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also the interference of pain with daily and work activity. Currently, there are limited 

biomarkers (mostly imaging), but there is a need for novel and simpler detection methods. One 

of the major determinants of pain in persistent lumbago is localised inflammation in epidural 
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1. Introduction 

 

1.1. Biology and importance of lumbago 

 

Low back pain (LBP) is a common musculoskeletal condition in all ages (Brooks, 

2006). The lifetime prevalence of non-specific LBP may reach 80%, with the annual prevalence 

ranging between 25% and 60% in different ethnic groups (Louw et al. 2007; Andersson, 2015). 

Moreover, lumbago is the most common cause of disability in people who are 45 years old or 

less, causes 4% of people to change employment, and is a problem most severe in industrialized 

nations (Garofalo and Polatin, 1999). The impact of lumbago associated disability on work is 

significant, as an estimated 22% of chronic LBP patients are on some form of medical leave 

from work and another 11% work in a reduced capacity (Wynne-Jones, Dunn, and Main, 2008).   

Pain is traditionally categorized as acute or chronic. Most individuals initially suffer 

from acute pain, indicating the pain was the result of an injury or damage (Geisser, et al. 2006).  

Chronic pain represents pain that has lasted at least 3 months (von Korff, 1999; Thorn, 2004).  

On occasion, chronic pain does not result from injury, but rather has an insidious gradual onset 

over time (Thorn, 2004).  

It is common for chronic lumbago patients to have endured numerous types of treatment 

without success and have significantly altered their lives (Vasudevan, 1992).  When the 

lifestyle changes become significant, some individuals become disabled. Disability can be 

understood as a significant inability to engage in meaningful and necessary activities in one’s 

daily life (Battié and May, 2001). Such disability is not limited to back pain patients, as 

individuals may become disabled from other medical conditions or cognitive disabilities. 

Lumbago is a diverse group of mixed pain syndromes with different molecular 

pathologies at different structural levels displaying similar clinical manifestations. In principle, 

LBP could be divided according to the cause of the pain into: discogenic pain, facet joint pain, 

sacroiliac joint pain, widespread pain and spinal stenosis. One of the major determinants of 

pain in persistent chronic LBP (CLBP) syndrome is localised inflammation in epidural space 

(both following surgery and without previous surgery at this level) (Broos and Aebi, 2008). 

There is some evidence that there is a correlation of inflammatory cell type expression in the 

epidural space and severity of CLBP, but actually the correlation between different expression 

of pro-inflammatory cytokines and severity of CBLP and why there is such huge inter-personal 

variability in this expression is yet to be investigated (Kraychete et al., 2010). 
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Owing to its clinical and social impact, a clear diagnosis of this syndrome is needed in 

order to define besides pain intensity also the interference of pain with daily and work activity. 

Currently, there are limited biomarkers (mostly imaging) or clinical findings that can be used 

objectively to help the physician in precise anatomic diagnosis leading to the safest and most 

cost-effective treatment for the patient.  

 

 

1.1.1. Measuring pain 

 

The most difficult aspect of studying pain is that it is a “private experience” (Geisser et 

al., 2003; Jensen and Karoly, 2001). As such, it is only possible to determine how much pain 

an individual perceives that he or she is experiencing, and not the true pain intensity. This 

reveals a primary problem with pain measurement: Individual pain ratings do not yield any 

useful information about the source or severity of the patient’s pain problem. Investigators and 

clinicians are unable to determine that a patient with extreme pain is suffering from a problem 

that is any worse than a patient who is suffering from minimal pain. The differences may be 

rooted in how individuals interpret the painful sensation or what individuals use as the standard 

to which they relate current pain to past painful experiences, such as kidney stones, childbirth, 

or post-surgical pain. Thus, the assessment of pain may simply be a description by the patient 

of how this pain compares to other pain that he or she has experienced. This is further evidenced 

in studies that have demonstrated that the interpretation of pain is a combination of one’s 

expectations and the actual sensory experience (Brown et al., 2008). However, it is unclear 

whether expectations about pain influence the actual experience of pain or simply how one 

rates his or her pain (Wager, 2005).  

The assessment of pain is commonly conducted through asking the patient to categorize 

his or her pain or rate the pain on visual analogue scales, verbal rating scales, or numerical 

rating scales (Chapman et al., 1985; Jensen and Karoly, 2001). The meaning of the resulting 

ratings are impossible to determine, as there is no way to assess the reliability or validity of 

individuals’ estimations of their pain levels (Turk and Melzack, 2001). Moreover, pain ratings 

have questionable utility, as they are hindered by variations between individuals on a variety 

of variables, such as experiences, situations, personality variables, psychosocial variables, 
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behavioural contingencies, and variations in sensitivity to pain (Turk and Melzack, 2001). As 

a result, studies rarely simply assess pain ratings in the absence of other variables.  

 

1.2. Glycosylation is complex post-translational modification 

 

Glycans, sugar chains attached to macromolecules, constitute the most abundant and 

diverse form of the post-translational modifications. All cell surface and secreted glycoproteins 

that contain appropriate sequences (Asn-X-Ser/Thr where X is any amino acid except proline) 

can potentially acquire N-linked oligosaccharides (N-glycans) while they travel through the 

endoplasmic reticulum and the Golgi compartments (Marino et al., 2012). Glycans can 

influence disease development in many syndromes such as cancer, disorders of glycosylation, 

rheumatoid arthritis and AIDS (Ohtsubo and Marth, 2006). Glycans are crucial for the proper 

functioning of immune system, as some of the most important interactions between the immune 

system and viruses and bacteria are mediated by protein-glycan interactions. Moreover, glycans 

are key in the recognition of non-self events and an altered glycome may lead to autoimmune 

disorders (Arnold et al., 2007). The biological functions of glycans go from basic structural 

roles to development, protein folding and immune response. Glycosylation is known to be 

affected by factors such as sugar nucleotide concentration, type of glyco-enzymes and their 

expression levels (Marino et al., 2012). 

In comparison with total cell proteome, the glycome is estimated to be several orders 

of magnitude larger, depending on the species (Freeze, 2006). Progress towards describing and 

explaining the molecular basis of glycan function has been rather slow, partly due to technology 

restraints and partly due to the fact that the biosynthesis of glycans is not genetic-template-

driven. Glycans are generally constructed from nine monosaccharide building blocks which 

connect to one another through glycosidic bond (Dube and Bertozzi, 2005) (Figure 1). 
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Figure 1 Example of glycan structure: Numerous glycan structures can be formed from nine monosaccharide 

building blocks which connect through glycosidic bond (Adapted from Lauc et al. 2013) 

 

In eukaryotes there are 11 biosynthetic pathways that add glycans to proteins and lipids. 

There are two types of glycoproteins: O- and N- linked. N-linked protein glycosylation is the 

essential process for multicellular life, and its complete absence is embryonically lethal. N-

glycan core has a fundamental role in glycoprotein function and it is therefore homogeneous 

and not subject to extensive variability or changes. On the other hand, variability of 

monosaccharides at the end of glycan antennae is common (e.g., ABO blood groups). This 

mechanism of glycan diversity enables adapting to changing environment, contributes to 

glycoproteome heterogeneity and can be advantageous for evading pathogens (Pučić et al., 

2010). 

