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We present the scaling properties of A, =, and () in midrapidity Au + Au collisions at the Brookhaven
National Laboratory Relativistic Heavy Ion Collider at ,/syy = 200 GeV. The yield of multistrange
baryons per participant nucleon increases from peripheral to central collisions more rapidly than that of A,
indicating an increase of the strange-quark density of the matter produced. The strange phase-space
occupancy factor y, approaches unity for the most central collisions. Moreover, the nuclear modification
factors of p, A, and Z are consistent with each other for 2 < p; <5 GeV/c in agreement with a scenario
of hadron formation from constituent quark degrees of freedom.
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Lattice QCD calculations predict that a new state of
matter, the quark gluon plasma (QGP), can be formed in
nuclear collisions when the temperature exceeds 170 MeV
[1]. Strange quarks, whose mass is comparable to the
critical temperature, are expected to be abundantly pro-
duced by thermal parton interactions in the high tempera-
ture QGP phase. Because of the corresponding increase in
the strange-quark density, hyperon production is expected
to be enhanced in high energy nuclear collisions with
respect to p + p or p + A collisions, the enhancement
increasing with the number of strange quarks in the hy-
peron [2]. Such an effect has already been observed in
various fixed-target experiments at lower energy [3-5]. In
this Letter, we study the centrality dependence of hyperon
production in Au + Au collisions at ,/syy = 200 GeV, an
order of magnitude higher than that previously achieved.
We also study the transverse momentum dependence of
hyperon production in central and peripheral collisions in
an attempt to shed light upon the possible production
mechanisms.

Previous studies have shown that ratios of hadron yields
in high energy A + A collisions are generally well de-
scribed by statistical models in the grand-canonical limit
[6—8]. A strangeness phase-space occupancy factor 7y, is
sometimes introduced to describe the extent to which
strangeness reaches its equilibrium abundance. In this
framework, the amount of strangeness produced per par-
ticipating nucleon (N, is directly related to the value of
vs. The centrality dependence of vy, therefore provides a
quantitative measure of strangeness equilibration as a func-
tion of system size in A + A collisions [9], provided that
canonical effects are small.

By contrast, at high transverse momentum, hadrons are
thought to be produced via incoherent hard scatterings,
which, in the absence of any nuclear medium effects,
should scale with the number of binary nucleon-nucleon
collisions (Ny;,). Measurements of hadron production in
Au+ Au collisions at the Brookhaven National
Laboratory Relativistic Heavy Ion Collider (RHIC) have
shown that not only is there a deviation from binary scaling
in central collisions [10,11] but also a distinct difference in
the scaling behavior of baryons and mesons in the trans-
verse momentum range 2 < py <5 GeV/c [12,13]. A
strong particle-type dependence is not predicted by con-
ventional Monte Carlo (MC) event simulators such as
HIJING, where hadron formation in this region is dominated
by independent parton fragmentation [14]. On the other
hand, quark recombination (coalescence) models have
been successful in explaining the observed deviation
from binary scaling for baryons and mesons in central
collisions [15-18], as well as providing an explanation
for the particle-type dependence of measured azimuthal
anisotropies at intermediate p; in noncentral collisions
[13]. By extending these studies to include multistrange

PACS numbers: 25.75.Dw

baryons, we provide a more stringent test of such models.
In the following, Ny, and Ny, have been extracted from a
MC Glauber calculation [11,19].

The STAR Time Projection Chamber (TPC) measures
the trajectories and momenta of charged particles produced
in each collision in the pseudorapidity range |n| < 1.8
[20]. The detector operates within a solenoidal magnetic
field of 0.5 Tesla whose axis is aligned with the beam. A
central trigger barrel, covering the pseudorapidity region
gl <1, and two zero-degree calorimeters are used as
trigger detectors. From a total of 1.6 X 10° minimum-
bias and 1.5 X 10° central trigger collisions analyzed,
five centrality bins were selected corresponding to the
following ranges in the total hadronic cross section: 0% —
5%, 10%—-20%, 20%—40%, 40%—60%, and 60%—80%.
The collision centrality was defined by the charged particle
multiplicity measured in the TPC in the pseudorapidity
range |n| < 0.5. The 0%—5% bin was obtained from the
central trigger sample. The remaining bins were obtained
from the minimum-bias sample. Because of relatively poor
statistics, the 5_%—10% bin was omitted from this analysis.

