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The relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is applied in the
calculation of β-decay half-lives of neutron-rich nuclei in the Z ≈ 28 and Z ≈ 50 regions. The study is based
on the relativistic Hartree-Bogoliubov calculation of nuclear ground states, using effective Lagrangians with
density-dependent meson-nucleon couplings, and also extended by the inclusion of couplings between the
isoscalar meson fields and the derivatives of the nucleon fields. This leads to a linear momentum dependence
of the scalar and vector nucleon self-energies. The residual QRPA interaction in the particle-hole channel
includes the π + ρ exchange plus a Landau-Migdal term. The finite-range Gogny interaction is employed in the
T = 1 pairing channel, and the model also includes a proton-neutron particle-particle interaction. The results are
compared with available data, and it is shown that an extension of the standard relativistic mean-field framework to
include momentum-dependent nucleon self-energies naturally leads to an enhancement of the effective (Landau)
nucleon mass, and thus to an improved PN-QRPA description of β−-decay rates.

DOI: 10.1103/PhysRevC.75.024304 PACS number(s): 21.30.Fe, 21.60.Jz

Weak-interaction processes in exotic nuclei far from sta-
bility play an important role in stellar explosive events. In
particular, β-decay rates of very neutron-rich nuclei set the
time scale of the r-process nucleosynthesis, i.e., the multiple
neutron capture process which determines the synthesis of
nearly half of the nuclei heavier than Fe. Since the vast majority
of nuclides which lie on the path of the r-process will not
be experimentally accessible in the foreseeable future, it is
important to develop microscopic nuclear structure models
that can provide accurate predictions of weak-interaction rates
of thousands of nuclei with large neutron to proton asymmetry.
There are basically two microscopic approaches that can be
employed in large-scale calculations of β-decay rates: the
interacting shell model and the quasiparticle random phase
approximation (QRPA). While the advantage of using the
shell model is the ability to take into account the detailed
structure of the β-strength function [1], the QRPA approach
is based on global effective interactions and provides a
systematic description of β-decay properties of arbitrarily
heavy nuclei along the r-process path [2]. In a recent review of
modern QRPA calculations of β-decay rates for astrophysical
applications [2], Borzov has emphasized the importance of
performing calculations based on self-consistent mean-field
models, rather than on empirical mean-field potentials, e.g., the
Woods-Saxon potential. In a self-consistent framework both
the nuclear ground states, i.e., the masses which determine
the possible r-process path, and the corresponding β-decay
properties are calculated from the same energy density
functional or effective nuclear interaction. This approach
ensures the consistency of the nuclear structure input for as-
trophysical modeling, and allows reliable extrapolations of the
nuclear spin-isospin response to regions of very neutron-rich
nuclei.

The fully consistent proton-neutron (PN) relativistic QRPA
[3,4] has recently been employed in the calculation of β-decay
half-lives of neutron-rich nuclei in the N≈50 and N≈82
regions [5]. The model is based on the relativistic QRPA [6],
formulated in the canonical basis of the relativistic Hartree-
Bogoliubov (RHB) framework [7]. The RHB+RQRPA model
is fully self-consistent. For the interaction in the particle-hole
channel modern effective Lagrangians with density-dependent
meson-nucleon couplings are used, and pairing correlations
are described by the pairing part of the finite range Gogny
interaction. Both in the particle-hole (ph) and particle-particle
(pp) channels, the same interactions are used in the RHB
equations which determine the nuclear ground-state, and
in the matrix equations of the RQRPA. This is important
because the energy weighted sum rules are only satisfied if
the pairing interaction is consistently included both in the
static RHB and in the dynamical RQRPA calculations. In both
channels the same strength parameters of the interactions are
used in the RHB and RQRPA calculations. The formulation
of the RHB+RQRPA model in the canonical quasiparticle
basis enables the description of weakly-bound neutron-rich
nuclei far from stability, because this basis diagonalizes the
density matrix and includes both the bound states and the
positive-energy single-particle continuum [6].

