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Motivated by the fact that many empirical time series—including changes of heartbeat intervals, physical
activity levels, intertrade times in finance, and river flux values—exhibit power-law anticorrelations in the
variables and power-law correlations in their magnitudes, we propose a simple stochastic process that can
account for both types of correlations. The process depends on only two parameters, where one controls the
correlations in the variables and the other controls the correlations in their magnitudes. We apply the process
to time series of heartbeat interval changes and air temperature changes and find that the statistical properties
of the modeled time series are in agreement with those observed in the data.
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I. INTRODUCTION

Many physical, physiological, biological, and social sys-
tems are characterized by complex interactions among many
different individual components leading to scale-invariant
correlations �1–4�. Since the resulting observable variable in
the output of these systems at each moment is the product of
its magnitude and sign, recent investigations have focused on
the study of correlations in magnitude and sign time series
�5–12�. For example, time series of changes ��i of heartbeat
intervals �6–8�, river flux values �9�, physical activity levels
�10�, and intertrade times in the stock market �11� exhibit
power-law anticorrelations, while their magnitudes ���i� are
positively correlated. A second correlation pattern is ob-
served for human gait dynamics, where increments of inter-
stride intervals are power-law anticorrelated, while their
magnitudes are uncorrelated �12�. A third correlation pattern
is observed for financial data, where price changes are un-
correlated, while their magnitudes are long-range power-law
correlated �5�.

Several stochastic processes, including the autoregressive
fractionally integrated moving average �ARFIMA� process
�13,14� and the fractionally integrated autoregressive condi-
tional heteroscedastic �FIARCH� process �15�, have been
proposed to generate time series with power-law correlations
in ��i or power-law correlations in ���i�. The ARFIMA pro-
cess was introduced to generate time series with power-law
correlations or anticorrelations in ��i. We will show in Sec.
III that the ARFIMA process does not exhibit magnitude
correlations if the variables are anticorrelated. Hence the
ARFIMA process is an appropriate candidate for modeling
human gait dynamics. The FIARCH process was introduced
in finance to model uncorrelated time series with power-law
magnitude correlations. However, neither the ARFIMA pro-
cess nor the FIARCH processes is capable of modeling time
series that are simultaneously power-law anticorrelated in ��i
and power-law correlated in ���i�, a case found in many time
series such as changes of heartbeat intervals, physical activ-
ity levels, intertrade times in finance, or river flux values.

II. DEFINITIONS AND METHODS

With the goal of constructing a stochastic process that can
simulate time series ��i with power-law anticorrelations in
��i and power-law correlations in ���i�, we combine the
ARFIMA process with the FIARCH process and define pro-
cess A��1 ,�2� by

��i = �
n=1

�

an��1���i−n + �i�i, �1a�

�i = �
n=1

�

an��2�
���i−n�
����i��

, �1b�

an��� = �
	�n − ��

	�1 − ��	�1 + n�
. �1c�

Here �1� �−0.5,0.5� and �2� �0,0.5� are free parameters, 	
denotes the Gamma function, and �i denotes independently
and identically distributed Gaussian variables with expecta-
tion value ��i�=0 and variance ��i

2�=1. For �� �0,0.5�, the
weights an��� satisfy the constraint �n=1

� an���=1, and by us-
ing the Stirling formula it can be shown that the weights
scale as an���
n1−� for asymptotically large values of n.

To eliminate trends in empirical data, one commonly
takes first-order differences xi−xi−1, or calculates higher-
order integer differences. This differencing procedure is ac-
complished through the linear operator 1−L, defined by
�1−L�xi=xi−xi−1 �16�, where L is the linear backward-shift
operator defined by Lnxi=xi−n. Fractional processes �13,14�
are obtained by allowing the order � in the fractionally dif-
ferencing operator �1−L�� to take fractional values. After
expanding �1−L�� as an infinite binomial series in powers of
L, one can show that Eqs. �1a�–�1c� can be expressed as
�1−L��xi=�i�i.

