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The STAR Collaboration at the Relativistic Heavy Ion Collider reports measurements of azimuthal
correlations of high transverse momentum (pT) charged hadrons in Au� Au collisions at higher pT than
reported previously. As pT is increased, a narrow, back-to-back peak emerges above the decreasing
background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we
perform a systematic study of dijet production and suppression in nuclear collisions, providing new
constraints on the mechanisms underlying partonic energy loss in dense matter.
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Nuclear collisions at high energy may produce condi-
tions sufficient for the formation of a deconfined plasma of
quarks and gluons [1]. The high-density QCD matter [1,2]
generated in these collisions can be probed via propagation
of hard scattered partons, which have been predicted to
lose energy in the medium primarily through gluon brems-
strahlung [3–6]. The medium alters the fragmentation of
the parent partons, providing experimental observables
that are sensitive to the properties of QCD matter at high
density.

The study of high transverse momentum (pT) hadron
production in heavy ion collisions at the Relativistic Heavy
Ion Collider (RHIC) has yielded several novel results [7],
including the strong suppression relative to p� p colli-
sions of both inclusive hadron yields [8–11] and back-to-
back azimuthal (�) correlations [12]. Azimuthal correla-
tions of high pT hadrons reflect the fragmentation of out-
going partons produced dominantly in 2! 2 hard
scattering processes (‘‘dijets’’ [13]). The back-to-back
correlation strength has shown sensitivity to the in-medium
path length of the parton [14], while the distribution of low
pT hadrons recoiling from a high pT particle is broadened
azimuthally and softened in central collisions [15], quali-
tatively consistent with dissipation of jet energy to the
medium. However, those correlation measurements re-
quired large background subtraction, and quantitative
study of the properties of the away-side jet has been
limited. Previous correlation measurements also were con-
strained to a pT region in which the hadron flavor content
and baryon fraction exhibit substantial differences from jet
fragmentation in elementary collisions [16–18].

In this Letter, we present measurements of azimuthal
correlations of charged hadrons in Au� Au collisions at
��������

sNN
p

� 200 GeV over a much broader transverse momen-
tum range than previously reported. The pT range extends
to the region where previous studies suggest that particle
production is dominated by jet fragmentation [16–18].
Increasing pT reduces the combinatoric background and,
for all centralities, reveals narrow back-to-back peaks in-
dicative of dijets. A quantitative study of the centrality and
pT dependence of dijet fragmentation may provide new
constraints on partonic energy loss and properties of the
dense medium (e.g., [19]).

The measurements were carried out with the STAR
experiment [20], which is well-suited for azimuthal corre-
lation studies due to the full azimuthal (2�) coverage of its
time projection chamber. This analysis is based on 30�
106 minimum-bias and 18� 106 central Au� Au colli-
sions at

��������

sNN
p

� 200 GeV, combining the 2001 data set
with the high statistics data set collected during the
2004 run. 10� 106 d� Au events collected in 2003 are
also included in the analysis. Event and track selection are
similar to previous STAR high pT studies [10,21]. This

analysis used charged tracks from the primary vertex with
pseudorapidity j�j< 1:0.

As in our original studies of high pT azimuthal correla-
tions [12], transverse momentum-ordered jetlike correla-
tions are measured by selecting high pT trigger particles
and studying the azimuthal distribution of associated par-
ticles �passoc

T < ptrig
T � relative to the trigger particle above a

threshold pT . The trigger-associated technique facilitates
jet studies in the high-multiplicity environment of a heavy
ion collision, where full jet reconstruction using standard
methods is difficult. A particle may contribute to more than
one hadron pair in an event, both as trigger and as asso-
ciated particle, though for the high pT ranges considered
here, the rate of contribution to multiple pairs is small. The
pair yield is corrected for associated particle tracking
efficiency, with an uncertainty of 5% that is highly corre-
lated over the momentum range considered here. The
effect of momentum resolution on the pair yield is esti-
mated to be less than 1%, and no correction for it was
applied. A correction was also applied for nonuniform
azimuthal acceptance, but not for the effects of the
single-track cut j�j< 1:0. The single-track acceptance is
independent of pT and uniform on � for pT > 3 GeV=c
and j�j< 1. The near-side (��� 0) correlated yield at
large j��j is negligible.

Figure 1 shows dihadron azimuthal distributions nor-
malized per trigger particle for central (0%–5%) Au�

Au collisions. ptrig
T increases from left to right, and two

passoc
T ranges are shown. The height of the background

away from the near- (��� 0) and away-side (j��j �
�) peaks, which is related to the inclusive yield, is similar

Au+Au, 0-5%
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FIG. 1. Azimuthal correlation histograms of high pT charged
hadron pairs for 0%–5% Au� Au events, for various ptrig

T and
passoc
T ranges. In the lower left panel, the yield is suppressed due

to the constraint passoc
T < ptrig

T . All pT values in this and succeed-
ing figures have units GeV=c.
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for different ptrig
T in each passoc

T interval. The background
level decreases rapidly as passoc

T is raised, e.g., by an order
of magnitude between the two rows in Fig. 1.