Enzymes that take part in the process of glycan synthesis are shared among different 

glycan structures. When we look at glycan structures, we can see how structurally similar they 

are. On the Figure 2, hierarchical representation of glycan structures is shown in a way that on 

the top of the dendogram are placed the simplest structures and then branching is done 

depending on the enzymes needed to synthesize each of the structures.  
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Figure 2 Structural hierarchy of glycans – biological clustering  

 

 

1.2.1. Analysis of glycan composition of immunoglobulin G (IgG) 

 

At the moment there is no “gold standard” method to analyse protein glycosylation with 

absolute precision, thus it is not possible to decide which of the methods most accurately reflect 

the real biological situation. An ideal technique that detects changes of glycan levels in a given 

environment would have to be fast, sensitive and able to integrate glycogene expression with 

glycan structural analysis (Alvarez-Manilla et al., 2007). 

One of the most widely used method of analysis is high-performance liquid 

chromatography (HPLC) where glycans are fluorescently tagged and afterwards detected.  The 

fluorescent tags most frequently used in this technique are 2-aminopyridine, 2- 

aminobenzamide and anthranilic acid (Royle et al., 2008; Huffman et al., 2014). Fluorescent 

tagging-HPLC method for glycan analysis is sensitive enough and has ability to obtain 

quantitative data with good precision and reproducibility. However, this technique is time 

consuming, requires the availability of standards for every glycan to be identified and the 

resolution of this procedure is dependent on the HPLC or capillary electrophoresis column. 



6 
 

Studies have shown that it is possible to combine separation of oligosaccharides in a 

chromatography column and the mass spectrometry to increase the resolution, (e. g. HPLC-

ESI-MS) (Alvarez-Manilla et al., 2007).  

Another widely used method used to study glycans is mass spectrometry (MS) and its 

derivatives like matrix assisted laser desorption/ionization-time of flight mass spectrometry 

(MALDI-TOF-MS) and electrospray ionization mass spectrometry (ESI-MS). MALDI and 

ESI-MS can be used to record the spectra of intact glycoproteins, but these instruments are 

highly dependent on not only mass of the given protein but also on the degree of glycosylation. 

TOF instruments can generally detect small glycoproteins with a limited number of glycans 

attached. Glycoproteins with a high level of homogeneity can be identified with usage of ESI 

instruments designed for that purpose (Mills et al., 2003). Advantages of these mass 

spectrometric techniques are their speed, sensitivity, and high resolution, but they are still very 

limited for quantifying glycans in glycoproteomic studies. 

 

 

 

1.3. Twin studies 

 

Twin studies proved to be an invaluable tool in genetic epidemiology. Twins are two 

offspring resulting from the same pregnancy born in close succession. They may be either 

monozygotic (MZ) or dizygotic (DZ). The rate of MZ twinning is relatively stable, occurring 

in approximately four pregnancies out of 1000 across countries (Blickstein and Keith, 2005). 

DZ twinning rates, by contrast, vary by geographical region; in Asia about 6 in 1000, in Europe 

and USA about 10-20 in 1000 and in Africa about 40 in 1000 pregnancies are DZ twin 

pregnancies (Hall, 2003). The tendency to give birth to DZ twins is inherited and increases 

with maternal age and use of fertility drugs or in vitro fertilization procedures. About one-third 

of twins born are MZ, one-third are DZ same-sex (DZSS), and the remaining one-third are DZ 

opposite-sex (DZOS) (Blickstein and Keith, 2005). DZ twins almost invariably have their own 

placentas and are dichorionic and diamnionic (DC-DA) in placental membrane structure (Hall, 

2003). 
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1.3.1. Importance of twin studies 

 

Quantitative genetic analyses examine the nature of individual differences as well as 

similarities between family members and other relatives. In order to address the question 

regarding genetic and environmental influences on dissimilarities, the variance of a trait is 

studied. To do so it is necessary to perform studies on subjects with different degrees of genetic 

and environmental relationships.  The twin-design is, therefore, of great use for genetic studies 

as same sex twin pairs are sampled from the same gene pool and they share same genes, 

although to a different degree. MZ twins share in principal all of their genes, and DZ twins 

share, on average, half of their segregating genes such as ordinary full siblings, but unlike 

ordinary full siblings, twins are matched on age and in most registries, sex. The classical twin 

study aims to explain the inter-individual variation in a trait. Studying twins offers a unique 

opportunity to determine the genetic and environmental effects on multifactorial polygenic 

traits such as body weight and habitual dietary intake. Genetic effects may arise from 

cumulative effects of multiple genes (additive genetic effects), or because of interaction 

between the alleles of these genes (dominance genetic effects). Environmental differences may 

arise from the environment unique to the individual (non-shared environment) making the 

twins within a pair less alike or from the environment common to co-twins (shared 

environment) making the twins alike. The greater similarity of MZ than DZ twin pairs is 

regarded to result from genetic effects as there is good evidence that MZ and DZ share twins 

share an environment to the same degree (Tan, 2010). This is the basic principle of twin 

methodology. The classic twin study compares phenotypic resemblances of MZ and DZ twins. 

Comparing the resemblance of MZ twins for a trait with the resemblance of DZ twins offers 

the first estimate of the extent to which genetic variation determines phenotypic variation of 

the trait. If MZ twins resemble each other more than do DZ twins, then the narrow heritability 

(h2) of the phenotype can be estimated from twice the difference between MZ and DZ 

correlations. The proportion of the variance that is due to the environment is the difference 

between the total twin correlation and the part that is explained by heritability (Boomsma, 

2002).  
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1.3.2. TwinsUK database 

 

The UK Adult Twin Registry is a cohort of volunteer adult twins that has evolved 

rapidly since its inception in 1992. Originally, several hundred adult female twins were 

recruited by media campaign to allow investigation of osteoporosis and osteoarthritis, 

conditions with high prevalence in women. The success of these early studies, and the 

realisation that many traits hitherto considered environmental in aetiology could be 

investigated, led to expansion of the collection and the inclusion of males. The registry now 

incorporates twins from the Aberdeen Twin registry and Institute of Psychiatry Adult Registry. 

The cohort is one of the most highly and deeply phenotyped in the world, and is being enriched 

by comprehensive genotyping. Today, the database includes approx. 13,000 twins aged 16–85 

(mean age 48), with a ratio of MZ to DZ twins of approximately 50:50. Participants are sent 

regular questionnaires for completion and are also invited to attend clinical visits. 
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1.4. Aim of this study 

 

In this study, by using classical twin design conducted between twins from TwinsUK 

registry, I aim to assess whether twins reporting episodes of LBP had detectable levels of IgG 

glycosylation that differed from those not reporting episodes of LBP. In the case of different 

levels of IgG glycosylation between cases and controls, I would be able to suggest glyco-

profiles which are more or less likely to be associated with LBP.  