For �2→0, all weights become equal, �i becomes 1, and
process A��1 ,�2� reduces to the ARFIMA process A��1 ,0�;
for �1→0, process A��1 ,�2� reduces to the FIARCH process
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A�0,�2�; and for positive �1=�2, process A��1 ,�2� reduces
to process B�� ,�=0� proposed in Ref. �17�. Process B�� ,��
was proposed with the goal of modeling time series with
power-law correlations in ��i and an asymmetric distribution
of ��i, and for �=0 process B�� ,�� generates time series
with a symmetric distribution of ��i and power-law correla-
tions in ��i, similar to time series generated by the ARFIMA
process A�� ,0�. Since Eqs. �1a�–�1c� is invariant under the
transformation xi→−xi and �i→−�i, process A��1 ,�2� gen-
erates symmetric probability distributions, i.e., P�x�= P�−x�,
for arbitrary �1� �−0.5,0.5� and �2� �0,0.5�.

To quantify the degree of correlations in time series gen-
erated by process A��1 ,�2�, we employ the method of de-
trended fluctuation analysis �DFA� �18,19�. In the DFA
method one measures the standard deviation F�n� of the de-
trended fluctuations as a function of the time scale n. If the
autocorrelation function C�n� can be approximated by a
power law with exponent �, i.e., if C�n�
n−�, then F�n� can
be approximated by a power law with exponent 
, i.e.,
F�n�
n
, with 
	1−� /2 �18�. Hence the value of 
 repre-
sents the degree of correlations in the time series: if

�0.5, the time series is power-law correlated; if 
=0.5,
the time series is uncorrelated or short-range correlated; and
if 
�0.5, the time series is power-law anticorrelated.

III. EFFECT OF MODEL PARAMETERS ON
CORRELATIONS

Depending on the values of the parameters �1 and �2,
process A��1 ,�2� generates different correlation patterns for
��i and ���i�. For �1� �−0.5,0�, process A��1 ,�2� generates
anticorrelated ��i; for �1=0, it generates uncorrelated ��i,
consistent with the FIARCH process A�0,�2�; and for
�1� �0,0.5�, it generates correlated ��i. For �2=0 and
�1� �−0.5,0�, process A��1 ,�2� generates time series with
uncorrelated ���i�, consistent with the ARFIMA process
A��1 ,0�, while for �2� �0,0.5�, it generates time series with
correlated ���i� for �1� �−0.5,0.5�. In order to study how
correlations in ��i and ���i� depend on �1 and �2, we perform
numerical simulations of process A��1 ,�2� for varying val-
ues of �1 and �2 �20�.

First we study correlations in time series generated
by process A��1 ,�2� for different values of �1 while keeping
�2 fixed. We find from Fig. 1�a� that the variables ��i
are power-law anticorrelated for �1� �−0.5,0� and �2=0.24.
Numerically we find that the exponent 
�� can be approxi-
mated by 
��	0.5+�1, which is identical to the relation
obtained for the ARFIMA process A��1 ,0�. As expected
for the integrated signal �i=�0+� j=1

i �� j, we obtain that

�	
��+1	1.5+�1. We find from Fig. 1�b� that the mag-
nitudes ���i� are power-law correlated and that all F�n�
curves overlap for different values of �1, stating that F�n�
and 
���� do not depend on �1. In contrast, the time series of
sgn���i� exhibit short-range anticorrelations that depend on
�1. For �1=0, Fig. 1 shows that ��i and sgn���i� are uncor-
related, while ���i� is power-law correlated, consistent with
the correlation pattern modeled by the FIARCH process
A�0,�2� and found in finance �15,21�.