In the corresponding proton-neutron RQRPA [3,4] the
spin-isospin-dependent interaction terms are generated by
the π - and ρ-meson exchange. Although the direct one-
pion contribution to the nuclear ground state vanishes at
the mean-field level because of parity conservation, it must
be included in the calculation of spin-isospin excitations.
In addition, the derivative type of the pion-nucleon cou-
pling necessitates the inclusion of the zero-range Landau-
Migdal term, which accounts for the contact part of the
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nucleon-nucleon interaction, with the strength parameter g′
adjusted to reproduce experimental data on the excitation
energies of Gamow-Teller resonances (GTR). The model
also includes the T = 0 proton-neutron pairing interaction:
a short-range repulsive Gaussian function combined with
a weaker longer-range attractive Gaussian [8]. In general
the calculated β-decay half-lives are very sensitive to the
strength of the T = 0 pairing which, in the case of β−-
decay, enhances the Gamow-Teller strength in the Qβ−energy
window.

Standard relativistic mean-field models are based on the
static approximation, i.e., the nucleon self-energy is real,
local, and energy-independent. Consequently, these models
describe correctly the ground-state properties and the sequence
of single-particle levels in finite nuclei, but not the level
density around the Fermi surface. The reason is the low
effective nucleon mass m∗ which, in the relativistic framework,
is also related to the Dirac mass mD = m + S(r), where
m is the bare nucleon mass and S(r) denotes the scalar
nucleon self-energy, and thus constrained by the empirical
spin-orbit energy splittings. The difference between the vector
and scalar nucleon self-energies determines the spin-orbit
potential, whereas their sum defines the effective single-
nucleon potential, and is constrained by the nuclear matter
binding energy at saturation density. The energy spacings
between spin-orbit partner states in finite nuclei, and the
nuclear matter binding and saturation, place the following
constraints on the values of the Dirac mass and the nucleon
effective mass: 0.55 m � mD � 0.6 m, 0.64 m � m∗ � 0.67 m,
respectively. These values have been used in most standard
relativistic mean-field effective interactions. However, when
these interactions are used in the calculation of β− decay
rates, the resulting half-lives are usually more than an
order of magnitude longer than the empirical values. This
is because the low effective nucleon mass implies a low
density of states around the Fermi surface, and therefore in
a self-consistent relativistic QRPA calculation of β-decay the
transition energies will be low, resulting in long lifetimes.
In order to reproduce the empirical half-lives, it is thus
necessary to employ relativistic effective interactions with
higher values of the nucleon effective mass. We note that in
the case of nonrelativistic global effective interactions such as,
for instance, Skyrme-type interactions, calculation of ground-
state properties and excitation energies of quadrupole giant
resonances have shown that a realistic choice for the nucleon
effective mass is in the interval m∗/m = 0.8 ± 0.1 [9,10].

In Ref. [5] we have used the RHB+RQRPA model to
calculate β-decay half-lives of neutron-rich nuclei in the
N ≈ 50 and N ≈ 82 regions. Starting from the standard
density-dependent effective interaction DD-ME1 [11] (mD =
0.58 m,m∗ = 0.66 m), a new effective interaction was ad-
justed with higher values for the Dirac mass and the nucleon
effective mass: mD = 0.67 m,m∗ = 0.76 m. However, a stan-
dard RMF interaction with such a high value of the Dirac mass
would systematically underestimate the empirical spin-orbit
splittings in finite nuclei. To compensate the reduction of the
effective spin-orbit potential caused by the increase of the
Dirac mass, the DD-ME1 interaction was further extended by
including an additional interaction term: the tensor coupling of

the ω-meson to the nucleon. The resulting interaction was used
in the relativistic Hartree-Bogoliubov calculation of nuclear
ground states. With the Gogny D1S interaction in the T = 1
pairing channel, and also including the T = 0 particle-particle
interaction in the PN-QRPA, it was possible on one hand to
reproduce the empirical values of the energy spacings between
spin-orbit partner states in spherical nuclei, and on the other
hand the calculated β-decay half-lives were in reasonable
agreement with the experimental data for the Fe, Zn, Cd, and
Te isotopic chains.

