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The dynamics of matter-wave solitons in Bose-Einstein condensates (BEC) is considerably affected by
the presence of a thermal cloud and the dynamical depletion of the condensate. Our numerical results,
based on the time-dependent Hartree-Fock-Bogoliubov theory, demonstrate the collapse of the attractively
interacting BEC via collisional emission of atom pairs into the thermal cloud, which splits the (quasi-one-
dimensional) BEC soliton into two partially coherent solitonic structures of opposite momenta. These
incoherent matter waves are analogous to optical random-phase solitons.
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The physics of quantum-degenerate interacting Bose
gases closely resembles the behavior of light in nonlinear
media. The dynamics of a Bose-Einstein condensate
(BEC) at zero temperature is described by the Gross-
Pitaevskii (GP) mean-field theory, given by the nonlinear
Schrödinger equation for the condensate order parameter.
The same equation describes the evolution of coherent
light in nonlinear Kerr media. This analogy has opened
the way for the field of nonlinear atom optics [1,2] with
striking demonstrations of familiar nonlinear optics phe-
nomena such as four wave mixing [3], superradiant
Rayleigh scattering [4], and matter-wave amplification
[5,6], carried out with matter waves. One such phenome-
non is the formation of matter-wave solitons [7–16].
Experimentally, dark solitons [9,10] and bright gap soli-
tons [16] were observed in BECs with repulsive interac-
tions, whereas bright solitons [13,14] were demonstrated in
systems with attractive interactions. These experimental
results are augmented by extensive theoretical work in-
cluding predictions on bright [7,8] and dark [11] matter-
wave solitons, lattice solitons [12], and soliton trains [15].
The vast majority of previous theoretical efforts on matter-
wave solitons have utilized the zero-temperature GP mean-
field theory. However, in a realistic system, elementary
excitations arising from the thermal and/or quantum fluc-
tuations are always present [17], and the BEC dynamics
may be considerably affected by the motion of the excited
atoms around it (thermal cloud), and by the dynamical
BEC depletion [18], giving rise to new nonlinear matter-
wave phenomena.

Here we analyze these aspects of BEC soliton dynamics
by using the time-dependent Hartree-Fock-Bogoliubov
(TDHFB) theory [19–21]. We focus on bright BEC sol-
itons obtained with attractive interactions between parti-
cles. Soliton dynamics is analyzed by first calculating the
finite-temperature ground state of the attractively interact-
ing gas within a quasi-one-dimensional (Q1D) cigar-
05=95(18)=180401(4)$23.00 18040
shaped harmonic trap [17]. The harmonic confinement in
the longitudinal direction is then suddenly turned off (the
transverse confinement is maintained at all times), and the
partially condensed Bose gas starts to evolve. Within the
TDHFB model, we find a characteristic pattern of evolu-
tion of the system whereby pairs of atoms are collisionally
excited from the BEC into the thermal cloud causing the
initial density to eventually split into two solitonic struc-
tures with opposite momenta. Both solitons constitute a
mixture of the condensed and noncondensed particles. We
emphasize that the observed composite waves are a truly
novel type of matter-wave solitons, where localization is
attained not only in spatial density, but also in spatial
correlations. These solitons are reminiscent of optical
random-phase solitons [22–24], thus highlighting the anal-
ogy between incoherent light behavior in nonlinear media
and BECs at finite temperatures.

Starting with a near-unity condensate fraction at very
low temperatures, the GP dynamics reproduces, under
proper conditions, the well-known zero-temperature BEC
solitons, thus demonstrating the condensate’s mechanical
stability. However, the evolution of the same initial nearly
pure BEC with TDHFB clearly illustrates BEC depletion
through pairing, causing these coherent solitons to disinte-
grate in a characteristic fashion into incoherent solitary
matter waves. In all cases, when both the trap and the
interparticle interactions are turned off simultaneously,
we observe fast matter-wave dispersion.