Second we study correlations in time series for different
values of �2 while keeping �1 fixed. We find from Fig. 2�a�
that, separately for ��i and �i, all F�n� curves overlap, and
that they can be approximated by two power laws F�n�
n


with 
��	0.5+�1 and 
�	1.5+�1, stating that the correla-
tions in ��i and �i do not depend on �2. Figure 2�b� shows
that for every �2 the magnitudes ���i� are power-law corre-
lated, and that 
���� can be approximated by 
����	0.5+�2.
We find from Fig. 2�c� that the F�n� curves for the time
series of sgn���i� overlap for different values of �2, indicat-
ing that the correlations in sgn���i� do not depend on �2. For
�2=0, ��i are power-law anticorrelated and sgn���i� are
short-range anticorrelated, while ���i� are uncorrelated, con-
sistent with the correlation pattern generated by the
ARFIMA process A��1 ,0� and found in gait dynamics.

The numerical analyses show that, for �1� �−0.5,0�, but
not for �1� �0,0.5�, process A��1 ,�2� generates time series
with anticorrelations in ��i controlled only by �1, and with
correlations in ���i� controlled only by �2. Specifically, we
find that the exponents 
� and 
�� depend approximately
linearly on �1 through 
�	1.5+�1 and 
��	0.5+�1, and
that the exponent 
���� depends approximately linearly on �2

FIG. 1. Detrended fluctuation functions F�n� for time series of
5�105 data points generated by process A��1 ,0.24� for varying
�1� �−0.5,0�. �a� F�n� for �i �open symbols� and ��i �closed sym-
bols�. For both �i and ��i, each of the F�n� curves can be approxi-
mated by a power law F�n�
n
 with exponents 
�	1.5+�1 and

��	0.5+�1. For �1=0, the time series ��i is uncorrelated
�
��	0.5�. �b� F�n� for ���i�. For all values of �1, the F�n� curves
are virtually identical, indicating that 
���� does not depend on �1,
and that all F�n� curves can be approximated by a power law
F�n�
n
 with exponent 
����	0.5+�1. For �1=0, there are power-
law correlations in the magnitudes ���i� even though the variables
��i are uncorrelated, consistent with the correlation pattern of the
FIARCH process. �c� F�n� for sgn���i�. The sgn���i� series show
short-range anticorrelations for all values of �1�0. For �1=0, the
sgn���i� series is uncorrelated.
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through 
����	0.5+�2. In the limit of �1→−0.5, process
A��1 ,�2� generates correlations with exponent 
�→1, which
corresponds to 1/ f noise �1�.

For the parameter range �1� �0,0.5�, we find that process
A��1 ,�2� generates power-law correlations in both �� and
����. However, we find that the linear relations between 
��

and �1 and between 
���� and �2 obtained for negative �1 does
not hold anymore for positive �1. Specifically, we find that
both parameters �1 and �2 effect each of the exponents 
��

and 
����. For the special case of �1=�2=��0, we study
correlations in ��i and ���i� for time series generated by pro-
cess A�� ,��. Figure 3�a� shows that, for each value of �, the
F�n� curves for ��i and ���i� can be approximated by power
laws with approximately the same exponents 
��	
����, and
that 
�� and 
���� depend almost linearly on � through

��	
����	0.5+�.

IV. MAGNITUDE CORRELATIONS AFTER FOURIER
PHASE RANDOMIZATION

In this section, we study to which degree magnitude cor-
relations are destroyed by a Fourier phase randomization of
the original time series generated by process A��1 ,�2�. The

Fourier phase randomization procedure �22� works as fol-
lows: perform a Fourier transform of the original time series
��i, randomize the Fourier phases, but keep the Fourier am-
plitudes unchanged, and perform an inverse Fourier trans-
form to obtain a surrogate time series ��̃i.

First we analyze process A�� ,��. Figure 3�b� shows that,
for each value of � , F�n� for the surrogate time series ���̃i�
can be approximated by a power law with exponent

���̃��
����. We find that magnitude correlations are almost
completely destroyed for ��0.2, resulting in an exponent

���̃� close to 0.5.

