ap�2gbc � �1 $ 2�: (46)

It is useful to note that tensors X�12�
abcd and ~X�12�

abc depend
only on details of the black hole and its symmetry prop-
erties (diffeomorphism defining functions) but not on the
form of the Lagrangian. We have evaluated the Taylor
series near the horizon for X�12�

abcd and ~X�12�
abc and the

Taylor series for interaction dependent tensors Eabcd and
rdEabcd. They allow us to establish the following prop-
084043
erties on the horizon:

lim
n!0

�X�12�
abcdE

abcd� � lim
n!0

�
�
1

4
,ab,cdEabcd

�


�
1

�
T1T
:::
2 � 2�T1 _T2

�
� �1 $ 2�

��
;

(47)

lim
n!0

� ~X�12�
abcrdEabcd� � 0: (48)

Of course the last term in (44) vanishes on the horizon
where we expect Lagrangian (38) to be regular (as a
function of curvature invariants).

It is important to realize that contrary to previous
procedures we now have explicitly under control the
next to leading terms in the expansion parameter n (dis-
tance of horizon). We need also to calculate the Noether
charge

Qef � �Eabcd#abefr�c�d�; (49)

or

Q � #̂EabcdYabcd; (50)

where

Yabcd � �,abr�c�d�: (51)

The tensor Yabcd up to terms of order 2 can also be
calculated but we omit the result here.

In that case from these definitions and (33) one obtains
the expression for central charge

K �
Z
H
#̂EabcdZabcd; (52)

Zabcd � 2X�21�
abcd � Yabcd: (53)

Now tensors Z and E can be explicitly calculated due to
previous expansions. The leading term is then the expres-
sion for central charge obtained in previous references

K��1; �2� � �
1

2

Z
H
#̂Eabcd,ab,cd

1

�
� _T1

�T2 � �T1
_T2�:

(54)

The explicit contributions in relations for X and Y are
higher order and thus vanish at horizon n � 0. In the
usual way one would then obtain the expression for en-
tropy

S � �2'
Z
H
#̂Eabcd,ab,cd: (55)
-4
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Here we want to add a remark. The original proposal of
this approach assumed a set of boundary conditions.
Despite the fact that we presented a straightforward cal-
culation based on properties of the black hole it is of
interest to check the above mentioned assumptions. In
fact using expansion (26) one can check that the follow-
ing conditions assumed in Refs. [5,11,12] are indeed valid

�ata�gab ! 0; �ara�gbc�gbc� � 0; (56)

�ara

�
�b��b
�2

�
� 0; �ara

�
��2

�2

�
� 0:

It is important to note that relations (22), (23), and (25)
are defining the diffeomorphisms and are thus also sat-
isfied. The explicit form of diffeomorphisms is given in
previous references.

The analysis of this paper has been done for D � 4 but
there does not seem that there could be obstructions for
higher dimensions. There is in fact one partial result in
the case of spherical and static metric in D dimensions:

ds2 � �f�x�dt2 �
dx2

f�x�
� r2�x�d�D�1: (57)

With explicit calculations we have checked that boundary
conditions (56) and properties (47) and (48) are valid.

In this paper we have treated the axially symmetric
black holes. As is well known axial symmetry follows
from stationarity as shown by the uniqueness theorems
[18] under some standard conditions. However one may be
interested in situations where these conditions are not
fulfilled and thus investigate horizons which are not ax-
ially symmetric. This question would require a separate
analysis and would presumably be technically more
complicated.
084043
III. CONCLUSION

The well-known calculation of entropy via the Cardy
formula is based on the calculation of central charge of a
subalgebra of diffeomorphism algebra on the black hole
horizon. The calculations have been based on additional
plausible assumptions which then led to leading terms
which gave contributions on the horizon and without
evaluation of next to leading terms. The approach used
here starts from usual properties of horizons of stationary
black holes together with regularity of curvature invari-
ants on them which then imply restrictive power series
expansion for metric fluctuations near the horizon [14].
We are then able to obtain without previously mentioned
assumptions the expansions for fluctuations of the metric
and its covariant derivative and consequently for the
tensor Z needed in the integrand of the central charge
formula. The horizon limit was then possible to perform
explicitly. In addition next to leading and next to next to
leading terms are explicitly exhibited.

More important in such a way we have shown that near
horizon geometry implies, as suggested by [14], near
horizon conformal symmetry formulated by Carlip with
its consequences for the black hole entropy.

APPENDIX

As mentioned in the text, the important ingredients in
calculations are the Taylor series near the horizon for
various quantities like �gab, rd�gab, X�12�

abcd, ~X�12�
abc , Eabcd,

and rdE
abcd. In the text we have exhibited expansion for

�gab (26). Here we present as another example the ex-
pansion of tensorX�12�

abcd including terms n0, n1, and n2 (we
also symmetrize X�12�

abcd such that X�12�
abcd � X�12�

cdab and
X�12�
abcd � X�12�

�ab��cd�, which does not change product

X�12�
abcdE

abcd):
X�12�
abcd � �a�b�c�d



�2�2 _T2 � T

:::
2�T1

4�5n4
� C�2

0101

1

n2
�O

�
1

n

��
� �a�b�c�d



C�2
0102

1

n2
� C�1

0102

1

n
�O�n0�

�

��a�b�czd



C�2
0103

1

n2
�O�n0�

�
� �a�b�c�d



C�2
0112

1

n2
� C�1

0112

1

n
�O�n0�

�
� �a�b�czd�C

0
0123 �O�n��

��a�b�c�d�C
0
0202 �O�n�� � �a�b�czd�C

0
0203 �O�n�� � �a�b�c�d�C

0
0212 �O�n��

��a�b�czd�C
0
0213 �O�n�� � �azb�czd�C

0
0303 �O�n�� � �azb�c�d�C

0
0312 �O�n�� � �azb�czd�C

0
0313 �O�n��

��a�b�c�d�C
0
1212 �O�n�� � �a�b�czd�C

0
1213 �O�n��

�terms related by permutation of indices according to symmetries ofX�12�
abcd

�terms of order ^ 3;

��1 $ 2�: (A1)
Here the coefficients of nonleading terms are lengthy
algebraic expressions given in terms of diffeomorphism
defining functions T1, T2, and Taylor coefficients of met-
ric functions and are not very informative. For these
reasons we do not exhibit them here.
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[16] C. Crnković and E. Witten, in Three Hundred Years of

Gravitation, edited by S.W. Hawking and W. Israel
(Cambridge University Press, Cambridge, 1989),
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