It is hard to distinguish weather patients with chronic widespread pain (CWP) are also 

suffering from LBP (their back pain could be result of CWP and not of LBP) so in order to 

make the project specifically about back pain, I obtained information about twins having CWP 

and LBP, in further analyses I used only patients with LBP excluding those having CWP. 

In addition to regression analysis of glycan composition in cases and controls, the goal 

of this study is to perform weighted gene correlation network analysis (WGCNA) on glycan 

data. WGCNA is widely used in genomics to define modules (clusters) and network nodes 

among gene expression (high-dimensional) data. This analysis hasn’t been applied to a glycan 

data yet, but because this is highly similar high-dimensional data, it is possible to create 

correlation networks of glycan data.  

Twin studies are invaluable tool in genetic epidemiology that tells about relative and 

absolute importance of genetic and environmental influences on a phenotype. Especially 

interesting are cases of discordant twin pairs where one of the siblings is affected by some 

disease and the other is not. I decided to do separate analysis of only discordant twins so I 

could, in more detail, find out about effects of gens and environment in development of low 

back pain.  

After learning which glycan structures are significantly associated with disease 

outcome I made an algorithm that will be able to predict, based on IgG N-glycan quantities, 

disease status. Depending on the strength of association and number of associated glycans 

prediction accuracy will vary.  
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2. Materials and methods 

 

2.1. Sample 

 

The participants in the present study were a sample of MZ and DZ twins enlisted in the 

TwinsUK registry who had undergone height and weight measurements used to calculate BMI 

(Sambrook, 1999). Collection of socio-demographic, CWP and LBP data was carried out 

during clinical visit or via a postal self-completion questionnaire. In order not to influence 

twins’ pain perception, they were unaware of the precise research hypothesis addressed in this 

study. LBP and CWP data were available on 1932 twins, comprising 224 full MZ pairs, 414 

full DZ pairs, and 704 participants whose co-twins did not take part in study. For CWP 

association analysis, IgG glycome was analysed in 4416 twins. Both the CWP and the LBP 

phenotypes were defined as a binary traits based on questionnaire responses (e.g., 1 = affected 

and 0 = nonaffected). The modified version of London Fibromyalgia Epidemiology Study 

(LFES) questionnaire contained four questions about musculoskeletal pain lasting over a week 

in the upper limbs, the lower limbs and the thorax/neck/back, and two further questions about 

fatigue and its chronicity and severity (White et al., 1999).  A diagnosis of CWP was made if 

respondents answered positively to all four pain questions and positively to either both a right 

and left side response or on both sides. Volunteers were considered as case if in any of the 

questions asked about back pain answered positive. Basic descriptive statistics of the dataset 

are shown in Table 1 and 2.  

Table 1 Sample characteristics of LBP without CWP study participants 

 Overall sample  

(n = 1932) 

Monozygotic twins  

(n = 801) 

Dizygotic twins  

(n = 1131) 

 Mean SD Range Mean SD Range Mean SD Range 

Age 55,66 11,77 17-83 54,54 13,04 17 - 83 56,45 10,71 18 - 82 

BMI 26,52 5,01 15,7-

55,18 

26,08 4,82 15,7-

52,71 

26,84 5,1 16,9-

55,18 

          

  N % N %  N %  

Sex Male 101 5,3% 45 5,71%  56 5%  

 Female 1831 94,7% 756 94,29%  1075 95%  

          

LBP 

without 

CWP 

Cases 440 22,93 175 21,77%  265 23,75  

 Controls 1492 77,07 626 78,23%  866 76,25  
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Table 2 Sample characteristics for CWP study participants 

 Overall sample  

(n = 4416) 

Monozygotic twins  

(n = 1687) 

Dizygotic twins  

(n = 2728) 

 Mean SD Range Mean SD Range Mean SD Range 

Age 51,60 14,06 17.27 

– 

83,44 

51,51 14,86 17,27 – 

83,44 

51,66 13,58 17,31 

– 

82,07 

BMI 26,26 5,01 13,22 

– 

55,18 

26,09 5,03 15,71 – 

52,71 

26,37 4,99 13,22 

– 

55,18 

          

  N % N %  N %  

Sex Male 336 7,6 145 8,6  191 7  

 Female 4080 92,4 1542 91,4  2537 93  

          

CWP Cases 1289 29,20 441 26,14  848 31,09  

 Controls 3127 70,80 1246 73,86  1880 68,91  

          

CWP 

without 

MRI 

Cases 895 20,27 329 19,95  566 20,75  

 Controls 3521 79,73 1358 80,05  2162 79,25  

 

 

The study was approved by the St Thomas’ Hospital research Ethics Committee and all twins 

provided informed consent. 

 

2.2. Assessment of lumbago 

 

Twins participating in the spine study (1997-2000) had attended an assessment that included a 

nurse-led interview and a number of clinical and laboratory tests (Sambrook, 1999). As part of 

the study, the twins completed a standardized questionnaire relating to their lifetime history of 

low back and pain symptoms. The questionnaires were completed by each twin separately. The 

lumbago questionnaire followed the format of questions used in the Medical Research Council 

Nurses Study (Smedley et al., 1998). It included both written questions and a pain diagram 

allowing an assessment of the timing, distribution, radiation, severity, and duration of pain 

together with information relating to functional disability. Lumbago was defined on a 

mannequin as being located between the 12th rib and the gluteal folds. This analysis focused 



12 
 

on pain with a total duration of more than a month and associated with disability. Disability 

was defined as having resulted in any one of the following activities being impossible: walking 

around the house, standing for 15 minutes, getting up from a low chair, getting out of the bath, 

getting in and out of a car, going up and down the stairs, putting on socks and tights, and cutting 

toenails. So in future those that are cases should be referred to as having episodes of severe and 

disabling LBP. 

 

2.3. Magnetic resonance imaging (MRI) 

 

MRI was performed using a Siemens (Munich, Germany) 1.0T superconducting magnet. 

Sagittal images were obtained using a fast spin-echo sequence of time to recovery (TR)/time 

to echo (TE) 5000– 4500/112 msec, with a slice thickness of 4 mm. Grading was performed 

on T2-weighted images, although T1 images were also obtained for certain measurements. 

Axial sections were obtained at selected levels to assess structural changes in individuals who 

had features suggesting prolapse. To avoid problems related to diurnal variation in disc height 

all MRI scans were performed more than an hour after the subjects arose from sleep in the 

morning, with no exercise or other rest allowed between arising and the scan, and importantly, 

each twin pair was scanned at the same appointment and on the same machine (Paajanen et al., 

1994). A disease severity score was constructed from the sum of scores for disc bulge, height, 

signal change, and narrowing in the lumbar and in the cervical spine. 

 

2.4. Overview of experimental glycan analysis 

 

The analysis I performed for this study were mainly computational but in order to understand 

how the data were obtained and its characteristics, I will briefly explain experimental methods. 