Second we study if the ARFIMA process can generate
correlations in ���i�, and we find that the ARFIMA process
shows no correlations in ���i� for �1� �−0.5,0�. However, we
find that the ARFIMA process generates magnitude correla-
tions for positive �1. We analyze time series of the ARFIMA
process A�0.3,0�, and we obtain from Fig. 4�a� that the
ARFIMA process exhibits magnitude correlations that can be
approximated by a power law F�n�
n
 with exponent

�����
��. Generally, we find that magnitude correlations be-
come very small for �1�0.2, resulting in an exponent 
���̃�
close to 0.5. In contrast to process A�� ,��, we find from Fig.
4�b� that magnitude correlations of the ARFIMA process re-
main the same after a Fourier phase randomization.

Third we analyze magnitude correlations of the FIARCH
process A�0,0.3�. Figure 4�a� shows power-law correlations
in ���i� with exponent 
����	0.5+�, which is in agreement
with analytical results from Ref. �15�. Figure 4�b� shows that
correlations in ���̃i� completely disappear after a Fourier
phase randomization.

A comparison of Figs. 3�b� and 4�b� shows that the
exponent 
���̃� of process A�� ,�� reduces to the exponent

FIG. 2. Detrended fluctuation functions F�n� for time series of
5�105 data points generated by process A�−0.43,�2� for varying
�2� �0,0.5�. �a� F�n� for �i �open symbols� and ��i �closed sym-
bols�. For all values of �2, the F�n� curves are virtually identical
and can be approximated by a power law F�n�
n
, indicating that
the correlations in �i and ��i and the exponents 
�	1.5+�1 and

��	0.5+�1 do not depend on �2. �b� F�n� for ���i�. Each of the
F�n� curves can be approximated by a power law F�n�
n
 with
exponent 
����	0.5+�2. For �2=0, where A��1 ,�2� reduces to the
ARFIMA process, the time series exhibits no correlations in ���i�,
while the variables ��i are power-law anticorrelated. �c� F�n� for
sgn���i�. The sgn���i� series show short-range anticorrelations, and
the F�n� curves are virtually identical, indicating that sign correla-
tions do not depend on �2.

FIG. 3. Detrended fluctuation functions F�n� for a time series of
5�105 data points generated by process A�� ,�� for varying values
of �� �0,0.5�. �a� F�n� for ��i �lines� and ���i� �symbols�. For all
values of �, the F�n� curves for both ��i and ���i� are virtually
identical, and they can be approximated by a power law F�n�
n


with exponent 
��	
����	0.5+�. �b� F�n� for ���̃i�, where ��̃i de-
notes the surrogate time series obtained by a Fourier phase random-
ization of ��i. For ��0.2, magnitude correlations are almost com-
pletely destroyed, and for ��0.2, magnitude correlations are
reduced, but not completely destroyed, i.e., 
���̃��
����.
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���̃�	
���� of the ARFIMA process, stating that magnitude
correlations of process A�� ,�� only partially dissappear. For
�1�0, both the ARFIMA process and the more general pro-
cess A��1 ,�2� exhibit magnitude correlations. Hence both
processes are good candidates for modeling empirical data
with power-law correlations in ��i and ���i�. However, one

fundamental difference between both processes is that the
ARFIMA process generates time series whose magnitude
correlations are not affected by a Fourier phase randomiza-
tion of the original time series, whereas process A��1 ,�2�
generates time series whose magnitude correlations are par-
tially destroyed by a Fourier phase randomization of the
original time series.

V. APPLICATIONS

To test if process A��1 ,�2� might be useful for modeling
real-world data, we consider two empirical data sets: heart-
beat data with power-law anticorrelations in ��i and power-
law correlations in ���i�, and air temperature data with
power-law correlations in ��i and ���i� �see Table I�.

A. Heartbeat

It is shown in Refs. �6,23–25� that changes ��i of heart-
beat intervals and their signs exhibit power-law anticorrela-
tions with 
��	0.07 and 
sgn����	0.42, while their magni-
tudes ���i� are power-law correlated with 
����	0.74 and
uncorrelated after a Fourier phase randomization of ��i.
Changes of heartbeat intervals as well as changes of physical
activity levels, intertrade times in the stock market, and river
flux values cannot be modeled by the ARFIMA process be-
cause the ARFIMA process generates time series with uncor-
related magnitudes ���i� for �1�0, and parameters values
�1�0 are needed to model anticorrelations in ��i. In this
section we test if process A��1 ,�2� can model power-law
anticorrelations in ��i, power-law correlations in ���i�, and
short-range anticorrelations in sgn���i� comparable to those
observed in heartbeat data.