With the model developed in Ref. [5] the problems of
the low effective mass and long β-decay half-lives were
solved on an ad hoc basis. The effective interaction was
adjusted with the particular purpose of increasing the effective
nucleon mass, and the resulting problem of the reduction of
the effective spin-orbit potential was solved by the inclusion
of an additional interaction term. A much better solution
is provided by the recently introduced relativistic mean-
field model with momentum-dependent nucleon self-energies
[12,13]. In this model the standard effective Lagrangian
with density-dependent meson-nucleon coupling vertices is
extended by including a particular form of the couplings
between the isoscalar meson fields and the derivatives of the
nucleon fields. This leads to a linear momentum dependence
of the scalar and vector self-energies in the Dirac equation
for the in-medium nucleon. Even though the extension of
the standard mean-field framework is phenomenological, it
is nevertheless based on Dirac-Brueckner calculations of
in-medium nucleon self-energies, and consistent with the
relativistic optical potential in nuclear matter, extracted from
elastic proton-nucleus scattering data. In the extended model
it is possible to increase the effective nucleon mass, while
keeping a small Dirac mass which is required to reproduce the
empirical strength of the effective spin-orbit potential.

In the very recent work of Ref. [13], in particular, an
improved Lagrangian density of the model with density-
dependent and derivative couplings (D3C) has been intro-
duced. The parameters of the coupling functions were adjusted
to ground-state properties of eight doubly-magic spherical
nuclei, and the results for nuclear matter, neutron matter,
and finite nuclei were compared to those obtained with
conventional RMF models. It was shown that the new effective
interaction improves the description of binding energies,
nuclear shapes and spin-orbit splittings of single-particle
levels. More important, it was possible to increase the effective
nucleon mass (m∗ = 0.71 m) and, correspondingly, the density
of single-nucleon levels close to the Fermi surface as compared
to standard RMF models. At the same time the Dirac mass was
kept at the small value mD = 0.54m, which ensures that the
model reproduces the empirical spin-orbit splittings. The mo-
mentum dependence of the nucleon self-energies provides also
a correct description of the empirical Schrödinger-equivalent
central optical potential.

In this work we employ the model with density-dependent
and derivative couplings (D3C) of Ref. [13] in the calculation
of β-decay rates of neutron-rich nuclei in several isotopic
chains in the Z ≈ 28 and Z ≈ 50 regions. The results of fully
consistent RHB plus proton-neutron QRPA will be compared
with those obtained with the standard density-dependent RMF
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interaction DD-ME1 and, in addition, with a new effective
interaction based on the D3C model, but with an even
higher value of the effective nucleon mass. We will analyze
the dependence of the β-decay half-lives on the choice of
the effective particle-hole interaction, and the strength of the
T = 0 pairing interaction.

The functional forms of the density dependence of the σ, ω

and ρ meson-nucleon couplings are identical for the con-
ventional DD-ME1 effective interaction and the D3C model.
The latter includes momentum-dependent isoscalar scalar and
vector self-energies, and thus contains two additional coupling
functions �S and �V . In Ref. [13] these have been parametrized
with the following functional form:

�i(x) = �i(ρref)x
−ai for i = S, V, (1)

where x = ρv/ρref, ρv is the vector density, and the reference
density ρref corresponds to the vector density determined
at the saturation point of symmetric nuclear matter. In the
parametrization of Ref. [13] aS = aV = 1, and we will retain
these values in the following calculation. The parameters
�S(ρref) and �V (ρref) have been constrained by the requirement
that the resulting optical potential in symmetric nuclear matter
at saturation density has the value 50 MeV at a nucleon energy
of 1 GeV. In total there are 10 adjustable parameters in the D3C
model, compared to eight for the standard density-dependent
RMF models, e.g., the DD-ME1 parametrization.

The effective nucleon mass of the D3C model is m∗ =
0.71 m, compared to m∗ = 0.66 m for DD-ME1. In addition,
starting from D3C, for the purpose of calculating β-decay
rates we have adjusted a new parametrization with m∗ =
0.79 m, which is much closer to the effective masses used in
nonrelativistic Skyrme effective interactions [9,10]. The new
effective interaction which, for simplicity we denote D3C∗, has
been adjusted following the original procedure of Ref. [13],
with an additional constraint on the effective nucleon mass.
Even though we have tried to increase the effective mass
as much as possible, m∗ = 0.79 m is the highest value for
which a realistic description of nuclear matter and finite nuclei
is still possible, and the quality of the calculated nuclear
matter equation of state and of ground-state properties of
spherical nuclei is comparable to that of the DD-ME1 and D3C
interactions. The three interactions are compared in Table I,
where we include the characteristics of the corresponding
nuclear matter equations of state at saturation point: the
saturation density �sat, the binding energy per particle aV , the

TABLE I. Properties of symmetric nuclear matter at saturation
density calculated with the models DD-ME1, D3C, and D3C∗.