Experimental data was obtained from Department of Twin research, King’s College, London, 

UK and it was analysed in the research group of Professor Gordan Lauc at Glycobiology group, 

Genos d.o.o, Zagreb, Croatia.  

The IgG was isolated using protein G monolithic plates as described previously (Gornik et al., 

2009). The N-glycans from IgG samples were released and labelled with 2-aminobenzamide 

(LudgerTag 2-AB labeling kit Ludger Ltd., Abingdon, U.K.). Labelled glycans were then 

subjected to hydrophilic interaction high performance liquid chromatography (HILIC). 
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Glycans were analysed on the basis of their elution positions and measured in glucose units 

(GU). The chromatograms obtained were all separated into 24 peaks and the amount of glycans 

in each peak was expressed as % of total integrated area. In addition to 24 directly measured 

glycan structures, 55 derived traits were calculated. 

 

2.5. Pre-processing and filtering 

 

Directly measured glycan levels were normalized and experimental noise was removed through 

filtering and batch correction. First, I filtered out most extreme values from the dataset (beyond 

0.999% percentile). Then, I applied quotient normalization using median values across the 

dataset as a reference (Dieterle et al., 2006). Because samples were analysed in four batches 

and distributions of glycan quantities varied among batches, I did batch correction using ratio-

based method with either geometric mean or median (Chen et al., 2011). As the results of the 

two corrections were almost equivalent, herewith, I report only the results for the dataset 

corrected with geometric mean. 

After these steps, I estimated 55 derived glycan levels from the directly measured glycans 

(Huffman et al., 2014) using glycanr package for R. These derived traits average particular 

glycosylation features (galactosylation, fucosylation, sialylation) across different individual 

glycan structures and consequently they are more closely related to individual enzymatic 

activities and underlying genetic polymorphisms.  Finally, I applied inverse transformation of 

ranks to normality to obtain standard Normal distribution using rntransform function from 

GenABEL package for R (Aulchenko et al., 2007). 

After pre-processing I assessed the dependency between the glycan traits and confounders such 

as age, sex, and body-mass index (BMI). I found out that age is a complex cofounder and that 

it has piece-wise relationship with glycan levels which did not justify its inclusion in linear 

regression models as a confounder. Therefore, before further analysis I corrected glycan levels 

for age (through residuals) by segmented regression approach using 40-45 years as initial break 

points as implemented in segmented package for R (Muggeo, 2003). The choice of the break-

down points was done based on the observation of the correlation clouds for age and glycans 

followed by a bootstrap based search for "true" breakpoints. 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017238
http://bioinformatics.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=17384015
http://onlinelibrary.wiley.com/doi/10.1002/sim.1545/references
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2.6. Regression analysis 

 

Regression analysis is a statistical method for estimating the relationships among variables. 

Regression analysis helps understand how the typical value of the dependent variable (variable 

of interest) changes when any one of the independent variables (known, measured variables) 

is varied, while the other independent variables are held fixed. It is widely used for prediction 

and forecasting, where its use has substantial overlap with the field of machine learning. 

Regression analysis is also used to understand which among the independent variables are 

related to the dependent variable, and to explore the forms of these relationships. 

Many techniques for carrying out regression analysis have been developed. One of the most 

widely used method is linear regression which studies linear, additive relationships between 

variables. In linear regression, data is modelled using linear predictor functions, and unknown 

model parameters are estimated from the data. This method is extensively used because models 

which depend linearly on their unknown parameters are easier to fit than models which are 

non-linearly related to their parameters and because the statistical properties of the resulting 

estimators are easier to determine. One of the important assumptions linear regression uses is 

that it requires each observation to be independent.  That is that the data-points (in this case 

study participants) should not be from any dependent samples design, e.g., before-after 

measurements, or matched pairings. Also the model should have little or no multicollinearity 

(independent variables should be independent from each other).  

How in my dataset many volunteers have their siblings, which are genetically either 100% 

identical or on average 50% identical, in the same database, I couldn’t use linear regression to 

explain relationship between outcome and predictors because linear regression assumes 

independence between patients. I had to use generalized linear mixed models which are 

extension to the generalized linear model in which the linear predictor contains random effects 

in addition to the usual fixed effects. They are especially convenient when dealing with grouped 

data. In my case mixed models will distinguish between variability in glycan levels within a 

twin pair and between twin pairs. Variation in glycan levels within monozygotic twin pairs is 

taken as a random effect in regression equation because observed variation is caused mostly by 

environmental effect while variation in glycan levels between twin pairs or within dizygotic 

twins is caused not only by environmental effects, but also by genetic effects.  

 



15 
 

2.6.1. Mixed-models analysis of association between glycan levels and disease status 

 

Because of the twin structure of the dataset, association analyses between disease status (LBP 

without CWP) and glycan traits were performed using a linear mixed model analysis (R 

programming language, lme4 package) with sex and BMI included as fixed covariate and 

variation in IgG glycan quantities within twin pairs as random effect. In order to get 

significance of association for the glycans, I analysed two different types of models: ones in 

which I tried to explain a twin glycan quantity by using their disease status, sex and BMI and 

the others in which I didn’t use disease status (Figure 3). After comparing goodness of fit of 

both models I was able to calculate p-values which explained how well a specific glycan 

associates with disease status. The association was analysed for each glycan separately. False 

discovery rate was controlled by Sidak's correction for multiple testing with the significance 

level of 0.0027 (p-value calculation explained in 2.9. chapter). Covariates found to have a 

significant association with LBP without CWP were entered into a multivariable regression 

model and assessed for significance.  

 

Figure 3 Schematic representation of association analysis. In the given equations (1|family) term signifies random 

effect term in linear mixed model while other terms after ~ sign are fixed effect terms. 

Model with disease outcome information:

• Glycan quantity ~ case + sex + BMI + (1|family)

Model without disease outcome information:

• Glycan quantity ~ sex + BMI + (1|family)

If the model with disease outcome fits glycan values 
significantly better, that glycan trait might be 

associated with the disease and is carried on for 
further analysis
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Additionally, because of the bigger dataset and higher statistical power, I examined association 

of glycan quantities with CWP. The analyses were the same as previously described but 

outcomes of regressions were CWP – assessed only from questionnaires and CWP with 

additional MRI information about twin’s possible spine defects. By comparing significantly 

associated glycans in models where LBP was outcome with models where CWP was outcome 

I concluded about altered glycan quantities in LBP. 

In all data analysis in this study was analysed and visualized using R programming language 

(version 3.0.1). 

 

 

 

2.7. Weighted glycan "expression" networks 

 

To investigate if there exist patterns of similar amounts of some glycans among affected and 

unaffected twins, I performed weighted correlation network analysis (WGCNA). To perform 

that I used WGCNA package for R (Langfelder, Horvath, 2008; Langfelder, Horvath, 2012) 

which carries out an exploratory analysis of "network" dependencies between the glycan traits. 