Using the relations 
��	0.5+�1 and 
����	0.5+�2 ob-
tained from Figs. 1 and 2, we perform numerical simulations
of process A�−0.43,0.24�. Figure 5�a� shows that the simu-
lated time series exhibits power-law anticorrelations in ��i
and power-law correlations in ���i� with exponents consistent
with those observed in heartbeat data �6,23,24�. In addition,
we find that the exponent 
sgn����	0.42 from the model time
series is similar to the exponent found in heartbeat data. This

FIG. 4. Detrended fluctuation functions F�n� for time series of
5�105 data points generated by the ARFIMA process A�0.3,0�, by
the FIARCH process A�0,0.3�, and by process A�0.3,0.3�. �a� F�n�
for ���i�. For all processes, F�n� can be approximated by power laws
with exponent 
����	0.6 for the ARFIMA process and with expo-
nent 
����	0.5+�	0.8 for the FIARCH process and for process
A�0.3,0.3�. �b� F�n� for ���̃i� after a Fourier phase randomization of
��i. All F�n� curves can be approximated by power laws. For the
ARFIMA process, the exponent 
���̃� is equal to the exponent 
����.
For the FIARCH process, the exponent 
���̃� is reduced to 0.5. For
process A�0.3,0.3�, the exponent 
���̃� is reduced to approximately
0.6. It is interesting to observe that 
���̃�	0.6 obtained for process
A�0.3,0.3� is approximately equal to 
���̃�	
����	0.6 obtained for
the ARFIMA process A�0.3,0�.

TABLE I. Correlation patterns of process A��1 ,�2� for different ranges of �1 and �2. The following abbreviations are used in columns
4, 5, 6, and 10: A � power-law anticorrelated, u � uncorrelated, c � correlated, C � power-law correlated, gait � increments of interstride
intervals, finance � price changes, temperature � high-frequency air temperature changes, and several � changes of heartbeat intervals,
physical activity levels, river flux values, intertrade times, etc. Underlined results can be derived analytically �13–15�, while the remaining
results are based on numerical simulations presented in Secs. III and IV. For the case of �1�0 and �2�0 we could not find simple
approximations of 
�� and 
���� as a function of �1 and �2.

Process �1 �2 �� ���� ���̃� 
�� 
���� 
���̃� Examples

ARFIMA �0 0 A u u 0.5+�1 0.5 0.5 gait

White noise 0 0 u u u 0.5 0.5 0.5

ARFIMA �0 0 C C C 0.5+�1 �
�� 
����

A��1 ,�2� �0 �0 A C u 0.5+�1 0.5+�2 0.5 several

FIARCH 0 �0 u C u 0.5 0.5+�2 0.5 finance

A��1 ,�2� �0 �0 C C C ? ? �
����

A�� ,�� �0 �0 C C C 0.5+� 0.5+� �
���� temperature
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is surprising because the parameters �1 and �2 are not chosen
to fit the sign correlations, but chosen to fit the observed
correlations in ��i and ���i�.

Figure 5�b� shows that magnitude correlations in the sur-
rogate time series ��̃i are completely destroyed, resulting in
an exponent 
���̃�	0.5, while sign correlations remain un-
changed, i.e., 
sgn���̃�	
sgn����. This states that the time se-
ries of process A�−0.43,0.24� exhibits the same correlations
in ��i , ���i� , sgn���i� , ���̃i�, and sgn���̃i� as the empirical
heartbeat time series.