We consider a system ofN interacting bosons placed in a
Q1D harmonic potential Vext�x; y; z� � �!xx

2 �!?y
2 �

!?z
2�m=2, where !? � !x denote the transverse and

the longitudinal frequencies of the trap, respectively. The
interparticle interaction is approximated by the Q1D con-
tact potential V�x1 � x2� � g1D��x1 � x2�, where g1D �
�2@2=ma1D, a1D � �a2

?=a3D is the effective 1D scatter-
ing length [25–27],m is the particle mass, a? �

�����������������
@=m!?

p
is the size of the lowest transverse mode, while a3D is the
1-1 © 2005 The American Physical Society
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FIG. 1 (color online). (a) Matter-wave dispersion, i.e., evolu-
tion of the gas density without interactions present. (b) Coherent
matter-wave solitonic evolution with GP equation. (c) Evolution
of the gas with the TDHFB model; attractive interactions among
atoms are present in figures (b) and (c). (d) The condensate
fraction (black solid line) and the fraction of noncondensed
atoms (blue dashed line). (e) The complex degree of coherence
��x; x0; t� of a matter wave at t � 0 (black dot-dashed line), and
t!? � 63:9 [Re��x; x0; t� blue solid line, and Im��x; x0; t� red
dashed line]; x0 is placed at the position of the left peak. (f) The
kinetic energies of the condensate Ekin;c (blue solid line), thermal
cloud Ekin;th (red dotted line), and total interaction energy Eint

(green dashed line); total energy Etotal � Ekin;c � Ekin;th � Eint is
conserved (black dot-dashed line); energy is in units of jEtotalj.
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3D scattering length. At finite temperatures, the equilib-
rium state of the system can be described by the HFB
theory [17]:

Hsp�s � g1D�n
s
c�x� � 2~ns�x�	�s

� g1D ~ms�x��s
 � ��s�x�; (1)

Ls�x� Ms�x�
�Ms
 �x� �Ls�x�

� �
usj�x�
vsj�x�

" #
� Ej

usj�x�
vsj�x�

" #
: (2)

Here, Hsp � �
@

2

2m
@2

@x2 �
1
2m!

2
xx

2 and � is the chemical
potential. The superscript s denotes the static quantities,
e.g., the static order parameter is �s�x�, and nsc�x� �
j�s�x�j2 is the static condensate density [28]. The nor-
mal density is ~ns�x� �

P
jju

s
j�x�j

2Nj � jv
s
j�x�j

2�Nj � 1�,
whereas ~ms�x� � �

P
ju
s
j�x�v

s

j �x��2Nj � 1� is the anoma-

lous density [17]. The population of excited modes at
temperature T follows the Bose distribution Nj �
�eEj=kT � 1��1. In Eq. (2), Ls�x� � Hsp � 2g1D�n

s
c�x� �

~ns�x�	 �� and Ms�x� � �g1D��
s2�x� � ~ms�x�	.

We use the solutions of Eqs. (1) and (2) as the initial
conditions to study dynamics without confinement within
the TDHFB approximation in the modal form [21]

i@
@��x; t�
@t

� Hsp�� g1D�nc�x; t� � 2~n�x; t�	�

� g1D ~m�x; t��
; (3)

i@
@
@t

uj�x; t�
vj�x; t�

" #
�

L�x; t� M�x; t�
�M
�x; t� �L�x; t�

� �
uj
vj

" #
; (4)

where L�x;t��Hsp�2g1D�nc�x;t�� ~n�x;t�	, M�x;t��
�g1D��

2�x;t�� ~m�x;t�	, ~n�x;t��
P
jjujj

2Nj�jvjj
2�Nj�

1� is the normal density, and ~m�x;t���
P
jujv



j �2Nj�1�

is the anomalous density; at t � 0, all dynamical quantities
are identical to their static counterparts, e.g., ��x; 0� �
�s�x� etc. The TDHFB model is usually given in the form
of coupled equations for the condensate order parameter
and the single particle density matrix (e.g., see Ref. [20]).
A tedious but straightforward calculation [29] shows its
full equivalence to the modal form (4). As expected, when
the time dependence of the BEC and quasiparticle func-
tions is ��x;t���s�x�exp��i�t=@�, uj�x;t��u

s
j�x� �

exp��i�Ej���t=@	, and vj�x; t� � vsj�x� exp��i�Ej �
��t=@	, the equations of motion (3) and (4) reduce to the
static HFB Eqs. (1) and (2).

In what follows we present numerical results based on
the described formalism, demonstrating the effect of the
thermal atoms and condensate depletion on matter-wave
soliton dynamics. The parameters of the calculation are
chosen to resemble the experimental parameters of
Ref. [13]. We consider N�2:2�104 7Li atoms in a
cigar-shaped harmonic trap with !?�4907 Hz (a?������������������
@=m!?

p
�1:35�m), and !x � 439 Hz (ax ����������������

@=m!x

p
� 4:51 �m). The 3D scattering length a3D �

�3:1� 10�11 m corresponds to a nonlinear parameter of
18040
Nja3Dj � 0:68 �m, and is tunable by the Feshbach reso-
nance technique [13].