DD-ME1 D3C D3C∗

�sat [fm−3] 0.152 0.151 0.152
aV [MeV] −16.20 −15.98 −16.30
a4 [MeV] 33.1 31.9 33.0
K∞ [MeV] 244.5 232.5 224.9
mD/m 0.58 0.54 0.57
m∗/m 0.66 0.71 0.79
�S 0.0 −21.632 −146.089
�V 0.0 302.188 180.889

symmetry energy a4, the nuclear matter compression modulus
K∞, the Dirac mass mD , and the effective (Landau) mass m∗.
In addition, for the two interactions with energy-dependent
single-nucleon potentials, we compare the values of �S(ρref)
and �V (ρref). We notice a pronounced increase of the strength
of the scalar field. This is, however, compensated by the
corresponding decrease of the strength of the vector coupling,
so that the difference �V (ρref) − �S(ρref) is practically the
same for D3C and D3C∗. For both interactions the optical
potential at 1 GeV nucleon energy has been constrained to
50 MeV. With the increase of the effective nucleon mass from
DD-ME1 to D3C and D3C∗, we also note the corresponding
decrease of the nuclear matter compression modulus K∞.
This correlation between K∞ and m∗ is also well known in
nonrelativistic Skyrme effective interactions [10].

In Fig. 1 we display the neutron and proton single-particle
levels in 132Sn calculated in the relativistic mean-field model
with the DD-ME1, D3C, and D3C∗ effective interactions, in
comparison with available data for the levels close to the
Fermi surface [14]. Compared to the DD-ME1 interaction, the
enhancement of the effective mass in D3C and D3C∗ results in
the increase of the density of states around the Fermi surface,
and the calculated spectra are in much better agreement with
the empirical energy spacings.

In the next step the three effective interactions have been
tested and compared in RHB plus proton-neutron relativistic
QRPA calculations of β-decay half-lives for the isotopic
chains: Fe, Ni, Zn, Cd, Sn and Te. The nuclear ground-states
have been calculated in the RHB model with the DD-ME1,
D3C, and D3C∗ effective interactions in the particle-hole
channel, and the pairing part of the Gogny force,

V pp(1, 2) =
∑
i=1,2

e−((r1−r2)/µi )2

×(Wi + BiP
σ − HiP

τ − MiP
σ P τ ) (2)

in the particle-particle channel, with the set D1S [15] for the
parameters µi,Wi, Bi,Hi and Mi (i = 1, 2). This force has
been very carefully adjusted to pairing properties of finite
nuclei all over the periodic table. In particular, the basic
advantage of the Gogny force is the finite range, which
automatically guarantees a proper cut-off in momentum space.
In the following calculations we have also used the Gogny
interaction in the T = 1 pp-channel of the PN-RQRPA.

The RHB ground-state solution determines the single-
nucleon canonical basis, i.e., the configuration space in which
the matrix equations of the relativistic QRPA are expressed
(see Refs. [4,6] for a detailed presentation of the formalism).
The particle-hole residual interaction of the PN-RQRPA is
derived from the following Lagrangian density:

Lint
π+ρ = −gρψ̄γ µ �ρµ�τψ − fπ

mπ

ψ̄γ5γ
µ∂µ �π �τψ. (3)

The coupling between the ρ-meson and the nucleon is already
contained in the RHB effective Lagrangian, and the same
interaction is consistently used in the isovector channel of the
QRPA. The direct one-pion contribution to the ground-state
RHB solution vanishes because of parity-conservation, but
it must be included in the calculation of the Gamow-Teller
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FIG. 1. (Color online) Neutron (left panel)
and proton (right panel) single-particle levels
in 132Sn calculated with the DD-ME1 (a), D3C
(b), and D3C∗ (c) interactions, compared to
experimental levels (d) [14].