B. Air temperature

We study air temperature data recorded in 10-min inter-
vals at the Institute of Plant Genetics and Crop Plant Re-
search at Gatersleben �26�. We denote the deseasonalized
differences of successive air temperature recordings by ��i,
and in Fig. 6�a� we study short-range correlations in
��i , ���i�, and sgn���i�. We find that, for time scales up to 24
h, the air temperature differences are correlated, and that
F�n� can be approximated by a power law F�n�
n
 with
exponent 
��	0.66�0.5. We also find from Fig. 6�a� that
���i� and sgn���i� are power-law correlated with exponents

����	0.76 and 
sgn����	0.69.

While changes of air temperature data recorded daily are
shown to be power-law anticorrelated �27�, changes of air
temperature data recorded in 10-min intervals are short-range
power-law correlated. This means that on short time scales of
the order of minutes an increase of air temperature is fol-
lowed predominantly by an increase of air temperature,
whereas on longer time scales of the order of days an in-
crease of air temperature is followed predominantly by a
decrease of air temperature. Interestingly, the exponent

����	0.76 calculated for high-frequency air temperature
data is only slightly greater than the exponent 
����	0.6 ob-
tained for air temperature data recorded daily �27�.

In the remainder of this section we study if process
A��1 ,�2� could be applicable to model empirical time series

FIG. 5. Detrended fluctuation functions F�n� for time series of
5�105 data points generated by process A�−0.43,0.24� with pa-
rameters chosen to simulate heartbeat data. �a� F�n� for �i ,��i , ���i�,
and sgn���i�. The F�n� curves for �i ,��i, and ���i� can be approxi-
mated by power laws, and the exponents 
� ,
��, and 
���� are in
agreement with empirical heartbeat data �6�. Interestingly, also the
F�n� curve for sgn���i� is in agreement with empirical heartbeat
data �6�. �b� F�n� for �̃i ,��̃i , ���̃i�, and sgn���̃i� after a Fourier phase
randomization of ��i. F�n� for ���̃i� can be approximated by a power
law with exponent 
���̃�	0.5, stating that magnitude correlations
are completely destroyed. This is consistent with �i� the result of
Sec. IV that magnitude correlations of process A��1 ,�2� completely
vanish for negative �1 and with �ii� the observation made for em-
pirical heartbeat data �6�. Correlations in sgn���̃i� are virtually iden-
tical to correlations in sgn���i�. Interestingly, this is consistent with
the observation made for empirical heartbeat data �6�.

FIG. 6. Detrended fluctuation functions F�n� calculated for
deseasonalized air temperature changes and for a time series gener-
ated by process A�0.2,0.2�. �a� F�n� for ��i , ���i�, and sgn���i� for
empirical air temperature changes before �closed symbols� and after
�open symbols� a Fourier phase randomization of ��i. Each of the
F�n� curves for �� , ����, and sgn���� can be approximated by power
laws with exponents 
��	0.66, 
����	0.76, and 
sgn����	0.69. Af-
ter a Fourier phase randomization of ��i, all F�n� curves can be
approximated by power laws with exponents 
��̃	0.66,

���̃�	0.54, and 
sgn���̃�	0.61. This indicates that magnitude cor-
relations of high-frequency air temperature changes ��i vanish to
some degree, but not completely, by a Fourier phase randomization
of ��i, and that sign correlations remain almost unchanged. �b� F�n�
for ��̃i , ���̃i�, and sgn���̃i� generated by process A�0.2,0.2� before
�closed symbols� and after �open symbols� a Fourier phase random-
ization of ��i. The F�n� curves for ��i , ���i�, and sgn���i� are almost
identical and can be approximated by power laws with exponents

��	
����	
sgn����	0.7. For the surrogate time series ��̃i, the
F�n� curves for ���̃i� and sgn���̃i� can be approximated by power
laws with exponents 
���̃�	0.53 and 
sgn���̃�	0.69, stating that
magnitude correlations are almost completely destroyed by a Fou-
rier phase randomization of ��i, whereas sign correlations remain
almost unchanged.
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with power-law correlations in both ��i and ���i� similar to
those observed in high-frequency air temperature data. We
perform numerical simulations of process A�0.2,0.2�, and
find from Fig. 6�b� that the time series of ��i , ���i�, and
sgn���i� are all power-law correlated with exponents

��	
����	
sgn����	0.7, resembling the correlation pattern
found in air temperature data.