A(A), B (E"), and Q(QF) were reconstructed from
their charged decay modes in the TPC, in rapidity intervals
of |y| <1, 0.75, and 0.75, respectively. The signal was
extracted by plotting invariant mass distributions for each
particle in bins of transverse momentum and centrality.
Topological cuts were applied to reduce combinatorial
background and to obtain a well-behaved (linear) back-
ground in the vicinity of the mass peak. The statistics of
Q™ and Q" have been combined in order to obtain py
distributions in 3 of the 5 centrality bins. The average
signal to background ratio in the 0% —5% centrality bin
(worst case) was 5 for A, 1.4 for =, and 2 for Q~ + Q.
After background subtraction, corrections were applied for
detector acceptance and reconstruction efficiency. The ef-
ficiency calculations were based on the probability of
finding Monte Carlo generated particles after processing
them through a TPC detector response simulation and
embedding them into real events. A detailed description
of the analysis can be found elsewhere [21-23].

Figure 1 shows the transverse momentum distributions
of A(A),E~(E™),and Q= + Q" measured at midrapidity
and as a function of centrality. The A spectra were cor-
rected for feed-down from multistrange baryon weak de-
cays, based upon the measured Z and ) spectra. The
contribution to the A spectrum from =, Z°, and Q decays
was around 15%, while the feed-down contribution to the
E spectrum from () decays was negligible. The total
integrated yields (dN/dy) presented in Table I were ex-
tracted from Boltzmann fits to the spectra. The measured
pr coverage is about 70% of the total A yield and 60% for
E and Q.

The systematic error on the reconstructed yields was
studied as a function of py. Three main factors contribute
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FIG. 1 (color online). Transverse momentum distributions of
(@ A(A) for |yl|<10, (b) E"(E") for |yl <0.75, and
() O~ + Q7 for |y| <0.75 in Au + Au collisions at
200 GeV as a function of centrality. Scale factors were applied
to the spectra for clarity. Only statistical errors are shown. The
dashed curves show a Boltzmann fit to the A, E~, and Q™ +
Q" data; the fits to the A and 2" are omitted for clarity.

to this error: (i) subtle differences between the MC simu-
lation and real data, which make the reconstructed yields
sensitive to the choice of topological cuts, (ii) sensitivity to
the method used to subtract the remaining background
after cuts have been applied, and (iii) measured differences
in the yield dependent on the direction of the applied
magnetic field. The systematic uncertainty on the fit pa-
rameters was determined by adding p; dependent system-
atic errors to the data points shown in Fig. 1 and
performing a second fit. We also investigated the choice
of function used to fit the data. Although the Boltzmann
function gave a better fit, an exponential shape could not be
excluded. Exponential fits to the data gave a 5%—6%
higher yield on average and a larger inverse slope parame-
ter by 40—50 MeV. These differences are not included in
the errors shown in Table I.

Figure 2(a) presents the strange antiparticle yields
dN/dy divided by Npari- All data points are normalized
to the values obtained in the most peripheral collisions. The

1 + + 7]
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FIG. 2 (color online). (a) The integrated yield dN/dy at mid-
rapidity for 2%, A, and p divided by Npart» normalized to the
most peripheral collisions (60%—80%), plotted as a function of
Npari- The gray, black, and dashed bands represent the errors on
the normalization to the bin 60%-80% for 2%, A, and p,
respectively. Other errors shown are statistical only. (b) y, as a
function of Ny, for Au + Au collisions at 200 GeV (cf. text for
details). Values for e™ + e, p + p, and Pb + Pb collisions at
Svn =91, 200, and 17.2 GeV, respectively, are shown for

comparison [26-28].

centrality dependence of the antiproton yield is also shown
for comparison [24]. Strange antiparticles are chosen be-
cause all valence quarks must have been created in the
collision, although similar results are also obtained for
strange particles. In a geometrical description of nuclear
collisions, the number of participant nucleons is propor-
tional to the initial overlapping volume of the colliding
nuclei. The integrated yield is dominated by the low py

TABLE I. Integrated yields dN/dy and inverse slope parameters 7 (MeV) extracted from a Boltzmann fit to the p spectra of A(A),
E7(2)",and O~ + Q7 at midrapidity, with their statistical and systematic errors. (N, is shown for each centrality.

Centrality 0%—5% 10%-20% 20%—40% 40%—-60% 60%—80%
(Npar) 352+3 235+9 141 = 8 629 216
A 16.7 0.2 = 1.1 10.0+0.1 =07 553 +0.05=*0.39 2.07 +0.03 + 0.14 0.58 + 0.01 + 0.04
309+1=%8 308+ 1=*8 303+1+8 297 =2+ 10 287 =3+ 10
A 127 0.2 = 0.9 77+0.1+05 4.30 + 0.04 + 0.30 1.64 +0.03 = 0.11 0.48 = 0.01 + 0.03
310+ 1%7 309 +1+8 306 +1+9 298 =2+ 10 282 + 3+ 10
= 2.17 £0.06 £0.19 141 £0.04+0.08 0.72 =0.02 = 0.02 0.26 = 0.01 + 0.02 0.063 = 0.004 = 0.003
i 335+4+7 331+4=*8 326+3%6 325+4=+7 3208+ 13
=t 1.83 £0.05+020 1.14*0.04=0.08 0.62 +0.02 = 0.03 0.23 + 0.01 = 0.02 0.061 * 0.004 *+ 0.002
335+4+9 334 +4+9 327+3*6 327+5+7 302+ 8+ 16
Q+Q"  0.53%0.04 *0.04 e 0.17 = 0.02 = 0.01  0.063 = 0.008 + 0.004 e
35329+ 10 348 =15+ 12 336 =17 = 13
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region, where particle production is driven mainly by soft
processes. The yield per participating nucleon may reflect
the formation probability of a hadron from the bulk. We
would then expect it to be sensitive to the density of the
hadron’s constituent quarks in the system. We note that
there appears to be a hierarchy of particle production
dependent upon strange-quark content.