The algorithm of the analysis is based on the estimation of correlations between the glycan 

levels across the dataset followed by extraction of relatively independent modules of correlated 

glycans. Glycan levels were adjusted for age, sex and BMI before the analysis. Signed network 

algorithms were used which takes into account the direction of the correlation between glycans. 

The modules (represented by their eigenvalue estimated as first principal component for the 

glycans in every module) were then correlated with the pain phenotypes, including chronic 

wide-spread pain (CWP), low back pain (LBP), LBP without CWP (LBP.N.CWP), and MRI 

traits: CSUM and LSUM. Module memberships is calculated for each glycan, which is a 

correlation between a glycan and module eigengenes (eigengenes because the approach was 

developed for gene expression). To estimate correlations between glycan modules and pain 

phenotypes I used point-biserial correlation coefficients and Pearson's correlation coefficients 

for qualitative and quantitative traits, respectively.  

 

http://www.biomedcentral.com/1471-2105/9/559
http://www.jstatsoft.org/v46/i11/paper
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2.8. Discordant twins analysis 

 

Discordant twin pairs are those where one of the siblings is considered as affected and the other 

acts as a control. These twin pairs are interesting because although they are genetically identical 

(MZ) or about 50% identical, and yet they may show very different phenotypes.  

I compared the glycan levels in MZ and DZ twins discordant for pain phenotypes (CWP, LBP, 

LBP.N.CWP) using Wilcoxon's signed-rank test and mixed-models linear regression with twin 

relationship as random factor using nlme package for R (Pinheiro et al., 2015). Before 

Wilcoxon's test, glycan levels were adjusted for age, sex and BMI, while for mixed-models 

analysis, glycan levels were adjusted for age only, while sex and BMI were included into the 

models as fixed effects. 

 

2.9. P-value consideration 

 

There is an essential correlation between the glycan traits, many of which were derived from 

the original set of directly measured glycans. This complicates straightforward application of 

correction for multiple testing due to violation of the requirement for the independence of the 

tests. Taking this into account, I estimated the effective number of independent statistical tests 

as of 19 (Li and Ji, 2005), which after Sidak's correction for multiple testing provided the 

significance level of 0.0027. 

 

2.10. Prediction of a disease status 

 

As a final part of this study I made an algorithm for predicting disease status based on twins’ 

glycan quantities and information about their sex and BMI. Before doing any kind of predictive 

model, I had to solve a problem of correlated predictor values (quantities of some glycans are 

often correlated) because correlated predictors add unnecessary robustness to a model. Also, if 

we are using too many predictors we could build a model that perfectly describes our dataset, 

but performs poorly with new subjects. In order to avoid robustness and prevent overfitting, I 

performed variable selection where I assessed the predictive potential of each glycan and kept 

only the most significant ones. In the case of correlated glycan quantities only one glycan from 
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the group was chosen to represent all others. I used LASSO method which is an innovative 

variable selection method for regression. It minimizes the residual sum of squares subject to 

the sum of the absolute value of the coefficients being less than a constant. Important thing to 

note is that unlike other shrinkage methods, LASSO completely removes less significant 

variables from the equation while other methods usually just penalise them. This way LASSO 

uses fewer variables in model construction and tries to optimise robustness and accuracy ratio. 

LASSO not only helps to improve the prediction accuracy when dealing with multicolinearity 

data, but also carries several nice properties such as interpretability and numerical stability. 

The whole dataset was split in two parts: 80% of the dataset was randomly assigned to training 

part and the rest into test part. An algorithm was built only from the training dataset and the 

validation of its predictive power was estimated on the test part. This process was repeated 

hundred times with different values for coefficients in LASSO algorithm which define how 

strictly variables (glycans) will be penalised and removed from equation.  

For each iteration of the algorithm I calculated root mean squared error for the prediction and 

choose which parameters of the LASSO algorithm perform best when predicting on the test 

dataset. Depending on parameters chosen different numbers of variables and different variables 

will be used in regression models which will be used for prediction of likelihood of disease. 

Additionally I performed the mixed model regression for each of the glycan modules obtained 

from WGCNA analysis (so that only glycans from that module are used) and built prediction 

algorithm from those models.  Finally, I compared performance of each of the predictive 

models and concluded whether glycan modules can be useful for variable selection purposes. 
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3. Results 

 

IgG glycome composition for LBP was analysed in 1932 twins (of those: 224 full MZ pairs, 

414 full DZ pairs, and 704 singletons – unpaired twins). For CWP association analysis, IgG 

glycome was analysed in 4416 twins.  

IgG glycosylation analysis was performed using a recently developed high-throughput analysis 

method (Cassidy, 1998) that reliably separates and individually quantifies nearly all IgG 

glycans. Distributions of the first 24 directly measured glycans divided by cases and controls 

for LBP without CWP can be seen on Figure 4.  

 

Figure 4 Distribution of glycan quantities between cases and controls for LBP without CWP phenotype 
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Distributions of first 24 directly measured glycans divided between cases and controls for CWP 

can be seen on Figure 5.  

 

Figure 5 Distribution of glycan quantities between cases and controls for CWP phenotype 

 

 

 

3.1. Linear mixed models results  

 

Performing linear mixed model analysis with BMI, sex and disease outcome included as fixed 

covariate and variation in IgG glycan quantities within twin pairs as random effect for LPB 

without CWP phenotype show significant difference in glycan trait IGP50 which is derived 

from GP11. Graphical representation of p-values for these regressions are shown on Figure 6 

and Table 3. 

 

Table 3 Lowest p-values for LBP without CWP regression without correction for multiple testing 

Glycan IGP50 GP11 IGP76 IGP74 

P-value 9.222886e-05 5.061528e-03 2.238026e-02 2.348379e-02 
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Figure 6 Significance of association of LBP without CWP to glycan quantity, horizontal red line represents 

significance threshold. P-values (-log2) are reported. 

 

 

Figure 7 Significance of association of CWP to glycan quantity, horizontal red line represents significance 

threshold. P-values (-log2) are reported. 

 

Analysis of CWP phenotypes didn’t show any difference in glycan quantities as can be seen 

on Figure 7. Table 4 shows p-values of 4 most significantly associated glycans. None of them 

passed Sidak’s multiple testing corrected threshold of significance. 

 

Table 4 Lowest p-values for CWP regression without correction for multiple testing 

Glycan IGP35 IGP74 IGP75 IGP76 

P value 0.003901948 0. 012613641 0. 012620624 0. 012409583 
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3.2. WGCNA results 

  

To find clusters of similarly expressed glycans that are correlated with disease outcome, I firstly 

performed hierarchical clustering (Figure 8). By doing this, I grouped glycans that are generally 

similarly expressed. This dendogram clearly shows how derived glycans traits that were 

derived from the same or similar glycans are clustered together which proves how data 

handling done so far was done appropriately. To get glycans clusters that are similarly 

expressed only in cases but differently in controls I performed weighted (gene) correlation 

network analysis (WGCNA). 

 

 

 

Figure 8 Hierarchical clustering of glycan values 
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Figure 9 Relationships between modules of correlated glycans and traits. Pearson's or point-biserial 

correlation coefficients are provided (p-values). Red colour represents positive correlation while green 

represents negative correlation. 