We study magnitude and signs correlations in the Fourier
phase randomized surrogate time series ��̃i of the air tem-
perature changes, and we find from Fig. 6�a� that �i� correla-
tions in sgn���̃i� are similar to correlations in sgn���i�, and
�ii� correlations in ���̃i� are different from correlations in
���i�. Specifically, we find that magnitude correlations are
almost completely destroyed.

This behavior implies that the ARFIMA process is not
suitable for modeling high-frequency air temperature
changes, because magnitude correlations generated by the
ARFIMA process are not destroyed by a Fourier phase ran-
domization of ��i. In the following we study to which degree
magnitude correlations of time series ��i generated by pro-
cess A�0.2,0.2� are destroyed by a Fourier phase randomiza-
tion of ��i. Figure 6�b� shows that, after a Fourier phase
randomization of ��i, magnitude correlations almost com-
pletely dissappear, and that correlations in sgn���̃i� are equal
to correlations in sgn���i�. This states that correlations in
��i , ���i� , sgn���i� , ���̃i�, and sgn���̃i� observed for high-
frequency air temperature data can be modeled by process
A�0.2,0.2�.

VI. DISCUSSION AND CONCLUSIONS

We propose a stochastic process A��1 ,�2� that can simu-
late power-law correlations in both ��i and ���i�, controlled
by only two parameters �1 and �2. For �1=0, the process
reduces to the FIARCH process A�0,�2�, and for �2=0, the
process reduces to ARFIMA process A��1 ,0�. For the
ARFIMA process we find that ���i� are uncorrelated for �1
� �−0.5,0� and power-law correlated for �1� �0,0.5�. For
�1� �−0.5,0� process A��1 ,�2� shows power-law anticorre-
lations in ��i, and for �1� �0,0.5� and �2�0 it shows power-
law correlations in ��i and power-law correlations in ���i�.

We study to which degree magnitude correlations are
changed by a Fourier phase randomization of ��i, and we
find that for the ARFIMA process magnitude correlations

remain unchanged, while for the FIARCH process magni-
tude correlations are completely destroyed. For process
A��1 ,�2� magnitude correlations are completely destroyed if
��i are anticorrelated, but only partially destroyed if ��i are
correlated.

We find that the correlation pattern of time series gener-
ated by process A�−0.43,0.24� are in agreement with those
found in heartbeat data. Surprisingly, we find that also cor-
relations in sgn���i� are in a good agreement with the em-
pirical heartbeat data, and that even ���̃i� and sgn���̃i� exhibit
the same correlations as the corresponding surrogate time
series of the empirical heartbeat data.

We analyze air temperature data sampled in 10-min inter-
vals and find that air temperature changes, their magnitudes,
and signs are power-law correlated. We find that magnitude
correlations almost completely vanish after a Fourier phase
randomization of ��i, whereas sign correlations remain al-
most unchanged. We find that process A�0.2,0.2� generates
time series with correlations in ��i , ���i� , sgn���i� , ���̃i�, and
sgn���̃i� that resemble those obtained in air temperature
changes. This is surprising because the parameter �=0.2 was
chosen to approximate correlations in ��i and ���i�, but not in
sgn���i� , ���̃i�, or sgn���̃i�. This surprising agreement might
suggest that air temperature changes are possibly driven by a
superposition of �i� past values of air temperature changes
��i−n, but not on their magnitudes ���i−n�, and �ii� a noise
term �i—representing the effect of environmental factors at
time i—amplified by a multiplicative factor �i that itself de-
pends on the past magnitudes ���i−n�, but not on past air
temperature changes ��i−n.

It is clear that process A��1 ,�2� lacks many important
details necessary for modeling heartbeat or air temperature
time series, but it might be useful for modeling diverse
physical, biological, and social systems exhibiting simulta-
neously power-law correlations in the variable increments
and their magnitudes.
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