Thermal-statistical models have been successful in de-
scribing particle yields in various systems at different
energies [6,7]. The possible nonequilibrium of strange
quarks is taken into account by introducing a phase-space
occupancy factor y,. With the measured midrapidity yields
of strange baryons, of pions, kaons, protons, and their
antiparticles [24], we have performed a fit using the model
described in Ref. [25] to determine vy, as a function of
Ny @s shown in Fig. 2(b). Within the grand-canonical
framework, we find that the value of v, increases from
about 0.8 in peripheral collisions to about 1.0 in central
collisions. In each case, we obtained a freeze-out tempera-
ture around 165 MeV. According to the model, the A yield
depends linearly on y,, while the yield of = depends on 2,
consistent with the behavior observed in Fig. 2(a). The fact
that y, approaches unity when N, > 150 suggests that
the strange-quark abundance tends to equilibrate as the
system size increases. Also shown in Fig. 2(b) is the result
of a recent analysis of hadron yields in A + A collisions at
JSny = 17.2 GeV, which also found that y,; =~ 1 at mid-
rapidity in central collisions [26], while in elementary e +
e and p + p collisions at various energies vy, was found to
be significantly less than unity [27,28].

We studied the effect of including different combina-
tions of particles in the fit and found that particle ratios
involving protons and A are important in constraining the
freeze-out temperature and 7y, respectively. The value and
centrality dependence of vy, is relatively insensitive to the
inclusion of other particle ratios in the fit. The errors shown
in Fig. 2(b) reflect the variation of y, found in this study.
Since the most peripheral bin corresponds to events with an
average number of 20 participants, we anticipate canonical
effects to be small [29]. However, a more recent study
suggests that canonical effects may persist over a wider
range of participants [30], which may provide an alterna-
tive explanation for the centrality dependence shown in
Fig. 2(a).

Figure 3 shows the nuclear modification factor (R.p)
[13] for = + E" and Q + Q. It was found by forming
the ratio of the p7 spectra of the 0% —5% and 40%—-60%
centrality bins, after normalizing each spectrum to the
appropriate average number of binary collisions. The
40%—-60% centrality bin was chosen as the reference
because of the limited statistics of Q + () in the 60%—
80% bin. Also shown in Fig. 3 are the previously published
results for charged hadrons and A + A for the same cen-
trality bins [13]. The dark gray rectangular boxes represent
the expected Rcp range for Ny, and Ny, scalings, indicat-
ing the range of uncertainty in their calculation. Although

AU + "¥'Au at Vs, = 200 GeV

T T T T '
i e I
o~
S oor it
@ Aol 4
o *
s
N
LfI) .........
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o @ = +2 O Q+Q° [ ] participant scaling
-------- h* A+ A | binary scaling
0.11L . | . ! - .
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FIG.3. RcpforE~ + E" and Q™ + QF at midrapidity (0%—
5% vs 40%—60%). A dashed line for charged hadrons and a gray
band for A + A are shown for comparison. The gray rectangles
represent participant and binary scalings.

the p; integrated yield per participating nucleon of =
increases faster with N, than for A hyperons, in the
interval 1.8 < p;y <3.5 GeV/c, the pr dependences of
RepforE- + E* and O~ + Q7 are similar and coincide
with the trend previously shown for A + A. The R¢p of
hyperons exhibits little suppression, while mesons (ap-
proximated by the dashed line) have a distinctly different
trend. The difference in Rp for baryons and mesons in the
intermediate pr region has previously been discussed in
the framework of recombination (or coalescence) models
[10,13,17,31]. The results presented here appear to confirm
that the difference is dependent upon the number of
constituent quarks rather than mass. Further weight is
given to this argument by a recent measurement of the
Rcp of protons [12], K(892)" [32], and ¢ mesons [33].
Futhermore, it suggests that the strange-quark distribution
scales with centrality similarly to # and d quarks, since
baryons with different strangeness content seem to follow
the same pattern.