strength. For the pseudovector pion-nucleon coupling we have
used the standard values:

mπ = 138.0 MeV,
f 2

π

4π
= 0.08. (4)

In addition, the zero-range Landau-Migdal term accounts for
the contact part of the isovector channel of the nucleon-nucleon
interaction

Vδπ = g′
(

fπ

mπ

)2

�τ1 �τ2�1 · �2δ (r1 − r2) . (5)

For each effective interaction, the strength parameter g′ is
adjusted to reproduce the excitation energy of the Gamow-
Teller resonance in 208Pb. In the present calculation these
values are g′ = 0.55, 0.54 and 0.76, for DD-ME1, D3C, and
D3C∗, respectively.

Finally, the proton-neutron QRPA interaction is completely
determined by the choice of the T = 0 pairing interaction [8]:

V12 = −V0

2∑
j=1

gj e−r2
12/µ

2
j ̂S=1,T =0, (6)

where ̂S=1,T =0 projects onto states with S = 1 and T = 0.
The ranges µ1 = 1.2 fm and µ2 = 0.7 fm of the two Gaussians
are the same as for the Gogny interaction Eq. (2), and the
relative strengths g1 = 1 and g2 = −2 are adjusted so that the
force is repulsive at small distances. The only remaining free
parameter is V0, the overall strength.

The half-life of the β−-decay of an even-even nucleus in
the allowed Gamow-Teller approximation is calculated from
the following expression:

1

T1/2
=

∑
m

λm
if

= D−1g2
A

∑
m

∫
dEe

∣∣∣∣∣
∑
pn

〈1+
m||σ τ−||0+〉

∣∣∣∣∣
2

dnm

dEe

, (7)

where D = 6163.4 ± 3.8 s [16]. |0+〉 denotes the ground state
of the parent nucleus, and |1+

m〉 is a state of the daughter
nucleus. The sum runs over all final states with an excitation
energy smaller than the Qβ−value. In order to account for the
universal quenching of the Gamow-Teller strength function,
we have used the effective weak axial nucleon coupling
constant gA = 1, instead of gA = 1.26 [17]. The kinematic
factor in Eq. (7) can be written as

dnm

dEe

= Ee

√
E2

e − m2
e(ω − Ee)2F (Z,A,Ee) , (8)

where ω denotes the energy difference between the initial and
the final state. The Fermi function F (Z,A,Ee) corrects the
phase-space factor for the nuclear charge and finite nuclear
size effects [18].

In Fig. 2 we display the β−-decay half-lives of iron, nickel,
and zinc isotopes calculated with the DD-ME1, D3C, and
D3C∗, and compare them with the experimental values taken
from NUDAT database [19]. The data for 76Ni and 78Ni are
from Ref. [20]. Open symbols correspond to values calculated
without the inclusion of T = 0 pairing. Since the β−-decay
rates are generally very sensitive to the proton-neutron pairing,
and its strength is usually adjusted separately for each isotopic
chain, we will first discuss the results obtained without the
T = 0 pairing interaction. For all three isotopic chains, the
shortest half-lives are obtained with the interaction with the
highest effective mass, i.e. D3C∗, even though these are still
far from the experimental values. For the Fe nuclei all three
interactions give similar results, whereas more pronounced
differences are found for the Ni and Zn isotopic chains. In the
two latter cases similar results are obtained with DD-ME1 and
D3C and, in fact, longer half-lives are predicted by D3C, even
though it has a higher effective nucleon mass. Much shorter
half-lives for the Ni and Zn nuclei are calculated with the D3C∗
effective interaction. The origin of these large differences in
the calculated rates can be understood from Table II, where we
list the transition energies for the strongest transition in the Zn
isotopes with 76 � A � 82: ν2p1/2 → π2p3/2. We note that the
transition energies for the DD-ME1 and D3C interactions are
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FIG. 2. (Color online) β-decay half-lives of
Fe (left panel), Ni (middle panel), and Zn (right
panel) nuclei, calculated with the DD-ME1,
D3C, and D3C∗ effective interactions, compared
with the experimental values [19]. Open sym-
bols correspond to PN-QRPA values calculated
without the inclusion of the T = 0 pairing
interaction. The filled squares are half-lives
calculated with the D3C∗ interaction and T = 0
pairing, with the strength parameter V0 =
125 MeV for Fe, and V0 = 300 MeV for Zn
isotopes.

comparable and, in particular, those calculated with DD-ME1
are slightly larger, resulting in faster β−-decay rates. Both
interaction predict a β-stable 76Zn. On the other hand, the
transition energies predicted by the interaction D3C∗ are much
larger and, correspondingly, the calculated half-lives are at
least an order of magnitude shorter.