 

I used WGCNA methodology to analyse glycan levels and pain phenotypes. With signed 

networks, I identified seven modules of correlated glycans as can be seen on Figure 9. First 

analysis revealed remarkable correlation between module and phenotypes; however, the true 

relationships between pain phenotypes and modules were masked by age, sex, and BMI (Figure 

9). Therefore, the analysis was repeated with glycans adjusted for these confounders (Figure 

10 and 11). Again I got 7 modules which can be grouped into two big branches: comprising 

yellow, brown and turquoise modules, on one hand, and black, green, blue and red modules, 

on the other hand (Figure 11). 

 

None of the modules was found to be associated with CWP, CSUM and LSUM; however, blue, 

brown and turquoise modules were associated with LBP with or without CWP (Figure 12). 

Blue module was negatively correlated with LBP (trait is associated with the decreased level 

of glycans), while brown and turquoise positively (trait is associated with the increased level 

of glycans). The correlations were extremely weak, though. The most promising results were 

obtained for turquoise module and ‘LBP without CWP’ (Their correlation was found to be 

point-biserial R = 0.061, p = 0.004).  
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Table 5 shows detail results of WGCNA analysis where all glycans are divided in 7 modules 

and their p-values for the significance of association with pain traits are listed.  

 

 

 

Figure 10 Hierarchical representation of modules of correlated glycans after adjustment for age, sex and BMI 
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Figure 11 Relationship between modules of correlated glycans after adjustment for age, sex and BMI 

 

 

Table 5 Glycan-module allocation and their correlation (p-value) with traits 

Glycan module CWP LBP LBP.N.CWP CSUM LSUM 

GP1 green 0.409 0.019 0.070 0.342 0.996 

GP2 brown 0.303 0.262 0.357 0.093 0.054 

GP4 green 0.297 0.030 0.145 0.928 0.966 

GP5 green 0.485 0.452 0.467 0.646 0.171 

GP6 turquoise 0.339 0.366 0.229 0.948 0.622 

GP7 brown 0.187 0.060 0.198 0.390 0.331 

GP8 blue 0.024 0.323 0.077 0.521 0.908 

GP9 blue 0.163 0.028 0.102 0.912 0.605 

GP10 turquoise 0.044 0.013 0.066 0.749 0.510 

GP11 turquoise 0.124 0.386 0.089 0.222 0.622 

GP12 brown 0.065 0.054 0.313 0.991 0.678 

GP13 brown 0.341 0.174 0.219 0.239 0.763 
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GP14 yellow 0.007 0.478 0.093 0.204 0.354 

GP15 yellow 0.071 0.037 0.148 0.461 0.327 

GP16 blue 0.027 0.136 0.338 0.685 0.808 

GP17 brown 0.132 0.131 0.156 0.769 0.314 

GP18 yellow 0.229 0.410 0.141 0.279 0.532 

GP19 black 0.314 0.463 0.372 0.732 0.372 

GP2021 red 0.388 0.183 0.344 0.334 0.306 

GP22 brown 0.067 0.105 0.166 0.682 0.180 

GP23 red 0.113 0.207 0.059 0.648 0.359 

GP24 red 0.271 0.412 0.399 0.859 0.164 

IGP24 yellow 0.154 0.491 0.458 0.793 0.805 

IGP25 red 0.222 0.103 0.216 0.690 0.806 

IGP26 yellow 0.419 0.241 0.438 0.707 0.708 

IGP27 red 0.295 0.277 0.344 0.973 0.520 

IGP28 yellow 0.004 0.436 0.189 0.820 0.780 

IGP29 yellow 0.002 0.364 0.390 0.884 0.749 

IGP30 red 0.388 0.155 0.195 0.500 0.939 

IGP31 black 0.019 0.090 0.359 0.443 0.843 

IGP32 red 0.445 0.248 0.338 0.861 0.473 

IGP33 turquoise 0.207 0.386 0.413 0.663 0.692 

IGP34 turquoise 0.132 0.204 0.123 0.616 0.910 

IGP35 black 0.149 0.495 0.362 0.454 0.551 

IGP36 black 0.400 0.320 0.110 0.506 0.696 

IGP37 black 0.325 0.365 0.143 0.440 0.795 

IGP38 black 0.325 0.365 0.143 0.439 0.796 

IGP39 turquoise 0.180 0.084 0.008 0.624 0.917 

IGP40 turquoise 0.178 0.083 0.008 0.614 0.905 

IGP41 green 0.271 0.048 0.161 0.410 0.932 

IGP42 brown 0.402 0.170 0.223 0.080 0.062 

IGP43 green 0.078 0.044 0.298 0.601 0.722 

IGP44 green 0.285 0.242 0.179 0.431 0.116 

IGP45 turquoise 0.448 0.134 0.053 0.858 0.581 
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IGP46 brown 0.340 0.028 0.097 0.314 0.281 

IGP47 blue 0.061 0.091 0.487 0.907 0.694 

IGP48 blue 0.010 0.143 0.447 0.483 0.906 

IGP49 turquoise 0.162 0.001 0.005 0.911 0.569 

IGP50 turquoise 0.028 0.083 0.006 0.139 0.596 

IGP51 brown 0.149 0.028 0.173 0.890 0.648 

IGP52 brown 0.398 0.060 0.067 0.463 0.930 

IGP53 yellow 0.058 0.319 0.280 0.380 0.535 

IGP54 yellow 0.231 0.013 0.051 0.777 0.575 

IGP55 green 0.114 0.138 0.498 0.600 0.790 

IGP56 blue 0.373 0.007 0.054 0.652 0.685 

IGP57 yellow 0.065 0.199 0.415 0.413 0.571 

IGP58 blue 0.218 0.037 0.145 0.575 0.440 

IGP59 blue 0.227 0.057 0.174 0.268 0.170 

IGP60 blue 0.368 0.064 0.144 0.352 0.302 

IGP61 blue 0.382 0.086 0.116 0.596 0.321 

IGP62 blue 0.287 0.003 0.006 0.688 0.985 

IGP63 blue 0.104 0.004 0.023 0.876 0.745 

IGP64 blue 0.282 0.005 0.009 0.930 0.721 

IGP65 blue 0.136 0.019 0.008 0.340 0.408 

IGP66 turquoise 0.273 0.004 0.005 0.940 0.440 

IGP67 turquoise 0.101 0.004 0.020 0.595 0.436 

IGP68 turquoise 0.305 0.008 0.011 0.911 0.527 

IGP69 turquoise 0.076 0.056 0.008 0.308 0.693 

IGP70 turquoise 0.304 0.005 0.007 0.736 0.812 

IGP71 turquoise 0.304 0.005 0.007 0.735 0.812 

IGP72 blue 0.308 0.004 0.006 0.775 0.794 

IGP73 brown 0.411 0.054 0.065 0.488 0.961 

IGP74 turquoise 0.080 0.036 0.005 0.297 0.616 

IGP75 turquoise 0.080 0.036 0.005 0.296 0.614 

IGP76 blue 0.055 0.053 0.007 0.311 0.514 

IGP77 turquoise 0.034 0.337 0.091 0.591 0.201 
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Figure 12 Correlations between module eigenvalues with pain phenotypes and MRI traits after adjustment for 

age, sex and BMI. Red colour represents positive correlation while green represents negative correlation. 