First we consider the gas prepared at a very low tem-
perature (kBT=@!? � 5), where the condensate fraction is
99%. The density of such initially prepared gas� j�s�x�j2

has a single-humped profile. We have numerically checked
the stability [30] of the static confined solution with respect
to small perturbations; the stability is underpinned by the
use of parameters resembling experiment [13]. When the
confinement in x is turned off (the transverse confinement
in y and z is maintained), the system is suddenly taken out
of equilibrium, and consequently starts to evolve. In the
spirit of Ref. [13], we compare the x-unconfined dynamics
of the system in the presence of interactions to its time
evolution when both the confinement in x and the inter-
actions are turned off. The results are shown in Fig. 1. In
the absence of interactions we observe fast matter-wave
dispersion [Fig. 1(a)]. The dispersion can be counteracted
by the attractive particle interactions. The evolution of the
1-2
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initial condition �s�x� with the time-dependent GP equa-
tion shows mechanically stable solitonic propagation, with
small oscillations of the condensate width, rather than a
mechanical collapse to a point [Fig. 1(b)]. This motion
corresponds to a coherent matter-wave soliton.

However, the evolution of the system with TDHFB
equations [Fig. 1(c)] shows that the condensate depletion
during the dynamics, and the presence of the noncon-
densed particles, may considerably affect the motion.
The TDHFB model predicts that at some point during the
evolution [indicated with the horizontal dashed line in
Fig. 1(c)], the single-humped structure of the gas density
splits into two solitonic structures with opposite momenta.
Figure 1(d) shows depletion of the condensate and increas-
ing population of the thermal cloud during evolution.
Because we have initiated the evolution from a low tem-
perature and high condensate fraction, the GP equation
describes well the dynamics while t!? < 40; after this
interval the BEC becomes sufficiently depleted and the
thermal atoms considerably affect the motion. From
Figs. 1(c) and 1(d) we infer that each of the oppositely
moving solitonic structures contains both a condensed part
and a significant thermal population, i.e., they are partially
coherent matter waves. The complex degree of coherence
of these waves is expressed by ��x;x0;t����x;x0;t�=������������������������������������
��x;x;t���x0;x0;t�

p
, where ��x; x0; t� � h�̂y�x0; t��̂�x; t�i,

and �̂ is the Bose field operator [17]. Figure 1(e) depicts
��x; x0; t� at two different times. The initial matter wave
(at t � 0) is well correlated, due to the fact that 99% of
the particles are condensed, which yields ��x; x0� �
�
�x���x0� and ��x; x0� � 1, corresponding to coherent
matter waves [Fig. 1(e)]. However, the BEC is depleted
during evolution and correlations become more localized
in space [Fig. 1(e)]. It is clearly evident from propagation
of the TDHFB equations, allowing BEC depletion, that the
BEC collapses via a pairing instability [31,32] whereby
pairs of atoms are collisionally pulled out of the BEC
into the thermal cloud, thus gaining a mean-field energy
which goes into their relative motion. This is underpinned
in Fig. 1(f) showing the kinetic energies of the condensate
Ekin;c �

R
dx�
T̂�, the thermal cloud Ekin;th �

P
j�R

dxfNju


j T̂uj � �Nj � 1�vjT̂v



j g, and the total interaction

energy Eint�
R
dxgf12j�j

4�2nc~n� ~n2� 1
2��

2 ~m
�c:c:��
1
2j ~mj

2g; here T̂ � �@2=2m@2=@x2. Such pairing collapse
with little or no mechanical shrinking is indeed observed in
3D collapse experiments [33,34]. Our results show that in
one dimension it results in two partially coherent solitonic
structures of opposite momenta. We note that similar
structures were observed in stochastic simulations of mo-
lecular BEC dissociation in 1D geometry [35], indicating
that incoherent matter-wave solitons can also be produced
in this system.