A similar situation is found in the neutron-rich nuclei in
the Z ≈ 50 region. The calculated half-lives of Cd, Sn, and Te
nuclei are plotted in Fig. 3, in comparison with available data
[19]. The Cd isotopes, in particular, are calculated as β-stable
with the D3C interaction, because the predicted transition
energies are smaller than the electron rest mass. Much better
results are obtained with the modified interaction D3C∗, which
clearly reproduces the isotopic trend of the half-lives of
neutron-rich Cd nuclei. DD-ME1 and D3C produce almost
identical results for Sn and Te nuclei. Shorter half-lives,
especially for Sn, are calculated with D3C∗, but these are still
orders of magnitude from the experimental values. It appears
that all three interactions reproduce the isotopic trend in the
Te chain.

We have considered the effect of the T = 0 pairing
interaction on the calculated β-decay half-lives only for the
D3C∗ effective interaction which, with the effective nucleon
mass m∗/m = 0.79 comparable to those of nonrelativistic
effective interactions, gives the shortest half-lives. Even
without the inclusion of the proton-neutron pp interaction, for
the Fe nuclei the calculated half-lives are already close to the

TABLE II. Transition energies (in MeV) for the strongest
transition in the Zn isotopes: ν2p1/2 → π2p3/2.

DD-ME1 D3C D3C∗

76Zn 0.15 −0.05 1.74
78Zn 0.93 0.72 2.65
80Zn 2.01 1.80 3.69
82Zn 2.69 2.51 4.58

experimental values, except for 64Fe (see Fig. 2). By adjusting
the value of the strength parameter of the T = 0 pairing
to V0 = 125 MeV, the PN-QRPA calculation reproduces the
β-decay half-lives of 66Fe, 68Fe and 70Fe (filled squares). In the
case of Ni isotopes the T = 0 interaction in the pp-channel is
not effective because of the Z = 28 and N = 40 closures [5,8].
The π1f7/2 orbit is completely occupied, and the transition
ν1f5/2 → π1f7/2 is thus blocked. The T = 0 pairing could
only have an effect on the ν1g9/2 → π1g9/2 transition, but
the π1g9/2 orbital is located high above the Fermi surface.
Thus the T = 0 pp interaction cannot shift the low-energy GT
strength and enhance the β-decay rates. Even using the D3C∗
interaction, the calculated half-lives are an order of magnitude
longer than the experimental values.

The principal advantage of the self-consistent approach
to the modeling of β-decay rates is the use of universal (A
independent) interactions in the ph-channel and, in many
cases including the model used in this work, in the T = 1
pp-channel. Unfortunately, this is not possible in the T = 0
pp-channel, for which no information is contained in the
ground-state data. The strength of this interaction is adjusted
separately for each isotopic chain or, in the best case, a single
value of the strength can be used in a certain mass region [5,8].
It is especially difficult to keep the same strength of the
T = 0 pairing when crossing a closed shell. Thus in going
from the Fe to the Zn isotopic chain we had to increase the
strength parameter V0 by more than a factor two. The value
V0 = 300 MeV has been adjusted to reproduce the half-life
of 78Zn (filled squares in the right panel of Fig. 2) but,
even though the calculated values are in qualitative agreement
with the data, with the inclusion of the T = 0 pairing the
PN-QRPA results do not reproduce the isotopic dependence of
the experimental half-lives. In other words, it was not possible
to find a single value of the proton-neutron pairing strength that
could reproduce the half-lives of neutron-rich Zn isotopes.