 

 

 

3.3. Discordant twins analysis 

 

To further analyse the relationships between glycome and pain phenotypes, I carried out 

comparisons of glycan levels in twins discordant for CWP, LBP, and ‘LBP without CWP’ 

traits. First, I used all the glycans and compared their levels by Wilcoxon's test and mixed-

models regression between the MZ and DZ twins.  

For MZ twins, I identified statistically significant differences between the twins with and 

without LBP for the IGP65, IGP74, IGP75, and IGP76 derived traits (Figure 13; p<0.0027 for 

at least one of the statistical tests used). Notably, these four glycan traits belong to the blue and 

turquoise modules identified in the WGCNA analysis. Accordingly, IGP65 and IGP76 of the 
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blue module were found to be elevated in MZ twins without LBP, while IGP74 and IGP75 of 

the turquoise module were elevated in MZ twins with LBP (Figure 14). The four glycan traits 

were derived from neutral glycans GP14 and GP15, and also GP13 for IGP76, with GP14 being 

the numerator for IGP65 and IGP76, while GP15 the numerator for the other two. Intriguingly, 

neither GP14, nor GP15 showed any trend to association with LBP. 

No differences were found for other pain phenotypes. Also, no differences were found for DZ 

twins or MZ and DZ twins combined.  

 

Figure 13 P-values (-log2) for comparisons of mean glycan levels in MZ twins discordant for LBP phenotype. 

Each column represents one glycan (from GP1 to IGP77) Horizontal red line corresponds to p=0.0027 which 

was taken as the significance threshold based on the 19 effective independent tests with Sidak's correction for 

multiple testing 
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Figure 14 Glycan distributions of significantly different glycans between discordant MZ twins in LBP study 

 

 

3.4. Prediction of a disease status 

 

LASSO regularisation 

 

Figure 15 Mean-Squared error of predictions for 100 prediction models with different LASSO parameters 
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Figure 15 shows how mean-squared error changes when predicting disease status on a test part 

of the dataset with different parameters for LASSO algorithm and when using different number 

of variables. If I would use all glycan variables for prediction, the accuracy of prediction would 

be the lowest. According to this graph, the best lambda parameter is 0.01082604 which 

corresponds to model with eight glycan variables (vertical line on the plot). Eight glycans used 

in that model are: GP1, GP17, GP22, IGP37, IGP40, IGP50 and IGP56. 

Regression model in this case was, because of the prediction purposes, defined other way 

around compared to previous models built in Mixed models chapter. All models looked like 

this: LBP ~ selected glycans + sex + BMI + (1|familyID). 

Prediction algorithm built with these eight glycans showed 76.85% accuracy in predicting new 

patients from their glycan profile. Table 6 summarises accuracies of prediction of glycan subset 

that was derived after LASSO regularisation and different glycan modules. 

 

Table 6 Accuracy of prediction for glycan modules 

Glycan subset Accuracy of prediction on test dataset 

LASSO regularisation 76.85% 

Turquoise module 77.99% 

Blue module 76.94% 

Brown module 76.94% 

Yellow module 76.76% 

Green module 76.76% 

Red module 76.26% 

Black module 75.94% 
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4. Discussion  

 

4.1. Regression analysis 

 

Immunoglobulin G is an excellent glycoprotein model as its glycosylation is well defined and 

many important functional effects of alternative IgG glycosylation have been described 

(Gornik, 2012). N-glycans attached to the conserved asparagine 297 in the Fc part of IgG are 

important modulators of IgG effector functions (Gornik, 2012) For example, glycosylation acts 

as a switch between pro- and anti-inflammatory IgG functionality. Malfunction of this system 

is associated with different inflammatory and autoimmune diseases such as SLE (Lauc et al., 

2013), rheumatoid arthritis and inflammatory bowel diseases (Ohtsubo and Marth, 2006). 

Because one of the major determinants of pain in persistent CLBP syndrome is localised 

inflammation in epidural space (Broos, Aebi, 2008), and as glycans are known to be associated 

with inflammatory diseases, in this study I have evaluated, using a classical twin study design, 

association between quantities of plasma IgG N-glycans and LBP. This ended as a very difficult 

task because distributions of glycan quantities between cases with LBP and controls were very 

similar (Figure 6). Although my sample size was big enough to detect significant variations 

between cases and controls, only one glycan trait that came out significant was IGP50 which 

is derived from GP11. Interestingly GP11 had second lowest P-value but didn’t pass 

significance threshold. For the CWP analysis I used even bigger dataset, and here differences 

in distributions of glycan quantities were even bigger (Figure 7), but after performing mixed 

model regression, no significantly different glycans showed up.  

Generally differences in glycan quantities, when researched from the whole plasma proteins 

can be attributed to multiple effects like different ratio of plasma proteins, different levels of 

glycosylation, but in this study I avoided both problems by isolating a single protein from 

plasma (IgG), which is produced by a single cell type (B lymphocytes), thus effectively 

excluding differential regulation of gene expression in different tissues, and the “noise” 

introduced by variation in plasma IgG concentration and by N-glycans on other plasma 

proteins.  
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4.2. WGCNA 

 

A new emphasis on the thoughtful use and adoption of statistical analyses is required in order 

for the biological sciences to keep pace with the increasing dominance of complex and highly 

multivariate systems biology data. Hence, in this study I used methods that were developed for 

genomic data and applied it to other multivariate omic data. This is the first time that WGCNA 

is applied to glycan data. 

Weighted correlation network analysis is a powerful methodology for revealing clusters 

(modules) of multiple omic traits, such as genome-wide gene expression or global methylation 

profiles, and placing them into a biological context through the analysis of associations 

between the clusters and diseases or traits of interest (Horvath et al., 2006; Presson et al., 2008; 

Saris et al., 2009; van Eijk et al., 2012).  

WGCNA defines a network that continuously links all variables and then clusters the most 

highly co-expressed variables in flexibly defined modules. WGCNA can be used to create both 

signed networks, which separate positively and negatively correlated nodes into separate 

modules and also unsigned networks, which assess correlations by their absolute values. 

Here I applied WGCNA on glycan data to assess whether there are different patterns of glycan 

quantities among twins and is there a biological meaning relating to chronic pain behind these 

modules. As a result I obtained seven different modules of glycan quantities. At first, due to 

my lack of experience there was a strong association among the most of the modules with 

various pain phenotypes, but after I investigated further, it turned out that actually most of the 

associations are linked to age, BMI or sex (Figure 9). I have fixed that problem and corrected 

glycan quantities for age, sex and BMI. After running this analysis again with corrected values, 

I found much smaller associations.  Interestingly only 3 modules were associated with LBP 

while only two modules were associated with LBP without CWP. This means that in the brown 

module (the module where glycans are only associated with LBP, but not with LBP without 

CWP) are glycans that are actually associated with CWP and not with LBP but because of 

manifestations of CWP we get the impression that these glycans could be related to LBP. 