In this Letter, we have presented the scaling properties
of strange baryon production in Au + Au collisions at
JSny = 200 GeV. By studying the hyperon yields scaled
by Np. and the centrality dependence of 7y, within the
framework of a thermal model, we have found that strange-
ness equilibrium appears to have been achieved in central
collisions at RHIC. Investigating the centrality dependence
of the p distributions of hyperons, we find that their yields
in central collisions fall below the expectation for binary
scaling for p; >3 GeV/c and that, within the error bars,
the nuclear modification factor R.p is similar for all bary-
ons independent of their mass or strangeness content. This
feature is consistent with models of hadron formation
based upon quark recombination.

We thank the RHIC Operations Group and RCF at BNL
and the NERSC Center at LBNL for their support. This
work was supported in part by the Offices of NP and HEP

062301-5



PRL 98, 062301 (2007)

PHYSICAL REVIEW LETTERS

week ending
9 FEBRUARY 2007

within the U.S. DOE Office of Science; the U.S. NSF; the
BMBF of Germany; IN2P3, RA, RPL, and EMN of France;
EPSRC of the United Kingdom; FAPESP of Brazil; the
Russian Ministry of Science and Technology; the Ministry
of Education and the NNSFC of China; IRP and GA of the
Czech Republic; FOM of the Netherlands; DAE, DST, and
CSIR of the Government of India; Swiss NSF; the Polish
State Committee for Scientific Research; SRDA of

Slovakia;

and the Korea Science and Engineering

Foundation.

(1]
(2]
(3]
(4]
(5]
(6]

Z. Fodor and S.D. Katz, J. High Energy Phys. 04 (2004)
050.

J. Rafelski and B. Muller, Phys. Rev. Lett. 48, 1066
(1982).

E. Andersen et al. (WA97 Collaboration), Phys. Lett. B
449, 401 (1999).

C. Blume et al. (NA49 Collaboration), Nucl. Phys. A698,
104 (2002).

F. Antinori et al. (NA57 Collaboration), J. Phys. G 32, 427
(2006).

P. Braun-Munzinger et al., Phys. Lett. B 518, 41 (2001).
J. Rafelski and J. Letessier, Nucl. Phys. A715, 98 (2003).
F. Becattini and L. Ferroni, Eur. Phys. J. C 38, 225 (2004).
J. Cleymans, B. Kaempfer, P. Steinberg, and S. Wheaton,
J. Phys. G 30, S595 (2004).

K. Adcox et al. (PHENIX Collaboration), Phys. Rev. Lett.
88, 022301 (2001).

C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89,
202301 (2002).

S.S. Adler et al. (PHENIX Collaboration), Phys. Rev. C
69, 034909 (2004); J. Adams et al. (STAR Collaboration),
Phys. Rev. Lett. 97, 152301 (2006).

J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92,
052302 (2004).

[14]
[15]
[16]

[17]
[18]

[19]

(20]
(21]
[22]
(23]
[24]
[25]
[26]
(27]
(28]
[29]
(30]
(31]
(32]

(33]

062301-6

B. Andersson et al., Phys. Rep. 97, 31 (1983), and refer-
ences therein.

D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91, 092301
(2003).

Z.W. Lin and C.M. Ko, Phys. Rev. Lett. 89, 202302
(2002).

R.J. Fries et al., Phys. Rev. C 68, 044902 (2003).

V. Greco, C. M. Ko, and P. Levai, Phys. Rev. C 68, 034904
(2003).

R.J. Glauber, in Lectures Delivered at the Summer
Institute for Theoretical Physics, University of Colorado,
Boulder, 1958, edited by W. E. Brittin and L. G. Dunham,
Lectures in Theoretical Physics Vol. 1 (Interscience, New
York, 1959), pp. 315-414.

M. Anderson et al. (STAR Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 499, 659 (2003).

K. H. Ackermann et al. (STAR Collaboration), Phys. Rev.
Lett. 86, 402 (2001).

C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89,
092301 (2002).

J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92,
182301 (2004).

J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92,
112301 (2004).

J. Cleymans et al., Phys. Rev. C 71, 054901 (2005).

F. Becattini et al., Phys. Rev. C 69, 024905 (2004).

F. Becattini, Z. Phys. C 69, 485 (1996).

F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997).

K. Redlich and A. Tounsi, Eur. Phys. J. C 24, 589 (2002).
C. Hohne, F. Puhlhofer, and R. Stock, Phys. Lett. B 640,
96 (2006).

R.C. Hwa and C.B. Yang, Phys. Rev. C 67, 034902
(2003).

J. Adams et al. (STAR Collaboration), Phys. Rev. C 71,
064902 (2005).

J. Adams et al. (STAR Collaboration), Phys. Lett. B 612,
181 (2005).