The filled squares in Fig. 3 correspond to the half-lives
calculated with the D3C∗ effective interaction, the π + ρ

plus Landau-Migdal interaction in the ph-channel, the Gogny
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FIG. 3. (Color online) Same as in Fig. 2, but for the Cd (left panel), Sn (middle panel), and Te (right panel) isotopic chains. For the D3C∗

effective interaction, in all three isotopic chains the strength of the T = 0 pairing interaction is V0 = 235 MeV (filled squares).

interaction Eq. (2) in the T = 1 pp-channel, and the T = 0
pairing Eq. (6). The strength of the latter: V0 = 235 MeV, has
been adjusted to the half-life of 128Cd, and this value has been
used for the Cd, Sn and Te isotopic chains. The effect of the
T = 0 pairing is especially pronounced for Cd and Te nuclei,
and the results are in qualitative agreement with the available
data, although the calculation does not reproduce the isotopic
trend for the Cd chain, and overestimates the half-lives of
Te isotopes. On the other hand, for the proton closed-shell Sn
nuclei the T = 0 pairing interaction is much less effective, and
the calculated half-lives of 134Sn and 136Sn are two orders of
magnitude longer than the experimental values. Better results
could be obtained, of course, by adjusting V0 separately for
each isotopic chain.

The calculations performed in this work have shown that
the extension of the standard relativistic mean-field frame-
work to include momentum-dependent (energy-dependent in
stationary systems) nucleon self-energies naturally leads to
an enhancement of the effective (Landau) nucleon mass,
and thus to an improved PN-QRPA description of β−-decay
rates. However, even though the momentum-dependent RMF
model with density-dependent meson-nucleon couplings, ad-
justed here to m∗ = 0.79 m, predicts half-lives of neutron-
rich medium-mass nuclei in qualitative agreement with data,
the results are not as good as those obtained in the most
advanced non-relativistic self-consistent density-functional
plus continuum-QRPA calculations [2,21,22], or with the
self-consistent HFB+QRPA model with Skyrme interactions
of Ref. [8]. Namely, although we have been able to increase the
effective mass of the interaction used in the RHB calculations
of nuclear ground states to m∗ = 0.79 m, a value which is
sufficient for the description of giant resonances [9,10], the

detailed description of the low-energy Gamow-Teller strength
necessitates an even higher value of m∗. In fact, the effective
mass of the Skyrme SkO’ interaction used in Ref. [8] is
m∗ = 0.9 m, whereas the continuum-QRPA calculations by
Borzov are based on the Fayans phenomenological density
functional with the bare nucleon mass, i.e., m∗ = m [2,21,22].
However, it would be very difficult to further increase the
effective nucleon mass in the framework of the model used in
this work, i.e., on the nuclear matter level, without destroying
the good agreement with empirical ground-state properties of
finite nuclei. On the other hand, this would not even be the
correct procedure because the additional enhancement of the
effective nucleon mass is due to the coupling of single-nucleon
levels to low-energy collective vibrational states, an effect
which goes entirely beyond the mean-field approximation
and is not included in the present model. In principle, the
effect of two- and three-phonon states on the weak-interaction
rates could be taken into account by explicitly considering
the coupling of single-quasiparticle states to phonons, and
the resulting complex configurations would certainly lead to
a redistribution of low-energy Gamow-Teller strength. Even
though such extended (second) RPA approaches have been
routinely used for many years in the calculation of widths
of isoscalar and isovector giant resonances, no systematic
large-scale calculations of β-decay rates have been reported so
far. We have therefore started to develop a new self-consistent
model based on the recently introduced covariant theory of
particle-vibration coupling [23], and this framework will be
applied in the calculation of β-decay half-lives of neutron-rich
medium mass nuclei.

In heavier nuclei, or in nuclei with an even higher neutron
to proton asymmetry, in addition to allowed Gamow-Teller
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transitions, first-forbidden transitions must be taken into
account in the calculation of β-decay half-lives. As it has
been shown in recent studies by Borzov using the density-
functional plus continuum-QRPA framework [2,21,22], the
first-forbidden decays have a pronounced effect on the
β-decay characteristics of r-process nuclei in the Z ≈
28, N > 50; Z � 50, N > 82; and Z = 60–70, N ≈ 126 re-
gions. For studies of weak-interaction rates in r-process nuclei
very far from stability, it will therefore be important to

include first-forbidden transitions in the relativistic PN-QRPA
model.
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