Near-side peaks are seen in all panels and indicate larger
yields for higher ptrig

T at fixed passoc
T . Such an increase in the

correlated yield is expected if the correlation is dominated
by jet fragmentation, with higher ptrig

T biasing towards
higher ET jets. An away-side peak is not apparent at the
lowest ptrig

T , consistent with previous studies of �� corre-
lations in central Au� Au collisions in similar ptrig

T and
passoc
T ranges [12]. However, an away-side peak emerges

clearly above the background as ptrig
T is increased. The

narrow, back-to-back peaks are indicative of the azimu-
thally back-to-back nature of dijets observed in elementary
collisions.

Figure 2 shows the �� distributions for the highest ptrig
T

range in Fig. 1 (8< ptrig
T < 15 GeV=c) for midcentral

(20%–40%) and central Au� Au collisions, as well as
for d� Au collisions. passoc

T increases from top to bottom;
for the highest passoc

T (lower panels), the combinatorial
background is negligible. We observe narrow correlation
peaks in all passoc

T ranges. For each passoc
T , the near-side

peak shows similar correlation strength above background
for the three systems, while the away-side correlation
strength decreases from d� Au to central Au� Au. For
8<ptrig

T < 15 GeV=c and passoc
T > 6 GeV=c, a Gaussian

fit to the away-side peak finds a width of ��� � 0:24�
0:07 for d� Au and 0:20� 0:02 and 0:22� 0:02 for
20%–40% and 0%–5% Au� Au collisions, respectively.

No significant dependence of the widths on system or
centrality is observed.

To quantify the correlated near- and away-side yields,
we integrate the area under the peaks (near-side j��j<
0:63; away-side j��� �j< 0:63) and subtract the non-
jetlike background. In previous analyses at lower pT , an-
isotropic (‘‘elliptic’’) flow contributed significantly to the
measured two-particle correlation, leading to large uncer-
tainties in the extraction of jetlike yields [14,15]. In this
analysis, the background contribution due to elliptic flow is
estimated using a function B	1� v2fpassoc

T gv2fp
trig
T g�

cos�2���
, where the v2 are extracted from standard
elliptic flow analysis [14] and B is fitted to the region
between the peaks (0:63< j��j< 2:51), and is appre-
ciable only for the lowest passoc

T range in Fig. 2. The
uncertainty in the magnitude of elliptic flow introduces a
small systematic uncertainty less than 5% on the extracted
associated yields (Fig. 3).

Figure 3 shows the centrality dependence of the near-
and away-side yields for the ptrig

T and passoc
T ranges in Fig. 2.

The leftmost points in each panel correspond to d� Au
collisions, which we assume provide the reference distri-
bution for jet fragmentation in vacuum. The near-side
yields (left panel) show little centrality dependence, while
the away-side yields (right panel) decrease with increasing
centrality. The away-side centrality dependence is similar
to our previous studies of dihadron azimuthal correlations
for lower pT ranges [12]. Note that the yields in different
passoc
T bins for a given centrality may exhibit correlations

due to their common trigger population.
The effect of the medium on dijet fragmentation can be

explored in more detail using the pT distributions of near-
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FIG. 2. Azimuthal correlation histograms of high pT charged
hadrons for 8< ptrig

T < 15 GeV=c, for d� Au, 20%–40%
Au� Au, and 0%–5% Au� Au events. passoc

T increases from
top to bottom.
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FIG. 3 (color online). Centrality dependence (number of par-
ticipants NPart) of near- and away-side yields in 200 GeV d� Au
(leftmost points) and Au� Au collisions, for 8< ptrig

T <
15 GeV=c and various passoc

T ranges. A semilog scale is used
and data for 3< passoc

T < 4 GeV=c are scaled by 1.5 for clarity.
The error bars are statistical. The horizontal bars for 3< passoc

T <
4 GeV=c show the systematic uncertainty due to background
subtraction; it is negligible for higher passoc

T .
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and away-side associated hadrons. Figure 4 shows the
trigger-normalized fragment distribution D�zT�, where
zT � passoc

T =ptrig
T [22]. D�zT� resembles a fragmentation

function, though its shape in p� p collisions is deter-
mined primarily by the partonic spectrum [23]. We inves-
tigate here its dependence on partonic energy loss. The zT
range in Fig. 4 corresponds to the passoc

T range for which
dijets are observed above background (see Fig. 2). The
near-side distributions (left panels) are similar over a broad
range of zT for all three systems, consistent with fragmen-
tation in vacuum.