According to the results of WGCNA for the further studies that are seeking for association 

between LBP and glycan quantities, it would be the most efficient to investigate only glycans 

that were clustered in turquoise and blue module because they showed significant differences 

between cases and controls in both LBP and LBP without CWP while others didn’t. 
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Grouping features into modules has several advantages. First, condensing a very large network 

into a small number of modules or, alternatively, hub nodes allows external traits to be 

compared to a limited number of variables, providing a solution to the multiple testing problem. 

Second, module construction provides a means by which the roles of poorly characterized 

glycans can be inferred from their better-annotated neighbours. The identification of co-

regulated modules helps to annotate the results from systems biology scale experiments, adding 

valuable biological information. Third, since the influence of minor variables is not masked by 

the most dramatic differences in terms of absolute scale, as occurs in PCA, WGCNA allows 

the combining of disparate datasets. 

 

 

4.3. Discordant twins analysis 

 

The discordant twin design allows for a comparison of probands and controls while “matching” 

for the underlying genetic or shared environmental factors that may influence general cognitive 

ability. 

I used MZ and DZ twins discordant for LBP in the validation analysis. Glycan levels may be 

influenced by many factors including genetics, age and environment (Lauc at al., 2013). As 

identical twins share 100% of their genetic makeup, and are matched perfectly for age, gender, 

social class, etc., I was able to validate the role of IgG on LBP; isolating the nongenetic 

contribution. These data help us to understand the complex interplay between genetic and 

nongenetic influences that determine LBP. 

In these analysis the only significantly associated glycans are: IGP65, IGP74, IGP75, and 

IGP76 glycan derived traits, while the glycans from which they were derived are not 

significantly associated with disease outcome. If I check the meaning behind these derived 

glycan traits that are shown on Table 7, I notice that all traits are connected with fucosilation 

of digalactosylated structures, both bisecting and non-bisecting. 

According to this finding, from discordant twin analysis, I would suggest that there is a link 

between low back pain and fucosilation of dygalactosilated IgG N-glycan structures.  
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Table 7 Significantly associated glycan traits with LBP, discordant twin study 

Glycan  Description 

IGP65 The percentage of fucosylation of digalactosylated structures (without 

bisecting GlcNAc) in total neutral IgG glycans  

IGP74 Ratio of fucosylated digalactosylated structures with and without 

bisecting GlcNAc in total neutral IgG glycans  

IGP75 The incidence of bisecting GlcNAc in all fucosylated digalactosylated 

structures in total neutral IgG glycans  

IGP76 Ratio of fucosylated digalactosylated non-bisecting GlcNAc structures 

and all digalactosylated structures with bisecting GlcNAc in total neutral 

IgG glycans  

 

 

4.4. Predictive power of WGCNA modules 

Knowing that associations between various pain phenotypes and glycan values are low, if any, 

I was sure that my predictive models will not be very accurate or applicable to other datasets. 

Nevertheless I have still decided to build them in order to see whether WGCNA modules can 

be a good variable selection tool.  

As a standard upon which comparisons of accuracy will be made I have built predictive model 

after LASSO regularisation. This method is widely used in genomic studies when there is a 

need for reduction of number of variables due to a lot of genomic markers used as predictors 

(Tibshirani, 1997).  LASSO regularisation method found out that the lowest mean squared error 

is observed when model uses only eight glycan variables. For each glycan LASSO was 

checking their contribution to prediction accuracy in model, and not any biological prior 

knowledge. On the other hand, WGCNA modules were built based on glycan quantities which 

are directly linked to biological features because of common biological pathways.  

Glycans chosen by LASSO are not members of only one WGCNA module, but belong to four 

different modules although most of them are from blue and turquoise module, modules that 

showed association with LBP.  

It is interesting to see how prediction accuracy of turquoise, blue and brown module was 

slightly higher than with LASSO, while other modules preformed worse. This proves that 
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variable selection based on biological prior knowledge could in future drastically help in 

building prediction models.  

The reason why prediction accuracies were very similar in all models is because of uneven 

quantities of cases and controls and males and females in my dataset. How 75% of the database 

were controls model learned much better to distinguish controls, so if it was unsure whether 

some patient is case or control based on their glycan profile, in all models, it would assign it as 

control. 

 

There are some limitations of this study. First, there is a female predominance in our study 

sample (95% of the individuals are, for historical reasons, women). Second, this population 

being volunteers is slightly healthier than average with a lower rate of diabetes and results 

might not be generalizable to more severe diabetes populations. Third, the cross-sectional 

nature of our data does not allow us to draw conclusions as to whether the glycans identified 

are causative of LBP or merely correlated with it. Finally, I cannot provide reliable estimates 

as to what proportions of the identified glycans were from Fc and from Fab, respectively. 

However, in a small pilot of Fc-glycopeptides by nano-liquid chromatography tandem mass 

spectrometry (Huffman at al. 2014) on 96 representative age-matched individuals from the 

extremes of the eGFR distribution, I find the same direction of effect in this study which 

suggests that my initial observations mostly come from the Fc glycans. 

Additionally, association of pain phenotypes and glycan quantities is almost not evident in this 

study, which is partly caused by the way pain phenotypes are defined. Patients filling in 

questionnaires about their pain history is not the best solution to assess someone’s pain 

perception. For future studies I suggest to correlate tests of objective measures of pain` 

perception with answers on questionnaires. To make sample more random, database should 

have even number of males and females which should be chosen randomly from the population.  

Along all drawbacks of this study analysis of discordant twin pairs suggests how there is an 

association between pain phenotypes and glycans, but new studies are needed to define which 

phenotypes are associated with differential glycan quantity and what is the biological meaning 

behind subset of those glycans.  
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5. Conclusion 

 

 Pre-processing and filtering of glycan values was successfully done for 1932 twins for 

LBP without CWP study and 4416 twins for CWP study. 

 Cofounders of glycan quantities were examined and all glycan quantities were corrected 

for age of volunteer. 

 Regression mixed models were built for LBP without CWP and CWP pain phenotypes 

which showed how associations between glycans with these phenotypes are very weak.  

 Seven modules of glycans with different quantity pattern between cases and controls 

were obtained by WGCNA method. 

 All significantly associated glycan traits that I found in discordant MZ twins analysis 

were linked with fucosylation of digalactosylated glycan structures which gives a 

reason to suspect how there is a link between glycans and pain phenotypes. 

 Prediction models were built that would, based on person’s glycan quantities, predict 

whether that person is case or control. 

 Three WGCNA modules that showed association with LBP predicted disease outcome 

the best, even better than LASSO selection model. 

 In future replication in a male dataset would be beneficial, also one containing different 

forms of cases and controls having objective measures of pain sensitivity.  
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