While the temperature kBT in the previous example is
higher than the transverse level spacing @!? whereas a
‘‘true’’ 1D geometry calls for kBT < @!? [27], the use of a
Q1D formalism is still justified because during the evolu-
18040
tion most of the particles are in the condensed phase and in
the first few excited modes, which are essentially in one-
dimension (they are in the lowest state of the transverse
Hamiltonian). Furthermore, only condensed atoms, and the
lowest excited modes, determine the outcome of the mo-
tion. Therefore, a proper inclusion of the transverse dimen-
sion in the calculation would lead to some rescaling of the
parameters, but would not influence the dynamics observed
in our Q1D calculation. Moreover, the simulations as well
as the experiment of [13], are all in the weak interaction
regime Nja1Dj=ax � 108 � 1 [25], thus justifying the use
of a mean-field approach. The use of the TDHFB approach
is further justified by the fact that the system is in the so-
called ‘‘collisionless regime.’’ Namely, after the x confine-
ment is turned off, during a certain relaxation time period,
the system would attain equilibrium through collisions.
The TDHFB model is inadequate to describe such equili-
bration of the system. Thus, we can propagate the TDHFB
equations only for times much smaller than the relaxation
time. As an estimate for the relaxation time we may use the
collision time �c (see, e.g., Ref. [36]). By assuming that the
system is in all dimensions confined with the highest
trapping frequency !?, the collision time is [36] �c!? �
!?=�n�v� � 104, where the density is n� Ntotal=a

3
?, the

scattering cross section is �� a2
s , and the velocity is

estimated with v�
�������������������
2@!?=m

p
. Clearly, the relaxation

time is much larger than the time scale of the pairing
instability �p:i:: �p:i:!? < 102  �c!?. Thus, starting
from a near-zero temperature BEC soliton, GP equation
is applicable for a certain time scale, until the BEC deple-
tion and the noncondensed atoms become important; then
one may use the TDHFB model. When the condensate
fraction becomes sufficiently low, the TDHFB model
breaks down, and more accurate theories are required.

Next we consider the system at a higher temperature,
where 22% of the particles are initially noncondensed. In
this case, the splitting of the initial density into two soli-
tonic structures happens faster than in the previous ex-
ample [see Fig. 2(a)]. The evolution of the condensate
fraction and thermal population is shown in Fig. 2(b).
The two splitting peaks are a mixture of the BEC and
noncondensed atoms [see Fig. 2(c)]. Figure 2(d) shows
localized spatial correlations of solitonic structures. Our
incoherent matter-wave solitons are thus rather special in
that they correspond to localization of entropy and spatial
correlation, as well as to localization of density. Note also
that the phases of the two separating peaks are well corre-
lated, and � out of phase [Fig. 2(d)], similar to the experi-
ments of Ref. [14], where the relative phase between
adjacent solitons in the soliton train was �.

We have observed the process of pairing instability of
bright BEC solitons and the formation of incoherent
matter-wave solitonic structures in the broad region of
the parameter space. In the experiment of Ref. [13], only
one single peaked soliton (described by the GP) was ob-
served. This discrepancy may have been caused by the
following reason: The experiment of Ref. [13] had an
1-3
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FIG. 2 (color online). (a) Evolution of the gas density with
TDHFB. (b) The condensate fraction (black solid line) and the
fraction of noncondensed atoms (blue dashed line) during
TDHFB evolution. (c) Double peaked total density (solid line),
and condensate density (dashed line) at t!? � 37:6. (d) The
complex degree of coherence ��x; x0; t� at t!? � 37:6
[Re��x; x0; t� blue solid line, and Im��x; x0; t� red dashed line];
x0 is placed at the position of the left peak.
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additional (not negligible) expulsive parabolic potential in
the unconfined (x) direction, which may considerably alter
the behavior of the system. Such potential breaks the
symmetry of the system (both static and time evolving),
which is of great importance for the observation of the two
oppositely moving solitonic structures. In addition, an
experiment designed to observe incoherent matter-wave
solitons should follow the evolution for sufficiently long
times for the pairing instability to set in.

In conclusion, we have used the time-dependent
Hartree-Fock-Bogoliubov theory to analyze the influence
of the thermal cloud and condensate depletion on the
dynamics of bright BEC solitons with attractive particle
interactions. We find that the BEC depletion induced by the
pairing instability, and the presence of a thermal cloud,
cause the particle density to split into two solitonic struc-
tures, each being a mixture of the condensed and non-
condensed particles. The predicted incoherent matter-
wave structures represent novel correlation solitons which
resemble localized second-sound entropy waves. They also
correspond to incoherent optical solitons [22–24], which
points at the analogy between partially condensed Bose
gases and nonlinear partially coherent optical waves.
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