The similarity of the near-side fragmentation patterns
could arise from small near-side energy loss due to a
geometrical bias toward shorter in-medium path lengths
(‘‘surface bias’’), as generated in several model calcula-
tions [24–27]. However, this similarity could also result
from energy-independent energy loss generating a partonic
energy distribution that is suppressed in Au� Au but
similar in shape to that in p� p collisions, with the lost
energy carried dominantly by low pT hadrons. A leading-
twist calculation of medium-modified dihadron fragmen-
tation functions in similar ptrig

T and passoc
T intervals to those

studied here [28] predicts a strong increase in the near-side
associated yield for more central collisions, though no such
increase is observed in Figs. 3 and 4.

The lower right panel in Fig. 4 shows the ratio of away-
sideD�zT� for 0%–5% and 20%–40% Au� Au relative to
d� Au. The ratio is approximately independent of zT for

zT > 0:4, with the yield suppressed by a factor 0:25� 0:06
for 0%–5% Au� Au and 0:57� 0:06 for 20%– 40%
Au� Au collisions. The away-side suppression for central
collisions has a similar magnitude to that for inclusive
spectra [10], though such a similarity is not expected
a priori due to the different nature of the observable. A
model calculation based on Baier-Dokshitzer-Mueller-
Peigne-Schiff energy loss predicts a universal ratio be-
tween away-side and inclusive suppressions, with the
away-side yield more suppressed [27].

The solid line in Fig. 4, upper right panel, is an expo-
nential function fit to the d� Au distribution (slope �
�4:0� 0:6), with the dashed lines having the same ex-
ponential slope but magnitude scaled by factors 0.57 and
0.25. This illustrates the similarity in shape of D�zT� for
different systems. As discussed for Fig. 2, the width of the
away-side azimuthal distribution for high pT pairs is also
independent of centrality. To summarize our observations:
Strong away-side high pT hadron suppression is not ac-
companied by significant angular broadening or modifica-
tion of the momentum distribution for zT > 0:4.

A calculation incorporating partonic energy loss through
modification of the fragmentation function [22] predicts
the away-side trigger-normalized fragmentation function
to be suppressed uniformly for zT > 0:4 in central Au�
Au relative to p� p collisions, in agreement with our
measurement. However, the predicted magnitude of the
suppression is �0:4, weaker than the measured value
0:25� 0:06.

Energy loss in matter could be accompanied by away-
side azimuthal broadening, due either to medium-induced
acoplanarity of the parent parton [29] or to dominance of
the away-side yield by medium-induced gluon radiation at
a large angle. An opacity expansion calculation [30] pre-
dicts that the away-side yield for large energy loss is
dominated by fragments of the induced radiation, with a
strongly broadened azimuthal distribution up to pT �
10 GeV=c. No azimuthal broadening of the away-side
parent parton is predicted, though its fragments are ob-
scured by the greater hadron yield from induced radiation.
In contrast, we observe strong away-side suppression with-
out large azimuthal broadening. However, measurements
at passoc

T < 1 GeV=c do show an enhancement of the yield
and significant azimuthal broadening of the away-side
peak [15].

Large energy loss is thought to bias the jet population
generating the high pT inclusive hadron distribution to-
wards jets produced near the surface and directed outward
[24–27], which minimizes the path length in the medium.
For back-to-back dihadrons, the total in-medium path
length is minimized by a different geometric bias, towards
jets produced near the surface but directed tangentially. A
model calculation [31] incorporating quenching weights
finds dihadron production dominated by such tangential
pairs, with yield suppression consistent with our measure-
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FIG. 4 (color online). Upper panels: D�zT� with 8< ptrig
T <

15 GeV=c, for near- (left) and away-side (right) correlations in
d� Au and Au� Au collisions at

��������

sNN
p

� 200 GeV. The
dashed and solid lines are described in text. The horizontal
bars on the away side show systematic uncertainty due to
background subtraction. Lower panels: Ratio of D�zT� for Au�
Au relative to d� Au. The error bars are statistical in all panels.
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ments. Another calculation based on quenching weights,
which explicitly takes into account the dynamical expan-
sion of the medium [32], also reproduces the measured
suppression but finds a significant contribution from non-
tangential jet pairs, due to the finite probability to emit zero
medium-induced gluons in finite path length [22,33] and to
the rapid expansion and dilution of the medium. In this
model, the relative contribution from the interior of the
collision zone is larger for back-to-back dihadrons than for
inclusive hadron production.

In summary, we have measured new fragmentation
properties of jets and back-to-back dijets via high pT
hadron correlations in

��������

sNN
p

� 200 GeV d� Au and
Au� Au collisions. We observe the emergence at a sup-
pressed rate of a narrow back-to-back dijet peak in central
Au� Au collisions, which may enable the first differential
measurement of partonic energy loss. The observation at
high pT of strong suppression without modification of the
away-side azimuthal and passoc

T distributions is in disagree-
ment with several theoretical calculations. Other calcula-
tions reproduce aspects of these measurements but with
somewhat different underlying mechanisms. New calcula-
tions are required to reconcile these differences and to
clarify the physics underlying our observations. We expect
that comparison of theory with the measurements reported
here will provide new insights into both the nature of
partonic energy loss and the properties of the medium
generated in high energy nuclear collisions.
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